
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SYSTEM AWARE UNLEARNING ALGORITHMS:
USE LESSER, FORGET FASTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine unlearning aims to provide privacy guarantees to users when they request
deletion, such that an attacker who can compromise the system post-unlearning
cannot recover private information about the deleted individuals. Previously pro-
posed definitions of unlearning require the unlearning algorithm to exactly or ap-
proximately recover the hypothesis obtained by retraining-from-scratch on the re-
maining samples. While this definition has been the gold standard in machine
unlearning, unfortunately, because it is designed for the worst-case attacker (that
can recover the updated hypothesis and the remaining dataset), developing rig-
orous, and memory or compute-efficient unlearning algorithms that satisfy this
definition has been challenging. In this work, we propose a new definition of un-
learning, called system aware unlearning, that takes into account the information
that an attacker could recover by compromising the system (post-unlearning). We
prove that system-aware unlearning generalizes commonly referred to definitions
of unlearning by restricting what the attacker knows, and furthermore, may be eas-
ier to satisfy in scenarios where the system-information available to the attacker is
limited, e.g. because the learning algorithm did not use the entire training dataset
to begin with. Towards that end, we develop an exact system-aware-unlearning
algorithm that is both memory and computation-time efficient for function classes
that can be learned via sample compression. We then present an improvement
over this for the special case of learning linear classifiers by using selective sam-
pling for data compression, thus giving the first memory and time-efficient exact
unlearning algorithm for linear classification. We analyze the tradeoffs between
deletion capacity, accuracy, memory, and computation time for these algorithms.

1 INTRODUCTION

In the era of large-scale machine learning (ML) models, which are often trained on extensive datasets
containing sensitive or personal information, concerns surrounding privacy and data protection have
become increasingly prominent (Yao et al., 2024). These models, due to their high capacity to mem-
orize patterns in the training data, may inadvertently retain and expose information about individual
data points (Carlini et al., 2021). This presents significant challenges in the context of privacy regula-
tions such as the European Union’s General Data Protection Regulation (2016) (GDPR), California
Consumer Privacy Act (2018) (CCPA), and Canada’s proposed Consumer Privacy Protection Act,
all of which emphasize the “right to be forgotten.” As a result, there is a growing need for meth-
ods that enable the selective removal of specific training data from models that have already been
trained, a process commonly referred to as machine unlearning (Cao & Yang, 2015).

Machine unlearning addresses the need to remove data from a model’s knowledge base without
the need to retrain the model from scratch each time there is a deletion request, since this can be
computationally expensive and often impractical for large-scale systems. The overarching objective
here is to ensure that, post-unlearning, a model “acts” as if the removed data were never part of the
training process (Sekhari et al., 2021a; Ghazi et al., 2023; Guo et al., 2019). Traditionally, this has
been defined through notions of exact (or approximate) unlearning, wherein the model’s hypothe-
sis after unlearning should be identical (or probabilistically equivalent) to the model obtained by
retraining from scratch on the entire data after removing just the deleted points. While such defini-
tions offer rigorous guarantees even in the most pessimistic scenarios, they often impose stringent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

requirements, limiting the practical applicability of machine unlearning. This is evidenced by a dire
lack of exact/approximate unlearning algorithms beyond the simple cases of convex loss functions.

At the core of the unlearning problem lies a fundamental question: What does it truly mean to “re-
move” a data point from a trained model? And more importantly, when we provide privacy guar-
anteed for deleted points against an outside observer/attacker, what information can this attacker
reasonably possess? The current definitions of exact/approximate unlearning take a worst-case per-
spective here and focus on the output hypothesis being indistinguishable from a retrained model
(Sekhari et al., 2021a; Ghazi et al., 2023; Guo et al., 2019; Cherapanamjeri et al., 2024). However,
this approach overlooks a key aspect of the unlearning problem—the observer and its knowledge of
the system. In the real world, the feasibility and complexity of unlearning should depend on what
the observer can access—be it the model parameters, data retained by the ML system in its memory,
data ever encountered by the ML system etc. For instance, consider a learning algorithm that relies
on only a fraction of its training dataset to generate its hypothesis and hence the ML system only
stores this data. In such cases, unlearning a data point should intuitively be more straightforward.
Even if the entire data in the memory of the system is compromised at some point, only the privacy
of the stored points are at jeopardy as long as the learnt model does not reveal much about points
that were not used by the model. Even if an observer/attacker has access to larger public data sets
that might include parts of the data the system was trained on, in such a system we could expect
privacy for data that the system does not use directly for building the model to be preserved. Con-
versely, if the algorithm utilizes the entire dataset and retains all information in memory, unlearning
becomes far more challenging, potentially requiring retraining from scratch. This suggests that, in
practice, the difficulty of unlearning is not solely determined by the learning algorithm but also by
the observer’s ability to detect traces of the removed data stored in the system or otherwise observed.

Contributions. We propose a new, system-aware formulation of machine unlearning, which in-
corporates the observer’s perspective into the unlearning process. By explicitly considering what the
observer knows about the system, we argue that exact unlearning, as traditionally defined, is often
unnecessarily strict and computationally inefficient. Our framework leverages the fact that many
ML systems do not depend on the entirety of their training data equally, allowing for more efficient
and targeted unlearning approaches that better balance computational cost and privacy guarantees.

We then present a general-purpose, exact system-aware unlearning algorithm using data sharding
for function classes that can learned using sample compression, establishing theoretical bounds on
its computation time, memory requirements, deletion capacity, and excess risk guarantees. Previ-
ous works using data sharding for unlearning, such as Bourtoule et al. (2021), lack such theoretical
guarantees. We also provide an improved system-aware unlearning algorithm for the special case of
linear classification thus providing the first efficient exact unlearning algorithm for linear classifica-
tion requiring sublinear in the number of samples. This is particularly noteworthy because under the
traditional definition of unlearning, Cherapanamjeri et al. (2024) proved that exact unlearning for
linear classification requires Ω(n) memory, essentially requiring the storage of the entire dataset.

Through this new lens on machine unlearning, we aim to bridge the gap between having rigorous
theoretical guarantees and providing practical unlearning algorithms, thus hoping to develop scalable
solutions for privacy-preserving machine learning (Tran et al., 2024; Cummings et al., 2023).

2 SETUP AND DEFINITION

Let X be the space of inputs, let Y be the space of outputs, let P be a distribution over an instance
space Z = X × Y , let F ⊆ XY be a model class, and let ℓ ∶ Y × Y → R be a loss function. The goal
of a learning algorithm is to take in a dataset S ∈ Z∗ over the instance space and output a predictor
f̂ ∈ F which minimizes the excess risk compared to the best predictor f∗ ∈ F ,

ExcessRisk(f̂) ∶= E(x,y)∼P[ℓ(f̂(x), y)] − min
f∗∈F

E(x,y)∼P[ℓ(f∗(x), y)].

Our goal in machine unlearning is to provide a privacy guarantee to data samples that request to be
deleted, while ensuring that the updated hypothesis post-unlearning still has small excess risk. We
first present the standard definition of machine unlearning, as stated in Sekhari et al. (2021b); Guo
et al. (2019), often referred to as certified machine learning, which generalizes the commonly used
data deletion guarantee from Ginart et al. (2019).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 1 ((ε, δ)-unlearning). For a dataset S ∈ Z⋆, and deletions requests U ⊆ S, a learning
algorithm A ∶ Z∗ ↦ ∆(F) and an unlearning algorithm Ā ∶ Z∗ × F × T ↦ ∆(F) is (ε, δ)-
unlearning if for any F ⊆ F ,

Pr (Ā(U,A(S), T (S)) ∈ F) ≤ eε ⋅Pr (Ā(∅,A(S ∖U), T (S ∖U)) ∈ F) + δ,

and
Pr (Ā(∅,A(S ∖U), T (S ∖U)) ∈ F) ≤ eε ⋅Pr (Ā(U,A(S), T (S)) ∈ F) + δ,

where T (S) denotes any intermediate auxiliary information that is available to Ā for unlearning.

Sekhari et al. (2021a) also defined a notion of deletion capacity, which controls the number of
samples that can be deleted while satisfying the above definition, and simultaneously ensuring good
excess risk performance.

While the above definition, or its variations, have been the go-to definitions in machine unlearning
research, we argue with a very simple example that it may, unfortunately, be an overkill even in
some toy scenarios where we want to unlearn. Consider an algorithm that learns by first randomly
sampling a small subset C ⊆ S of size m and then uses C to train a model. Now, consider an
unlearning algorithm that, when given some deletion requests U , simply retrains from scratch on
C ∖ U . Note that this is a valid unlearning algorithm from the perspective of an attacker who can
only observe the model after unlearning because the model after unlearning contains no information
about the deleted individuals U . On the other hand, this unlearning algorithm is not equivalent to
rerunning the algorithm from scratch on S ∖U which would involve sampling a different subset C ′
of m samples from S ∖ U and then training a model on C ′. Since C ′ contains m samples whereas
C ∖ U contains m − ∣U ∣ samples, the hypotheses learned using the respective datasets will likely
not be statistically indistinguishable from each other. Thus, under Definition 1, this is not a valid
unlearning algorithm, even though the above-mentioned attacker can gain no information about the
deleted individuals.

The crucial thing to note is that Definition 1 considers a worst-case scenario that every point en-
countered by the unlearning algorithm except for the deletion requests, regardless of whether it is
used or stored, are known to the attacker. However, a model trained on C ∖U reveals no information
about U to an outside observer of the model after unlearning. In particular, samples that were never
used for learning or stored in memory can never be leaked to the attacker. Unfortunately, previous
definitions are unable to benefit from this aspect which is apparent from the lack of any non-trivial
memory / compute efficient unlearning algorithms (Ghazi et al., 2023). However, before we provide
a new definition of unlearning, we need to formalize the information that a learner can access about
the system post-unlearning.

Definition 2 (State-of-System). For an unlearning algorithm A, define the function IA ∶ Z∗ ×Z∗ ↦
Z∗ to denote the state of the system that is visible to an external observer post-unlearning. In
particular, for any S ⊂ Z∗, and deletion requests U ⊆ S, the quantity IA(S,U) ⊆ S is the subset
of data points from dataset S that is stored by or used in the output of the unlearning algorithm A
after A has finished processing deletions requests U after initially learning on S. This represents
the information that an external observer/attacker gains about the original sample by observing the
system after unlearning (e.g. the model, any stored samples, auxiliary data statistics, etc.).

Whenever clear from the context, we will drop the subscript A from IA to simplify the notation.
For some examples of the state-of-system, for an unlearning algorithm that stores multiple models
trained on different subsets of data, the state of the system denotes the union of the training data
splits, and for an unlearning algorithm that upon a deletion request deletes every sample and returns
a null predictor, the state of the system is the empty set. The adversary can access more information
in the former scenario than the latter; thus, it should be more challenging to unlearn in the former.

Definition 3 (System-Aware-(ε, δ)-Unlearning). Let A ∶ Z∗ ×Z∗ ↦ ∆(F) be a (possibly random-
ized) learning-unlearning algorithm, such that for a dataset S and deletion requests U , A(S,U)
returns a hypothesis in F after first learning on sample S and then processing a set of deletion
requests U . We say that the algorithm A is system-aware-(ε, δ)-unlearning if for all S and U ⊆ S,
there exists a S′ such that IA(S′,∅) = IA(S,U) and S′ ∩U = ∅, such that for all F ⊆ F

Pr(A(S,U) ∈ F) ≤ eε ⋅Pr(A(S′,∅) ∈ F) + δ

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and

Pr(A(S′,∅) ∈ F) ≤ eε ⋅Pr(A(S,U) ∈ F) + δ,
where IA captures the state-of-the system after running A.

System aware unlearning requires that the model output after initially learning on S and then un-
learning U be indistinguishable from a model that learns on some plausible S′ from the perspective
of the attacker and processes no deletion requests. Notice that S′ contains no information about U .
Thus, we have properly unlearned if we can match the model and system state of the algorithm on
S′. By taking S′ = S ∖ U , we recover the traditional notion of unlearning from Definition 1. Infor-
mally speaking, Definition 3 requires us to output a hypothesis that is statistically indistinguishable
from retraining-from-scratch on a dataset that has no information about U . If an unlearning algo-
rithm satisfies Definition 3 with ε, δ = 0, then we say that the algorithm is an exact system aware
unlearning algorithm.

Why is only considering the system-state sufficient to provide privacy guarantees? Consider
when the unlearning algorithm A satisfies A(S,U) = f(IA(S,U)) for some fixed (possibly random-
ized) function f . This implies that A(S,U) = A(S′,∅) since IA(S′,∅) = IA(S,U), which means
that Definition 3 is satisfied with ε, δ = 0. Satisfying Definition 3 with ε, δ = 0 implies that the Kull-
back–Leibler (KL) divergence between Pr(A(S,U) ∣ IA(S,U), U) and Pr(A(S′,∅) ∣ IA(S′,∅)) is
0. Through the relationship between KL-divergence and mutual information along with A(S,U) =
A(S′,∅) and IA(S′,∅) = IA(S,U), satisfying Definition 3 with ε, δ = 0 implies that the conditional
mutual information of I(U ;A(U,S) ∣ IA(S′,∅)) = 0. This means that given the state of the system
after unlearning IA(S,U) = IA(S′,∅), there is no mutual information between the deleted individ-
uals U and the output of the unlearning algorithm A(S,U). Thus, we simply need to ensure that
the state of the system does not contain any information about the deleted individuals.

In the next section, we exploit the fact that algorithms that use or store fewer samples when training
are easier to unlearn.

3 A SIMPLE APPROACH TO UNLEARNING FOR CORE SET ALGORITHMS VIA
SHARDING

Since the attacker can only gain access to information stored by the system and used in the unlearned
model, then we want to learn predictors that are dependent on a small number of samples. We
formally define these type of algorithms as core set based learning algorithm.
Definition 4 (Core Set Based Learning Algorithms). A learning algorithm ALGCS ∶ Z∗ ↦ F is said
to be a core set-based learning algorithm if there exists a mapping C ∶ Z∗ ↦ Z∗ such that for any
S ⊆ Z ,

ALGCS(S) = ALGCS(C(S)). (1)

We define C(S) to be the core set of S.

The output of ALGCS(S) only relies only on samples in C(S). We can think of the core set C(S∖U)
as the state of the system IA(S,U) and use the properties of core set algorithms to design exact
unlearning algorithms. Many sample compression-based learning algorithms for classification tasks,
such as SVM or selective sampling, are core set based learning algorithms (Hanneke & Kontorovich,
2021; Floyd & Warmuth, 1995). Additionally, the unlearning algorithms based on core set based
learning algorithms are extremely fast because the deletion of a point outside the core set can be
removed for free, so we only perform computation at the time of unlearning for a small number
of points. We present a simple and fast unlearning algorithm (Algorithm 1) using core set based
learning algorithms and data sharding to leverage the fact that samples which are not used or stored
by the model are unlearned for free. Algorithm 1 is a general framework for system aware unlearning
that applies to a variety of settings, including to non-convex function classes.

Algorithm 1 learns K independent hypotheses using some suitable core set based learning algorithm
ALGCS. Each of the K hypotheses is based on an independent core set C(S(1)), . . . ,C(S(K)). To
process a set of deletion requests U , Algorithm 1 replaces the core sets containing points from U
with a core set that does not depend on U at all and returns a hypothesis based on that core set.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 General purpose unlearning algorithm using sharding
Input: • Dataset S of size T .

• Deletion request U ⊆ S.
• Core set deletion capacity K.
• Core set-based learning algorithm ALGCS.

1: function LEARNBYSHARDING(Dataset S, Deletion Capacity K)
2: Partition S into K shards S(1), . . . , S(K) uniformly at random.
3: for k ∈ [K] do
4: f (k),C(S(k))← ALGCS(S(k)), f (k) is the hypothesis and C(S(k)) is the core set
5: Define T = (TC = {C(S(1)), . . . ,C(S(K))},Tf = {f (1), . . . , f (K)})
6: return f̂∗ ← f (1), and store T = (TC,Tf).

7: function NEXTPRESERVEDPREDICTOR(z, f̂∗,T)
8: Find a C(S(j)) such that C(S(j)) ∩U = ∅
9: if no such C(S(j)) exists then

10: Replace each C(S(i))← ∅ and f (i) ← 0⃗ and return f̂∗ ← 0⃗
11: else
12: for each C(S(i)) do
13: if U ∩ C(S(i)) ≠ ∅ then
14: Replace C(S(i)) and f (i) with C(S(j)) and f (j)

15: Swap C(S(j)) and f (j) with C(S(1)) and f (1), and then return f̂∗ ← f (1)

16: f̂∗, T ← LEARNBYSHARDING(S,K) # Learn K independent predictors on S

17: return NEXTPRESERVEDPREDICTOR(f̂∗, T , U) # Return a predictor untouched by deletion

Thus, we have I(S,U) = TC, which is the remaining core sets in memory after learning on S and
then unlearning U . We prove that Algorithm 1 satisfies exact system aware unlearning.

Theorem 1. For a given input dataset S, parameter K ≥ 1 and deletion requests U ⊆ S, let
C(1), . . . ,C(K) denote the remaining core sets in T after unlearning using Algorithm 1. Then,
Algorithm 1 is an exact system-aware-unlearning algorithm (Definition 3 with ε = δ = 0) with
S′ = C(1) ∪ ⋅ ⋅ ⋅ ∪ C(K).

From the perspective of the attacker, the output after unlearning looks exactly the same as training
a model on each of the core sets in T after unlearning because the only information stored in the
system after unlearning are the K core sets and the predictors trained on them.

We remark here that despite how simple this idea is, this unlearning algorithm is not captured by tra-
ditional definitions of unlearning in Definition 1, that requires the output after unlearning a sample zi
to match the output of Algorithm 1 on the remaining dataset S∖{zi}. If zi ∈ C(S(k)) for some k, we
would have to update f (k),C(S(k)) to match the output of f (k)

′

,C(S(k))′ ← ALGCS(S(k)∖{zi}) in
order to unlearn zi. However, note that f (k)

′

,C(S(k))′ could be very different from f (k),C(S(k))
and updating the predictor could be very expensive. Under system aware unlearning, we can simply
avoid this recomputation. Note that no computation needs to be done for Algorithm 1 at the time of
unlearning, as we simply return a predictor that has been untouched by deletion.

We define the deletion capacity of an unlearning algorithm to be the number of deletions the algo-
rithm can tolerate while maintaining a guarantee on the excess risk We define a core set deletion
to be a deletion of point in C(S). For core set algorithms, we are concerned with core set deletion
capacity, the number of core set deletions an algorithm can tolerate, since deletions outside the core
set do not affect the model. The algorithm designer specifies the desired bound K on the core set
deletion capacity, and Algorithm 1 divides the dataset into K shards accordingly.

Theorem 2. If the core set based learning algorithm ALGCS satisfies the excess risk bound,

E(x,y)∼P[ℓ(f̂(x), y)] − min
f∗∈F

E(x,y)∼P[ℓ(f∗(x), y)] ≤ R(T, δ),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

with probability at least 1 − δ after learning on a dataset of size T . Then, after up to K core set
deletions, the excess risk of Algorithm 1 satisfies

E(x,y)∼P[ℓ(f̂(x), y)] − min
f∗∈F

E(x,y)∼P[ℓ(f∗(x), y)] ≤ R(T /K,δ),

with probability at least 1 −Kδ. Let C(S(i)) denote the expected size of the core set of ALGCS on
shard S(i). The memory required by Algorithm 1 for unlearning is ∑K

i=1 ∣C(S(i))∣.

The proof of the above theorem is straightforward. Until each of the K core sets has been hit with a
deletion, Algorithm 1 can maintain excess error guarantees. We directly trade off core set deletion
capacity at the cost of excess error rates. Note that we can delete all of the points outside of C(S(i))
core sets without any impact on the core set deletion capacity. Furthermore, observe that K bounds
the worst case core set deletion capacity because deletions of multiple points within the same core
set only decrease the deletion capacity by 1. After K core set deletions, in expectation, K

e
of the

shards remain untouched, where e is the universal mathematical constant. We emphasize that the
unlearning guarantee continues to be met even after the core set deletion capacity is exhausted.

The memory required for unlearning scales with the core set deletion capacity K. Note that for many
core set algorithms, such as selective sampling or SVM, the size of the core set can be exponentially
smaller than the size of S (Cortes & Vapnik, 1995; Dekel et al., 2012; Shalev-Shwartz & Ben-David,
2014; Feldman, 2020).

4 BETTER UNLEARNING ALGORITHMS VIA SELECTIVE SAMPLING: THE
CASE STUDY OF LINEAR CLASSIFICATION

Using sharding is a good generic starting point for unlearning, but can we improve upon some of the
tradeoffs of sharding using a different technique? In this section, we show that for linear classifica-
tion, we can use selective sampling to design an exact unlearning algorithm that demonstrates better
tradeoffs between deletion capacity, memory requirements, and excess error compared to sharding,
thus resulting in the first space and time efficient exact unlearning algorithm for linear classification.

Selective sampling (Cesa-Bianchi et al., 2009; Dekel et al., 2012; Zhu & Nowak, 2022; Sekhari et al.,
2023; Hanneke et al., 2014) is the problem of finding a classifier with low error while only using
the label of very few points and has become particularly important as datasets become larger and
labeling them becomes more expensive. Selective sampling algorithms only query the label of points
whose label they are uncertain of and only update the model on points that they query. Furthermore,
unqueried points are never stored in memory and never used in learning. Selective sampling is a
core set based learning algorithm where the core set is exactly the set of queried points.

Linear classification is a fundamental learning problem in both theory and practice. While it is a
useful theoretical primitive in algorithm design, this simple problem also has relevance for practice,
for example, in large foundation models and generative models, the last layers of these models are
often fine-tuned using linear probing, which trains a linear classifier on representations learned by
a deep neural network (Belinkov, 2022; Kornblith et al., 2019). As unlearning gains increasing
attention for these large-scale ML models, we hope that the following improvements for unlearning
linear classification will find practical applications.

Assumptions. We consider the problem of binary linear-classification. Let x ∈ Rd be such that
∥x∥ ≤ 1 and y ∈ {+1,−1}. Furthermore, we assume that there exists a u ∈ Rd, ∥u∥ < 1 such that
E[yt ∣ xt] = u⊺xt. Also known as the realizability assumption for binary classification, this ensures
that the Bayes optimal predictor for yt is sign(u⊺xt). Our goal in linear-classification is to find a
hypothesis that performs well under 0 − 1 loss, i.e. set ℓ(f(x), y) = 1{f(x) ≠ y}. With this goal in
mind, we define the excess risk for a hypothesis w as

ExcessRisk(w) ∶= E(x,y)∼P[1{sign(w⊺x) ≠ y} − 1{sign(u⊺x) ≠ y}]. (2)

We use the selective sampling algorithm BBQSAMPLER from Cesa-Bianchi et al. (2009) to design
the unlearning algorithm. Algorithm 2 uses the BBQSAMPLER to learn a predictor that only depends
on a small number of core set points, where C(S) = Q. Note that the last predictor returns an ERM
over C(S). Then when unlearning U , we update the predictor to be an ERM over C(S) ∖ U and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Unlearning algorithm for linear classification using selective sampling
Input: • Dataset S of size T

• Deletion request U
• Deletion capacity K > 0
• Sampling parameter 0 ≤ κ ≤ 1

1: function BBQSAMPLER(S,K,κ)
2: Set regularization λ =K
3: Initialization: w0 = 0,A0 = λI, b0 = 0⃗,Q = ∅
4: for each t = 1,2, . . . , T do
5: Observe instance xt

6: if x⊺tA
−1
t−1xt > T −κ then # Only update the predictor on queried points

7: Query label yt, and update Q = Q ∪ {(xt, yt)}.
8: Update At ← At−1 + xtx

⊺

t , bt ← bt−1 + ytxt, wt ← A−1t bt.
9: else

10: Set At ← At−1, bt ← bt−1, wt ← wt−1

11: return Q,AT , bT ,wT

12: function DELETIONUPDATE(Q,X, b,w,U)
13: for (x, y) ∈ U such that (x, y) ∈ Q do
14: Define Q = Q ∖ {x}
15: Update X ←X − xx⊺, b← b − yx and w ← A−1b.
16: return Q,X, b,w

17:
18: Q,X, b,w ← BBQSAMPLER(S,λ, κ) # Learn a predictor via selective sampling
19: Q,X, b,w ← DELETIONUPDATE(Q,X, b,w,U) # Update the predictor for core set deletions
20: return sign(w⊺x)

remove U from memory. After unlearning, the model output and everything stored in memory only
relies on C(S) ∖U .
Theorem 3. Let C(S) denote the core set of the BBQSAMPLER on sample S. Algorithm 2 is an
exact system-aware-unlearning algorithm (3) with S′ = C(S) ∖U .

The proof relies on a key attribute of the BBQSAMPLER - its monotonic query condition with
respect to deletion. If the BBQSAMPLER is executed on S and then re-executed on S with some
point xj removed, every xt which was queried before xj was removed will still be queried after xj

is removed.
Lemma 1. The query condition from Algorithm 2 is monotonic with respect to deletion. Specifically,
if x⊺tA

−1
t xt > T −κ, then x⊺tA

−1
t∖xj

xt > T −κ for any j ∈ [T] such that j ≠ t.

The query condition of the BBQSAMPLER is only x-dependent and does not depend on the labels y
at all. In particular, we query the label on xt if the direction containing xt is not well sampled. The
monotonicity of the query condition is evident from the fact that if a direction was not well sampled
before deletion, it will also not be well-sampled if some previous samples were deleted.

This monotonicity is a unique feature of the BBQSAMPLER. Other selective sampling algorithms,
such as ones from Dekel et al. (2012) or Sekhari et al. (2023), use a query condition that depends on
the labels y of previously seen points. Due to the noise in these y’s, y-dependent query conditions
are not monotonic; points that were queried can become unqueried. This makes it difficult and
expensive to compute the core set after unlearning. We note that since the BBQSAMPLER uses a
y-independent query condition, it is suboptimal in terms of excess error before unlearning compared
to algorithms from Dekel et al. (2012) or Sekhari et al. (2023). However, we are willing to tolerate
a small increase in the excess error in order to unlearn efficiently. Additionally, it is unclear how
much the error of y-dependent selective sampling algorithms would suffer after a core set deletion.

Using the monotonic query condition, we see that C(C(S) ∖ U) = C(S) ∖ U , so we do not need to
re-execute the BBQSAMPLER at the time of unlearning in order to determine the new set of queried
points. We can simply remove the effect of U on the predictor, and we only need to make an update
for deletion requests in U that are also in C(S).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Why is Algorithm 2 not a valid unlearning algorithm under the prior unlearning definition
(Definition 1)? When a queried point is deleted, an unqueried point could become queried. Thus,
we have C(S ∖ U) ≠ C(S) ∖ U . Thus, under traditional notions of exact unlearning, during DELE-
TIONUPDATE, not only would we have to remove the effect of U , but we would also have to add in
any unqueried points that would have been queried if U never existed in S. Additionally, it is com-
putationally inefficient to determine which points would have been queried and unnecessary from a
privacy perspective. An attacker could never have known that such an unqueried point existed and
should have become queried after deletion since it was never used in the original model.

We next bound the memory requirement for Algorithm 2 and show that the predictor after unlearn-
ing maintains low excess risk.
Theorem 4. With probability at least 1 − δ, the excess risk of the predictor w̃ in Algorithm 2 is
bounded by

ExcessRisk(w̃) = O (min
ε
{Tε

T
+ dTκ logT

T
+ log(1/δ)

T
}) ,

even after unlearning

K = O (ε̄
2 ⋅ Tκ

d logT
)

many core-set deletions, where Tε = ∑T
t=1 1{∣u⊺xt∣ ≤ ε}, and ε̄ denotes the minimizing ε in the

excess risk bound above. Furthermore, the memory required by Algorithm 2 is determined by the
number of core set points which is bounded by ∣C(S)∣ ≤ O(dTκ logT).

We remark that Tε represents the number of points where even the Bayes optimal predictor is unsure
of the label, which we expect to be small in realistic scenarios. We give a proof sketch of the theorem.
The bound on the query complexity of the BBQSAMPLER before unlearning is well known and can
be derived using standard analysis for selective sampling algorithms from Cesa-Bianchi et al. (2009).
The number of queries made by the BBQSAMPLER exactly bounds the number of points in the core
set. To bound the excess risk, we first show that the final predictor ŵ = wT from the BBQSAMPLER
correctly classifies all of the unqueried points outside of the Tε̄ margin points. Let w̃ be the predictor
after K core set deletions. We want to ensure that the sign of ŵ and the sign w̃ remain the same for all
the unqueried points. We do so by first demonstrating that ŵ exhibits stability (Bousquet & Elisseeff,
2002; Shalev-Shwartz et al., 2010) on any unqueried point x, ∣ŵ⊺x − w̃⊺x∣ <

√
K ⋅ d logT ⋅ T −κ.

Then we show that ŵ has a ε̄/2 margin on the classification of every unqueried point. Putting these
together, we show that for up to K ≤ O (ε̄2⋅Tκ

d logT
) deletions, we can ensure that the sign of ŵ and

w̃ on the unqueried points is the same. Thus, we can maintain correct classification on unqueried
points. We cannot make any guarantees on the ∣C(S)∣ queried points and the Tε̄ margin points, so
we assume full classification error on those points. Finally, we use techniques from Bousquet et al.
(2004) to convert the empirical classification loss to an excess risk bound.

Memory required for unlearning. The memory required for unlearning is exactly the number of
core set points, O(dTκ logT). Unlike sharding, the memory does not scale with the core set deletion
capacity. Under system aware unlearning, we obtain the first exact unlearning algorithm for linear
classification which uses sublinear memory and does not need to store the entire dataset.

Deletion capacity and error rates. Theorem 4 bounds the core set deletion capacity. Since κ is a
free parameter, we can tune it to increase the core set deletion capacity at the cost of increasing the
excess risk after deletion. We are trading off deletion capacity at the cost of performance.
Lemma 2. If the underlying data generating distribution has a hard margin of γ, i.e. there exists a
γ such that Tγ = 0. Appropriately tuning κ in Theorem 4, we get that, for any p ∈ (0,1), Algorithm 2
can tolerate up to K = O(γ2 ⋅ T 1−p) deletions while ensuring that the excess risk is O(1

Tp).

4.1 COMPARISON TO SHARDING

The sharding technique from Algorithm 1 is a great out-of-the-box strategy for unlearning that can
be applied to general function classes and the agnostic setting. However, for linear classification
under the mean realizability assumption, Algorithm 2 demonstrates better tradeoffs between deletion
capacity, memory, and excess risk.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We compare the tradeoff between excess risk and core set deletion capacity for Algorithm 2 de-
scribed in Lemma 2 to the tradeoff between excess risk and core set deletion capacity for Algorithm 1
using sharding and selective sampling on each shard, where ALGCS to be the optimal selective sam-
pling algorithm for linear classification from Dekel et al. (2012). As in Lemma 2, we assume a hard
margin of γ. The excess risk bound of the optimal selective sampling algorithm on a dataset S of
size T is

ExcessRisk(q) ≤ O (d logT + log(T /δ)
γT

+ log(logT /δ)
T

) ,

derived with a standard online-to-batch conversion where q is a randomly selected predictor from
{w1, . . . ,wT } (Dekel et al., 2012).

When the deletion capacity is set to K = γ2 ⋅ T p, we plug in T /K for T in the bound above to get
that the excess risk of Algorithm 1 after up to K deletions is at most

ExcessRisk(q) = O(γ(d logT + log(T /δ))
T p

).

Compare this to the excess bound of 1
Tp for Algorithm 2 for the same number of deletions. As d

and T increase, Algorithm 2 can achieve a smaller regret bound for the same number of deletions of
queried points in comparison to sharding.

Algorithm 2 also requires significantly less memory for unlearning compared to sharding. The
memory required by Algorithm 2 is only T 1−p, while the memory required by sharding is T 1−p ⋅
d2 log2 T (the deletion capacity K = γ2 ⋅ T p times the query complexity NT = d2 log2 T

γ2 of the
optimal selective sampling algorithm from Dekel et al. (2012)). Furthermore, since sharding uses a
larger number of queried points, the probability of a queried point being deleted under sharding is
greater than the probability under Algorithm 2; therefore, we would exhaust the deletion capacity
quicker under sharding.

4.2 EXPECTED DELETION CAPACITY

Notice that the deletion capacity of K only applies to core set deletions. Assume that deletions are
drawn without replacement from µ ∶ X → [0,1], a probability weight vector over the samples in S.
This implies that probability of x requesting for deletion, i.e. µ(x), only depends on x and not on
its index within S or on other samples. This assumption is useful for capturing scenarios where the
users make request for deletions solely based on their own data and have no knowledge of where in
the sample they appear. We define KTOTAL as the total number of deletions we can process under µ
before we exhaust the core set deletion capacity of K and lose excess risk guarantees.

Theorem 5. Consider any core-set algorithm A. Let π denote denote a uniformly random permu-
tation of the samples in S, and let σ be a sequence of deletion requests samples from µ, without
replacement. Further, let KCSD denote the number of core set deletions within the first KTOTAL dele-
tion requests, then for any K ≥ 1,

PrS,π,σ(KCSD >K) ≤
1

K
ES[

T

∑
t=1

Eπ[1{xt ∈ CA(π(S))}] ⋅
KTOTAL

∑
k=1

Eσ[1{xt = xσk
}]].

where CA(π(S)) denotes the coreset resulting from running A on the permuted dataset π(S). In-
stantiating the above bound for Algorithm 2 implies that

PrS,π,σ(KCSD >K) ≤
KTOTAL ⋅ Tκ

K
ES[Ex∼µ[x⊺Mx]]

where M ∶= Eπ[1T ∑
T
s=1A

−1
s−1] and κ ∈ (0,1) denotes the parameter for Algorithm 2.

For a given deletion distribution µ, Theorem 5 can be used to derive a bound on the number of
deletions KTOTAL while ensuring that the probability of exhausting the core set deletion capacity is
small. The bound on KTOTAL depends inversely on ES[Ex∼µ[x⊺Mx]]; when ES[Ex∼µ[x⊺Mx]]
is small, Algorithm 2 can tolerate a large number of deletions KTOTAL before exhausting its core

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

set deletion capacity K. ES[Ex∼µ[x⊺Mx]] can be interpreted as the expected value of the query
condition x⊺A−1t x when Algorithm 2 encounters x during its execution where x is drawn from the
deletion distribution. The query condition decreases as it encounters and queries more points. Thus,
ES[Ex∼µ[x⊺Mx]] is decreasing as T increases, and we would expect it to be small for large T .
x⊺Mx is maximized when x lies in a direction which does not occur very often. Deletion distribu-
tions µ which place a lot of weight on poorly sampled directions will maximize ES[Ex∼µ[x⊺Mx]]
and lead to smaller KTOTAL. Given the deletion distribution, we can derive exact bounds for
ES[Ex∼µ[x⊺Mx]] which lead to bounds on KTOTAL.
Lemma 3. Let the deletion distribution µ be the uniform distribution. Working out the bound from
Theorem 5, we have

PrS,π,σ(KCSD >K) ≤
KTOTAL ⋅ Tκ ⋅ d logT

K ⋅ T .

We can process a total of

KTOTAL =
c ⋅K ⋅ T
dTκ logT

deletions such that the probability that we exhaust the core set deletion capacity of K is at most c.

4.3 EXPECTED DELETION TIME

We can make a similar argument for the deletion time. At the time of unlearning, we only need to
make an update for deletions of points in the core set. For all other points, there is no computation
time for unlearning. For a given KTOTAL, the total number of deletions we can process under µ before
we have exhausted the core set deletion capacity of K, which can be derived using Theorem 5, we
can give an expression for the expected time for deletion.
Theorem 6. For a deletion distribution µ, if a core set algorithm A can tolerate up to KTOTAL

deletions before exhausting the core set deletion capacity K,

E[time per deletion] ≤ K

KTOTAL

× {update time for a core set deletion}.

For Algorithm 2 under a uniform deletion distribution, we have

E[time per deletion] ≤ d3Tκ logT

T
,

by plugging in KTOTAL from Lemma 3 and using the fact that updating the predictor after the deletion
of a core set point takes O(d2) time using the Sherman-Morrison update (Hager, 1989).
Remark 1. For large d, the update time can be replaced by a quantity that depends on the eigen-
spectrum of the data’s Gram matrix. Furthermore, since Algorithm 2 updates an ERM on C(S) to
an ERM on C(S) ∖ {z}, we can use gradient descent which takes O(d) time per update.

Experiments. We perform some toy experiments on unlearning for linear classification with Algo-
rithm 2 in Appendix A.1. Our experiments show that Algorithm 2 can maintain low excess risk far
beyond the core set deletion capacity derived in Theorem 4 even under worst case deletion schemes.

5 CONCLUSION

We proposed a new definition for unlearning, called system aware unlearning, that takes into ac-
count the information about the sample S that could be leaked to an attacker who compromises the
system, and we developed exact system aware unlearning algorithms based on sample compression
learning algorithms. In particular, we used selective sampling to design a memory and time effi-
cient unlearning algorithm for linear classification. It would be interesting to explore whether or
not this analysis can be extended to general function classes and prove that function classes with
finite eluder dimension (Russo & Van Roy, 2013) lead to memory and computation efficient exact
system aware unlearning algorithms. Beyond exact unlearning algorithms, it would be interesting
to explore how allowing for approximate system aware unlearning (ε, δ ≠ 0) can lead to even faster
and more memory-efficient unlearning algorithms. Furthermore, we believe that accounting for the
information that an attacker could have access to is an interesting direction to explore in generic
privacy, beyond unlearning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Proceed-
ings of the 30th International Conference on International Conference on Machine Learning -
Volume 28, ICML’13, pp. III–127–III–135. JMLR.org, 2013.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022.

Anna Ben-Hamou, Yuval Peres, and Justin Salez. Weighted sampling without replacement. Brazil-
ian Journal of Probability and Statistics, 32(3):657–669, 2018. ISSN 01030752, 23176199.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2:499–526, mar 2002. ISSN 1532-4435.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to Statistical Learning
Theory, pp. 169–207. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-
28650-9. doi: 10.1007/978-3-540-28650-9 8.

California Consumer Privacy Act. Title 1.81.5. california consumer privacy act of 2018 [1798.100 -
1798.199.100], 2018.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, pp. 463–480, 2015.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raf-
fel. Extracting training data from large language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650. USENIX Association, August 2021. ISBN 978-1-939133-
24-3.

Nicolò Cesa-Bianchi, Claudio Gentile, and Francesco Orabona. Robust bounds for classification
via selective sampling. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pp. 121–128, New York, NY, USA, 2009. Association for Computing Ma-
chinery. ISBN 9781605585161. doi: 10.1145/1553374.1553390.

Yeshwanth Cherapanamjeri, Sumegha Garg, Nived Rajaraman, Ayush Sekhari, and Abhishek Shetty.
On the unlearnability of the learnable, 2024.

Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Langevin unlearning: A new perspective of noisy
gradient descent for machine unlearning. arXiv preprint arXiv:2401.10371, 2024.

Rishav Chourasia and Neil Shah. Forget unlearning: Towards true data-deletion in machine learning.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 6028–6073. PMLR, 23–29 Jul
2023.

Somnath Basu Roy Chowdhury, Krzysztof Choromanski, Arijit Sehanobish, Avinava Dubey, and
Snigdha Chaturvedi. Towards scalable exact machine unlearning using parameter-efficient fine-
tuning. arXiv preprint arXiv:2406.16257, 2024.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Rachel Cummings, Damien Desfontaines, David Evans, Roxana Geambasu, Yangsibo Huang,
Matthew Jagielski, Peter Kairouz, Gautam Kamath, Sewoong Oh, Olga Ohrimenko, et al. Ad-
vancing differential privacy: Where we are now and future directions for real-world deployment.
arXiv preprint arXiv:2304.06929, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple teachers. Journal of Machine Learning Research, 13(86):2655–2697, 2012.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Dan Feldman. Introduction to core-sets: an updated survey. arXiv preprint arXiv:2011.09384, 2020.

Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the vapnik-chervonenkis
dimension. Machine learning, 21(3):269–304, 1995.

General Data Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016, 2016.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Ayush Sekhari, and Chiyuan Zhang.
Ticketed learning–unlearning schemes. In Gergely Neu and Lorenzo Rosasco (eds.), Proceedings
of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning
Research, pp. 5110–5139. PMLR, 12–15 Jul 2023.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In International Conference on Machine Learing (ICML), 2019.

William W. Hager. Updating the inverse of a matrix. SIAM Rev., 31:221–239, 1989.

Steve Hanneke and Aryeh Kontorovich. Stable sample compression schemes: New applications and
an optimal svm margin bound. In Algorithmic Learning Theory, pp. 697–721. PMLR, 2021.

Steve Hanneke et al. Theory of disagreement-based active learning. Foundations and Trends® in
Machine Learning, 7(2-3):131–309, 2014.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data dele-
tion from machine learning models. In International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016. PMLR, 2021.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–
2671, 2019.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems, 2021a.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. Advances in Neural Information Pro-
cessing Systems, 34:18075–18086, 2021b.

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Selective sampling and imitation
learning via online regression. 2023.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. Journal of Machine Learning Research, 11(90):2635–2670, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anh-Tu Tran, The-Dung Luong, and Van-Nam Huynh. A comprehensive survey and taxonomy on
privacy-preserving deep learning. Neurocomputing, pp. 127345, 2024.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. Advances in Neural
Information Processing Systems, 35:35379–35391, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 20000 40000
Number of Deletions

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Te
st

 E
rro

r

Uniform Deletions

0 20000 40000
Number of Deletions

0

500

1000

1500

2000

Co
re

 S
et

 D
el

et
io

ns

Uniform Deletions

0 20000 40000
Number of Deletions

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Te
st

 E
rro

r

Adversarial Deletions

0 20000 40000
Number of Deletions

0

500

1000

1500

2000

Co
re

 S
et

 D
el

et
io

ns

Adversarial Deletions

Algorithm 2 Fully Supervised Expected Deletion Capacity

Figure 1: The first and third plots measure the test error of Algorithm 2 (selective sampling) over the
course 50,000 deletions compared to the test error of retraining a fully supervised algorithm after
each deletion under two different deletion schemes. The second and fourth plots graph the number
of deleted core set points over the course of the 50,000 deletions under the two deletion schemes.

A APPENDIX

A.1 EXPERIMENTS

Our theoretical results provide guarantees for the worst case deletions. We experimentally verify our
theory, and we demonstrate that the deletion capacity and error rates after unlearning for Algorithm
2 are much better in practice. We randomly generate 50,000 points in dimension d = 100 with a
hard margin condition of γ = 0.1. We learn a classifier on these 50,000 points and process 50,000
deletions using Algorithm 2. After each deletion, we compare the test error of the classifier after
unlearning from Algorithm 2 to test error of a fully supervised linear classification algorithm which
learns on all of the undeleted points in the sample, including points which are unqueried and thus
never used by Algorithm 2. The test error of the fully supervised algorithm represents the best
possible error Algorithm 2 could hope to achieve after deletion. Note that Algorithm 2 can maintain
comparable test error with the fully supervised predictor while only using ∼ 4% of the samples.

We test two different deletion schemes:
● Uniform deletions: Each deletion request is selected uniformly at random. This is to illustrate

the case when the deletion distribution does not correlate at all with the query condition.
● Adversarial deletions with respect to queried points: Deletions are specifically selected in an

attempt to maximize x⊺tA
−1
t xt. However, when a user requests for deletion, that user does not

have knowledge of which individuals were queried or where their position in the sample is,
so they cannot exactly calculate x⊺tA

−1
t xt, but the user may have some knowledge of the data

distributions. We simulate this knowledge by deleting in decreasing order of x⊺tA
−1
T xt where

AT = I +∑T
t=1 xtx

⊺

t represents the covariance matrix of the sample. This is to illustrate the case
when the deletion distribution happens to correlate well with the query condition.

We observe that Algorithm 2 can maintain low classification error until essentially all of the points
in the sample are deleted. Note that Algorithm 2 can maintain comparable test error compared to
the fully supervised algorithm despite only using a fraction of the points. From Figure 1, we see that
we can maintain low classification error far past the deletion capacity bound derived in Theorem
4 (around 1% of points in this case), under both deletion schemes. This is particularly noteworthy
for the adversarial deletion scheme which is designed to delete as many queried points as soon as
possible which should quickly deteriorate the error Algorithm 2 since it only relies on queried points.

A.2 OTHER RELATED WORK

Chourasia & Shah (2023) proposes a data deletion definition under adaptive requesters which does
not require indistinguishability from retraining from scratch. They require that the model after
deletion be indistinguishable from a randomized mapping π on S with zi replaced. This assumes
that the attacker does not have knowledge of the unlearning algorithm itself. If the data deletion
requesters are non-adaptive, then π can be replaced by the unlearning algorithm A, but in general,
system aware unlearning does not generalize this definition. The data deletion definition under

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

adaptive requesters makes the stronger assumption that the unlearning algorithm uses the entire
sample to unlearn, but the weaker assumption that the attacker does not know the learning algorithm.

Beyond unlearning definitions, there has been much work in the development of unlearning algo-
rithms. The current literature generally falls into two categories: exact unlearning algorithms which
exactly reproduce the model from retraining from scratch on S ∖ {zi} (Ghazi et al., 2023; Cher-
apanamjeri et al., 2024; Bourtoule et al., 2021; Cao & Yang, 2015; Chowdhury et al., 2024) or
approximate unlearning algorithms which use ideas from differential privacy (Dwork et al., 2014)
to probabilistically recover a model that is “essentially indistinguishable” from the model produced
from retraining from scratch on S ∖{zi} (Izzo et al., 2021; Sekhari et al., 2021a; Chien et al., 2024).
The exact unlearning algorithms are typically memory intensive and require the storage of the entire
dataset and multiple models, while the approximate unlearning algorithms are much more mem-
ory efficient. Furthermore, existing lower bounds prove that there exist model classes with finite
VC and Littlestone dimension where traditional exact unlearning requires the storage of the entire
dataset (Cherapanamjeri et al., 2024). For large datasets, this makes exact unlearning under the tra-
ditional definition impractical. We prove that we can design practical exact system aware unlearning
algorithms for linear classification which require sublinear memory in the number of samples.

A.3 NOTATION

• [n] = {1,2, . . . , n}
• AT = λI +∑T

t=1 xtx
⊺

t

• AT∖U = λI +∑T
t=1 xtx

⊺

t −∑xi∈U xix
⊺

i where U is a set of deletions

• At∖xj = {
λI +∑T

t=1 xtx
⊺

t − xjx
⊺

j when j ≤ t
λI +∑T

t=1 xtx
⊺

t otherwise
for some j ∈ [T]

• AS = λI +∑xt∈S xtx
⊺

t where S is a set of points

• bT = ∑T
t=1 ytxt

• bT = ∑T
t=1 ytxt −∑xi∈U yixi where U is a set of deletions

• wT = A−1T bT

• wT∖U = A−1T∖UbT∖U where U is a set of deletions

• ∥u∥X = u⊺Xu, where u ∈ Rd and X ∈ Rd×d

A.4 PROOFS FROM SECTION 3

Theorem 1. For a given input dataset S, parameter K ≥ 1 and deletion requests U ⊆ S, let
C(1), . . . ,C(K) denote the remaining core sets in T after unlearning using Algorithm 1. Then,
Algorithm 1 is an exact system-aware-unlearning algorithm (Definition 3 with ε = δ = 0) with
S′ = C(1) ∪ ⋅ ⋅ ⋅ ∪ C(K).

Proof. Let {C(1), . . . ,C(K)} be the core sets in T after unlearning, and let {f (1), . . . , f (K)} be
the predictors after unlearning. Define S′ = C(1) ∪ ⋅ ⋅ ⋅ ∪ C(K). We have S′ ∩ U = ∅ by the
way we update the core sets. The K shards of S′ are exactly C(α1), . . . ,C(αK). A(S′,∅) will
execute ALGCS(C(αi)) on all i shards. Since ALGCS is a core set based learning algorithm, this
means executing ALGCS on each shard exactly leads to the predictors {f (1), . . . , f (L)} and core sets
{C(1), . . . ,C(K)} stored in memory. Thus, S′ satisfies I(S′,∅) = I(S,U) = T . Both A(S,U) and
A(S′,∅) return f (1) as the predictor; thus, we have A(S,U) = A(S′,∅) which means Algorithm 2
satisfies exact system aware unlearning.

A.5 PROOFS FROM SECTION 4

Lemma 1. The query condition from Algorithm 2 is monotonic with respect to deletion. Specifically,
if x⊺tA

−1
t xt > T −κ, then x⊺tA

−1
t∖xj

xt > T −κ for any j ∈ [T] such that j ≠ t.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Consider a point xt that was queried at time t. We know x⊺tA
−1
t xt > T −κ. First note that any

points after time t do not affect the query condition at time t, so we only focus on deletions of xj

where j < t.
First consider the case that xj was not queried. Then x⊺tA

−1
t∖xj

xt = x⊺tA−1t xt > T −κ. Otherwise, in
the case that xj was queried

x⊺tA
−1
t∖xj

xt = x⊺t (At − xjx
⊺

j)−1xt

= x⊺tA−1t xt + (
x⊺tA

−1
t xjx

⊺

jA
−1
t xt

1 − x⊺jA−1t xj
)

= x⊺tA−1t xt +
(x⊺tA−1t xj)2
1 − x⊺jA−1t xj

≥ x⊺tA−1t xt

≥ T −κ

where the second to last line follows because the second term is always positive. Thus, xt remains
queried after deletion.

Theorem 3. Let C(S) denote the core set of the BBQSAMPLER on sample S. Algorithm 2 is an
exact system-aware-unlearning algorithm (3) with S′ = C(S) ∖U .

Proof. Define S′ = C(S) ∖ U . Clearly, S′ ∩ U = ∅. The core set of the BBQSAMPLER is exactly
the set of points that it queries. Thus, applying Lemma 1, we know C(C(S) ∖ U) = C(S) ∖ U .
A(S′,∅) returns an ERM over C(C(S) ∖ U) which is exactly C(S) ∖ U and stores that ERM and
the set C(S) ∖U . To process the deletion of U , A(S,U) returns an ERM over C(S) ∖U and stores
that ERM and the set C(S) ∖U . Thus, I(S′,∅) = I(S,U) and A(S′,∅) = A(S,U).

Theorem 4. With probability at least 1 − δ, the excess risk of the predictor w̃ in Algorithm 2 is
bounded by

ExcessRisk(w̃) = O (min
ε
{Tε

T
+ dTκ logT

T
+ log(1/δ)

T
}) ,

even after unlearning

K = O (ε̄
2 ⋅ Tκ

d logT
)

many core-set deletions, where Tε = ∑T
t=1 1{∣u⊺xt∣ ≤ ε}, and ε̄ denotes the minimizing ε in the

excess risk bound above. Furthermore, the memory required by Algorithm 2 is determined by the
number of core set points which is bounded by ∣C(S)∣ ≤ O(dTκ logT).

Proof. The bound on the query complexity of the BBQ sampler before unlearning is given by The-
orem 10 using standard analysis for selective sampling algorithms.

Now for bounding the excess risk. First let’s set all of the Tε̄ margin points aside. Let wT be the last
predictor from the BBQSAMPLER

First we argue that before deletion, w⊺Tx and u⊺x agree on the sign of all unqueried points x (outside
of the Tε̄ margin points). These unqueried points x have a margin of ε̄ with respect to w∗, which
means ∣u⊺x∣ > ε̄. We also have

∣w⊺Tx − u⊺x∣ = ∥wT − u∥AT
⋅ ∥x∥AT

≤ ∥wT − u∥AT
⋅ ∥x∥At (using the monotonicity of the query condition)

≤
√
d logT ⋅ T −κ

(using Agarwal (2013) Proposition 1 and the query condition bound)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

≤ ε̄

2
(for sufficiently large T)

Thus, sign(w⊺Tx) = sign(u⊺x), so wT correctly classifies all of the unqueried points. Furthermore,
all of the unqueried points x have a margin of ε̄

2
with respect to wT .

Thus, in order to ensure that wT and wT∖U after ∣U ∣ = K deletions continue to agree on the classi-
fication of all unqueried points, we need to ensure that ∣w⊺Tx − w⊺T∖Ux∣ = ∆ < ε̄

2
. Using the upper

bound on ∆ derived using a stability analysis in Theorem 8 , we get the following deletion capacity
on queried points

∆ ≤ 2
√
e(K + 1) ⋅ T −κ/2 ⋅

√
d logT ≤ ε̄

2
(Theorem 8)

e(K + 1) ⋅ T −κ ⋅ d logT ≤ ε̄2

16

K + 1 ≤ ε̄2 ⋅ Tκ

16e ⋅ d logT

K ≤ ε̄2 ⋅ Tκ

16e ⋅ d logT − 1

K ≤ O(ε̄
2 ⋅ Tκ

d logT
)

For up to K deletions on queried points, wT and wT∖U are guaranteed to agree on the classification
of all unqueried points. Thus after unlearning, wT∖U correctly classifies all of the unqueried points.
We have no regret guarantees for wT∖U on the queried points and the Tε̄ margin points; therefore,
we assume that we suffer full classification loss on these points. Thus, the empirical loss of wT∖U

after unlearning is at most O(Tε̄ + dTκ lnT).
This can be converted to an excess risk bound using standard techniques from Bousquet et al. (2004).
For a model class with VC dimension h and a predictor f̂ with empirical loss R̂ on a sample of size
T , we have that the excess risk is

E[1{f̂(x) ≠ y} − 1{f∗(x) ≠ y}] ≤ 3R̂

T
+ 6h logn + 6 log(4/δ)

T

from Bousquet et al. (2004). Plugging in the empirical loss of O(Tε̄ + dTκ lnT) for wT∖U and VC
dimension h = d + 1, we have

E(x,y)∼P[1{sign(w̃⊺x) ≠ y} − 1{sign(u⊺x) ≠ y}] ≤ O (
Tε̄

T
+ dTκ logT

T
+ log(1/δ)

T
)

with probability at least 1 − δ.

Theorem 5. Consider any core-set algorithm A. Let π denote denote a uniformly random permu-
tation of the samples in S, and let σ be a sequence of deletion requests samples from µ, without
replacement. Further, let KCSD denote the number of core set deletions within the first KTOTAL dele-
tion requests, then for any K ≥ 1,

PrS,π,σ(KCSD >K) ≤
1

K
ES[

T

∑
t=1

Eπ[1{xt ∈ CA(π(S))}] ⋅
KTOTAL

∑
k=1

Eσ[1{xt = xσk
}]].

where CA(π(S)) denotes the coreset resulting from running A on the permuted dataset π(S). In-
stantiating the above bound for Algorithm 2 implies that

PrS,π,σ(KCSD >K) ≤
KTOTAL ⋅ Tκ

K
ES[Ex∼µ[x⊺Mx]]

where M ∶= Eπ[1T ∑
T
s=1A

−1
s−1] and κ ∈ (0,1) denotes the parameter for Algorithm 2.

Proof.

PrS,π,σ(KCSD >K) ≤
1

K
E[KCSD] (Markov’s Inequality)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

= 1

K
ES,π,σ[

T

∑
t=1

1{xt ∈ Cπ} ⋅
KTOTAL

∑
k=1

1{xt = xσk
}]

(Cπ is the resulting core set after executing on π(S))

= 1

K
ES[

T

∑
t=1

Eπ[1{xt ∈ Cπ}] ⋅
KTOTAL

∑
k=1

Eσ[1{xt = xσk
}]]

= 1

K
ES,σ[

T

∑
t=1

Eπ[1{xt ∈ Cπ}] ⋅
KTOTAL

∑
k=1

1{xt = xσk
}]

= 1

K
ES,σ[

KTOTAL

∑
k=1

Eπ[1{xσk
∈ Cπ}]]

This proves the first half of the theorem.

Recall the following theorem from Ben-Hamou et al. (2018).

Theorem 7. Let X be the cumulative value of sequence of length n ≤ N drawn from Ω without
replacement,

X = ν(I1) +⋯ + ν(In),
and let Y be the cumulative value of sequence of length n ≤ N drawn from Ω with replacement,

X = ν(J1) +⋯ + ν(Jn).
If the value function ν and the weight vector W follow the property that

ω(i) > ω(j)Ô⇒ ν(i) ≥ ν(j),
Then

E[X] ≤ E[Y]

Consider the case when ν(x) = Eπ[1{x ∈ Cπ}] and the deletion distribution µ satisfies µ(x) >
µ(x′) Ô⇒ ν(x) ≥ ν(x′). This is exactly the worst case in terms of deletion capacity: points that
have a high probability of being included in the core set are exactly the points that have a high
probability of being deleted.

In this case, we can apply Theorem 7 to get

PrS,π,σ(X >K) ≤
1

K
ES,σ[

KTOTAL

∑
k=1

Eπ[1{xσk
∈ Cπ}]]

≤ 1

K
ES[Ex∼µ

KTOTAL

∑
k=1

[Eπ[1{x ∈ Cπ}]]]

(where x is sampled without replacement from W)

≤ KTOTAL

K
ES[Ex∼µ[Eπ[1{x ∈ Cπ}]]]

≤ KTOTAL

K
ES[Ex∼µ[

Tκ

T

T

∑
s=1

x⊺Eπ[A−1s−1]x]]

(plugging in upper bound for Eπ[1{x ∈ Cπ}])

≤ KTOTAL ⋅ Tκ

K ⋅ T ES[Ex∼µ[
T

∑
s=1

x⊺Eπ[A−1s−1]x]]

≤ KTOTAL ⋅ Tκ

K
ES[Ex∼µ[x⊺Eπ[

1

T

T

∑
s=1

A−1s−1]x]]

≤ KTOTAL ⋅ Tκ

K
ES[Ex∼µ[x⊺Mx]]

where M = Eπ[1T ∑
T
s=1A

−1
s−1] for a given sample S.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma 3. Let the deletion distribution µ be the uniform distribution. Working out the bound from
Theorem 5, we have

PrS,π,σ(KCSD >K) ≤
KTOTAL ⋅ Tκ ⋅ d logT

K ⋅ T .

We can process a total of

KTOTAL =
c ⋅K ⋅ T
dTκ logT

deletions such that the probability that we exhaust the core set deletion capacity of K is at most c.

Proof.

ES[Ex∼unif[x⊺Mx]] = ES[
1

T

T

∑
t=1

x⊺tMxt]

≤ d logT

T
(∑T

t=1 xtA
−1
t−1xt ≤ d logT)

Plugging this into Theorem 5 and solving for KTOTAL completes the proof of the lemma.

A.6 AUXILLARY RESULTS

Theorem 8. Let wT be the final predictor after running the BBQSAMPLER from Algorithm 2 with
λ =K. Let D be a sequence of deletions of length K. Let wT∖U be the predictor after the sequence
of D deletions have been applied. Let x be an unqueried point. Then we have

∆ = w⊺T∖Ux −w⊺Tx− ≤ 2
√
e(K + 1) ⋅ T −κ/2 ⋅

√
d logT

= O (
√
K ⋅ T −κ/2 ⋅

√
d logT)

Proof. Let Di be the set of the first i deletions.

∆ = w⊺T∖Ux −w⊺Tx

=
K

∑
i=1

(w⊺T∖Ui
x −w⊺T∖Ui−1

x)

=
K

∑
i=1

2
√
e(K + 1)
K

⋅ T −κ/2 ⋅
√
d logT (applying Theorem 9)

≤
2K
√
e(K + 1)
K

⋅ T −κ/2 ⋅
√
d logT

≤ 2
√
e(K + 1) ⋅ T −κ/2 ⋅

√
d logT

Theorem 9. Let λ = K be the regularization parameter. Consider a set of D deletions where
∣U ∣ <K. Let wT∖U be the predictor after the set of D deletions have been applied and let wT∖(D∪xi)

be the predictor after the set of D deletions have been applied along with an additional deletion of
xi. Let x be an unqueried point. Then we have

∆ = w⊺T∖(D∪xi)
x −w⊺T∖Ux ≤

2
√
e(K + 1)
K

⋅ T −κ/2 ⋅
√
d logT

for λ = 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. Let AT∖U = AT −∑j∈U xjx
⊺

j and bT∖U = bT −∑j∈U yjxj

∆ = w⊺T∖(D∪xi)
x −w⊺T∖Ux

= (bT∖U − yixi)⊺(AT∖U − xix
⊺

i)−1x − b⊺T∖UA−1T∖Ux
= b⊺T∖U(AT∖U − xix

⊺

i)−1x − yix⊺i (AT∖U − xix
⊺

i)−1x − b⊺T∖UA−1T∖Ux

= b⊺T∖UA−1T∖Ux + (
b⊺T∖UA

−1
T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − yix⊺iA−1T∖Ux − yi(

x⊺iA
−1
T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − b⊺T∖UA−1T∖Ux

(Sherman-Morrison)

= (
b⊺T∖UA

−1
T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − yix⊺iA−1T∖Ux − yi(

x⊺iA
−1
T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
)

= (
w⊺T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − yix⊺iA−1T∖Ux − yi(

x⊺iA
−1
T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
)

= (
w⊺T∖Uxix

⊺

iA
−1
T∖Ux

1 − 1
λ+1

) − yix⊺iA−1T∖Ux − yi(
x⊺iA

−1
T∖Ux

(λ + 1)(1 − 1
λ+1
)
)

(x⊺iA
−1
T∖Uxi ≤ 1

λ+1
from Lemma 2)

= 1

1 − 1
λ+1

⋅w⊺T∖Uxi ⋅ x⊺iA−1T∖Ux − yix⊺iA−1T∖Ux −
1

λ
yix
⊺

iA
−1
T∖Ux

= 1

1 − 1
λ+1

⋅w⊺T∖Uxi ⋅ x⊺iA−1T∖Ux − (1 +
1

λ
) yix⊺iA−1T∖Ux

= (1 + 1

λ
)x⊺iA−1T∖Ux ⋅ (w⊺T∖Uxi − yi)

≤ (1 + 1

λ
) (w⊺T∖Uxi − yi) ⋅

√
x⊺iA

−1
T∖Uxi ⋅ x⊺A−1T∖Ux (applying Lemma 3)

≤ (λ + 1
λ
) (w⊺T∖Uxi − yi) ⋅

√
e

λ + 1 ⋅ T
−κ (applying Lemma 2 and Corollary 1)

=
√
e(λ + 1)
λ

⋅ T −κ/2(w⊺T∖Uxi − yi)

=
√
e(λ + 1)
λ

⋅ T −κ/2(w⊺T∖Uxi − u⊺xi + ζi)

=
√
e(λ + 1)
λ

⋅ T −κ(w⊺T∖Uxi − u⊺xi) +
√
e(λ + 1)
λ

⋅ ζi ⋅ T −κ/2

≤
√
e(λ + 1)
λ

⋅ T −κ/2∥wT∖U − u∥AT∖U
∥xi∥A−1

T∖U
+
√
e(λ + 1)
λ

⋅ ζi ⋅ T −κ/2

≤
√
e(λ + 1)
λ

⋅ T −κ/2∥wT∖U − u∥AT∖U
∥xi∥A−1

T∖U
+
√
e(λ + 1)
λ

⋅ T −κ/2 (ζi < 1)

≤
√
e(λ + 1)
λ

⋅ T −κ/2 ⋅
√
d log(T −K) +

√
e(λ + 1)
λ

⋅ T −κ/2

(Proposition 1 from Agarwal (2013))

≤
2
√
e(λ + 1)
λ

⋅ T −κ/2 ⋅
√
d logT

Lemma 1. Let λ be the regularization parameter. Let U be a set of deletions such that ∣U ∣ =K. Let
AT∖U denote AT −∑xj∈U xjx

⊺

j . Then we have

x⊺A−1T∖Ux ≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We prove the claim using induction. Assume that x⊺A−1T∖Ux ≤ ∑
K
i=0

(
K
i
)

λi ⋅T −κ (induction hypothesis).
Consider an additional deletion and the effect on the query condition, x⊺(AT∖U − xixi)−1x

x⊺(AT∖U − xix
⊺

i)−1x = x⊺A−1T∖Ux + (
x⊺A−1T∖Uxix

⊺

iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
)

≤ x⊺A−1T∖Ux + (
(x⊺iA−1T∖Ux)2

(1 − 1
λ+1
)
) (x⊺iA

−1
T∖(D∖xi)

xj ≤ 1
λ+1

from Lemma 2)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ + ((x

⊺

iA
−1
T∖Ux)2

(1 − 1
λ+1
)
) (x⊺A−1T∖Ux ≤ ∑

K
i=0

(
K
i
)

λi ⋅ T −κ from IH)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ + (x

⊺

iA
−1
T∖Uxi ⋅ x⊺iA−1T∖Ux
(1 − 1

λ+1
)

) (Lemma 3)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ + (∑

K
i=0

(
K
i
)

λi ⋅ T −κ

(λ + 1)(1 − 1
λ+1
)
) (using IH and Lemma 2)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ +

K

∑
i=0

(K
i
)

λi+1
⋅ T −κ

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ +

K+1

∑
i=1

(K
i−1
)

λi
⋅ T −κ

≤
(K
0
)

λ0
⋅ T −κ +

K

∑
i=1

(K
i
)

λi
⋅ T −κ +

K

∑
i=1

(K
i−1
)

λi
⋅ T −κ +

(K
K
)

λK+1
⋅ T −κ

≤
(K
0
)

λ0
⋅ T −κ +

K

∑
i=1

(K+1
i
)

λi
⋅ T −κ +

(K
K
)

λK+1
⋅ T −κ (Pascal’s Identity)

≤
(K
0
)

λ0
⋅ T −κ +

K

∑
i=1

(K+1
i
)

λi
⋅ T −κ +

(K+1
K+1
)

λK+1
⋅ T −κ

≤
K+1

∑
i=0

(K+1
i
)

λi
⋅ T −κ

Corollary 1. Let λ = K be the regularization parameter. Let U be a set of deletions such that
∣U ∣ <K, then x⊺A−1T∖Ux ≤ e ⋅ T −κ

Proof. Note that:

x⊺A−1T∖Ux ≤
∣U ∣

∑
i=0

(∣U ∣
i
)

λi
⋅ T −κ (Lemma 1)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ

≤
K

∑
i=0

(K
i
)

Ki
⋅ T −κ

= (1 + 1

K
)
K

⋅ T −κ

≤ e ⋅ T −κ

Lemma 2. x⊺iA
−1
S xi ≤ 1

λ+1
for any set of S points such that xi ∈ S, where AS = I +∑xt∈S xtx

⊺

t

Proof. We want to consider the xi that maximizes x⊺iA
−1
S xi. Let AS∖i = I +∑xt∈S∖{xi}

xtx
⊺

t . Then
we want to maximize the following

x⊺iA
−1
S xi = x⊺i (AS∖i + xix

⊺

i)−1xi

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

= x⊺iA−1S∖ixi −
x⊺iA

−1
S∖ixix

⊺

iA
−1
S∖ixi

1 + x⊺iA−1S∖ixi

Let a = x⊺iA−1S∖ixi.

x⊺iA
−1
S xi = a −

a2

1 + a =
a

1 + a = 1 −
1

1 + a
We want to maximize the above expression where 0 ≤ a ≤ 1

λ
(since 0 ≤ x⊺iA

−1
S∖ixi ≤ 1

λ
). The

expression is maximized when a = 1
λ

. Thus, x⊺iA
−1
T−1xi ≤ 1

λ(1+ 1
λ)
= 1

λ+1
.

Lemma 3. (x⊺iA−1S x)2 ≤ x⊺iA−1S xi ⋅ x⊺A−1S x for any set of S points such that xi ∈ S, where AS =
λI +∑xt∈S xtx

⊺

t

Proof. We can decompose the terms as A−1S = ∑
d
i=1 λiuiu

⊺

i , xi = ∑d
i=1 αiui, and x = ∑d

i=1 βiui.
Using these decompositions, we compute the following two terms

(x⊺iA−1T x)2 = ((
d

∑
i=1

αiu
⊺

i)(
d

∑
i=1

λiuiu
⊺

i)(
d

∑
i=1

βiui))
2

= (
d

∑
i=1

λiαiβi)
2

x⊺iA
−1
T xi ⋅ x⊺A−1T x = (

d

∑
i=1

αiu
⊺

i)(
d

∑
i=1

λiuiu
⊺

i)(
d

∑
i=1

αiui)(
d

∑
i=1

βiu
⊺

i)(
d

∑
i=1

λiuiu
⊺

i)(
d

∑
i=1

βiui)

= (
d

∑
i=1

λiα
2
i)(

d

∑
i=1

λiβ
2
i)

From Jensen’s inequality (or Cauchy-Schwarz inequality), we know that (∑d
i=1 pixi)2 ≤ ∑d

i=1 pix
2
i

where pi > 0 for all i and ∑d
i=1 pi = 1 since f(x) = x2 is convex. Let pi = λiα

2
i /(∑d

j=1 λjα
2
j) (note

that all λi’s > 0) and let xi = βi/αi. This gives us

(∑d
i=1 λiαiβi)

2

(∑d
i=1 λiα2

i)
2
≤
∑d

i=1 λiα
2
i ⋅

β2
i

α2
i

∑d
i=1 λiα2

i

(
d

∑
i=1

λiαiβi)
2

≤ (
d

∑
i=1

λiα
2
i)(

d

∑
i=1

λiβ
2
i)

This directly implies that (x⊺iA−1T x)2 ≤ x⊺A−1T x ⋅ x⊺iA−1T xi.

Theorem 10. Let λ = K ≤ T be the regularization parameter and 0 < κ < 1 be the sampling
parameter of the BBQSAMPLER. Then we have the following regret and query complexity bounds
on the BBQSAMPLER

RT =min
ε

εTε +O (
1

ε
(K + d logT + log T

δ
) + 1

ε2/κ
)

NT = O(dTκ logT)

Proof. Let ∆t = u⊺xt and ∆̂t = w⊺t x. We decompose the regret as follows

RT ≤ εTε +
T

∑
t=1

Z̄t1{∆t∆̂t < 0,∆2
t > ε2} +

T

∑
t=1

Zt1{∆t∆̂t < 0,∆2
t > ε2}∣∆t∣

= εTε +Uε +Qε (regret decomposition from Dekel et al. (2012) Lemma 3)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We define an additional term

∆̂′t = {
sign(∆̂t) if ∣∆̂t∣ > 1
∆̂t otherwise

Qε ≤
1

ε

T

∑
t=1

Zt1{∆̂t∆t < 0}∆2
t

= 1

ε

T

∑
t=1

Zt1{∆̂′t∆t < 0}∆2
t (∆̂t and ∆̂′t have the same sign)

≤ 1

ε

T

∑
t=1

Zt(∆t − ∆̂t)2 (∆̂′t∆t < 0 implies ∆2
t ≤ (∆t − ∆̂′t)2)

≤ 2

ε
(

T

∑
t=1

Zt((∆t − y)2 − (∆̂t − y)2) + 144 log
T

δ
) (Dekel et al. (2012) Lemma 23 (i))

≤ 4

ε
(

T

∑
t=1

Zt(dt−1(w∗,wt−1) − dt(w∗,wt) + 2 log
∣At∣
∣At−1∣

) + 144 log T

δ
)

(Dekel et al. (2012) Lemma 25 (iv) where dt(w∗,w) = 1
2
(w∗ −w)⊺At(w∗ −w))

≤ 4

ε
(d0(w∗,w0) + log ∣AT ∣ + 144 log

T

δ
)

≤ 2

ε
(λ + d log(λ +NT) + 144 log

T

δ
) (Dekel et al. (2012) Lemma 24 (iii))

= O(1
ε
(λ + d logT + log T

δ
))

Let rt = x⊺tA−1t xt

Uε ≤
T

∑
t=1

Z̄t 1{∣∆̂t −∆t∣ > ε}

≤ (2 + e)
T

∑
t=1

Z̄t exp(−
ε2

8rt
) (following Cesa-Bianchi et al. (2009) Theorem 1)

= (2 + e)
T

∑
t=1

Z̄t exp(−
ε2Tκ

8
) (when Z̄t = 1, rt < T −κ by the query condition)

≤ (2 + e)
T

∑
t=1

Z̄t exp(−
ε2tκ

8
)

≤ (2 + e)⌈1/κ⌉!(8

ε2
)
1/κ

(following Cesa-Bianchi et al. (2009) Theorem 1)

≤ O (1

ε2/κ
)

Putting the above terms together completes the proof of regret.

Now for the number of queries. Let rt = x⊺tA−1t xt. Consider the following sum

T

∑
t=1

Ztrt ≤
T

∑
t=1

Zt ⋅ log
∣At∣
∣At−1∣

(Lemma 24 from Dekel et al. (2012) where ∣ ⋅ ∣ is the determinant)

= log ∣AT ∣
∣A0∣

≤ log ∣AT ∣
≤ d log(λ +NT)
≤ d log(T)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We use the above sum to bound the number of queries

NT = ∑
rt>T−κ

1

≤ ∑
rt>T−κ

rt
T −κ

≤ Tκ ∑
rt>T−κ

rt

≤ O(dTκ log(T)) (using the sum above)

24

	Introduction
	Setup and Definition
	A Simple Approach to Unlearning for Core Set Algorithms via Sharding
	Better Unlearning Algorithms via Selective Sampling: The Case Study of Linear Classification
	Comparison to sharding
	Expected Deletion Capacity
	Expected Deletion Time

	Conclusion
	Appendix
	Experiments
	Other Related Work
	Notation
	Proofs from Section 3
	Proofs from Section 4
	Auxillary Results

