
Under review as a conference paper at ICLR 2023

A UNIFIED FRAMEWORK FOR
COMPARING LEARNING ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a framework for (learning) algorithm comparisons, wherein the goal
is to find similarities and differences between models trained with two different
learning algorithms. We begin by formalizing the goal of algorithm comparison as
finding distinguishing feature transformations, input transformations that change
the predictions of models trained with one learning algorithm but not the other.
We then present a two-stage method for algorithm comparisons based on compar-
ing how models use the training data, leveraging the recently proposed datamodel
representations (Ilyas et al., 2022). We demonstrate our framework through three
case studies that compare models trained with/without standard data augmenta-
tion, with/without pre-training, and with different optimizer hyperparameters.

1 INTRODUCTION

Building a machine learning model involves a series of design choices. Indeed, even after choosing
a dataset, for example, one must decide on a model architecture, an optimization method, and a
data augmentation pipeline. These design choices together define a learning algorithm, a function
mapping training datasets to machine learning models.

Even if they do not affect accuracy, design choices determine the biases of the resulting models. For
example, Hermann et al. (2020) find significant variation in shape bias (Geirhos et al., 2019) across a
group of ImageNet models that vary in accuracy by less than 1%. In order to understand the impact
of design choices, we thus need to be able to differentiate learning algorithms in a more fine-grained
way than accuracy alone.

Motivated by this observation, we develop a unified framework for comparing learning algorithms.
Our proposed framework comprises (a) a precise, quantitative definition of learning algorithm com-
parison; and (b) a concrete methodology for comparing any two algorithms. For (a), we frame the
algorithm comparison problem as one of finding input transformations that distinguish the two algo-
rithms. This goal is different and more general than quantifying model similarity (Ding et al., 2021;
Bansal et al., 2021; Morcos et al., 2018a) or testing specific biases (Hermann et al., 2020). For (b),
we propose a two-stage method for comparing algorithms in terms of how they use the training data.

In the first stage of this method, we leverage datamodel representations (Ilyas et al., 2022) to find
weighted combinations of training examples (which we call training directions) that have disparate
impact on test-time behavior of models across learning algorithms. In the second stage, we filter the
subpopulation of test examples that are most influenced by each identified training direction, then
manually inspect them to infer a shared feature (e.g., we might notice that all of the test images
contain a spider web). We then tie this intuition back to our quantitative definition by designing
a distinguishing feature transformation based on the shared feature (e.g., overlaying a spider web
pattern to the background of an image).

We illustrate the utility of our framework through three case studies (Section 3), motivated by typical
choices one needs to make within machine learning pipelines, namely:

• Data augmentation: We compare classifiers trained with and without data augmentation on the
LIVING17 (Santurkar et al., 2021) dataset. We show that models trained with data augmenta-
tion, while having higher overall accuracy, are more prone to picking up specific instances of
co-occurrence bias and texture bias compared to models trained without data augmentation. For

1

Under review as a conference paper at ICLR 2023

Figure 1: A visual summary of our case studies. We use our method to study the differences between
training with and without standard data augmentation, with and without ImageNet pre-training, and
with different choices of SGD optimizer hyperparameters. In all three cases, our framework allows
us to pinpoint concrete ways in which the two algorithms being compared differ.

instance, adding a spider web (Figure 1A)—which co-occurs with spiders—to random images in-
creases the “spider” confidence of augmentation-trained models by 15% on average, but increases
the confidence of non-augmented models by less than 1%.

• ImageNet pre-training: We compare classifiers first pre-trained on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015) then fine-tuned on WATERBIRDS (Sagawa et al., 2020) with classifiers
trained from scratch on WATERBIRDS. We demonstrate that pre-training can either suppress or
amplify specific spurious correlations. As an example of the former, adding a yellow patch to
random images increases confidence in the “landbird” label of models trained from scratch by
12%, but actually decreases the confidence of pre-trained models by 4%. As an example of the
latter, adding a human face (Figure 1B) to the background increases the “landbird” confidence of
pre-trained models by 4%, but decreases the confidence of models trained from scratch by 1%.

• Optimizer hyperparameters: Finally, we compare classifiers trained on CIFAR-10 (Krizhevsky,
2009) using stochastic gradient descent (SGD) with different choices of learning rates and batch
sizes. Our analysis pinpoints subtle differences in model behavior induced by small changes to
these hyperparameters. For example, adding a small pattern that resembles windows (Figure 1C)
to random images increases the “truck” confidence by 7% on average for models trained with a
smaller learning rate, but increases the confidence by only 2% for models trained with a larger
learning rate.

Across all three case studies, our framework surfaces fine-grained differences between models
trained with different learning algorithms, enabling us to better understand the role of the design
choices that make up a learning algorithm.

2 COMPARING LEARNING ALGORITHMS

In this section, we describe our (learning) algorithm comparison framework. In Section 2.1, we
formalize algorithm comparison as the task of identifying distinguishing transformations. These are
functions that—when applied to test examples—significantly and consistently change the predic-
tions of one model class but not the other. In Section 2.2, we describe our method for identifying
distinguishing feature transformations by comparing how each model class uses the training data.

2.1 FORMALIZING ALGORITHM COMPARISONS VIA DISTINGUISHING TRANSFORMATIONS

The goal of algorithm comparison is to understand the ways in which two learning algorithms
(trained on the same data distribution) differ in the models they yield. More specifically, we are
interested in comparing the model classes induced by the two learning algorithms:
Definition 1 (Induced model class). Given input space X , label space Y , and model spaceM ⊂
X → Y , a learning algorithmA : (X ×Y)∗ →M is a (potentially random) function mapping a set
of input-label pairs to a model. Fixing a data distribution D, the model class induced by algorithm
A is the distribution overM that results from applying A to randomly sampled datasets from D.

2

Under review as a conference paper at ICLR 2023

The perspective we adopt here is that model classes differ insofar as they use different features to
make predictions. We make this notion precise by defining functions that we call distinguishing
transformations:
Definition 2 (Distinguishing feature transformation). Let A1,A2 denote learning algorithms, S a
dataset of input-label pairs, and L a loss function (e.g., correct-class margin). Suppose M1 and
M2 are models trained on dataset D using algorithms A1 and A2 respectively. Then, a (ϵ, δ)-
distinguishing feature transformation of M1 with respect to M2 is a function F : X → X such that
for some label yc ∈ Y ,

Counterfactual effect of F on M1︷ ︸︸ ︷
E[L1(F (x), yc)− L1(x, yc)] ≥ δ and

Counterfactual effect of F on M2︷ ︸︸ ︷
E[L2(F (x), yc)− L2(x, yc)] ≤ ϵ,

where Li(x, y) = L(Mi(x), y), and the expectations above are taken over both inputs x and ran-
domness in the learning algorithm.

Intuitively, a distinguishing feature transformation is just a function F that, when applied to test data
points, significantly changes the predictions of one model class—but not the other—in a consistent
way. Definition 2 also immediately suggests a way to evaluate the effectiveness of a distinguish-
ing feature transformation. That is, given a hypothesis about how two algorithms differ (e.g., that
models trained with A1 are more sensitive to texture than those trained with A2), one can design
a corresponding transformation F (e.g., applying style transfer, as in Geirhos et al. (2019)), and
directly measure its relative effect on the two model classes.

Informative distinguishing feature transformations. Not every distinguishing transformation F
sheds the same amount of light on model behavior. For example, given any two non-identical learn-
ing algorithms, we could craft a transformation F that imperceptibly modifies its input to satisfy
Definition 2 (e.g., by using adversarial examples). Alternatively, one could craft an F that arbi-
trarily transforms its inputs into pathological out-of-distribution examples on which the two model
classes disagree. While these transformations satisfy Definition 2, they yield no benefit in terms of
qualitatively understanding the differences in salient features used by the model classes. More con-
cretely, an informative distinguishing feature transformation must (a) capture a feature that naturally
arises in the data distribution and (b) be semantically meaningful.

2.2 IDENTIFYING DISTINGUISHING FEATURE TRANSFORMATIONS

We now describe our two-stage method for comparing learning algorithms based on how they use the
training data. Recall that our goal is to identify informative distinguishing transformations—that is,
those that (a) capture a feature that arises naturally in the data distribution and (b) are semantically
meaningful. Rather than search for distinguishing feature transformations directly, we instead first
identify training directions, or weighted combinations of training examples, that impact test perfor-
mance of models trained with one learning algorithm but not the other. Then, we use a human-in-
the-loop approach to extract semantically meaningful features and corresponding transformations
from these directions.

Stage I: An algorithm for finding distinguishing training directions. First, we find weighted
combinations of training examples that influence the predictions of models trained with one learning
algorithm but not the other. Our algorithm leverages datamodel representations (Ilyas et al., 2022)
and comprises the following three steps:

1. Compute datamodels for each algorithm. Our point of start is computing a datamodel repre-
sentation for each example in the test set T . Given training set S and learning algorithm A, a
datamodel representation for test example xi is a vector θi ∈ R|S|, where θij measures the extent
to which models trained withA depend1 on the j-th training example to correctly classify example
xi. In other words, θi is a training direction that strongly influences the prediction for example

1For readers familiar with influence functions (Koh & Liang, 2017; Hampel et al., 2011), an intuitive (but
not quite accurate) way to interpret datamodel weight θij is as the influence of the j-th training example on
test example xi. In Appendix A, we discuss additional properties of datamodel representations that make them
particularly well-suited for model comparison.

3

Under review as a conference paper at ICLR 2023

xi. We compute two sets of datamodels—θ(1) and θ(2)—corresponding to model classes induced
by learning algorithms A1 and A2 respectively.

2. Compute residual datamodels. Next, we compute a residual datamodel for each test example
xi, which is the projection of the datamodel representation θ

(1)
i onto the null space of datamodel

representation θ
(2)
i :

θ
(1\2)
i = θ̂

(1)
i − ⟨θ̂

(1)
i , θ̂

(2)
i ⟩ θ̂

(2)
i ,

where θ̂i = θi/∥θi∥2 denotes the normalized version of datamodel θi. Intuitively, the residual
datamodels of algorithmA1 with respect toA2 correspond to the training directions that influence
A1 after “projecting away” the component that also influences A2.

3. Run principal component analysis. Finally, we use principal component analysis (PCA) to find
the highest-variance directions in the space of residual datamodels. That is, we run

ℓ-PCA({θ(1\2)1 , . . . , θ
(1\2)
|T | })

to find the top ℓ principal components of the residual datamodels. Intuitively (deferring formal
analysis to Appendix A), we expect the returned principal components to be the most distinguish-
ing training directions across the test set.

We illustrate our algorithm visually in the top half of Figure 2.

Stage II: Human-in-the-loop analysis. With these distinguishing directions in hand, we use a
human-in-the-loop analysis to identify informative distinguishing features transformations in three
steps. First, given a principal component, we inspect the test examples whose residual datamodels
are most aligned with that component. We view these examples as representing the subpopulation
that depends most heavily on the training direction. We then use visual inspection (see, e.g., Figure
2C) and if needed, additional analysis2, to infer a distinguishing feature shared by examples in the
surfaced subpopulation. Finally, we design a distinguishing feature transformation (as in Figure 2D)
to counterfactually verify the effect of the inferred feature on model behavior.

Figure 2: A visual summary of our two-stage approach to algorithm comparison. In the first stage
(top row) we use examples’ datamodel representations (Ilyas et al., 2022) to find so-called dis-
tinguishing training directions—weighted combinations of training examples that impact the two
algorithms disparately across the test set. In the second stage (bottom row) we surface subpopu-
lations that rely on the identified directions, and use a human-in-the-loop to go from the identified
distinguishing training direction to a testable feature transformation.

2Visual inspection may be insufficient to identify a single distinguishing feature. In such cases, we resort to
additional human-in-the-loop analysis (see Appendix D) to identify the distinguishing feature.

4

Under review as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Explained Variance under Algorithm A1 (%)

(With Augmentation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tA

ug
m

en
ta

ti
on

)

AB

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y
A

B

Figure 3: Comparing LIVING17 models trained with and without data augmentation. (Left)
Each green (resp., red) point is a training direction (i.e., a vector v ∈ R|S| representing a weighted
combination of training examples) that distinguishes A1 from A2 (resp., A2 from A1) as identified
by the first stage of our framework. The x and y coordinates of each point represent the importance
of the training direction to models trained withA1 andA2 respectively. (Right) Test examples most
impacted by the distinguishing training directions annotated A and B. A seems to correspond to
spiders on spider webs, and B to salamanders with yellow polka dots.

3 APPLYING THE ALGORITHM COMPARISON FRAMEWORK

We demonstrate our comparison framework through a variety of case studies. Specifically, we
consider three key aspects of the standard training pipeline—data augmentation, pre-training, and
optimization—and characterize their effect in terms of the features that they amplify or suppress. In
each case study, we follow the same procedure: (i) use the algorithm from Stage I above (Section 2)
to identify examples training directions; (ii) inspect the test images that depend most heavily on
these training directions to come up with a candidate distinguishing transformation; and (iii) apply
these candidate transformation to test examples and compare its effect on models trained with the
two learning algorithms.

3.1 CASE STUDY: DATA AUGMENTATION

Data augmentation is a key component of the standard computer vision training pipeline, as its
application can significantly improve model performance. However, the effect of using data aug-
mentation on models’ learned features remains elusive. In this case study, we study the effect of
data augmentation in the context of classifiers trained on the ImageNet-derived LIVING17 dataset
(Santurkar et al., 2021). Specifically, we compare two classes of ResNet-18 models trained on this
dataset with the exact same settings modulo the use of data augmentation. That is, we consider the
following two learning algorithms:

• Algorithm A1: Training with standard augmentation, i.e., horizontal flip and resized random
crop with torchvision default parameters. Resulting models attain 89% average test accuracy
(where the average is taken over randomness in training).

• Algorithm A2: Training without data augmentation. Models attain 81% average accuracy.

Appendix C.1 provides further experimental details.

Identifying distinguishing features. We compare algorithms A1 and A2 using our method from
Section 2. The first stage of this method finds a set of distinguishing training directions vi ∈
R|S|. As we will show (in Section A), for a given training direction v, the fraction of variance that
v explains3 in the datamodel representations {θ(i)x } captures the importance of the corresponding

3The fraction of explained variance of a given vector v ∈ Rd in a set of vectors {θi ∈ Rd} is the empirical
variance of v⊤θi divided by the total amount of variance in {θi} (i.e., trace(Cov[θi])). In other words, this
measures what fraction of the total variation in {θi} is along the direction v.

5

Under review as a conference paper at ICLR 2023

Perturb

δ = 0.3

Perturb

δ = 0.4

Perturb

δ = 0.5

0.4 0.5 0.6
Perturbation Intensity δ

0

2

4

6

8

10

12

14

16

Pe
rc

en
tI

nc
re

as
e

in
Pr

(s
pi

de
r)

Data Augmentation

With Without

(a) “Spider web” feature

Perturb

δ = 0.2

Perturb

δ = 0.3

Perturb

δ = 0.4

0.2 0.3 0.4
Perturbation Intensity δ

0

5

10

15

20

Pe
rc

en
tI

nc
re

as
e

in
Pr

(s
al

am
an

de
r)

Data Augmentation

With Without

(b) “Polka dots” feature

Figure 4: Effect of data augmentation on LIVING17 models. Standard data augmentation ampli-
fies specific instances of co-occurrence (panel (a)) and texture (panel (b)) biases. The left side of
each panel illustrates the distinguishing feature transformation at three different levels of intensity δ.
On the right, we plot the average treatment effect of the transformation on the predicted confidence
of models trained with and without data augmentation, for varying δ. We find that—at moderate
intensity δ—adding a spider web pattern to images makes models trained with (without) data aug-
mentation, on average, 13% (1%) more confident in predicting the class “spider,” while overlaying
a polka dot pattern makes them 14% (2%) more confident in the class “salamander.” In both cases,
increasing the intensity δ widens the gap between the two model classes.

combination of training examples to model predictions for algorithm Ai. Thus, we would hope for
training directions that distinguishA1 fromA2 to explain a high (resp., low) amount of the variance
in datamodel representations of algorithm A1 (resp., A2).

Figure 3 displays the identified distinguishing training directions surfaced in the first stage. On the
left, we can see that the training directions distinguishing A1 from A2 (in green) indeed explain
a significant amount of variance in the datamodels of A1 but not in those of A2. Visualizing the
subpopulations corresponding to two of the distinguishing directions (Figure 3 right) suggests the
following distinguishing features:

• Spider web: Direction A surfaces a subpopulation of test images that contain spiders. In stark
contrast to random images of spiders in LIVING17 data, all the images in the surfaced subpop-
ulation contain a white spider web in the background. This leads us to hypothesize that models
trained with standard data augmentation—moreso than those trained without it—use spider webs
to predict the class “spider”. We test this hypothesis using a feature transformation that overlays a
spider web pattern onto an entire image (see Figure 4a).

• Polka dots: Direction B surfaces a subpopulation of test images that contain salamanders. Again,
comparing these images to random salamander images in LIVING17 test data reveals a shared
property of the surfaced subpopulation, namely, the presence of yellow-black polka dots. This sug-
gests that this texture is a distinguishing feature—models trained with data augmentation strongly
rely on the polka dot texture to predict the class “salamander.” To test this hypothesis, we design
a feature transformation that adds yellow-black polka dots to the entire image (see Figure 4b).

Findings. In Figure 4, we compare the effect of the above feature transformations on mod-
els trained with and without data augmentation. The results confirm our hypotheses put forth
above. In particular, overlaying a spider web pattern with varying (30%/40%/50%) opacity
increases P (“spider”) (i.e., models’ average softmax confidence in the spider label) predicted
in models trained with data augmentation (11%/13%/15% increase) signifantly more than in
those without (2%/1%/1%). Similarly, overlaying the yellow polka dot texture with varying
opacity (20%/30%/40%) increases P (“salamander”) far more when we use data augmentation
(6%/14%/21%) than when we do not (1%/2%/2%). Furthermore, increasing the transformations’
intensity consistently widens the gap between the predictions of the two model classes. Overall,

6

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6
Explained Variance under Algorithm A1 (%)

(With ImageNet Pre-training)

0

1

2

3

4

5

6

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tP

re
-t

ra
in

in
g)

B

A

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y
A

B

Figure 5: Comparing Waterbirds models trained with and without ImageNet pre-training. An
analogous figure to Figure 3 for our second case study, see Figure 3 for a description. In this case,
direction A seems to correspond to yellow birds and direction B to human faces in the background.

these differences verify that the feature transformations we constructed are indeed able to distin-
guish the two learning algorithms as according to Definition 2.

Connection to previous work. Our case study demonstrates how training with standard data aug-
mentation on LIVING17 data can amplify specific instances of co-occurrence bias (spider webs) and
texture bias (polka dots). These findings are consistent with prior works that show that data augmen-
tation can introduce biases (e.g., (Hermann et al., 2020)). Also, the distinguishing features that we
find are specific to certain classes—this may explain why data augmentation can have disparate im-
pacts on performance across different classes (Balestriero et al., 2022). Finally, our findings, which
demonstrate how data augmentation alters relative importance of specific features, corroborate the
view of data augmentation as feature manipulation (Shen et al., 2022).

3.2 CASE STUDY: PRE-TRAINING

Pre-training models on large datasets is a standard transfer learning approach to improve perfor-
mance on downstream tasks where training data is scarce. Our case study focuses the effect of Ima-
geNet pre-training (Deng et al., 2009; Kornblith et al., 2019b) in the context of classifiers trained on
the WATERBIRDS dataset (Sagawa et al., 2020). The task is to classify images of birds as “waterbird”
or “landbird”—these labels spuriously correlate with “land” and “water” backgrounds respectively.
Pre-training significantly improves the “worst group” accuracy on images where the background
conflicts with the bird—but how does it impact the fine-grained features learned by the models? To
study this, we compare two classes of ResNet-50 models trained with the exact same settings modulo
the use of ImageNet pre-training. That is, we consider the following two learning algorithms:

• Algorithm A1: Pre-training on ImageNet, followed by full-network finetuning on Waterbirds.
Resulting models attain 89.1% average accuracy and 63.6% worst-group accuracy on the test set.

• Algorithm A2: Training from scratch on Waterbirds data. Corresponding models attain 63.9%
average accuracy and 5.7% worst-group accuracy on the test set.

Identifying distinguishing features. Applying our framework analogously as done in Section 3.1,
we identify two candidate distinguishing features:

• Yellow color: Direction A surfaces a subpopulation of test images that contain yellow birds be-
longing to class “landbird.” This leads us to hypothesize that models trained from scratch (i.e.,
without ImageNet pre-training) spuriously rely on the color yellow to predict the class “landbird,”
whereas ImageNet-pretrained models do not. Additional analysis (Appendix D) supports this hy-
pothesis, as training images that contain other yellow objects strongly influence the predictions of
models trained from scratch on this subpopulation. To test this hypothesis, we design a feature
transformation that adds a yellow square patch to images (see Figure 6a).

7

Under review as a conference paper at ICLR 2023

Add Patch

Size 20px

Add Patch

Size 30px

Add Patch

Size 40px

20 30 40
Patch Size

−4

−2

0

2

4

6

8

10

12

Pe
rc

en
tI

nc
re

as
e

in
Pr

(l
an

db
ir

d)

ImageNet Pre-training

With Without

(a) “Yellow” feature

Add Patch

Size 80px

Add Patch

Size 100px

Add Patch

Size 120px

80 100 120
Patch Size

−1

0

1

2

3

4

Pe
rc

en
tI

nc
re

as
e

in
Pr

(l
an

db
ir

d)

ImageNet Pre-training

With Without

(b) “Human face” feature

Figure 6: Effect of ImageNet pre-training on WATERBIRDS classification. Analogously to Fig-
ure 4, we use our framework to identify spurious correlations that are either suppressed or am-
plified by ImageNet pre-training. (Left) Adding a yellow patch to images makes models trained
without (with) pre-training, on average, 9% more (2% less) confident in predicting the label “land-
bird.” (Right) Adding human faces to image backgrounds makes models trained with (without)
pre-training, on average, 3% (0%) more confident in predicting “landbird.” In both cases, increasing
the transformation intensity widens the gap in treatment effect between the two model classes.

• Human face: Direction B surfaces a subpopulation of “landbird” that have human faces in the
background. This suggests that ImageNet pre-training introduces a spurious dependence on hu-
man faces to predict the label “landbird.” Additional analysis supports this hypothesis, as training
images containing face(s) strongly influence the predictions of ImageNet-pretrained models on
this subpopulation (see Appendix D). To test this hypothesis, we design a transformation that
inserts patches of human faces in WATERBIRDS image backgrounds (see Figure 6b).

Findings. In Figure 6, we compare the effect of the above feature transformations on models
trained with and without ImageNet pre-training. The results confirm both of our hypotheses. Adding
a yellow square patch with varying size (20/30/40 px) to test images increased P (“landbird”) by
4%/9%/12% for models trained from scratch but decreased P (“landbird”) for models pre-trained on
ImageNet. Similarly, adding a human face patch4 to image backgrounds increased P (“landbird”)
by 2%/3%/4% for pre-trained models, but did not significantly affect models trained from scratch.
Once again, increasing the intensity (i.e., patch size) of these feature transformations further widens
the gap in sensitivity between the two model classes.

Connections to prior work. This case study pinpoints how pre-training can alter the importance
of different spurious correlations. In particular, our results show that ImageNet pre-training reduces
dependence on some spurious correlations (e.g., yellow color→ landbird) but also introduces new
ones (e.g., human face → landbird). Our findings thus shed light on two seemingly contradictory
phenomena: pre-training can simultaneously improve robustness to spurious features (Ghosal et al.,
2022; Tu et al., 2020) in target data as well as transfer new spurious correlations (Salman et al.,
2022; Neyshabur et al., 2020) from the pre-training dataset.

3.3 CASE STUDY: SGD HYPERPARAMETERS

The choices of optimizer and corresponding hyperparameters can affect both the trainability and the
generalization of resulting models (Hoffer et al., 2017). In this case study, we focus on stochastic
gradient descent (SGD), and its hyperparameters—learning rate and batch size—that control the
effective scale of the noise in SGD. We defer our findings to Appendix B due to space constraints.

4We collect a bank of human face patches using ImageNet validation examples and their corresponding face
annotation (Yang et al., 2022); see Appendix C.4 for more information.

8

Under review as a conference paper at ICLR 2023

4 RELATED WORK

We now compare and contrast our approach to algorithm comparison with approaches to the related
problem of model comparison, where one tries to characterize the difference between two (usually
fixed) machine learning models. A long line of work has sought to design methods for characterizing
the differences between models:

Representation-based comparison. A popular approach (particularly in the context of deep learn-
ing) is to compare models using their internal representations. Since the coordinates of these repre-
sentations do not have a consistent interpretation, representation-based model comparison typically
studies the degree to which different models’ representations can be aligned. Methods based this ap-
proach include canonical correlation analysis (CCA) and variants (Raghu et al., 2017; Morcos et al.,
2018a; Cui et al., 2022), centered kernel alignment (CKA) (Kornblith et al., 2019a), graph-based
methods (Li et al., 2015; Chen et al., 2021), and model stitching (Csiszarik et al., 2021; Bansal et al.,
2021). Prior works have used these methods to compare wide and deep neural networks (Nguyen
et al., 2021); vision transformers and convolutional networks (Raghu et al., 2021); pre-trained and
trained-from-scratch models (Neyshabur et al., 2020); and different language models (Wu et al.,
2020). Though they are often useful, prior work shows that representation-based similarity mea-
sures are not always reliable for testing functional differences in models (Ding et al., 2021). Our
approach to algorithm comparison differs from these methods in both objective and implementation:

Learning algorithms, not fixed models: Rather than focusing on a single fixed model, our objective
here is to compare the class of models that result from a given learning algorithm. In particular, we
aim to find only differences that arise from algorithmic design choices, and not those that arise from
the (sometimes significant) variability in training across random seeds (Zhong et al., 2021).

Feature-based, not similarity-based: Methods such as CCA and CKA focus on outputting a single
score that reflects the overall similarity between two models. On the other hand, the goal of our
framework is to find fine-grained differences in model behavior. Still, in Appendix F.1 we show that
we can also use our method for more global comparisons, for instance by computing the average
cosine similarity of the datamodel vectors.

Model-agnostic: Our framework is agnostic to type of model used and thus allows one to easily
compare models across learning algorithms—our method extends even to learning algorithms that
do not have explicit representations (e.g., decision trees and kernel methods).

Example-level comparisons. An alternative method for comparing models is to compare their pre-
dictions directly. For example, Zhong et al. (2021) compare predictions of small and large language
models (on a per-example level) to find that larger models are not uniformly better across exam-
ple. Similarly, Mania et al. (2019) study the agreement between models, i.e., how often they output
the same prediction on a per-example level. In another vein, Meding et al. (2022) show that after
removing impossible or trivial examples from test sets, different models exhibit more variations in
their predictions. Our framework also studies instance-level predictions, but ultimately connects the
results back to human-interpretable distinguishing features.

Comparing feature attributions. Finally, another line of work compares models in terms of how
they use features at test time. In the presence of a known set of features, one can compute fea-
ture importances and compare them across models (Wang et al., 2022). In cases where we do not
have access to high-level features, we can use instance-level explanation methods such as saliency
maps to highlight different parts of the input, but these methods generally do not help at distin-
guishing models (Denain & Steinhardt, 2022). Furthermore, multiple evaluation metrics (Adebayo
et al., 2018; Hooker et al., 2018; Shah et al., 2021) indicate that common instance-specific feature
attribution methods can fail at accurately highlighting features learned by the model.

5 CONCLUSION

We introduce a unified framework for fine-grained comparisons of any two learning algorithms.
Specifically, our framework compares models trained using two different algorithms in terms of
how the models rely on training data to make predictions. Through three case studies, we showcase
the utility of our framework in pinpointing how three aspects of the standard training pipeline—data
augmentation, pre-training, optimization—can shape model behavior.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Abubakar Abid, Mert Yuksekgonul, and James Zou. Meaningfully debugging model mistakes using
conceptual counterfactual explanations. In arXiv preprint arXiv:2106.12723, 2022.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. In Neural Information Processing Systems (NeurIPS), 2018.

Randall Balestriero, Leon Bottou, and Yann LeCun. The effects of regularization and data augmen-
tation are class dependent. arXiv preprint arXiv:2204.03632, 2022.

Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural
representations. In Neural Information Processing Systems (NeurIPS), 2021.

Manel Baradad Jurjo, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning
to see by looking at noise. Advances in Neural Information Processing Systems, 34:2556–2569,
2021.

Zuohui Chen, Yao Lu, JinXuan Hu, Wen Yang, Qi Xuan, Zhen Wang, and Ziaoniu Yang.
Revisit similarity of neural network representations from graph perspective. arXiv preprint
arXiv:2111.11165, 2021.

Adrian Csiszarik, Peter Korosi-Szabo, Akos Matszangosz, Gergely Papp, and Daniel Varga. Simi-
larity and matching of neural network representations. In Neural Information Processing Systems
(NeurIPS), 2021.

Tianyu Cui, Yogesh Kumar, Pekka Marttinen, and Samuel Kaski. Deconfounded representation
similarity for comparison of neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Neural
Information Processing Systems (NeurIPS), 2017.

Jean-Stanislas Denain and Jacob Steinhardt. Auditing visualizations: Transparency methods strug-
gle to detect anomalous behavior. arXiv preprint arXiv:2206.13498, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), 2009.

Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. Grounding representation similarity
with statistical testing. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared
Dunnmon, James Zou, and Christopher Ré. Domino: Discovering systematic errors with cross-
modal embeddings. arXiv preprint arXiv:2203.14960, 2022.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 2881–2891, 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations
(ICLR), 2019.

Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic concept-based
explanations. arXiv preprint arXiv:1902.03129, 2019.

Soumya Suvra Ghosal, Yifei Ming, and Yixuan Li. Are vision transformers robust to spurious
correlations? arXiv preprint arXiv:2203.09125, 2022.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust statistics:
the approach based on influence functions, volume 196. John Wiley & Sons, 2011.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Katherine Hermann, Ting Chen, and Simon Kornblith. The origins and prevalence of texture bias in
convolutional neural networks. In Advances in Neural Information Processing Systems, 2020.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretabil-
ity methods in deep neural networks. arXiv preprint arXiv:1806.10758, 2018.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In International Conference on Machine
Learning (ICML), 2022.

Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. Distilling model failures as
directions in latent space. arXiv preprint arXiv:2206.14754, 2022.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations (ICLR), 2017.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning (ICML), 2018.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural net-
work representations revisited. In Proceedings of the 36th International Conference on Machine
Learning (ICML), 2019a.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
computer vision and pattern recognition (CVPR), 2019b.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, 2009.

Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav Vineet, Kai
Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, et al. 3db: A framework for debugging
computer vision models. In arXiv preprint arXiv:2106.03805, 2021.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Proceedings of the 1st International
Workshop on Feature Extraction: Modern Questions and Challenges at NIPS 2015, 2015.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. In Neural Information Processing Systems (NeurIPS).
2019.

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Neural
Information Processing Systems (NeurIPS), 2017.

Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht. Model similarity
mitigates test set overuse. In Advances in Neural Information Processing Systems (NeurIPS), pp.
9993–10002, 2019.

Kristof Meding, Luca M. Schulze Buschoff, Robert Geirhos, and Felix A. Wichmann. Trivial or
impossible — dichotomous data difficulty masks model differences (on imagenet and beyond). In
International Conference on Learning Representations (ICLR), 2022.

11

https://github.com/libffcv/ffcv/

Under review as a conference paper at ICLR 2023

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 1995.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems, 31,
2018a.

Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the importance
of single directions for generalization. In International Conference on Learning Representations
(ICLR), 2018b.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? Advances in neural information processing systems, 33:512–523, 2020.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In arXiv preprint arXiv:2103.00020, 2021.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In Advances in
Neural Information Processing Systems, 2017.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do
vision transformers see like convolutional neural networks? In Neural Information Processing
Systems (NeurIPS), 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In International Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. In International Journal of Computer
Vision (IJCV), 2015.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. In International Conference on Learning Representations, 2020.

Hadi Salman, Saachi Jain, Andrew Ilyas, Logan Engstrom, Eric Wong, and Aleksander Madry.
When does bias transfer in transfer learning? In arXiv preprint arXiv:2207.02842, 2022.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation
shift. In International Conference on Learning Representations (ICLR), 2021.

Harshay Shah, Prateek Jain, and Praneeth Netrapalli. Do input gradients highlight discriminative
features? Advances in Neural Information Processing Systems, 34, 2021.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International Conference on Machine Learning, pp. 19773–19808. PMLR, 2022.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep learning?
In International Conference on Learning Representations, 2021.

Lifu Tu, Garima Lalwani, Spandana Gella, and He He. An empirical study on robustness to spurious
correlations using pre-trained language models. Transactions of the Association for Computa-
tional Linguistics, 8:621–633, 2020.

12

Under review as a conference paper at ICLR 2023

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Junpeng Wang, Liang Wang, Yan Zheng, Chin-Chia Michael Yeh, and Shubham Jain andWei
Zhang. Learning-from-disagreement: A model comparison and visual analytics framework. arXiv
preprint arXiv:2201.07849, 2022.

Yeming Wen, Kevin Luk, Maxime Gazeau, Guodong Zhang, Harris Chan, and Jimmy Ba. An
empirical study of large-batch stochastic gradient descent with structured covariance noise. arXiv
preprint arXiv:1902.08234, 2019.

Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for debug-
gable deep networks. In International Conference on Machine Learning (ICML), 2021.

John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass. Similar-
ity analysis of contextual word representation models. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

Kaiyu Yang, Jacqueline H Yau, Li Fei-Fei, Jia Deng, and Olga Russakovsky. A study of face
obfuscation in imagenet. In International Conference on Machine Learning, pp. 25313–25330.
PMLR, 2022.

Ruiqi Zhong, Dhruba Ghosh, Dan Klein, and Jacob Steinhardt. Are larger pretrained language mod-
els uniformly better? Comparing performance at the instance level. In Findings of the Association
for Computational Linguistics (Findings of ACL), 2021.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. In IEEE transactions on pattern analysis and
machine intelligence, 2017.

13

Under review as a conference paper at ICLR 2023

Appendices
A Algorithm analysis 15

A.1 A primer on datamodel representations . 15
A.2 Residual datamodels . 16
A.3 Finding global trends with PCA . 16

B Case study: SGD hyperparameters 17

C Experimental Setup 19
C.1 Datasets . 19
C.2 Models, learning algorithms, and hyperparameters 19
C.3 Datamodels . 20
C.4 Feature transformations . 21
C.5 Training infrastructure . 21

D Additional human-in-the-loop analysis 23
D.1 Tools for Inferring distinguishing features from PCA subpopulations 23
D.2 Case study: Standard data augmentation . 24
D.3 Case study: ImageNet pre-training . 25
D.4 Case study: SGD noise . 26

E Additional evaluation of distinguishing feature transformations 28
E.1 Case study: Standard data augmentation . 28
E.2 Case study: ImageNet pre-training . 29
E.3 Case study: SGD hyperparameters . 30

F Miscellaneous results 31
F.1 Aggregate metric for algorithm comparison . 31
F.2 Explained variance of residual datamodel principal components 32
F.3 Subpopulations surfaced by principal components of residual datamodels 33
F.4 Using CLIP to identify distinguishing feature candidates 37
F.5 Additional analysis on the effect of ImageNet pre-training 39
F.6 On comparisons with model predictions and penultimate-layer representations . . 41
F.7 Effect of sample size on datamodel estimation 43

G Related work on model interpretation 44

14

Under review as a conference paper at ICLR 2023

A ALGORITHM ANALYSIS

In the main paper, we applied our comparison framework to identify feature transformations that
distinguished three pairs of learning algorithms. Here, we describe in more detail the algorithmic
stage of that framework, i.e., the stage whose purpose is to find distinguishing training directions.
To this end, we walk through each of the three steps of the algorithm presented in Section 2.2 and
provide intuition for how they identify distinguishing training directions.

A.1 A PRIMER ON DATAMODEL REPRESENTATIONS

The first step in our method is to compute datamodel vectors θ(i)j ∈ R|S|, one for each test input xj .
Each datamodel vector encodes the importance of individual training examples S to model’s loss
at input xj when trained with learning algorithm Ai. More specifically, each vector corresponds to
the solution to a specific regression problem—these regression problems (explained below) form the
basis of our analysis.

Setting up the regression problem. Let us fix a single learning algorithmA (beingA1 orA2). For
a given training set S = {x1, . . . , xd}, a test input x, and subset S′ ⊂ S of the training set we define
the model output function as:

f(x, S′) = the loss after training a model on S′ and evaluating on x.
For example, f(x, S′) can encode training a deep neural network on the subset S′, then computing
the network’s correct-class margin on the input x. For a fixed x, the corresponding regression
problem is to predict the model output f(x, S′) given a subset S′.

Datamodels. Ilyas et al. (2022) show that—for deep neural networks trained on standard image
classification tasks—we can solve the regression problem above with a simple linear predictor.
More specifically, they showed that

E[f(x, S′)] ≈ θx · 1S′ , (1)

where θx is a (learned) parameter vector (called the datamodel for x), and 1S′ ∈ {0, 1}|S| is a binary
indicator vector of the set S′, encoding whether each example of S is included in S′, i.e.,

(1S′)i =

{
1 if xi ∈ S′

0 otherwise.

In this way, datamodels consistitute linear approximations of model output functions.

Datamodels as a representation space. While each datamodel is specific to an individual test input,
we can treat a collection of datamodels as embeddings or representations of test inputs {xj}j into a
common |S|-dimensional space. By comparing the representations, we can analyze the structure of
the data—as used by the specific learning algorithm under study. Furthermore, these representations
have a number of properties that make them useful for algorithm comparisons:

(a) Consistent basis: A datamodel representation for a fixed train set S always has the same basis:
coordinate i corresponds to the importance of the i-th training example. This consistency makes
datamodels a convenient medium for algorithm comparisons, as representations are automatically
aligned across different learning algorithms, and even across models that lack explicit representa-
tions (e.g., decision trees).

(b) Predictiveness: Datamodel vectors are causally predictive of model behavior. That is, as Ilyas
et al. (2022) show, we can use them to predict the counterfactual impact of removing or adding
different training examples on model output for a given test example. As a result, any trends we
find across the datamodel representations come with a precise quantitative interpretation in terms
of model outputs (to which we will come back to later in thise section).

(c) Density: Datamodel representations also have a high effective dimensionality: that is, one needs
thousands of components to explain significant fraction of variance, for instance, on CIFAR-10
Ilyas et al. (2022).5 This suggests that datamodel representations encode fine-grained information
about how each learning algorithm uses the training data, making them useful for uncovering
subtle differences in model behavior.

5This is in stark contrast to “standard” representations derived from the penultimate layer of a trained model,
which tend to have effective dimensions that are much lower, typically equal to number of classes minus one.

15

Under review as a conference paper at ICLR 2023

A.2 RESIDUAL DATAMODELS

In Step 2 of our algorithm, using the two sets of datamodels {θ(1)} and {θ(2)}, we compute the
residual datamodel vectors:

θ
(1\2)
i = θ

(1)
i − ⟨θ

(1)
i , θ

(2)
i ⟩ θ

(2)
i ,

(Note that this operation only makes sense because the two sets of datamodels live in the same
vector space—see property (a) above.) As we demonstrate, they correspond to datamodels for a
certain residual model output function that we define below.

Recall that our overarching goal is to find training directions that that strongly influence models
trained with learning algorithmA1 but notA2 (or vice-versa) when classifying x. More specifically,
we want to find training directions u that strongly influences f (1)(x, S), while ignoring directions
that also influence f (2)(x, S). In other words, what we care about is the “residual” of f (1) after
removing the part that is correlated6 with f (2). To capture this, consider the residual model output
function of A1 relative to A2:

f (1\2)(x, S) := f (1)(x, S)− ρf(1)f(2) · f (2)(x, S)

where ρf(1)f(2) is the correlation between two model output functions (across varying S). It turns
out that the datamodel for the residual output function is given precisely by the residual datamodel
defined in Step 2 of our algorithm: the projection of one (normalized) datamodel representation
into the nullspace of the other representation. That is, residual datamodels correspond to a linear
approximation of the residual model output:

E[f (1\2)(x, S)] ≈ θ(1\2) · 1S

In summary, Step 2 of our procedure reduces understanding the differences in learning algorithms
A1 and A2 to analyzing their residual model outputs via residual datamodels. The residual data-
models highlight directions that influence learning algorithm A1 after projecting away directions
that also influence learning algorithm A2.

A.3 FINDING GLOBAL TRENDS WITH PCA

The output of Step 2 of our procedure is two set of residual datamodels—one set looking at the
residual of A1 with respect toA2, and vice versa. These residual datamodels capture directions that
each algorithm is most sensitive to, though still on a per-example level. On the other hand, our goal
is to find directions that each algorithm is most sensitive to on an aggregate level (as in Definition
2). We now show how the final step in our procedure, computing PCA on the residual datamodel
representations, achieves this goal.

For a given input x with datamodel θ, and for a training direction u ∈ R|S|, we can estimate the
example’s sensitivity to u as [(θ ·u)]2—that is, the (estimated) effect on f(x, S) of upweighting and
downweighting the training samples according to u. Since our goal is to find a direction that the
residual model output function f (1\2) is most sensitive in aggregate, our objective is

arg max
u∈Sn−1

Ex∈T [(θ
(1\2)
x · u)2].

The direction that maximizes this objective is exactly the dominant principal component of the set
of residual datamodels! Similarly, the top k principal components correspond to directions that
algorithm A1 is most sensitive to after accounting for A2.

In summary, Step 3 of our procedure finds directions that strongly influence only one learning algo-
rithm by examining directions of highest explained variance of the residual datamodel vectors.

6Over the distribution of S.

16

Under review as a conference paper at ICLR 2023

B CASE STUDY: SGD HYPERPARAMETERS

The choices of optimizer and corresponding hyperparameters can affect both the trainability and the
generalization of resulting models (Hoffer et al., 2017; Keskar et al., 2017). In this case study, we
focus on stochastic gradient descent (SGD), and its hyperparameters—learning rate and batch size—
that control the effective scale of the noise in SGD. We study the effect of these hyperparameters
in the context of CIFAR-10 (Krizhevsky, 2009) classifiers by comparing the following two learning
algorithms:

• Algorithm A1: Training with high SGD noise: large learning rate (0.1) and small batch size
(256). Resulting models attain 93% average test accuracy.

• Algorithm A2: Training with low SGD noise: small large rate (0.02) and large batch size (1024).
Resulting models attain 89% average test accuracy.

Identifying distinguishing features. Applying our framework analogously as done in previous case
studies, we identify two candidate distinguishing features:

• Black-and-white texture: Direction A surfaces a subpopulation of black-and-white dogs (Fig-
ure 5, top right). Additional analysis in Appendix D shows that a subset of training images with
black-and-white objects (e.g., ships) influence predictions on this subpopulation only when mod-
els are trained with low SGD noise (algorithm A2). This leads us to hypothesize that models
trained with low SGD noise rely more on black-and-white textural features to predict the class
“dog.” To test this hypothesis, we design a feature transformation that modifies a given image
with a small black-and-white patch, which loosely resembles the face and nose of dogs in the
surfaced subpopulation (see Figure 8a).

• Rectangular shape: Direction B surfaces a subpopulation of front-facing trucks (Figure 5, bottom
right) with a shared characteristic: rectangular-shaped cabin and cargo area. Additional analysis
in Appendix D shows that a subset of training images with rectangular patterns influence predic-
tions on this subpopulation only when models trained with low SGD noise. This suggests that
models trained with low SGD noise partially rely on rectangular-shaped patterns to predict the
class “truck”. To test this hypothesis, our feature transformation modifies a given image with a
patch of high-contrast rectangles, which loosely resembles the cabin / cargo shape of trucks in the
surfaced subpopulation (see Figure 8b).

Findings. In Figure 8, we compare the effect of the above feature transformations on models trained
with high and low SGD noise. The results again confirm both hypotheses. Adding a black-and-
white patch of varying size (4/5/6 px) to test images increased P (“dog”) by 8/12/14% for models
trained with low SGD noise, but only by 6/8/9% for models trained with high SGD noise. Similarly,
applying a rectangular-shape patch of varying size (6/7/8 px) increased P (“truck”) by 4/6/7% for
models trained with low SGD noise, but only by 1/2/2% for models trained with high SGD noise.
Once again, increasing the intensity (i.e., patch size) of these feature transformations widens the gap
in sensitivity between the two model classes.

Connections to prior work. This case study shows how reducing the scale of SGD noise can in-
crease reliance on certain low-level features (e.g., rectangular shape→ trucks). While prior works
show that lower SGD noise worsens aggregate model performance (Keskar et al., 2017; Wen et al.,
2019), our methodology identifies specific features that are amplified due to low SGD noise. Fur-
thermore, the simplistic nature of the identified features corroborate the theoretical results put forth
in Li et al. (2019): the learning rate scale determines the extent to which models memorize patterns
that are easy-to-fit but hard-to-generalize. More broadly, our framework motivates a closer look at
how features amplified via low SGD noise collectively alter aggregate model performance.

17

Under review as a conference paper at ICLR 2023

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Explained Variance under Algorithm A1 (%)

(High SGD Noise)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(L
ow

SG
D

N
oi

se
)

A

B

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y A

B

Figure 7: Comparing CIFAR-10 models trained with high and low SGD noise. An analogous
figure to Figure 3 for our third case study, see Figure 3 for a description. In this case, direction
A seems to correspond to dogs with a particular black-and-white texture, and direction B to front-
facing trucks with prominent rectangular component(s).

Add Patch

Size 4px

Add Patch

Size 5px

Add Patch

Size 6px

4 5 6
Patch Size

0

2

4

6

8

10

12

14

Pe
rc

en
tI

nc
re

as
e

in
Pr

(d
og

)

SGD Noise

High Low

(a) “Black-and-white texture” feature

Add Patch

Size 6px

Add Patch

Size 7px

Add Patch

Size 8px

6 7 8
Patch Size

0

1

2

3

4

5

6

7

Pe
rc

en
tI

nc
re

as
e

in
Pr

(t
ru

ck
)

SGD Noise

High Low

(b) “Rectangular shape” feature

Figure 8: Effect of SGD hyperparameters on CIFAR-10 models. Analogously to Figures 4 and 6,
we use our framework to identify features that distinguish models trained with lower SGD noise from
models trained with higher SGD noise. (Left) Adding a black-and-white patch to images makes
models trained with low (high) SGD noise, on average, 11% (8%) more confident in predicting
the label “dog.” (Right) Adding high-contrast rectangles to images makes models trained with low
(high) SGD noise, on average, 5.5% (1.5%) more confident in predicting the label “truck.” In both
cases, increasing the intensity of feature transformations widens the gap in treatment effect between
the two model classes.

18

Under review as a conference paper at ICLR 2023

C EXPERIMENTAL SETUP

In this section, we outline the experimental setup—datasets, models, training algorithms, hyperpa-
rameters, and datmodels—used for our case studies in Section 3.

C.1 DATASETS

Living17. The Living17 dataset (Santurkar et al., 2021) is an ImageNet-derived dataset, where
the task is to classify images belonging to 17 types of living organisms (e.g., salamander, bear,
fox). Each Living17 class corresponds to an ImageNet superclass (i.e., a set of ImageNet classes
aggregated using WordNet (Miller, 1995)). Santurkar et al. (2021) introduce Living17 as one of
four benchmark to evaluate model robustness to realistic subpopulation shifts. In our case study, we
study the effect of data augmentation using a variant of this dataset, wherein the training and test
images belong to the same set of subpopulations (i.e., no subpopulation shift).

Waterbirds. The Waterbirds dataset (Sagawa et al., 2020) consists of bird images taken from the
CUB dataset (Wah et al., 2011) and pasted on backgrounds from the Places dataset (Zhou et al.,
2017). The task here is to classify “waterbirds” and “landbirds” in the presence of spurious corre-
lated “land” and “water” backgrounds in the training data. Sagawa et al. (2020) introduce Waterbirds
as a benchmark to evaluate models under subpopulation shifts induced by spurious correlations.
In our case study, we compare how models trained from scratch on Waterbirds data differ from
ImageNet-pretrained models that are fine-tuned on Waterbirds data.

CIFAR-10. We consider the standard CIFAR-10 (Krizhevsky, 2009) image classification dataset in
order to study the effect of two SGD hyperparameters: learning rate and batch size.

Summary statistics of the datasets described above are outlined in Table 1.

Table 1: Summary statistics of datasets

Dataset Classes Size (Train/Test) Input Dimensions

Living17 17 88,400/3,400 3× 224× 224
Waterbirds 2 4,795/5,794 3× 224× 224
CIFAR-10 10 50,000/10,000 3× 32× 32

C.2 MODELS, LEARNING ALGORITHMS, AND HYPERPARAMETERS

Living17. We use the standard ResNet18 architecture (He et al., 2015) from the torchvision
library. We train models for 25 epochs using SGD with the following configuration: initial learning
rate 0.6, batch size 1024, cyclic learning rate schedule (with peak at epoch 12), momentum 0.9,
weight decay 0.0005, and label smoothing (with smoothing hyperparameter 0.1). To study the effect
of data augmentation, we train models with the following algorithms:

• Algorithm A1 (with data augmentation): Models are trained with standard data augmentation:
random resized cropping (with default torchvision hyperparamters) and random horizontal
flips. On average, models attain 89.2% average test accuracy.

• AlgorithmA2 (without data augmentation): Models are trained without data augmentation. On
average, models attain 81.9% average test accuracy.

Waterbirds. We use the standard ResNet50 architecture from the torchvision library. We train
models using SGD with momentum 0.9 and weight decay 0.0001 for a maximum of 50 epochs (and
stop early if the training loss drops below 0.01). For model selection, we choose the model check-
point that has the maximum average accuracy on the validation dataset. As in Sagawa et al. (2020),
we do not use data augmentation. In our case study on pre-training, we consider ImageNet pre-
trained models from torchvision. We consider models trained using the following algorithms:

• Algorithm A1 (ImageNet pre-training): Models pre-trained on ImageNet are fully fine-tuned
on Waterbirds data with a fixed SGD learning rate 0.005 and batch size 64. On average, models
attain 89.1% (non-adjusted) average test accuracy and 63.9% worst-group test accuracy.

19

Under review as a conference paper at ICLR 2023

• AlgorithmA2 (Training from scratch): Models are trained from scratch (i.e., random initializa-
tion) on Waterbirds data with SGD: initial learning rate 0.01, batch size 64, and a linear learning
rate schedule (0.2× every 15 epochs). On average, models attain 63.6% average test accuracy and
5.7% worst-group test accuracy.

CIFAR-10. We use the ResNet9 architecture from Kakao Brain7, which is optimized for fast train-
ing. We train models using SGD with momentum 0.9 and weight decay 0.0005 for a maximum of
100 epochs (and stop early if the training loss drops below 0.01). We augment training data with a
standard data augmentation scheme: random resized cropping with 4px padding and random hori-
zontal flips. To study the effect of SGD noise in our case study, we vary learning rate and batch size.
Specifically, we compare models trained with the following algorithms:

• Algorithm A1 (high SGD noise): Models are trained with SGD using a large initial learning
rate (0.1), small batch size (256), and a linear learning rate schedule (0.5× every 20 epochs). On
average, models attain 93.3% test accuracy.

• Algorithm A2 (low SGD noise): Models are trained with SGD using a small fixed learning rate
(0.02) and large batch size (1024). On average, models attain 89.5% test accuracy.

C.3 DATAMODELS

Now, we provide additional details on datamodels which, we recall, are used in the first stage of our
algorithm comparison framework (see Section 2).

Estimating linear datamodels. Recall from Appendix A that the datamodel vector for example
xj , θ(i)j ∈ R|S|, encodes the importance of individual training examples S to model’s loss at ex-
ample xj when trained with algorithm Ai. Concretely, given test example xj and training set
S = {x1, . . . , xd}, the datamodel θj is a sparse linear model (or surrogate function) trained on
the following regression task: For a training subset S′ ⊂ S, can we predict the correct-class margin
fA(xj ;S

′) of a model trained on S′ with algorithm A? This task can be naturally formulated as
the following supervised learning problem: Given a training set {(Si, fA(x;Si))}mi=1 of size m, the
datamodel θj (for example xj) is the solution to the following problem:

θj = min
w∈R|S|

1

m

m∑
i=1

(
w⊤1Si − fA(xj ;Si)

)2
+ λ∥w∥1, (2)

where 1Si
is a boolean vector that indicates whether examples in the training dataset x ∈ S belong

to the training subset Si. Note that each datamodel training point (Si, fA(xj , Si)) is obtained by (a)
training a model f (e.g., ResNet9) on a subset of data Si (e.g., randomly subsampled CIFAR data)
and (b) evaluating the trained model’s output on example xj . Ilyas et al. (2022) demonstrate that
linear datamodels can accurately (and counterfactually) predict outputs of deep image classifiers.

Datamodel estimation hyperparameters. Recall that our algorithm comparison framework in Sec-
tion 2 involves estimating two sets of datamodels {θ(1)} and {θ(2)} for learning algorithms A1 and
A2 respectively. In our case studies, we estimate two datamodels, θ(1)i and θ

(2)
i for every example

xi in the test dataset. Estimating these datamodels entail three design choices:

• Sampling scheme for train subsets: Like in Ilyas et al. (2022), we use α-random subsets of the
training data, where α denotes the subsampling fraction; we set α = 50% as it maximizes sample
efficiency (or model reuse) for empirical influence estimation (Feldman & Zhang, 2020), which is
equivalent to a variant of linear datamodels.

• Sample size for datamodel estimation: Recall that a datamodel training set of size m corre-
sponds to training m models (e.g., m ResNet18 models on CIFAR-10) on independently sampled
train subsets (or masks). We estimate datamodels on LIVING17, WATERBIRDS, and CIFAR-10
using 120k, 50k, and 50k samples (or models) per learning algorithm respectively; we make a
validation split using 10% of these samples.

7https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/
cifar10.py

20

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

Under review as a conference paper at ICLR 2023

• ℓ1 sparsity regularization: We use cross-validation to select the sparsity regularization parameter
λ. Specifically, for each datamodel, we evaluate the MSE on a validation split to search over
k = 50 logarithmically spaced values for λ along the regularization path. We then re-compute the
datamodel on the entire dataset with the optimal λ value and all m training examples.

We provide pseudocode for estimating datamodels in Algorithm 1.

Algorithm 1 An outline of the datamodeling framework introduced in Ilyas et al. (2022).

1: procedure ESTIMATEDATAMODEL(target example x, train set S of size d, subsampling frac.
α ∈ (0, 1))

2: T ← [] ▷ Initialize datamodel training set
3: for i ∈ {1, . . . ,m} do
4: Sample a subset Si ⊂ S from DS where |Si| = α · d
5: yi ← fA(x;Si) ▷ Train a model on Si using A, evaluate on x
6: Define 1Si

∈ {0, 1}d as (1Si
)j = 1 if xj ∈ Si else 0

7: T ← T + [(1Si
, yi)] ▷ Update datamodel training set

8: θ ← RUNREGRESSION(T) ▷ Predict the yi from the 1Si vectors
9: return θ ▷ Result: a weight vector θ ∈ Rd

C.4 FEATURE TRANSFORMATIONS

As discussed in Section 2, we counterfactually verify distinguishing features (inferred via human-
in-the-loop analysis) by evaluating whether feature transformations change model behavior as hy-
pothesized. Here, we describe the feature transformations used in Section 3 in more detail8.

Designing feature transformations. We design feature transformations that modify examples by
adding a specific patch or perturbation. We vary the intensity of patch-based and perturbation-based
transformations via patch size k and perturbation intensity δ respectively. Additional details specific
to each case study:

• Pre-training. We use patch-based transformations in this case. For the yellow color feature, we
add a k × k square yellow patch to the input. For the human face feature, we add a k × k image
of a human face to the input. To avoid occlusion with objects in the image foreground, we add
the human face patch to the background. We make a bank of roughly 300 human faces using
ImageNet face annotations (Yang et al., 2022) by (a) cropping out human faces from ImageNet
validation examples and (b) manually removing mislabeled, low-resolution, and unclear human
face images.

• Data augmentation. We design perturbation-based transformations to verify the identified dis-
tinguishing features: spider web and polka dots. In both cases, we δ-perturb each input with a
random crop of a fixed grayscale spider web or yellow polka dot pattern.

• SGD hyperparameters. We use patch-based transformations in this case study. For the black-
white texture feature, we add a k-sized patch that loosely resembles a black-white dog nose. Sim-
ilarly, for the rectangular shape feature, we add a k-sized patch that loosely resembles windows.

Evaluating feature transformations. As shown in Section 3, given two learning algorithms A1

andA2, we evaluate whether a feature transformation F changes predictions of models trained with
A1 andA2 as hypothesized. To evaluate the counterfactual effect of transformation F on model M ,
we evaluate the extent to which applying F to input examples x increases the confidence of models
in a particular class y. In our experiments, we estimate this counterfactual effect by averaging over
all test examples and over 500 models trained with each learning algorithm.

C.5 TRAINING INFRASTRUCTURE

Data loading. We use FFCV9 (Leclerc et al., 2022), which removes the data loading bottleneck for
smaller models, gives a 3-4× improvement in throughput (i.e., number of models a day per GPU).

8The code for these feature transformations is available at anonymized-url.
9Webpage: http://ffcv.io

21

anonymized-url
http://ffcv.io

Under review as a conference paper at ICLR 2023

Datamodels regression. In addition to FFCV, we use the fast-l1 package10—a SAGA-based
GPU solver for ℓ1-regularized regression—to parallelise datamodel estimation.

Computing resources. We train our models on a cluster of machines, each with 9 NVIDIA A100
or V100 GPUs and 96 CPU cores. We also use half-precision to increase training speed.

10Github repository: https://github.com/MadryLab/fast_l1

22

https://github.com/MadryLab/fast_l1

Under review as a conference paper at ICLR 2023

D ADDITIONAL HUMAN-IN-THE-LOOP ANALYSIS

As outlined in Section 2, the second stage of our framework applies human-in-the-loop analysis to
infer distinguishing feature transformations from training directions extracted via PCA on residual
datamodels. In this section, we present additional human-in-the-loop analysis in order to substantiate
the distinguishing features inferred in each case study.

D.1 TOOLS FOR INFERRING DISTINGUISHING FEATURES FROM PCA SUBPOPULATIONS

In this section, we outline additional human-in-the-loop tools that we use to analyze subpopulations
surfaced by principal components (PCs) of residual datamodels.

• Class-specific visual inspection. As shown in Section 3, the subpopulation of test examples
whose datamodels have maximum projection onto PCs of residual datamodels largely belong
to same class. So, a simple-yet-effective way to identify subpopulation-specific distinguishing
feature(s) is to just visually contrast the surfaced subpopulation from a set of randomly sampled
examples that belong to the same class.

• Relative influence of training examples. Given a subset of test examples S′ ⊂ S, can we identify
a set of training examples T ′ ⊂ T that strongly influence predictions on S′ when models are
trained with algorithmA1 but not when trained withA2? Given datamodel representations {θ(1)i }
for A1 and {θ(1)i } for A2, we apply a two-step heuristic approach identify training examples with
high influence on A1 relative to A2:
– First, given learning algorithm Ai and test subset S′, we estimate the aggregate (positive or

negative) influence of training example xk on subset S by taking the absolute sum over the
corresponding datamodel weights:

∑
j∈S′ |θ(i)jk |.

– Then, we take the absolute difference between the aggregate influence estimates of training
example xk using θ(1) and θ(2). This difference measures the relative influence of training
example xk on predictions of test subset S when models are trained with algorithm A1 instead
of algorithm A2.

In our analysis, we (a) identify training examples that have top-most relative influence estimates
and then (b) visually contrast the subsets of test examples (one for each learning algorithm) that
are most influenced by these training examples.

23

Under review as a conference paper at ICLR 2023

D.2 CASE STUDY: STANDARD DATA AUGMENTATION

Our case study on LIVING17 data in Section 3.1 shows that standard data augmentation can amplify
co-occurrence bias (spider web) and texture bias (polka dots). We further substantiate these findings
with relative influence analysis (Figure 9) and class-specific visual inspection (Figure 12).

Subset of examples in training data

0.00 0.05 0.10 0.15 0.20
Algorithm A1

0.00

0.05

0.10

0.15

0.20

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Spider web” feature
Subset of examples in training data

0.0 0.1 0.2 0.3 0.4 0.5
Algorithm A1

0.0

0.1

0.2

0.3

0.4

0.5

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Polka dots” feature

Figure 9: Relative influence of training data on LIVING17 subpopulations. Panel (a): Training
images that contain web-like patterns have high relative influence on the “spider web” test sub-
population (see Figure 3). These images strongly influence model predictions on test images that
contain spider webs (in bottom row) only when models are trained with augmentation (algorithm
A1). Panel (b): Training images that contain yellow-black texture have high relative influence on
the “polka dots” test subpopulation (see Figure 3). These images strongly influence model predic-
tions on test images of salamanders with yellow polka dots (in bottom row) only when models are
trained with augmentation (algorithm A1).

24

Under review as a conference paper at ICLR 2023

D.3 CASE STUDY: IMAGENET PRE-TRAINING

Our case study on WATERBIRDS data shows that ImageNet pre-training reduces dependence on
the “yellow color” feature, but introduces dependence the “human face” feature. We support these
findings with relative influence analysis in Figure 10 and additional visual inspection in Figure 13.

Subset of examples in training data

0.0 0.2 0.4 0.6 0.8 1.0
Algorithm A1

0.0

0.2

0.4

0.6

0.8

1.0

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Yellow color” feature
Subset of examples in training data

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Algorithm A1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Human face” feature

Figure 10: Relative influence of training data on WATERBIRDS subpopulations. Panel (a):
Training images with yellow objects in the background have high relative influence on the “yellow
color” test subpopulation (see Figure 5). These images strongly influence model predictions on test
images that have yellow birds / objects (bottom row) only when models are trained from scratch
(algorithm A2). Panel (b): Training images that contain human faces in the background have high
relative influence on the “human face” test subpopulation (see Figure 5). These images strongly
influence model predictions on test images (in bottom row) with human face(s) only when models
are pre-trained on ImageNet (algorithm A1).

25

Under review as a conference paper at ICLR 2023

D.4 CASE STUDY: SGD NOISE

We analyze relative influence (Figure 11), and class-specific subpopulations (Figure 14) to hone
in on two instances of distinguishing features–black-and-white texture and rectangular shape—
in CIFAR-10 data that are amplified by low SGD noise.

Subset of examples in training data

0.00 0.02 0.04 0.06 0.08
Algorithm A1

0.00

0.02

0.04

0.06

0.08

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Black-white texture“ bias
Subset of examples in training data

0.00 0.02 0.04 0.06 0.08 0.10
Algorithm A1

0.00

0.02

0.04

0.06

0.08

0.10

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Rectangular shape“ bias

Figure 11: Relative influence of training data on CIFAR-10 subpopulations. Panel (a): Training
images with black-white objects have high relative influence on the “black-white” dog subpopula-
tion (see Figure 7). These images influence model predictions on test images of black-white dogs
(in bottom row) only when models are trained with low SGD noise (alg. A2). Panel (b): Training
images with high-contrast rectangular components in the background have high relative influence on
the “rectangular shape” truck subpopulation (see Figure 7). These images influence model predic-
tions on test images of front-facing trucks with prominent rectangular components (in bottom row)
only when models are trained with low SGD noise (alg. A2).

26

Under review as a conference paper at ICLR 2023

Subpopulation surfaced via direction A (spider web) Random sample of spider images in test data

Subpopulation surfaced via direction B (polka dot texture) Random sample of salamander images in test data

Figure 12: Class-specific visual inspection of LIVING17 subpopulations. (Top) In contrast to ran-
dom LIVING17 images of spiders, the “spider web” subpopulation surfaces spiders with a promi-
nent spider web in the background. (Bottom) Unlike random LIVING17 images of salamanders, the
“polka dots” subpopulation surfaces salamanders that have a yellow-black polka dot texture.

Subpopulation surfaced via direction A (human face) Random sample of test images in class landbird

Subpopulation surfaced via direction B (yellow color) Random sample of test images in class landbird

Figure 13: Class-specific visual inspection of WATERBIRDS subpopulations. (Top) In contrast to
random “landbird” images, the “human face” subpopulation surfaces landbirds with human face(s)
in the background. (Bottom) Unlike random “landbird” images, the “yellow color” subpopulation
surfaces images with yellow birds or yellow objects in the background.

Subpopulation surfaced via direction A (black-white texture) Random sample of dog images in test data

Subpopulation surfaced via direction B (rectangular shape) Random sample of truck images in test data

Figure 14: Class-specific visual inspection of CIFAR-10 subpopulations. In contrast to random
images of dogs (top) and truck (bottom), the “black-white” and “rectangular shape” subpopulations
surface images of black-white dogs and front-facing trucks with multiple rectangular components
respectively.

27

Under review as a conference paper at ICLR 2023

E ADDITIONAL EVALUATION OF DISTINGUISHING FEATURE
TRANSFORMATIONS

Distinguishing feature transformations, which we recall from Section 2, are functions that, when
applied to data points, change the predictions of one model class—but not the other—in a consistent
way. In our case studies, we design distinguishing feature transformations that counterfactually
verify features that are identified via human-in-the-loop analysis. Our findings in Section 3 use
feature transformations to quantitatively measure the relative effect of the identified features on
models trained with different learning algorithms. In this section, we present additional findings on
feature transformations for each case study:

E.1 CASE STUDY: STANDARD DATA AUGMENTATION

In Section 3.1, we showed that standard data augmentation—horizontal flips and random crops—
amplifies LIVING17 models’ reliance on “spider web” and “polka dots” to predict spiders
and salamanders respectively. Figure 15 verifies our findings over a larger range of perturba-
tion intensity δ values. We also observe that decreasing the minimum allowable crop size in
RandomResizedCrop from 1.0 (i.e., no random cropping) to 0.08 (default torchvision hy-
perparameter) increases models’ sensitivity to both feature transformations.

(1., 1.) [No cropping] (0.9, 1.) (0.6, 1.) (0.3, 1.) (0.08,1.) [Default]
RandomResizedCrop scale hyperparameter

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
rc

en
t I

nc
re

as
e

in
 P

r(s
pi

de
r)

Effect of spider web feature transformation on Living17 models

Perturbation Intensity
0.1
0.2
0.3
0.4
0.5
0.6

(a) “Spider web” feature

(1., 1.) [No cropping] (0.9, 1.) (0.6, 1.) (0.3, 1.) (0.08,1.) [Default]
RandomResizedCrop scale hyperparameter

0

5

10

15

20

Pe
rc

en
t I

nc
re

as
e

in
 P

r(s
al

am
an

de
r)

Effect of polka dot feature transformation on Living17 models

Perturbation Intensity
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

(b) “Polka dots” feature

Figure 15: Additional evaluation of LIVING17 feature transformations. The top and bottom row
evaluate the effect of “spider web” and “polka dot” feature transformations on models trained with
different data augmentation schemes. Increasing the intensity of the transformations and the min-
imum crop size of RandomResizedCrop augmentation (via scale hyperparameter) increases
the sensitivity of models to both feature transformations in a consistent manner.

28

Under review as a conference paper at ICLR 2023

E.2 CASE STUDY: IMAGENET PRE-TRAINING

In Section 3.2, we showed that fine-tuning ImageNet-pretrained ResNet50 models on WATERBIRDS
data instead of training from scratch alters the relative importance of two spurious features: “yellow
color” and “human face”. In Figure 16, we show that both feature transformations alter the pre-
dictions of ImageNet-pretrained ResNet18 and ImageNet-pretrained ResNet50 models in a similar
way.

10.0 20.0 30.0 40.0
Patch Size

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rc

en
t I

nc
re

as
e

in
 P

r(l
an

db
ird

)

Effect of yellow color feature transformation on Waterbirds models

Learning Algorithm
ImageNet-pretrained ResNet18
ImageNet-pretrained ResNet50
Randomly initialized ResNet50

(a) “Yellow color” feature

80 100 120
Patch Size

0

2

4

6

Pe
rc

en
t I

nc
re

as
e

in
 P

r(l
an

db
ird

)

Effect of human face feature transformation on Waterbirds models

Learning Algorithm
ImageNet-pretrained ResNet18
ImageNet-pretrained ResNet50
Randomly initialized ResNet50

(b) “Human face” feature

Figure 16: Additional evaluation of WATERBIRDS feature transformations. The top and bot-
tom row evaluate the effect of “yellow color” and “human face” feature transformations on models
trained with and without ImageNet pre-training. In both cases, unlike ResNet50 models trained
from scratch, ImageNet-pretrained ResNet18 and ResNet50 models are sensitive to the “human
face” transformation but not to the “yellow color” transformation.

29

Under review as a conference paper at ICLR 2023

E.3 CASE STUDY: SGD HYPERPARAMETERS

In Section 3.3, we showed that reducing SGD noise results in CIFAR-10 models that are more
sensitive to certain features, such as rectangular shape bias and black-white texture to predict trucks
and dogs. In Figure 17, we evaluate how feature transformations change class-wise predictions of
models trained with different SGD learning rate and batch size hyperparameters.

frog cat ship airplane automobile horse truck dog deer bird
class

0

10

20

30

40

Pe
rc

en
t I

nc
re

as
e

in
 P

r(d
og

)

Class-wise effect of black-white texture feature transformation on CIFAR10 models

SGD hyperparameters
LR:0.1, BS:128
LR:0.05, BS:512
LR:0.02, BS:1024

(a) “Black-white texture” feature

bird airplane horse truck automobile deer dog cat frog ship
class

2

0

2

4

6

8

Pe
rc

en
t I

nc
re

as
e

in
 P

r(t
ru

ck
)

Class-wise effect of rectangular shape feature transformation on CIFAR10 models

SGD Hyperparameters
LR:0.1, BS:128
LR:0.05, BS:512
LR:0.02, BS:1024

(b) “Rectangular shape” feature

Figure 17: Additional evaluation of CIFAR-10 feature transformations. The top and bottom
row evaluate the effect of “black-white texture” and “rectangular shape” feature transformations on
CIFAR-10 models trained with high (light blue), medium, and low (dark blue) SGD noise. In both
cases, models trained with higher SGD noise are, on average, more sensitive to these transforma-
tions across all classes. Furthermore, the effect of the transformations are class-dependent—model
predictions on transformed examples from semantically similar classes differ to a greater extent.

30

Under review as a conference paper at ICLR 2023

F MISCELLANEOUS RESULTS

F.1 AGGREGATE METRIC FOR ALGORITHM COMPARISON

As discussed in Section 4, we can repurpose our framework as a similarity metric that quantifies the
similarity of models trained with different learning algorithms in a more global manner. A straight-
forward approach to output a similarity score (or distribution) is to compute the cosine similarity
of datamodel vectors. More concretely, let θ(1)i and θ

(2)
i denote the datamodels of example xi with

respect to models trained using learning algorithmsA1 andA2. Then, the cosine similarity between
θ
(1)
i and θ

(2)
i measures the extent to which models trained with A1 and A2 depend on the same set

of training examples to make predictions on example xi.

We apply this metric to two case studies—pre-training (WATERBIRDS) and SGD noise (CIFAR-
10)—in Figure 18. Specifically, Figure 18 plots the distribution of cosine similarity of datamodels
for multiple learning algorithms and over all test examples. The left subplot shows that on WATER-
BIRDS, ImageNet-pretrained ResNet50 models are, on average, more similar to ImageNet-pretrained
ResNet18 models than to ResNet50 models pretrained on synthetically generated data (Baradad Ju-
rjo et al., 2021) and models trained from scratch. The right subplot shows that on CIFAR-10,
ResNet9 models trained with high SGD noise are more similar to smaller-width ResNet9 models
trained with high SGD noise than to ResNet9 models trained with low SGD noise.

0.0 0.2 0.4 0.6 0.8
Cosine similarity between datamodel vectors

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

Cosine similarity w.r.t ImageNet-pretrained ResNet50
Learning algorithms (average cosine similarity)

ResNet18 pretrained on ImageNet (0.56)
ResNet50 pretrained on synthetic data [Baradad et al., 2021] (0.25)
ResNet50 trained from scratch (0.12)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity between datamodel vectors

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Fr

ac
tio

n
Cosine similarity w.r.t ResNet9 w/ high SGD noise

Learning algorithms (average cosine similarity)
Width-0.5x ResNet9 w/ high SGD noise (0.76)
ResNet9 w/ low SGD noise (0.59)

Figure 18: Datamodel cosine similarity. We use cosine similarity between two datamodel vectors
as an aggregate metric to quantify the similarity of models trained with different learning algorithms.
(Left) On WATERBIRDS data, datamodels of ImageNet-pretrained ResNet50 and ResNet18 models
are more similar to each other than to models pretrained on synthetically generated data and models
trained from scratch. (Right) On CIFAR-10 data, ResNet models trained with high SGD noise are
more similar to each other to ResNet models trained with low SGD noise.

31

Under review as a conference paper at ICLR 2023

F.2 EXPLAINED VARIANCE OF RESIDUAL DATAMODEL PRINCIPAL COMPONENTS

Recall from Appendix A that the fraction of variance in datamodel representations {θ(i)x } explained
by training direction v signifies the importance of the direction (or, combination of training exam-
ples) to predictions of models trained with algorithm Ai. Through our case studies in Section 3,
we show that the top 5− 6 principal components (PCs) of residual datamodels θ(1\2) correspond to
training directions that have high explained w.r.t. datamodels of algorithm A1 but not A2, and vice
versa. Figure 19 shows that the top-100 PCs of residual datamodel θ(1\2) (resp., θ(2\1)) have more
(resp., less) explained variance on datamodel θ(1) than on datamodel θ(2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Explained Variance under Algorithm A1 (%)

(With Augmentation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tA

ug
m

en
ta

ti
on

)

Living17 / Data augmentation

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

0 1 2 3 4 5 6
Explained Variance under Algorithm A1 (%)

(With ImageNet Pre-training)

0

1

2

3

4

5

6

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tP

re
-t

ra
in

in
g)

Waterbirds / Pretraining

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Explained Variance under Algorithm A1 (%)

(High SGD Noise)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(L
ow

SG
D

N
oi

se
)

CIFAR10 / SGD hyperparameters

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

Figure 19: Explained variance of residual datamodels’ principal components. Highlighted in
green (resp. red), the top-100 PCs of residual datamodel θ(1\2) (resp. θ(2\1)) explain a larger (resp.
smaller) fraction of datamodel variance under algorithmA1 than under algorithmA2 across all three
case studies.

32

Under review as a conference paper at ICLR 2023

F.3 SUBPOPULATIONS SURFACED BY PRINCIPAL COMPONENTS OF RESIDUAL DATAMODELS

As outlined in Section 2, the human-in-the-loop stage of our framework involves extracting test data
subpopulations from principal components (PCs) of residual datamodels. Specifically, these sub-
populations correspond to test examples whose residual datamodel representations have the most
positive (top-k) and most negative (bottom-k) projection onto a given PC. Here, we show that the
top-k and bottom-k subpopulations corresponding to the top few PCs of residual datamodels con-
sidered in Section 3 surface test examples with qualitatively similar properties.

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Principal component #5 | Top-k subpopulation Principal component #5 | Bottom-k subpopulation

Figure 20: Top five PC subpopulations of LIVING17 residual datamodel θ(1\2), where learning
algorithms A1 and A2 correspond to training models with and without standard data augmentation
respectively. Our case study in Section 3.1 analyzes PC #2 (direction A) and PC #5 (direction B).

33

Under review as a conference paper at ICLR 2023

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 21: Top four PC subpopulations of CIFAR-10 residual datamodel θ(2\1), where learning
algorithms A1 and A2 correspond to training models with high and low SGD noise respectively.
Our case study in Section 3.3 analyzes PC #1 (direction A) and PC #2 (direction B).

34

Under review as a conference paper at ICLR 2023

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 22: Top four PC subpopulations of WATERBIRDS residual datamodel θ(1\2), where learning
algorithms A1 and A2 correspond to training models with and without ImageNet pre-training re-
spectively. Our case study in Section 3.1 analyzes PC #3 (direction A).

35

Under review as a conference paper at ICLR 2023

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 23: Top four PC subpopulations of WATERBIRDS residual datamodel θ(2\1), where learning
algorithms A1 and A2 correspond to training models with and without ImageNet pre-training re-
spectively. Our case study in Section 3.1 analyzes PC #3 (direction B).

36

Under review as a conference paper at ICLR 2023

F.4 USING CLIP TO IDENTIFY DISTINGUISHING FEATURE CANDIDATES

As discussed in Section 2 and Appendix D, the second stage of our framework applies human-in-
the-loop analysis to infer distinguishing feature transformations that disparately impact predictions
of models trained with different learning algorithms. In this section, we demonstrate that for image
classifiers, shared vision-language models such as CLIP (Radford et al., 2021) provide a streamlined
alternative to manual human-in-the-loop identification of distinguishing features.

Approach. Before we describe our approach, note that CLIP is a contrastive learning method
that embeds text and natural language into a shared embedding space. Our approach leverages
CLIP embeddings to identify multiple distinguishing captions—representative descriptions that best
contrast a given subpopulation of images from a set of images sampled from the same distribution.
In the context of our framework, our CLIP-based approach takes as inputs a distinguishing training
direction v, a set of images D, and a set of captions S11, and outputs a set of distinguishing captions
S ′ ∈ S in four steps:

• Pre-compute image and text embeddings. Use the image encoder of a CLIP model to compute a
set of normalized embeddings for all images in D. Analogously, use the text encoder of a CLIP
model to compute a set of normalized embeddings for all captions in S.

• Record image-text pairwise cosine similarity. Let vector Ci ∈ R|S| denote the pairwise cosine
similarity between the embedding of image i ∈ D and all captions j ∈ S.

• Compute mean cosine similarity over dataset and top-k subpopulation. Compute the mean cosine
similarity vector C̄ = 1

n

∑
i∈D Ci over all images in D. Similarly, given distinguishing training

direction v, compute the mean cosine similarity vector C(v) over the top-k images whose residual
datamodel vectors are most aligned with v.

• Extract distinguishing captions S ′. Use cosine similarity vectors C̄ and C(v) to extract captions
in S that have the maximum difference between C

(v)
i and C̄i.

Intuitively, the set of distinguishing captions S ′ correspond to representative captions (or, descrip-
tions) that best contrast the top-k images surfaced by distinguishing direction v from the dataset.

Results. We now apply this approach to our case study on ImageNet pre-training, where we
compare WATERBIRDS models trained with and without ImageNet pre-training (see Section 3).
Specifically, we evaluate whether the CLIP-based approach surfaces distinguishing captions that
are similar to distinguishing features “yellow color” (direction A) and “human face” (direction B)
inferred via manual human-in-the-loop analysis. Figure 24 illustrates that for direction A), the
CLIP-based approach highlights distinguishing captions such as yellow, lemon, and sulphur,
all of which are similar to the “yellow color” feature that we infer via human-in-the-loop analysis.
Similarly, Figure 25 shows that the distinguishing captions for direction B (e.g., florist, faces,
counselors) are similar to the identified “human face” feature.

To summarize, we demonstrate how the second stage of our framework can be easily specialized
to comparisons of vision classifiers trained on ImageNet-like data via vision-language embeddings
such as CLIP.

11We use a filtered list of roughly 20,000 most common English words in order of frequency, taken from
https://github.com/first20hours/google-10000-english.

37

https://github.com/first20hours/google-10000-english

Under review as a conference paper at ICLR 2023

Figure 24: Direction A. The CLIP-based approach extracts distinguishing captions such as
yellow, lemon, and sulphur, all of which contrast the residual subpopulation on the left to
a set of random images from the WATERBIRDS dataset on the right. These distinguishing captions
match the “yellow color” feature that we infer and counterfactually verify via human-in-the-loop
analysis in Section 3.2.

Figure 25: Direction B. The CLIP-based approach extracts distinguishing captions such as
florists, faces, and counselors, all of which contrast the residual subpopulation (left)
of images with human faces in the background to a set of random images (right) from the WA-
TERBIRDS dataset. These distinguishing captions match the “human face” feature that we infer and
counterfactually verify via human-in-the-loop analysis in Section 3.2.

38

Under review as a conference paper at ICLR 2023

F.5 ADDITIONAL ANALYSIS ON THE EFFECT OF IMAGENET PRE-TRAINING

In this section, we evaluate our algorithm comparisons framework with a controlled experiment
on WATERBIRDS data, wherein we compare learning algorithms that differ in one or more axes.
Through this experiment, we show that our framework identifies feature transformations that (a)
impact similar algorithms similarly and (b) distinguish dissimilar algorithms even when they result
in models with similar (and relatively high) test accuracies.

Setup. To design a controlled experiment, we extend our case study on ImageNet pre-training (see
Section 3.2) in two ways:

• Learning algorithms. We consider four learning algorithms in this experiment. Similar to our
case study in Section 3.2, algorithms A1 and A2 correspond to ResNet50 models pre-trained on
ImageNet and ResNet50 models trained from scratch. The two additional algorithms control for
(a) choice of pre-training data and (b) usage of pre-training. In particular, algorithm A3 corre-
sponds to ResNet18 models pre-trained on ImageNet and algorithm A4 corresponds to ResNet50
models pre-trained on synthetically generated data (Baradad Jurjo et al., 2021).

• Dataset. We restrict our analysis to the majority group (i.e., landbirds on land) of the WATER-
BIRDS dataset. With this modification, we control for aggregate performance—models trained
with any of the four algorithms attain at least 97% accuracy on this group.

In other words, the learning algorithms described above output models with similar aggregate per-
formance but differ in multiple axes;A1 andA3 pre-train on the same dataset (ImageNet), but differ
in model architecture; algorithms A1 and A4 pre-train but on different datasets; algorithms A1 and
A2 differ in their usage of pre-training.

Explained variance. Recall that fraction of explained variance of a given vector v ∈ Rd in a set
of vectors {θi ∈ Rd} is the empirical variance of v⊤θi divided by the total amount of variance in
{θi} (i.e., trace(Cov[θi])). In other words, this measures what fraction of the total variation in {θi}
is along the direction v.

Comparing direction-specific explained variance. Recall that through our case study on ImageNet
pre-training in Section 3.2, we identified (and counterfactually verified) a “human face” distinguish-
ing feature that impact models pre-trained on ImageNet (algorithmA1) but not models trained from
scratch (algorithm A2). Here, we consider the fraction of datamodel variance explained by the
training direction corresponding to the “human face“ feature across all four learning algorithms.
Figure 26 shows that the fraction of datamodel variance explained by this direction is maximum
under algorithms A1, followed by algorithm A3—both algorithms that pre-train ResNet models on
ImageNet.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Explained variance (%)

ResNet50 pretrained on ImageNet

ResNet18 pretrained on ImageNet

ResNet50 trained from scratch

ResNet50 pretrained on synthetic data

Da
ta

m
od

el

Explained variance (%) | Direction B (Human face)

Figure 26: Fraction of datamodel variance explained by the training direction corresponding to the
“human face“ feature in Section 3.2. Each set of datamodel representations maps to one of four
different learning algorithms, which differ in terms of architecture, pre-training, and/or choice of
pre-training dataset.

39

Under review as a conference paper at ICLR 2023

Comparing top-k explained variance. For a given set of training directions {v1, ..., vk}, the frac-
tion of explained variance in datamodel representations captures the importance of the training di-
rections to model predictions for algorithm Ai. In Figure 27, we compute the top-k principal com-
ponents of datamodels corresponding to algorithms that pre-train on ImageNet—A1 and A3—and
evaluate the fraction of explained variance in datamodel representations as a function of the number
of directions k and the learning algorithm Ai. As expected, the PC directions have high explained
variance on datamodels corresponding to algorithms that pre-train on ImageNet and low explained
variance on datamodels corresponding to algorithms that pre-train on synthetic data and train from
scratch.

0 100 200 300 400 500
Top-k principal components

0

20

40

60

80

100

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
(%

)

Datamodel PCA on ResNet18 pretrained on ImageNet

0 100 200 300 400 500
Top-k principal components

0

20

40

60

80

100

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
(%

)

Datamodel PCA on ResNet18 pretrained on ImageNet

Datamodel
ResNet50 pretrained on ImageNet
ResNet18 pretrained on ImageNet
ResNet50 pretrained on synthetic data
ResNet50 trained from scratch

Figure 27: Given number of directions k and the learning algorithm Ai, we compute the top-k prin-
cipal components of datamodels corresponding to algorithms that pre-train on ImageNet—A1 (left)
and A3 (right)—and evaluate the fraction of explained variance in datamodel representations corre-
sponding to algorithm Ai. These PCs have high explained variance on datamodels corresponding
to algorithms pre-trained on ImageNet and low explained variance on datamodels corresponding to
models pre-trained on synthetic data and models trained from scratch.

Note that these results are consistent with our findings on (a) aggregate algorithm comparisons via
datamodel cosine similarity in Appendix F.1 and (b) additional counterfactual analysis of distin-
guishing feature transformations in Appendix C.4.

40

Under review as a conference paper at ICLR 2023

F.6 ON COMPARISONS WITH MODEL PREDICTIONS AND PENULTIMATE-LAYER
REPRESENTATIONS

In this section, we contrast our algorithm comparisons framework to comparisons based on model
predictions and penultimate-layer representations. Note that there are no existing methods that can
be directly reused for comparing learning algorithms to the best of our knowledge. Therefore, we
design experiments to evaluate whether model predictions and penultimate-layer representations can
identify distinguishing training directions surfaced using our framework.

Model predictions. Through this experiment, we show that example-level differences in predic-
tions (Zhong et al., 2021; Meding et al., 2022) of models trained with different algorithms are not
necessary to identify subpopulations analysed in our case studies. First, we re-run the first stage
of our framework only on test examples on which models trained with different algorithm have the
same prediction on average. Then, we compare distinguishing training directions (i.e., output of
the first stage) before and after controlling for prediction-level agreement. Our results in Table 1
show that for each case study, our framework identifies similar training directions (i.e., high cosine
similarity) even after removing test examples on which model predictions differ. This experiment
shows that our framework can identify fine-grained differences between learning algorithms that
persist even after controlling for prediction-level disagreement across models trained with different
algorithms.

Dataset / Case study Direction (Absolute) Cosine Similarity

Living17 / Data augmentation A (Spider web) 0.999
B (Polka dots) 0.998

Waterbirds / ImageNet pre-training A (Yellow color) 0.977
B (Human face) 0.740

CIFAR-10 / SGD hyperparameters A (Black-white texture) 0.998
B (Rectangular shape) 0.999

Table 2: Distinguishing training directions before and after filtering out high-disagreement test ex-
amples exhibit high cosine similarity and surface subpopulations of images that share the same
distinguishing feature.

Penultimate-layer representations. Representation-based comparisons (Raghu et al., 2017; Mor-
cos et al., 2018b; Kornblith et al., 2019a) measure the degree to which different models’ represen-
tation can be aligned. Unlike datamodel representations, penultimate-layer representations are not
aligned—coordinates of penultimate-layer representations do not share a consistent interpretation
across different models. So, we first introduce a variant based on penultimate-layer representations
that has a consistent basis. Specifically, similar to how the datamodel weight θij denotes the in-
fluence of training example j over the prediction on test example i, we set θ(r)ij to equal the cosine
similarity between the penultimate-layer representation of test example i and train example j. We
then compare two properties of datamodel representations and penultimate-layer representations:

• Effective dimensionality of representations: We first compare the effective dimensionality (i.e.,
cumulative fraction of variance explained by top-k components) of datamodel representations θ
and penultimate-layer representations θ(r). Figure 28 shows that for all datasets and learning
algorithms, datamodel representations have significantly higher effective dimensionality than the
penultimate-layer alternative. For example, on CIFAR-10 data, more than 99% of the variation in
penultimate-layer representations is captured by the first 10 components.

• Explained variance of distinguishing training directions: We now re-run the first stage of our
framework to compare distinguishing directions obtained via datamodel representations θ and
penultimate-layer representations θ(r). Here, we evaluate the extent to which these training di-
rections distinguish models trained with different algorithms. Specifically, as shown in Figure 29,
we compare the difference in the cumulative fraction of variance explained by the top-k training
directions across representations corresponding to algorithms A1 and A2 (higher the better). Fig-
ure 29 shows that (a) training directions obtained from datamodel representations have signif-
icantly higher gap in explained variance across learning algorithms and (b) directions obtained

41

Under review as a conference paper at ICLR 2023

from penultimate-layer representations can have close to zero or negative gap in explained vari-
ance across learning algorithms.

0 100 200 300 400 500
Top-k principal components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
fra

c.

Dataset: CIFAR-10

Penultimate rep.: High SGD noise
Penultimate rep.: Low SGD noise
Datamodels: High SGD noise
Datamodels: Low SGD noise

0 100 200 300 400 500
Top-k principal components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
fra

c.

Dataset: Living17

Penultimate rep.: With aug.
Penultimate rep.: Without aug.
Datamodels: With aug.
Datamodels: Without aug.

0 100 200 300 400 500
Top-k principal components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
fra

c.

Dataset: Waterbirds

Penultimate rep.: ImageNet pre-training
Penultimate rep.: Trained from scratch
Datamodels: ImageNet pre-training
Datamodels: Trained from scratch

Effective dimensionality of {datamodel, penultimate-layer} representations

Figure 28: Effective dimensionality (i.e., cumulative fraction of variance explained by top-k com-
ponents) of datamodel representations is significantly more than that of penultimate-layer represen-
tations across all datasets and learning algorithms considered in Section 3.

Figure 29: Difference in the cumulative fraction of variance explained by the top-k training direc-
tions across (datamodel or penultimate-layer) representations corresponding to learning algorithms
A1 and A2; higher the better. Top-k distinguishing training directions obtained from datamodel
representations have significantly higher gap in explained variance across learning algorithms (e.g.,
CIFAR-10, WATERBIRDS) and (b) directions obtained from penultimate-layer representations can
have close to zero (e.g., WATERBIRDS) or negative gap (e.g., CIFAR-10, LIVING17) in explained
variance across learning algorithms.

42

Under review as a conference paper at ICLR 2023

F.7 EFFECT OF SAMPLE SIZE ON DATAMODEL ESTIMATION

In this section, we analyze the effect of datamodel sample size on datamodel estimation.

Setup. Recall from Appendix C.3 that a datamodel training set of size m corresponds to train-
ing m models on independently sampled training data subsets. For our case study on ImageNet
pre-training in Section 3.2, we estimate datamodels on WATERBIRDS data with a 50, 000 sam-
ples (i.e., m ResNet50 models trained on random subsets of the WATERBIRDS training dataset).
In this experiment, we analyze how the estimated datamodels vary as a function of sample size
m ∈ {5000, 10000, 25000, 50000}.
Cosine similarity between datamodels. Our algorithm comparisons framework uses normalized
datamodel representations to compute distinguishing training directions in the first stage. So, we
first analyze the alignment between datamodel representations that are estimated with different sam-
ple sizes. Specifically, we evaluate the cosine similarity between θ

(m1)
x and θ

(m2)
x , where vector

θ
(m)
x ∈ R|S| corresponds to the linear datamodel for example x estimated with m samples. As

shown in Figure 30, the average cosine similarity between datamodels is greater than 0.9 even when
the sample size is reduced by a factor of 10, from 50000 to 5000.

0.75 0.80 0.85 0.90 0.95 1.00
Cosine similarity between datamodel vectors

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Fr
ac

tio
n

Cosine similarity w.r.t datamodels estimated with 50000 samples
Sample size

m=5000 (0.1x), mean: 0.92
m=10000 (0.2x), mean: 0.95
m=25000 (0.5x), mean: 0.98

Figure 30: Histogram over cosine similarity between datamodels θ
(m1)
x and θ

(m2)
x , where vec-

tor θ
(m)
x ∈ R|S| corresponds to the linear datamodel for example x estimated with m ∈

{5000, 10000, 25000, 5000} samples.

Explained variance of principal components. As discussed in Section 3, for a given training
direction v, the fraction of variance that v explained in datamodel representations {θ(i)x } captures
the importance of the corresponding combination of training examples to model predictions for
algorithm Ai. Here, we show that principal components of datamodel representations trained with
smaller sample size (e.g., m = 500) have similar explained variance on datamodel representations
estimated with larger sample size, and vice-versa. As shown in Figure 31, the explained variance
of the top-10 principal components of datamodels estimated with m ∈ {500, 5000} have similar
explained variance on datamodels estimated with m ∈ {5000, 10000, 25000, 50000}.

0 1 2 3 4 5 6 7 8 9
kth principal component

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
ac

tio
n

of
 e

xp
la

in
ed

 v
ar

ia
nc

e

PCs of datamodels estimated with 5000 samples
Sample size m

5000
10000

25000
50000

0 1 2 3 4 5 6 7 8 9
kth principal component

PCs of datamodels estimated with 50000 samples
Sample size m

5000
10000

25000
50000

m
5000
10000
25000
50000

Figure 31: Explained variance of the top-10 principal components of datamodels estimated with
m ∈ {500, 5000} have similar explained variance on datamodels estimated with sample size m ∈
{5000, 10000, 25000, 50000}.

43

Under review as a conference paper at ICLR 2023

G RELATED WORK ON MODEL INTERPRETATION

In the main paper, we focused our discussion of related work to those directly related to model
comparisons. Here, we give discuss additional related work on interpretability and debugging of
model biases.

Interpretability, explainability, and debugging. Stage II of our method hinges on the interpretabil-
ity of the extracted subpopulation. A long line of prior work propose different interpretability and
explainability methods for models.

Local explanation methods include saliency maps (Simonyan et al., 2013; Dabkowski & Gal, 2017;
Adebayo et al., 2018), surrogate models such as LIME (Ribeiro et al., 2016), and Shapley values
(Lundberg & Lee, 2017). Our method is similar to per-example based interpretability methods such
as influence functions (Koh & Liang, 2017) in that our interpretation is based on data; however, our
analysis differs from these priors methods in that it looks at entire subpopulations of inputs.

Global interpretability and debugging methods often leverage the rich latent space of neural net-
works in order to identify meaningful subpopulations or biases more automatically. Concept activa-
tion vectors and its variants (Kim et al., 2018; Abid et al., 2022; Ghorbani et al., 2019) help decom-
pose model predictions into a set of concepts. Other recent works (Eyuboglu et al., 2022; Jain et al.,
2022) leverage the recent cross-model representations along with simple models—mixture mod-
els and SVMs, respectively—to identify coherent subpopulations or slices. Other methods (Wong
et al., 2021; Singla & Feizi, 2021) analyze the neurons of the penultimate layer of (adversarially
robust) models to identify spurious features. Our framework can be viewed as leveraging a different
embedding space, that of datamodel representations, to analyze model predictions.

Robustness to specific biases. In applying our framework across the three case studies, we identify
a number of both known and unknown biases. A large body of previous work aims at finding and
debugging these biases: Priors works investigate specific biases such as the role of texture (Geirhos
et al., 2019) or backgrounds (Xiao et al., 2020) by constructing new datasets. Leclerc et al. (2021)
automate many of these studies in the context of vision models with a render-based framework.
Crucially, these works rely on having control over data generation and having candidate biases ahead
of time. See the “Connections to prior work” within each case study for more specific references.

44

	Introduction
	Comparing learning algorithms
	Formalizing algorithm comparisons via distinguishing transformations
	Identifying distinguishing feature transformations

	Applying the algorithm comparison framework
	Case study: Data augmentation
	Case study: Pre-training
	Case study: SGD hyperparameters

	Related work
	Conclusion
	Appendix
	
	Algorithm analysis
	A primer on datamodel representations
	Residual datamodels
	Finding global trends with PCA

	Case study: SGD hyperparameters
	Experimental Setup
	Datasets
	Models, learning algorithms, and hyperparameters
	Datamodels
	Feature transformations
	Training infrastructure

	Additional human-in-the-loop analysis
	Tools for Inferring distinguishing features from PCA subpopulations
	Case study: Standard data augmentation
	Case study: ImageNet pre-training
	Case study: SGD noise

	Additional evaluation of distinguishing feature transformations
	Case study: Standard data augmentation
	Case study: ImageNet pre-training
	Case study: SGD hyperparameters

	Miscellaneous results
	Aggregate metric for algorithm comparison
	Explained variance of residual datamodel principal components
	Subpopulations surfaced by principal components of residual datamodels
	blueUsing CLIP to identify distinguishing feature candidates
	blueAdditional analysis on the effect of ImageNet pre-training
	blueOn comparisons with model predictions and penultimate-layer representations
	blueEffect of sample size on datamodel estimation

	blueRelated work on model interpretation

