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ABSTRACT

Machine unlearning aims to provide privacy guarantees to users when they request
deletion, such that an attacker who can compromise the system post-unlearning
cannot recover private information about the deleted individuals. Previously pro-
posed definitions of unlearning require the unlearning algorithm to exactly or ap-
proximately recover the hypothesis obtained by retraining-from-scratch on the re-
maining samples. While this definition has been the gold standard in machine
unlearning, unfortunately, because it is designed for the worst-case attacker (that
can recover the updated hypothesis and the remaining dataset), developing rig-
orous, and memory or compute-efficient unlearning algorithms that satisfy this
definition has been challenging. In this work, we propose a new definition of un-
learning, called system aware unlearning, that takes into account the information
that an attacker could recover by compromising the system (post-unlearning). We
prove that system-aware unlearning generalizes commonly referred to definitions
of unlearning by restricting what the attacker knows, and furthermore, may be eas-
ier to satisfy in scenarios where the system-information available to the attacker is
limited, e.g. because the learning algorithm did not use the entire training dataset
to begin with. Towards that end, we develop an exact system-aware-unlearning
algorithm that is both memory and computation-time efficient for function classes
that can be learned via sample compression. We then present an improvement
over this for the special case of learning linear classifiers by using selective sam-
pling for data compression, thus giving the first memory and time-efficient exact
unlearning algorithm for linear classification. We analyze the tradeoffs between
deletion capacity, accuracy, memory, and computation time for these algorithms.

1 INTRODUCTION

In the era of large-scale machine learning (ML) models, which are often trained on extensive datasets
containing sensitive or personal information, concerns surrounding privacy and data protection have
become increasingly prominent (Yao et al., 2024). These models, due to their high capacity to mem-
orize patterns in the training data, may inadvertently retain and expose information about individual
data points (Carlini et al., 2021). This presents significant challenges in the context of privacy regula-
tions such as the European Union’s General Data Protection Regulation (2016) (GDPR), California
Consumer Privacy Act (2018) (CCPA), and Canada’s proposed Consumer Privacy Protection Act,
all of which emphasize the “right to be forgotten.” As a result, there is a growing need for meth-
ods that enable the selective removal of specific training data from models that have already been
trained, a process commonly referred to as machine unlearning (Cao & Yang, 2015).

Machine unlearning addresses the need to remove data from a model’s knowledge base without
the need to retrain the model from scratch each time there is a deletion request, since this can be
computationally expensive and often impractical for large-scale systems. The overarching objective
here is to ensure that, post-unlearning, a model “acts” as if the removed data were never part of the
training process (Sekhari et al., 2021a; Ghazi et al., 2023; Guo et al., 2019). Traditionally, this has
been defined through notions of exact (or approximate) unlearning, wherein the model’s hypothe-
sis after unlearning should be identical (or probabilistically equivalent) to the model obtained by
retraining from scratch on the entire data after removing just the deleted points. While such defini-
tions offer rigorous guarantees even in the most pessimistic scenarios, they often impose stringent
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requirements, limiting the practical applicability of machine unlearning. This is evidenced by a dire
lack of exact/approximate unlearning algorithms beyond the simple cases of convex loss functions.

At the core of the unlearning problem lies a fundamental question: What does it truly mean to “re-
move” a data point from a trained model? And more importantly, when we provide privacy guar-
anteed for deleted points against an outside observer/attacker, what information can this attacker
reasonably possess? The current definitions of exact/approximate unlearning take a worst-case per-
spective here and focus on the output hypothesis being indistinguishable from a retrained model
(Sekhari et al., 2021a; Ghazi et al., 2023; Guo et al., 2019; Cherapanamjeri et al., 2024). However,
this approach overlooks a key aspect of the unlearning problem—the observer and its knowledge of
the system. In the real world, the feasibility and complexity of unlearning should depend on what
the observer can access—be it the model parameters, data retained by the ML system in its memory,
data ever encountered by the ML system etc. For instance, consider a learning algorithm that relies
on only a fraction of its training dataset to generate its hypothesis and hence the ML system only
stores this data. In such cases, unlearning a data point should intuitively be more straightforward.
Even if the entire data in the memory of the system is compromised at some point, only the privacy
of the stored points are at jeopardy as long as the learnt model does not reveal much about points
that were not used by the model. Even if an observer/attacker has access to larger public data sets
that might include parts of the data the system was trained on, in such a system we could expect
privacy for data that the system does not use directly for building the model to be preserved. Con-
versely, if the algorithm utilizes the entire dataset and retains all information in memory, unlearning
becomes far more challenging, potentially requiring retraining from scratch. This suggests that, in
practice, the difficulty of unlearning is not solely determined by the learning algorithm but also by
the observer’s ability to detect traces of the removed data stored in the system or otherwise observed.

Contributions. We propose a new, system-aware formulation of machine unlearning, which in-
corporates the observer’s perspective into the unlearning process. By explicitly considering what the
observer knows about the system, we argue that exact unlearning, as traditionally defined, is often
unnecessarily strict and computationally inefficient. Our framework leverages the fact that many
ML systems do not depend on the entirety of their training data equally, allowing for more efficient
and targeted unlearning approaches that better balance computational cost and privacy guarantees.

We then present a general-purpose, exact system-aware unlearning algorithm using data sharding
for function classes that can learned using sample compression, establishing theoretical bounds on
its computation time, memory requirements, deletion capacity, and excess risk guarantees. Previ-
ous works using data sharding for unlearning, such as Bourtoule et al. (2021), lack such theoretical
guarantees. We also provide an improved system-aware unlearning algorithm for the special case of
linear classification thus providing the first efficient exact unlearning algorithm for linear classifica-
tion requiring sublinear in the number of samples. This is particularly noteworthy because under the
traditional definition of unlearning, Cherapanamjeri et al. (2024) proved that exact unlearning for
linear classification requires 2(n) memory, essentially requiring the storage of the entire dataset.

Through this new lens on machine unlearning, we aim to bridge the gap between having rigorous
theoretical guarantees and providing practical unlearning algorithms, thus hoping to develop scalable
solutions for privacy-preserving machine learning (Tran et al., 2024; Cummings et al., 2023).

2 SETUP AND DEFINITION

Let X be the space of inputs, let ) be the space of outputs, let P be a distribution over an instance
space Z =X x Y, let F ¢ XY be a model class, and let £ : )) x J — R be a loss function. The goal
of a learning algorithm is to take in a dataset S € Z* over the instance space and output a predictor
f e F which minimizes the excess risk compared to the best predictor f* € F,

EXCQSSRISk(?) = E(I7U)NP[€(f($), y)] - f*igE(Ly)rv'P[g(f*(x)a y)]

Our goal in machine unlearning is to provide a privacy guarantee to data samples that request to be
deleted, while ensuring that the updated hypothesis post-unlearning still has small excess risk. We
first present the standard definition of machine unlearning, as stated in Sekhari et al. (2021b); Guo
et al. (2019), often referred to as certified machine learning, which generalizes the commonly used
data deletion guarantee from Ginart et al. (2019).
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Definition 1 ((¢, 0)-unlearning). For a dataset S € Z*, and deletions requests U € S, a learning
algorithm A : Z* — A(F) and an unlearning algorithm A : Z* x F x T — A(F) is (g,0)-
unlearning if for any ' C F,

Pr(A(U,A(S),T(S)) e F) <e®-Pr(A(2,A(S\U), T(S\U)) e F) +4,

and
Pr(A(2,A(S\U),T(S\U)) e F)<e®-Pr(A(U, A(S),T(S)) e F)+5,

where T(S) denotes any intermediate auxiliary information that is available to A for unlearning.

Sekhari et al. (2021a) also defined a notion of deletion capacity, which controls the number of
samples that can be deleted while satisfying the above definition, and simultaneously ensuring good
excess risk performance.

While the above definition, or its variations, have been the go-to definitions in machine unlearning
research, we argue with a very simple example that it may, unfortunately, be an overkill even in
some toy scenarios where we want to unlearn. Consider an algorithm that learns by first randomly
sampling a small subset C' € S of size m and then uses C' to train a model. Now, consider an
unlearning algorithm that, when given some deletion requests U, simply retrains from scratch on
C ~ U. Note that this is a valid unlearning algorithm from the perspective of an attacker who can
only observe the model after unlearning because the model after unlearning contains no information
about the deleted individuals U. On the other hand, this unlearning algorithm is not equivalent to
rerunning the algorithm from scratch on S \ U which would involve sampling a different subset C”
of m samples from S \ U and then training a model on C’. Since C’ contains m samples whereas
C \ U contains m — |U| samples, the hypotheses learned using the respective datasets will likely
not be statistically indistinguishable from each other. Thus, under Definition 1, this is not a valid
unlearning algorithm, even though the above-mentioned attacker can gain no information about the
deleted individuals.

The crucial thing to note is that Definition 1 considers a worst-case scenario that every point en-
countered by the unlearning algorithm except for the deletion requests, regardless of whether it is
used or stored, are known to the attacker. However, a model trained on C \ U reveals no information
about U to an outside observer of the model after unlearning. In particular, samples that were never
used for learning or stored in memory can never be leaked to the attacker. Unfortunately, previous
definitions are unable to benefit from this aspect which is apparent from the lack of any non-trivial
memory / compute efficient unlearning algorithms (Ghazi et al., 2023). However, before we provide
a new definition of unlearning, we need to formalize the information that a learner can access about
the system post-unlearning.

Definition 2 (State-of-System). For an unlearning algorithm A, define the function |5 : Z* x Z2*
Z* to denote the state of the system that is visible to an external observer post-unlearning. In
particular, for any S ¢ Z*, and deletion requests U ¢ S, the quantity 14(S,U) ¢ S is the subset
of data points from dataset S that is stored by or used in the output of the unlearning algorithm A
after A has finished processing deletions requests U after initially learning on S. This represents
the information that an external observer/attacker gains about the original sample by observing the
system after unlearning (e.g. the model, any stored samples, auxiliary data statistics, etc.).

Whenever clear from the context, we will drop the subscript A from |4 to simplify the notation.
For some examples of the state-of-system, for an unlearning algorithm that stores multiple models
trained on different subsets of data, the state of the system denotes the union of the training data
splits, and for an unlearning algorithm that upon a deletion request deletes every sample and returns
a null predictor, the state of the system is the empty set. The adversary can access more information
in the former scenario than the latter; thus, it should be more challenging to unlearn in the former.

Definition 3 (System-Aware-(¢, d)-Unlearning). Let A : Z* x Z* — A(F) be a (possibly random-
ized) learning-unlearning algorithm, such that for a dataset S and deletion requests U, A(S,U)
returns a hypothesis in F after first learning on sample S and then processing a set of deletion
requests U. We say that the algorithm A is system-aware-(g,d)-unlearning if for all S and U ¢ S,
there exists a S' such that 14(S', @) =14(S,U) and S' nU = @, such that for all F ¢ F

Pr(A(S,U) e F)<e® - Pr(A(S",@) e F)+§
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and
Pr(A(S',@) e F) <e®-Pr(A(S,U) € F) +4,

where | 5 captures the state-of-the system after running A.

System aware unlearning requires that the model output after initially learning on S and then un-
learning U be indistinguishable from a model that learns on some plausible S’ from the perspective
of the attacker and processes no deletion requests. Notice that S” contains no information about U.
Thus, we have properly unlearned if we can match the model and system state of the algorithm on
S’. By taking S” = S \ U, we recover the traditional notion of unlearning from Definition 1. Infor-
mally speaking, Definition 3 requires us to output a hypothesis that is statistically indistinguishable
from retraining-from-scratch on a dataset that has no information about U. If an unlearning algo-
rithm satisfies Definition 3 with €, = 0, then we say that the algorithm is an exact system aware
unlearning algorithm.

Why is only considering the system-state sufficient to provide privacy guarantees? Consider
when the unlearning algorithm A satisfies A(S,U) = f(14(S,U)) for some fixed (possibly random-
ized) function f. This implies that A(S,U) = A(S’,@) since 14(S’,2) = 14(S,U), which means
that Definition 3 is satisfied with €, = 0. Satisfying Definition 3 with €, = 0 implies that the Kull-
back-Leibler (KL) divergence between Pr(A(S,U) | 14(S,U),U) and Pr(A(S’, @) | 14(S’,@)) is
0. Through the relationship between KL-divergence and mutual information along with A(S,U) =
A(S', @) and 14(S’, @) = 14(S,U), satisfying Definition 3 with &, § = 0 implies that the conditional
mutual information of I(U; A(U,S) | 14(S’,@)) = 0. This means that given the state of the system
after unlearning 1 4(S,U) = 14(S’,2), there is no mutual information between the deleted individ-
uals U and the output of the unlearning algorithm A(S,U). Thus, we simply need to ensure that
the state of the system does not contain any information about the deleted individuals.

In the next section, we exploit the fact that algorithms that use or store fewer samples when training
are easier to unlearn.

3 A SIMPLE APPROACH TO UNLEARNING FOR CORE SET ALGORITHMS VIA
SHARDING

Since the attacker can only gain access to information stored by the system and used in the unlearned
model, then we want to learn predictors that are dependent on a small number of samples. We
formally define these type of algorithms as core set based learning algorithm.

Definition 4 (Core Set Based Learning Algorithms). A learning algorithm ALGcs : Z* — F is said
to be a core set-based learning algorithm if there exists a mapping € : Z* — Z* such that for any
ScZz,

ALGcs () = ALGcs (€(S)). (L
We define €(.S) to be the core set of S.

The output of ALG¢s(.S) only relies only on samples in €(S'). We can think of the core set €(S\U)
as the state of the system |4(.S,U) and use the properties of core set algorithms to design exact
unlearning algorithms. Many sample compression-based learning algorithms for classification tasks,
such as SVM or selective sampling, are core set based learning algorithms (Hanneke & Kontorovich,
2021; Floyd & Warmuth, 1995). Additionally, the unlearning algorithms based on core set based
learning algorithms are extremely fast because the deletion of a point outside the core set can be
removed for free, so we only perform computation at the time of unlearning for a small number
of points. We present a simple and fast unlearning algorithm (Algorithm 1) using core set based
learning algorithms and data sharding to leverage the fact that samples which are not used or stored
by the model are unlearned for free. Algorithm 1 is a general framework for system aware unlearning
that applies to a variety of settings, including to non-convex function classes.

Algorithm 1 learns K independent hypotheses using some suitable core set based learning algorithm
ALGcs. Each of the K hypotheses is based on an independent core set €(S(), ..., ¢(S¥)). To
process a set of deletion requests U, Algorithm 1 replaces the core sets containing points from U
with a core set that does not depend on U at all and returns a hypothesis based on that core set.
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Algorithm 1 General purpose unlearning algorithm using sharding

Input:  Dataset S of size 7.
¢ Deletion request U € S.
» Core set deletion capacity K.
» Core set-based learning algorithm ALGcs.

1: function LEARNBYSHARDING( Dataset S, Deletion Capacity K)

2 Partition S into K shards S, ..., S uniformly at random.

3: for k ¢ [K] do

4 FR @S« ALGes(S™)), £ is the hypothesis and €(S(®)) is the core set
5. Define 7 = (Te = {€(SWM),...,¢(SUN},Tp = {f, ..., fO})

6 return f* < () and store T = (T¢, T7).

7: function NEXTPRESERVEDPREDICTOR(z, f* ,T)

8: Find a ¢(S)) such that €(SUV)nU = &

9: if no such ¢(S0)) exists then

10: Replace each €(S) « @ and f) « § and return f* < 0

11: else

12: for each €(S(") do

13: if Une&(S®) # & then

14: Replace ¢(S) and f*) with ¢(SU)) and ()

15: Swap ¢(5U)) and £ with ¢(S™M) and £, and then return f* « (1)

16: f*, T < LEARNBYSHARDING(S, K) # Learn K independent predictors on S

17: return NEXTPRESERVEDPREDICTOR(f*, T,U) # Return a predictor untouched by deletion

Thus, we have [(S,U) = T¢, which is the remaining core sets in memory after learning on .S and
then unlearning U. We prove that Algorithm 1 satisfies exact system aware unlearning.

Theorem 1. For a given input dataset S, parameter K > 1 and deletion requests U C S, let
e ¢ denote the remaining core sets in T after unlearning using Algorithm 1. Then,
Algorithm 1 is an exact system-aware-unlearning algorithm (Definition 3 with ¢ = § = 0) with
S/ = C(l) UUQ(K)

From the perspective of the attacker, the output after unlearning looks exactly the same as training
a model on each of the core sets in 7 after unlearning because the only information stored in the
system after unlearning are the K core sets and the predictors trained on them.

We remark here that despite how simple this idea is, this unlearning algorithm is not captured by tra-
ditional definitions of unlearning in Definition 1, that requires the output after unlearning a sample z;
to match the output of Algorithm 1 on the remaining dataset S\ {z; }. If z; € €(S (k)) for some k, we
would have to update f*), ¢(S*)) to match the output of f(k), Q(S(’“)), « ALGes (SN {z;}) in
order to unlearn z;. However, note that f(¥ ) QZ(S (& )) could be very different from f(*) ¢(S(*))
and updating the predictor could be very expensive. Under system aware unlearning, we can simply

avoid this recomputation. Note that no computation needs to be done for Algorithm 1 at the time of
unlearning, as we simply return a predictor that has been untouched by deletion.

We define the deletion capacity of an unlearning algorithm to be the number of deletions the algo-
rithm can tolerate while maintaining a guarantee on the excess risk We define a core set deletion
to be a deletion of point in €(.S). For core set algorithms, we are concerned with core set deletion
capacity, the number of core set deletions an algorithm can tolerate, since deletions outside the core
set do not affect the model. The algorithm designer specifies the desired bound K on the core set
deletion capacity, and Algorithm 1 divides the dataset into K shards accordingly.

Theorem 2. If the core set based learning algorithm ALGcg satisfies the excess risk bound,

E (a2 [0(f(2),9)] - i By~ ~plU(f(2),y)] < R(T ),
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with probability at least 1 — § after learning on a dataset of size T. Then, after up to K core set
deletions, the excess risk of Algorithm 1 satisfies

E (2. [L(F(2),9)] - ){I}ig]E(x,y)w[f(f*(w),y)] < R(T/K,9),

with probability at least 1 — K§. Let @(S(i)) denote the expected size of the core set of ALGcs on
shard S, The memory required by Algorithm I for unlearning is ¥, |€(S™)|.

The proof of the above theorem is straightforward. Until each of the K core sets has been hit with a
deletion, Algorithm 1 can maintain excess error guarantees. We directly trade off core set deletion
capacity at the cost of excess error rates. Note that we can delete all of the points outside of ¢(.S(*))
core sets without any impact on the core set deletion capacity. Furthermore, observe that K bounds
the worst case core set deletion capacity because deletions of multiple points within the same core
set only decrease the deletion capacity by 1. After K core set deletions, in expectation, % of the
shards remain untouched, where e is the universal mathematical constant. We emphasize that the
unlearning guarantee continues to be met even after the core set deletion capacity is exhausted.

The memory required for unlearning scales with the core set deletion capacity K. Note that for many
core set algorithms, such as selective sampling or SVM, the size of the core set can be exponentially
smaller than the size of S' (Cortes & Vapnik, 1995; Dekel et al., 2012; Shalev-Shwartz & Ben-David,
2014; Feldman, 2020).

4 BETTER UNLEARNING ALGORITHMS VIA SELECTIVE SAMPLING: THE
CASE STUDY OF LINEAR CLASSIFICATION

Using sharding is a good generic starting point for unlearning, but can we improve upon some of the
tradeoffs of sharding using a different technique? In this section, we show that for linear classifica-
tion, we can use selective sampling to design an exact unlearning algorithm that demonstrates better
tradeoffs between deletion capacity, memory requirements, and excess error compared to sharding,
thus resulting in the first space and time efficient exact unlearning algorithm for linear classification.

Selective sampling (Cesa-Bianchi et al., 2009; Dekel et al., 2012; Zhu & Nowak, 2022; Sekhari et al.,
2023; Hanneke et al., 2014) is the problem of finding a classifier with low error while only using
the label of very few points and has become particularly important as datasets become larger and
labeling them becomes more expensive. Selective sampling algorithms only query the label of points
whose label they are uncertain of and only update the model on points that they query. Furthermore,
unqueried points are never stored in memory and never used in learning. Selective sampling is a
core set based learning algorithm where the core set is exactly the set of queried points.

Linear classification is a fundamental learning problem in both theory and practice. While it is a
useful theoretical primitive in algorithm design, this simple problem also has relevance for practice,
for example, in large foundation models and generative models, the last layers of these models are
often fine-tuned using linear probing, which trains a linear classifier on representations learned by
a deep neural network (Belinkov, 2022; Kornblith et al., 2019). As unlearning gains increasing
attention for these large-scale ML models, we hope that the following improvements for unlearning
linear classification will find practical applications.

Assumptions. We consider the problem of binary linear-classification. Let = € R? be such that
|| < 1 and y € {+1,-1}. Furthermore, we assume that there exists a u € R, |u|| < 1 such that
E[y: | ¢] = u"x;. Also known as the realizability assumption for binary classification, this ensures
that the Bayes optimal predictor for y; is sign(u'xz;). Our goal in linear-classification is to find a
hypothesis that performs well under 0 — 1 loss, i.e. set £(f(x),y) = 1{f(x) # y}. With this goal in
mind, we define the excess risk for a hypothesis w as

ExcessRisk(w) = E(, ,).p[1{sign(w'z) # y} - 1{sign(u'z) # y}]. (2)

We use the selective sampling algorithm BBQSAMPLER from Cesa-Bianchi et al. (2009) to design
the unlearning algorithm. Algorithm 2 uses the BBQSAMPLER to learn a predictor that only depends
on a small number of core set points, where €(.5) = Q. Note that the last predictor returns an ERM
over €(.S). Then when unlearning U, we update the predictor to be an ERM over €(S) \ U and
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Algorithm 2 Unlearning algorithm for linear classification using selective sampling

Input:  Dataset S of size T’
¢ Deletion request U
* Deletion capacity K >0
* Sampling parameter 0 < x < 1

1: function BBQSAMPLER(S, K, k)

2 Set regularization A = K

3 Initialization: wg = 0, Ag = A[,by = 0,Q = &
4 foreacht=1,2,...,T do

5: Observe instance x;

6: if 2] A;Y,x; > T then # Only update the predictor on queried points
7.

8

9

0

1

Query label y;, and update Q = QU { (x4, y;)}.
Update At <~ At—l + .’,Utl';r, bt <~ bt—l + YTy, Wt < A;lbt.
else
Set Ay < Ay_q, by < b1, wy < Wiy
return Q, AT, bT, wr

10:
11:

12: function DELETIONUPDATE(Q, X, b, w,U)
13: for (x,y) € U such that (z,y) € Q do

14: Define Q@ = 9\ {z}

15: Update X < X — 227, b« b—yx and w < A~'h.

16: return Q, X, b, w

17:

18: Q,X,b,w < BBQSAMPLER(S, A, k) # Learn a predictor via selective sampling

19: Q, X, b,w < DELETIONUPDATE(Q, X, b,w,U) # Update the predictor for core set deletions
20: return sign(w'z)

remove U from memory. After unlearning, the model output and everything stored in memory only
relies on €(S) \ U.

Theorem 3. Let €(.S) denote the core set of the BBQSAMPLER on sample S. Algorithm 2 is an
exact system-aware-unlearning algorithm (3) with S" = €(S) \ U.

The proof relies on a key attribute of the BBQSAMPLER - its monotonic query condition with
respect to deletion. If the BBQSAMPLER is executed on S and then re-executed on S with some
point x; removed, every x; which was queried before x; was removed will still be queried after
is removed.

Lemma 1. The query condition from Algorithm 2 is monotonic with respect to deletion. Specifically,
if o] Az, > T7F, then xtTAt’\lxjact >T~" for any j € [T] such that j # t.

The query condition of the BBQSAMPLER is only z-dependent and does not depend on the labels y
at all. In particular, we query the label on z; if the direction containing z; is not well sampled. The
monotonicity of the query condition is evident from the fact that if a direction was not well sampled
before deletion, it will also not be well-sampled if some previous samples were deleted.

This monotonicity is a unique feature of the BBQSAMPLER. Other selective sampling algorithms,
such as ones from Dekel et al. (2012) or Sekhari et al. (2023), use a query condition that depends on
the labels y of previously seen points. Due to the noise in these y’s, y-dependent query conditions
are not monotonic; points that were queried can become unqueried. This makes it difficult and
expensive to compute the core set after unlearning. We note that since the BBQSAMPLER uses a
y-independent query condition, it is suboptimal in terms of excess error before unlearning compared
to algorithms from Dekel et al. (2012) or Sekhari et al. (2023). However, we are willing to tolerate
a small increase in the excess error in order to unlearn efficiently. Additionally, it is unclear how
much the error of y-dependent selective sampling algorithms would suffer after a core set deletion.

Using the monotonic query condition, we see that €(€(S) \ U) = €(S) \ U, so we do not need to
re-execute the BBQSAMPLER at the time of unlearning in order to determine the new set of queried
points. We can simply remove the effect of U on the predictor, and we only need to make an update
for deletion requests in U that are also in €(5).
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Why is Algorithm 2 not a valid unlearning algorithm under the prior unlearning definition
(Definition 1)? When a queried point is deleted, an unqueried point could become queried. Thus,
we have €(S N\ U) # €(S) \ U. Thus, under traditional notions of exact unlearning, during DELE-
TIONUPDATE, not only would we have to remove the effect of U, but we would also have to add in
any unqueried points that would have been queried if U never existed in S. Additionally, it is com-
putationally inefficient to determine which points would have been queried and unnecessary from a
privacy perspective. An attacker could never have known that such an unqueried point existed and
should have become queried after deletion since it was never used in the original model.

We next bound the memory requirement for Algorithm 2 and show that the predictor after unlearn-
ing maintains low excess risk.

Theorem 4. With probability at least 1 — 6, the excess risk of the predictor W in Algorithm 2 is

bounded by
ExcessRisk(@) = O (min{TE + I logT + log(1/9) }) 7

T T T

=2 K
K=0 g«.T
dlogT

many core-set deletions, where T. = Y1, 1{|u"x| < €}, and & denotes the minimizing ¢ in the
excess risk bound above. Furthermore, the memory required by Algorithm 2 is determined by the
number of core set points which is bounded by |€(S)| < O(dT" logT).

even after unlearning

We remark that 7, represents the number of points where even the Bayes optimal predictor is unsure
of the label, which we expect to be small in realistic scenarios. We give a proof sketch of the theorem.
The bound on the query complexity of the BBQSAMPLER before unlearning is well known and can
be derived using standard analysis for selective sampling algorithms from Cesa-Bianchi et al. (2009).
The number of queries made by the BBQSAMPLER exactly bounds the number of points in the core
set. To bound the excess risk, we first show that the final predictor w = wyp from the BBQSAMPLER
correctly classifies all of the unqueried points outside of the 7z margin points. Let w be the predictor
after K core set deletions. We want to ensure that the sign of w and the sign % remain the same for all
the unqueried points. We do so by first demonstrating that « exhibits stability (Bousquet & Elisseeff,
2002; Shalev-Shwartz et al., 2010) on any unqueried point z, [0z — @' z| < /K -dlogT - T-%.
Then we show that « has a £/2 margin on the classification of every unqueried point. Putting these

72‘T~

together, we show that for up to K < O (glogT) deletions, we can ensure that the sign of w and

w on the unqueried points is the same. Thus, we can maintain correct classification on unqueried
points. We cannot make any guarantees on the |€(.S)| queried points and the T margin points, so
we assume full classification error on those points. Finally, we use techniques from Bousquet et al.
(2004) to convert the empirical classification loss to an excess risk bound.

Memory required for unlearning. The memory required for unlearning is exactly the number of
core set points, O(dT" log T'). Unlike sharding, the memory does not scale with the core set deletion
capacity. Under system aware unlearning, we obtain the first exact unlearning algorithm for linear
classification which uses sublinear memory and does not need to store the entire dataset.

Deletion capacity and error rates. Theorem 4 bounds the core set deletion capacity. Since  is a
free parameter, we can tune it to increase the core set deletion capacity at the cost of increasing the
excess risk after deletion. We are trading off deletion capacity at the cost of performance.

Lemma 2. If the underlying data generating distribution has a hard margin of v, i.e. there exists a
«v such that T, = 0. Appropriately tuning k in Theorem 4, we get that, for any p € (0, 1), Algorithm 2
can tolerate up to K = O(~? - T'"P) deletions while ensuring that the excess risk is O (7).

4.1 COMPARISON TO SHARDING

The sharding technique from Algorithm 1 is a great out-of-the-box strategy for unlearning that can
be applied to general function classes and the agnostic setting. However, for linear classification
under the mean realizability assumption, Algorithm 2 demonstrates better tradeoffs between deletion
capacity, memory, and excess risk.
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We compare the tradeoff between excess risk and core set deletion capacity for Algorithm 2 de-
scribed in Lemma 2 to the tradeoff between excess risk and core set deletion capacity for Algorithm 1
using sharding and selective sampling on each shard, where ALG¢s to be the optimal selective sam-
pling algorithm for linear classification from Dekel et al. (2012). As in Lemma 2, we assume a hard
margin of . The excess risk bound of the optimal selective sampling algorithm on a dataset S of
size T' is

EXCGSSRisk(q) <O (legT + IOg(T/(S) 4 log(log T/(S) ) ’

~T T

derived with a standard online-to-batch conversion where ¢ is a randomly selected predictor from
{wy,...,wr} (Dekel et al., 2012).

When the deletion capacity is set to K = v%- TP, we plug in T/K for T in the bound above to get
that the excess risk of Algorithm 1 after up to K deletions is at most

dlogT +1log(T/6))
|

ExcessRisk(q) = O( all

Compare this to the excess bound of = for Algorithm 2 for the same number of deletions. As d
and 7T increase, Algorithm 2 can achleve a smaller regret bound for the same number of deletions of
queried points in comparison to sharding.

Algorithm 2 also requires significantly less memory for unlearning compared to sharding. The
memory required by Algorithm 2 is only 717, while the memory required by sharding is 7*77 -
d?1og® T (the deletion capacity K = ~2 - T? times the query complexity Ny = flj# of the
optimal selective sampling algorithm from Dekel et al. (2012)). Furthermore, since sharding uses a
larger number of queried points, the probability of a queried point being deleted under sharding is
greater than the probability under Algorithm 2; therefore, we would exhaust the deletion capacity
quicker under sharding.

4.2 EXPECTED DELETION CAPACITY

Notice that the deletion capacity of K only applies to core set deletions. Assume that deletions are
drawn without replacement from p : X — [0, 1], a probability weight vector over the samples in S.
This implies that probability of x requesting for deletion, i.e. u(x), only depends on x and not on
its index within .S or on other samples. This assumption is useful for capturing scenarios where the
users make request for deletions solely based on their own data and have no knowledge of where in
the sample they appear. We define Kora. as the total number of deletions we can process under p
before we exhaust the core set deletion capacity of K and lose excess risk guarantees.

Theorem 5. Consider any core-set algorithm A. Let T denote denote a uniformly random permu-
tation of the samples in S, and let o be a sequence of deletion requests samples from p, without
replacement. Further, let Kcsp denote the number of core set deletions within the first Krora, dele-
tion requests, then for any K > 1,

Pr5wo<KcsD>K><gEs ZE [1{z € €a(n(5))}]- Z =20 1.

where € 4(m(S)) denotes the coreset resulting from running A on the permuted dataset 7(.S). In-
stantiating the above bound for Algorithm 2 implies that

KroraL - T
K

where M := EW[% ZST:1 A7l ] and k € (0,1) denotes the parameter for Algorithm 2.

Prg .o (Kesp > K) < Es[Ey-pu[z"Mz]]

For a given deletion distribution i, Theorem 5 can be used to derive a bound on the number of
deletions Krora. While ensuring that the probability of exhausting the core set deletion capacity is
small. The bound on Krors. depends inversely on Eg[E,.,[2"Mx]]; when Eg[E,.,[z"Mz]]
is small, Algorithm 2 can tolerate a large number of deletions Kror,. before exhausting its core
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set deletion capacity K. Eg[E,.,[z"Mz]] can be interpreted as the expected value of the query
condition 27 A; 'z when Algorithm 2 encounters z during its execution where z is drawn from the
deletion distribution. The query condition decreases as it encounters and queries more points. Thus,
Es[Es~,[27Mz]] is decreasing as T increases, and we would expect it to be small for large 7.
2T Mz is maximized when z lies in a direction which does not occur very often. Deletion distribu-
tions 4 which place a lot of weight on poorly sampled directions will maximize Eg[E,.,[zTMz]]
and lead to smaller Krora. Given the deletion distribution, we can derive exact bounds for
Es[Eg~,[2" Mz]] which lead to bounds on Krorar.
Lemma 3. Let the deletion distribution i be the uniform distribution. Working out the bound from
Theorem 5, we have
KroraL - T7 - dlogT

K-T )

PI‘S,TFJ(KCSD > K) <
We can process a total of
c-K-T
dT"logT
deletions such that the probability that we exhaust the core set deletion capacity of K is at most c.

K TOTAL —

4.3 EXPECTED DELETION TIME

We can make a similar argument for the deletion time. At the time of unlearning, we only need to
make an update for deletions of points in the core set. For all other points, there is no computation
time for unlearning. For a given Kror,y, the total number of deletions we can process under ¢ before
we have exhausted the core set deletion capacity of K, which can be derived using Theorem 5, we
can give an expression for the expected time for deletion.

Theorem 6. For a deletion distribution u, if a core set algorithm A can tolerate up to Kygra,
deletions before exhausting the core set deletion capacity K,

E[time per deletion] < x {update time for a core set deletion}.

TOTAL

For Algorithm 2 under a uniform deletion distribution, we have
d*T"log T
E[time per deletion] < #og’
by plugging in Krora. from Lemma 3 and using the fact that updating the predictor after the deletion
of a core set point takes O(d?) time using the Sherman-Morrison update (Hager, 1989).

Remark 1. For large d, the update time can be replaced by a quantity that depends on the eigen-
spectrum of the data’s Gram matrix. Furthermore, since Algorithm 2 updates an ERM on €(S) to
an ERM on €(S) \ {z}, we can use gradient descent which takes O(d) time per update.

Experiments. We perform some toy experiments on unlearning for linear classification with Algo-
rithm 2 in Appendix A.1. Our experiments show that Algorithm 2 can maintain low excess risk far
beyond the core set deletion capacity derived in Theorem 4 even under worst case deletion schemes.

5 CONCLUSION

We proposed a new definition for unlearning, called system aware unlearning, that takes into ac-
count the information about the sample S that could be leaked to an attacker who compromises the
system, and we developed exact system aware unlearning algorithms based on sample compression
learning algorithms. In particular, we used selective sampling to design a memory and time effi-
cient unlearning algorithm for linear classification. It would be interesting to explore whether or
not this analysis can be extended to general function classes and prove that function classes with
finite eluder dimension (Russo & Van Roy, 2013) lead to memory and computation efficient exact
system aware unlearning algorithms. Beyond exact unlearning algorithms, it would be interesting
to explore how allowing for approximate system aware unlearning (¢, # 0) can lead to even faster
and more memory-efficient unlearning algorithms. Furthermore, we believe that accounting for the
information that an attacker could have access to is an interesting direction to explore in generic
privacy, beyond unlearning.

10
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Figure 1: The first and third plots measure the test error of Algorithm 2 (selective sampling) over the
course 50,000 deletions compared to the test error of retraining a fully supervised algorithm after
each deletion under two different deletion schemes. The second and fourth plots graph the number
of deleted core set points over the course of the 50,000 deletions under the two deletion schemes.

A APPENDIX

A.1 EXPERIMENTS

Our theoretical results provide guarantees for the worst case deletions. We experimentally verify our
theory, and we demonstrate that the deletion capacity and error rates after unlearning for Algorithm
2 are much better in practice. We randomly generate 50,000 points in dimension d = 100 with a
hard margin condition of v = 0.1. We learn a classifier on these 50,000 points and process 50,000
deletions using Algorithm 2. After each deletion, we compare the test error of the classifier after
unlearning from Algorithm 2 to test error of a fully supervised linear classification algorithm which
learns on all of the undeleted points in the sample, including points which are unqueried and thus
never used by Algorithm 2. The test error of the fully supervised algorithm represents the best
possible error Algorithm 2 could hope to achieve after deletion. Note that Algorithm 2 can maintain
comparable test error with the fully supervised predictor while only using ~ 4% of the samples.

We test two different deletion schemes:

o Uniform deletions: Each deletion request is selected uniformly at random. This is to illustrate
the case when the deletion distribution does not correlate at all with the query condition.

e Adversarial deletions with respect to queried points: Deletions are specifically selected in an
attempt to maximize ] A;'z;. However, when a user requests for deletion, that user does not
have knowledge of which individuals were queried or where their position in the sample is,
so they cannot exactly calculate x] Ay Lz, but the user may have some knowledge of the data
distributions. We simulate this knowledge by deleting in decreasing order of xtTA}lxt where
Ar = I+ Y, xpa] represents the covariance matrix of the sample. This is to illustrate the case
when the deletion distribution happens to correlate well with the query condition.

We observe that Algorithm 2 can maintain low classification error until essentially all of the points
in the sample are deleted. Note that Algorithm 2 can maintain comparable test error compared to
the fully supervised algorithm despite only using a fraction of the points. From Figure 1, we see that
we can maintain low classification error far past the deletion capacity bound derived in Theorem
4 (around 1% of points in this case), under both deletion schemes. This is particularly noteworthy
for the adversarial deletion scheme which is designed to delete as many queried points as soon as
possible which should quickly deteriorate the error Algorithm 2 since it only relies on queried points.

A.2 OTHER RELATED WORK

Chourasia & Shah (2023) proposes a data deletion definition under adaptive requesters which does
not require indistinguishability from retraining from scratch. They require that the model after
deletion be indistinguishable from a randomized mapping 7 on S with z; replaced. This assumes
that the attacker does not have knowledge of the unlearning algorithm itself. If the data deletion
requesters are non-adaptive, then 7 can be replaced by the unlearning algorithm A, but in general,
system aware unlearning does not generalize this definition. The data deletion definition under

14
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adaptive requesters makes the stronger assumption that the unlearning algorithm uses the entire
sample to unlearn, but the weaker assumption that the attacker does not know the learning algorithm.

Beyond unlearning definitions, there has been much work in the development of unlearning algo-
rithms. The current literature generally falls into two categories: exact unlearning algorithms which
exactly reproduce the model from retraining from scratch on S \ {z;} (Ghazi et al., 2023; Cher-
apanamjeri et al., 2024; Bourtoule et al., 2021; Cao & Yang, 2015; Chowdhury et al., 2024) or
approximate unlearning algorithms which use ideas from differential privacy (Dwork et al., 2014)
to probabilistically recover a model that is “essentially indistinguishable” from the model produced
from retraining from scratch on S\ {z; } (Izzo et al., 2021; Sekhari et al., 2021a; Chien et al., 2024).
The exact unlearning algorithms are typically memory intensive and require the storage of the entire
dataset and multiple models, while the approximate unlearning algorithms are much more mem-
ory efficient. Furthermore, existing lower bounds prove that there exist model classes with finite
VC and Littlestone dimension where traditional exact unlearning requires the storage of the entire
dataset (Cherapanamjeri et al., 2024). For large datasets, this makes exact unlearning under the tra-
ditional definition impractical. We prove that we can design practical exact system aware unlearning
algorithms for linear classification which require sublinear memory in the number of samples.

A.3 NOTATION
* [n]=4{1,2,...,n}
« Ap =M+ YL zpa]
o Ap .y =M + Zle Tx) — Y,,cu Tix] where U is a set of deletions
. Aps - {)\I+ YL wa] - zjr; whenj<t

M+ YE za] otherwise
for some j € [T]

* Ag =AM +Y,, .5 xx; where S is a set of points
T
* br =Y Yt
* br= Z,L YTt — 2p,ev YiT; Where U is a set of deletions
* wr = A}le
s wry = A7 uybr.u where U is a set of deletions

|u]|x = u” Xu, where u € R and X e R4

A.4 PROOFS FROM SECTION 3

Theorem 1. For a given input dataset S, parameter K > 1 and deletion requests U < S, let
e ¢ denote the remaining core sets in T after unlearning using Algorithm 1. Then,
Algorithm 1 is an exact system-aware-unlearning algorithm (Definition 3 with ¢ = 6 = 0) with
S/ = Q:(l) UUQ:(K)

Proof. Let {¢(1) ... ¢(5)} be the core sets in 7 after unlearning, and let { (1), ... fF)) be
the predictors after unlearning. Define S’ = ¢ u... u €M), We have S’ nU = @ by the
way we update the core sets. The K shards of S’ are exactly () ... ¢(ex)  A(S' &) will
execute ALGCS(Q(C“)) on all ¢ shards. Since ALGcg is a core set based learning algorithm, this
means executing ALG¢s on each shard exactly leads to the predictors { f(1), ... f(X)} and core sets
{eM .. ¢ stored in memory. Thus, S’ satisfies 1(S”, @) = I(S,U) = T. Both A(S,U) and
A(S’,2) return f() as the predictor; thus, we have A(S,U) = A(S’, ) which means Algorithm 2
satisfies exact system aware unlearning. O

A.5 PROOFS FROM SECTION 4

Lemma 1. The query condition from Algorithm 2 is monotonic with respect to deletion. Specifically,
ife] Aftay > T7F, then ] Al , Tt >T7" forany j € [T'] such that j + t.

t\x
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Proof. Consider a point ; that was queried at time ¢. We know x] A; 'z, > T". First note that any
points after time ¢ do not affect the query condition at time ¢, so we only focus on deletions of x;
where j < t.

2y =] A, > T7F. Otherwise, in

First consider the case that ; was not queried. Then x| Afla,

the case that x; was queried
TACL =2 (A - T)-l
Ty Apig; Tt = Ty (A —T5T5) Ty
xtTAt_la:j:UjT-At_lxt)
T A1,
l—xjAt x;
TA-1,.\2
(z{ A7 ;)
1—1‘;A;11‘j

_ T a1
=z, A; xt+(

_ T a1
=x, Ay e+

>a] A n,
>T"

where the second to last line follows because the second term is always positive. Thus, z; remains
queried after deletion. O

Theorem 3. Ler €(S) denote the core set of the BBQSAMPLER on sample S. Algorithm 2 is an
exact system-aware-unlearning algorithm (3) with S" = €(S) \ U.

Proof. Define S’ = €(S) \ U. Clearly, S’ n U = &. The core set of the BBQSAMPLER is exactly
the set of points that it queries. Thus, applying Lemma 1, we know €(&(S) \U) = €(S)\ U.
A(S’, @) returns an ERM over €(€(S) \ U) which is exactly €(.5) \ U and stores that ERM and
the set €(.5) \ U. To process the deletion of U, A(S, U) returns an ERM over €(.5) \ U and stores
that ERM and the set €(S) \ U. Thus, I(S’,@) =1(S,U) and A(S’, @) = A(S,U). O

Theorem 4. With probability at least 1 — 6, the excess risk of the predictor W in Algorithm 2 is

bounded by
T T%logT log(1l
ExcessRisk(w) = O (mﬁm{TE + d TOg " Og(T/(S) }) 7

even after unlearning

=2 . Tk
K=0(:=
dlogT
many core-set deletions, where T. = Y., 1{|u"x;| < €}, and & denotes the minimizing ¢ in the

excess risk bound above. Furthermore, the memory required by Algorithm 2 is determined by the
number of core set points which is bounded by |€(S)| < O(dT" logT).

Proof. The bound on the query complexity of the BBQ sampler before unlearning is given by The-
orem 10 using standard analysis for selective sampling algorithms.

Now for bounding the excess risk. First let’s set all of the T’= margin points aside. Let wr be the last
predictor from the BBQSAMPLER

First we argue that before deletion, w].z and u' agree on the sign of all unqueried points x (outside
of the Tz margin points). These unqueried points = have a margin of £ with respect to w*, which
means |u’ z| > £. We also have
T T
jwpz —u'z| = |wr —ulag - |z ar
<wr-ulap -z a, (using the monotonicity of the query condition)

< JaogT T

(using Agarwal (2013) Proposition 1 and the query condition bound)
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< (for sufficiently large T)

DN |

Thus, sign(w}.x) = sign(u’x), so wr correctly classifies all of the unqueried points. Furthermore,
all of the unqueried points = have a margin of 5 with respect to wr.

Thus, in order to ensure that wy and wr.y after |[U| = K deletions continue to agree on the classi-
fication of all unqueried points, we need to ensure that [wjz — w}. ;| = A < 5. Using the upper
bound on A derived using a stability analysis in Theorem 8 , we get the following deletion capacity
on queried points

(Theorem 8)

A<2/e(K+1)- T2 .\/dlogT < %
=2

e(K +1)- T~ -dlogT < %‘

8_2 TR
16e-dlogT
g2. 7"
S -
16e-dlogT
=2 K
K<o[= T
dlogT
For up to K deletions on queried points, wr and wr.; are guaranteed to agree on the classification
of all unqueried points. Thus after unlearning, wr.y correctly classifies all of the unqueried points.
We have no regret guarantees for wp.y on the queried points and the Tz margin points; therefore,

we assume that we suffer full classification loss on these points. Thus, the empirical loss of wr. ¢
after unlearning is at most O(7z + dT%InT).

K+1<

This can be converted to an excess risk bound using standard techniques from Bousquet et al. (2004).

For a model class with VC dimension % and a predictor f with empirical loss R on a sample of size
T, we have that the excess risk is

[l{f(x) sy} -1 () # y}] < 3R 6hlogn +1E310g(4/5)

from Bousquet et al. (2004). Plugging in the empirical loss of O(T: +dT"InT) for wr.y and VC
dimension h = d + 1, we have

dT"logT . log(1/4)
T T
with probability at least 1 — 4. O

E(sy)~p[1{sign(w’z) # y} - 1{sign(u’z) # y}] < O (1:;5 +

Theorem 5. Consider any core-set algorithm A. Let 7 denote denote a uniformly random permu-
tation of the samples in S, and let o be a sequence of deletion requests samples from u, without
replacement. Further, let Kcsp denote the number of core set deletions within the first Krora, dele-
tion requests, then for any K > 1,

K TOTAL

PrSwo—(KCSD>K)<*Es ZE [1{z € Co(7(59))}]- Z Eo[1{z: = 25, }]|-

where €4 (7(S)) denotes the coreset resulting from running A on the permuted dataset w(S). In-
stantiating the above bound for Algorithm 2 implies that

KTOTAL T
K
where M := B[+ Y1 A1 ] and k € (0,1) denotes the parameter for Algorithm 2.

Prg .o (Kesp > K) < Es[Ey-pu[z"Mz]]

Proof.
1

Prgzo(Kesp > K) < ?]E[Kcsn] (Markov’s Inequality)

17
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Krorar
K]ESWUI:Zl{xtEO } Z 1{$t_x0'k}]

(C is the resultmg core set after executing on 7(S))

KroraL

I]ES[ZT:E,, <)l 3Bl 1{%_9:%}]]

t=1
K

S Eq[1{z; € Cr}]- Z 1{xt—xak}]

>
wo]

KTUTAI
E,[1{x,, € Cﬂ}]]
k=1

1
7]ESO'

This proves the first half of the theorem.
Recall the following theorem from Ben-Hamou et al. (2018).

Theorem 7. Let X be the cumulative value of sequence of length n < N drawn from Q without
replacement,

=v(Iy) +-+v(,),

and let Y be the cumulative value of sequence of length n < N drawn from Q) with replacement,

X=v(J)+-+v(J,).
If the value function v and the weight vector W follow the property that

w(i) >w(j) = v(i) 2 v(j),
Then
E[X]<E[Y]

Consider the case when v(z) = E.[1{z € C,}] and the deletion distribution p satisfies u(z) >
w(z") = v(x) > v(z'). This is exactly the worst case in terms of deletion capacity: points that

have a high probability of being included in the core set are exactly the points that have a high
probability of being deleted.

In this case, we can apply Theorem 7 to get

Pr o (X > K) g% [ Z [z, € Cy }]]
< ;ES[EM izl [Eﬂ[l{x ¢ CW}JH

(where x is sampled without replacement from )

e easl|

Krorar T L T -1 |
——Eg|Epnn| — E.[A;-
o R E RS

(plugging in upper bound for E,[1{z € C}])

Kroma, - T ]
e L DECHEER|

IA

s=1 |
KromaL - T 1 ]
< ”}‘;ES[EEN#[JE#[T 21 Asil‘ xH
< MES[EIW[%TM%”H
K
where M =E[% >, AJ1,] for a given sample S. O

18
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Lemma 3. Let the deletion distribution |1 be the uniform distribution. Working out the bound from
Theorem 5, we have
Krora - T" - dlogT

K-T '

PTS,W,U(KCSD > K) <

We can process a total of

c- K- T
dT'%logT

K TOTAL ~

deletions such that the probability that we exhaust the core set deletion capacity of K is at most c.

Proof.
_ 1 X
ES [EINUHif[xTM.’L']] = ]ES[T Z xIM.’Et]
t=1
dlogT
< =3 (S5, 2 Az, < dlogT)
Plugging this into Theorem 5 and solving for Krors completes the proof of the lemma. O

A.6 AUXILLARY RESULTS

Theorem 8. Let wr be the final predictor after running the BBQSAMPLER from Algorithm 2 with
A= K. Let D be a sequence of deletions of length K. Let wp.y be the predictor after the sequence
of D deletions have been applied. Let x be an unqueried point. Then we have

A =wh ;7 —wrz— < 2(/e(K +1) -T2 .\/dlog T

:O(\/E~T‘”/2~\/dlogT)

Proof. Let D; be the set of the first ¢ deletions.

A=wp T —wp
K
= Z:(’LU-YF“\ULJj - w;\Ui,lx)

=1
K 2./e(K +1
_ Z % LTRI2 /dlogT (applying Theorem 9)

=1
2K K+1
< %~T’“/2-\/dlogT

<2Je(K +1)- T2 .\/dlogT
O

Theorem 9. Let A = K be the regularization parameter. Consider a set of D deletions where
|U| < K. Let wr.y be the predictor after the set of D deletions have been applied and let wr. (pug,)
be the predictor after the set of D deletions have been applied along with an additional deletion of
x;. Let © be an unqueried point. Then we have

2 K+1
A= w;\(Duzi)m —Wp T < % T2\ [dlog T

Jor A=1.

19
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Proof. Let AT\U = AT - ZjeU $j$; and bT\U = bT - ZjeU Y; T

_ T _ T
A= wT\(Dumi)x Wr\u¥®
T Ty\-1 T -1
= (brwv —yizi) (Arv —xiwy ) 2 = by pAr g
1
= by (Arw —zix)) ' - yix] (Apaw — i) ) o - by AT
1 1 T -1

=bh AL VATt Ay —yxl A -y, v AT AT o b AT

T\U“*T\U 1— .TTA 1le 1l LVT\U 7 1— .’BTA 1sz T\U*“*T\U

(Sherman-Morrison)

1 T A-1 T A1
br ATy Ti®; ATy LT AZL % Apyxiv; Ap y

- 1- TA - yl‘ri T\U‘r ~Yi 1= TA_l i

Ty ApsyTi Ty Ap iy i

T T AL T A-1 T AL
_ | WryTi; AT\Ux —yaT AL | Fi (AT Ap oy
= 1 — 2T AL YiZ; Ap\uT — Yi 1 TA
Ty Ap uti Ty Ap uti

Wy i, AT\UI) T 4-1 ( x] AP )
= 1 — i Apu® — i T
( 1_)\+1 (>\+1)(1_)\+1)
(x] AT\sz < /\+1 from Lemma 2)

1 1

= —— wp i 1 AP\ pr -y A7\ pr - ~yin] A7 g

-5 A
o Wl g T AL _(1 l) T Al
= T " Wpy¥it L Apy¥d + YiZ; Apuy®

b vel A

1
= (1 + X) z] A7\ - (Wi i — i)
< 1+1 (Wi s — .).\/ TAZL g pTARL lvine L 3
= b\ T~UuLi = Yi T, Ap yTi- T Ap y® (applying Lemma 3)
A+1 e .

< ( \ ) T\U»Tz Yi) - o1 T-r (applying Lemma 2 and Corollary 1)

(wT\sz Yi)

:\/6()\+ e
A

:\/6(/\+1) )2
A

(wT\le —u'z; + ()

A+1 A+1
, 7\/6(;) T W]y — 0T + % (T2
e(A+1 e(A+1
T i [ U TV B P L S e

A
< 7\/6(;\\& n 7*/6(;\\4—1) .TR2 (Ci<1)

< 7\/6(1‘\+1) T2\ Jdlog(T - K) + 7\/6(?\4'1) k2

. T_K/2 ||wT\U - u” Ar\u H:EZ HAE"I\U

(Proposition 1 from Agarwal (2013))
2 A+1
< % T2\ [dlog T
O

Lemma 1. Let )\ be the regularization parameter. Let U be a set of deletions such that |U| = K. Let
Ar\y denote At = ¥,y ©jx ;. Then we have

on

N
I
o
>~
.

AT\U‘T <
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().

We prove the claim using induction. Assume that xTA}{Ux < Zfio 7 1" (induction hypothesis).
Consider an additional deletion and the effect on the query condition, z™ (Ap.y — z;7;)

xT AL x, TAZL &
T Ty-1 T p-1 U1 U
' (Apww —xix) ) e =a' Ap yr + =

1-2a] AT\Uxi

(»T AT\Um)
(1-59)
o] AT y)®

=y
-

T -1 TA-1 1
<z A pr+ ( ) (x; AT\(D\mi)xj < 537 from Lemma 2)

In
.Mx
>:

<
I
(e}

) @ A7y < 550 L) 7 from 1H)

K
< Z );LZ L "4T\U‘TZ ) ;4T\Ux) (Lemma 3)
i=0
K )\+1
« & e
gz /\’l ( )\:L(i)/\ll ) (using IH and Lemma 2)
i=0 - m
O ) I (1)
< L:Zg /\7. Z )\z+1
X (Iz() —K I (zlfl) —K
g;) Y T+ Z; i -T
(K) —K X, (Iz{) —K X, (zi—{) —K (K) -K
S%-T +§; T +§; N,l -T +)\II§+1~T
K K (K+1 K
< ()?0) "+ ; ( )i’ ) 7"+ )\(11521 TR (Pascal’s Identity)
(0) o &) . G
S%T +§; T ;;*jl T
g K+1 (K;l) -
1=0 A

Corollary 1. Let A = K be the regularization parameter. Let U be a set of deletions such that
|U|< K, then 2" A7- yx <e-T7F

Proof. Note that:

[U] (II_JI)
x A}l\Ux < Zi -TF (Lemma 1)
=0 A
5 (%)
g 7/‘ .T—K)
2\
(%)
< e A
K
= (1 + %) T
<e-T7F
O

Lemma 2. z] Ag'z; < ﬁfor any set of S points such that z; € S, where Ag =1+Y, .qx1x]
Proof. We want to consider the x; that maximizes x;Aglxi. Let Asi =1+ X4, e5 (a1} xx;. Then

we want to maximize the following

T 4-1 T Ty-1
2, Agx; =x] (Agu + i) )

21
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T -1 T A-1
_ T 41 L; AS\ixim AS\zxi
=x; Ag;Ti — 1+ TA 1
TiAgT
— T AL o
Leta =x] Ag 2.
2
- a a 1
x] Agtai=a- = =1-
l+a 1+a l+a
We want to maximize the above expression where 0 < 1 3 (since 0 < z] Agh,a; < %) The
. . . 1
expression is maximized when a = +. Thus, z] A7" @, < m o1 0

Lemma 3. (2] Ag'z)? < ] Ag'a; - 27 Ag'a for any set of S points such that x; € S, where Ag =
M +Y, c5Tew]

Proof. We can decompose the terms as Agﬂ = Zle Xiugu], T = Zle a;u;, and = Zle Bi;.
Using these decompositions, we compute the following two terms

() () )

(o)

2

x;A;lx,xrAgx:(iaiug)(iwg)(iw)(i () (S50

From Jensen’s inequality (or Cauchy-Schwarz inequality), we know that (Zf:1 piaﬁi)2 < Zle pix?
where p; > 0 for all i and ¥, p; = 1 since f(z) = 22 is convex. Let p; = /\iozf/(Z?:l Aja3) (note
that all \;’s > 0) and let z; = 8;/«;. This gives us

(Z?:l )\z'aiﬂi) Zz 1 Aiag - %

(Z?zl)\iaff o L Ao

2

() =(Fet) (£7)

This directly implies that (] A7'2)? < 27 A7t e - 2] Af' ;. O

Theorem 10. Let A = K < T be the regularization parameter and 0 < k < 1 be the sampling
parameter of the BBQSAMPLER. Then we have the following regret and query complexity bounds
on the BBQSAMPLER

1 T 1
Ry =mineT, + O((K+d10gT+log) + )
€ € 5] e

=0(dT"logT)
Proof. Let A, =u'z, and A, = w, x. We decompose the regret as follows

T T
Rp <eT, + Z Ztl{AtAt < O7A? > 62} + Z Zt]-{AtAt < O7A? > 62}|At|
t=1 t=1

=eT. +U. +Q: (regret decomposition from Dekel et al. (2012) Lemma 3)
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We define an additional term
o, [sign(A,) if|A>1
Ay =14 .
Ay otherwise

1 A
Qg < g Z tl{AtAt < O}A?
t=1
1 & - . .
=- Z ZiL{AA < O}Af (At and A} have the same sign)
€1
1Z " - N
<= Z Zi(Ay - Ay)? (AJA; < 0implies A? < (A, - A})?)
€1
2( & T
< ( Z Zi((Ay—y)% - (At -y)%) + 144log — 5 ) (Dekel et al. (2012) Lemma 23 (i))
€\¢=1
T
< 4( Z t(dt_l(w*,wt_l) - dt(w*,wt) + 210g |At| ) + 144lOgT)
€\i=1 | A1l Y
(Dekel et al. (2012) Lemma 25 (iv) where dy(w*, w) = 3 (w* - w)" 4, (w* - w))
< 4(d0(w ,wo) +log|Ar| + 144 1og z;)
5
2 T
<= A+ dlog(A+ Nr) + 1441og — 3 ) (Dekel et al. (2012) Lemma 24 (iii))
3
= O(()\ +dlogT + log T))
3 )

Letr, = ] Ay'ay

T
UE < ZZt 1{|At - At| > E}
t=1

T 2
<(2+e) Z Zyexp ( - 6) (following Cesa-Bianchi et al. (2009) Theorem 1)

8r

—(2+e)ZZtexp

o)

(-5
<(2+e)ZZteXp(
)

<(2+e€)[1/k] (

<O(52/"”")

Putting the above terms together completes the proof of regret.

Now for the number of queries. Let r; = 2] A;'z;. Consider the following sum

QTK _
(when Z; =1, ry < T™" by the query condition)

(following Cesa-Bianchi et al. (2009) Theorem 1)

A
Z Zyry < Z Zy -log 14| (Lemma 24 from Dekel et al. (2012) where | - | is the determinant)

=1 | A1
|[Ar|
=log ——

& | Aol
<log|A7|
<dlog(\+ Nrp)
< dlog(T)
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We use the above sum to bound the number of queries

Nr= Y 1
re>T—F
Tt
<
n;*” ="
STK Z Tt
re>T ™R

<O(dT"log(T))

24

(using the sum above)
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