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Abstract

Schistosomiasis currently affects over 250 million people and remains a public health
burden despite ongoing global control efforts. Conventional microscopy is a practical

tool for diagnosis and screening of Schistosoma haematobium, but identification of eggs
requires a skilled microscopist. Here we present a machine learning (ML)-based strategy
for automated detection of S. haematobium that combines two imaging contrasts, bright-
field (BF) and darkfield (DF), to improve diagnostic performance. We collected BF and
DF images of urine samples, many of them containing S. haematobium eggs, during two
different field studies in Cote d’lvoire using a mobile phone-based microscope, the Schis-
toScope. We then trained separate egg-detection ML models and compared the patient-
level performance of BF and DF models alone to combinations of BF and DF models,
using annotations from trained microscopists as the gold standard. We found that models
trained on DF images, and almost all BF and DF combinations, performed significantly
better than models trained on BF images only. When models were trained on images
from the first field study (n =349 patients, 748 images of each contrast), patient-level
classification performance on patient images from the second study (n=375 patients,
752 images of each contrast) met the WHO Diagnostic Target Product Profile (TPP) sen-
sitivity and specificity for the monitoring and evaluation use case (sensitivity for all mod-
els and combinations was >75% when evaluated at a confidence score threshold that
resulted in specificity >96.5%). When we used images from both field studies for the
training set, performance of the models was improved. Overall, this work shows that the
use of DF and BF increases the performance of ML models on images from devices with
low-cost optics, while retaining the portability, power, and time-to-results of the WHO’s
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diagnostic TPP. DF requires no additional sample preparation and does not increase
the complexity of the imaging system. It thus offers a practical means to improve perfor-
mance of automated diagnostics for S. haematobium as well as other microscopy-based
diagnostics.

Author summary

Schistosomiasis is a neglected tropical disease that impacts hundreds of millions of peo-
ple worldwide. Patients with Schistosoma haematobium shed parasite eggs in their urine,
which can be used as a diagnostic marker of disease. However, identification of those
eggs in patient samples normally requires a microscope and trained microscopist. In this
work, we show that machine learning models trained on two imaging contrasts, bright-
field and darkfield, can improve performance of automated schistosomiasis diagnosis.
Using a mobile phone-based microscope (the SchistoScope), we captured brightfield and
darkfield images of patient samples during two visits to Cote d’Ivoire and then trained
models to detect eggs in the images. When training on images from one visit (n=349
patients) and testing on images from the other visit (n=375 patients), we found that the
darkfield model and combinations of brightfield and darkfield outputs improved the
diagnostic performance compared to brightfield alone. When evaluated at a threshold
that led to a specificity of 96.5%, sensitivity for the brightfield models was 76%, while
sensitivity for darkfield and for combined models was >81%, meeting the WHO’s target
metrics for monitoring and evaluation of schistosomiasis control programs. This use of
multi-contrast machine learning with a mobile microscope has the potential to improve
diagnostic testing for schistosomiasis and could be extended to other neglected tropical
diseases.

Introduction

Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic flatworms that
affects more than 250 million people worldwide, with an estimated 800 million people at

risk of contracting the disease [1,2]. Schistosoma haematobium is one of the main species
responsible for the disease’s morbidity and mortality. The lack of rapid, portable, and accurate
diagnostic tools hinders infection control and elimination efforts in endemic regions.

The standard diagnostic strategy for S. haematobium is detection of parasite eggs in urine
samples. This method typically involves urine filtration or centrifugation, followed by exam-
ination of the sample by a trained expert using light microscopy. These methods are time-
consuming and require infrastructure and personnel that are often not available in resource-
limited endemic regions. The World Health Organization (WHO) has identified the need for
novel diagnostic tools that enable monitoring and evaluation of schistosomiasis control pro-
grams through their Diagnostic Target Product Profiles (TPP) [3]. Ideally, these tools should
be portable, use battery-powered equipment, require minimal training for field workers, and
have a time to result <2 hours.

One strategy to facilitate diagnosis of S. haematobium and other helminths at the point-of-
care is to use portable platforms to image and automatically analyze patient samples. Several
groups have developed novel imaging systems that, in combination with machine learning
(ML) for image analysis, can be used to identify parasite eggs from urine and stool samples
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acquired in field settings [4-13]. These devices are versatile and pay close attention to robust-
ness and user needs. ML algorithms for patient-level schistosomiasis diagnosis have shown

a range of success from 83-96.3% sensitivity and 77-99% specificity, approaching or exceed-
ing the WHO target performance [5,6,8,14]. However, these devices and algorithms are still
not widely available and have not been fully validated for field use [4,15]. Some devices have
long imaging and sample processing times (25-90 minutes) [7,9], and some require the sam-
ples to be transported to local laboratories for analysis [6,8,12], making them challenging to
use for point-of-care detection and mapping of schistosomiasis in remote locations. Most
imaging devices developed for egg detection are relatively heavy (>4 kg), use standard objec-
tive lenses, or require the use of a computer. Other portable approaches, including lens-less
imaging [16,17], mobile phone-based microscopes [18-20], and 3D printed smartphone-
based adapters for standard microscopes [21], have been developed for other diagnostic appli-
cations. Portable, low-cost microscopy with low-resolution imaging is a more workable but
under-explored solution for field diagnosis of S. haematobium.

In this work, we use a low-cost, mobile phone-based microscope called the SchistoScope
[22] and show how images taken with two contrasts—darkfield (DF), in addition to the stan-
dard brightfield (BF)—can be used to improve automated diagnostic performance for schisto-
somiasis. We previously demonstrated that the SchistoScope, a highly portable device (<1kg)
that runs independent of mains power, can be used to simplify S. haematobium sample prepa-
ration and image acquisition, enabling collection of BF and DF images of patient samples in
under 5 minutes. The SchistoScope performs well when compared to conventional on-site
light microscopy, as shown in field studies in Ghana and Coéte d’Ivoire [22-24], but lack of
automated patient-level diagnosis with high sensitivity and specificity has been a limitation.
Here, we use images acquired on the SchistoScope to train ML object detection models by
fine-tuning an off-the-shelf YOLOVS architecture [25] for S. haematobium egg detection.

Contributions.

1. 'We show that training ML models on DF images improves the performance for Schisto-
soma egg detection, compared to models trained on BF images alone.

2. We demonstrate an automated diagnostic strategy that utilizes DF imaging to enable a
device with low-cost optics to meet WHO requirements for the monitoring and evalua-
tion of schistosomiasis control programs, including sensitivity and specificity, portabil-
ity, no mains power, and time-to-result.

3. We collect and annotate a dataset of BF and DF images of S. haematobium that can be
used for further development of machine learning models for egg detection.

Materials and methods
Ethics statement

This work contains patient data from two separate studies conducted in Cote d’Ivoire. The
first study was conducted in March 2020 in the Azaguié region of Cote d’Ivoire [23]. Ethi-
cal permission for this study was granted by the Centre Suisse de Recherches Scientifiques en
Cote d’Ivoire, Abidjan, Cote d’'Ivoire (#054-19) and the University Health Network, Toronto,
Canada (REB #14-8128). Permission was granted by the local Health District officer. School-
age children between 5 and 14 years were invited to participate, and both signed parental
consent and the children’s assent were required for inclusion.

The second study was conducted in November 2021, in the Koubi village near the Tiébis-
sou district in Cote d’Ivoire [24]. Ethical permission for this study was granted by the local
Health District officer, from the Comité National d’Ethique des Sciences de la Vie et de la
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Santé, Abidjan, Cote d’Ivoire (REB #186-21) and the University Health Network, Toronto,
Canada (REB #21-5582). Community members over 5 years old were asked to participate.
Adults provided written consent, and children were included if they assented and had written
consent from a parent or guardian.

Sample processing and image acquisition

Sample processing and image acquisition with the SchistoScope are illustrated in Fig 1A and
described in more detail in [22]. For each patient, urine samples were collected in plastic cups
and loaded into a 10mL syringe (Fig 1Ai). The syringe was connected to a custom injection-
molded disposable plastic capillary designed to trap S. haematobium eggs. The capillary had a
rectangular cross-section that tapered down from a height of 200um at the inlet to 20pum near
the outlet hole, trapping and concentrating eggs and other debris as the urine flowed into the
capillary and exited through the outlet (Fig 1Aii). After filtration, the capillary was inserted
into the SchistoScope and image acquisition began. For this, the capillary was translated in
one axis, and images of six distinct fields of view (FOV) were acquired. The SchistoScope was
designed such that approximately the same capillary locations were imaged for each patient
sample, making FOV's consistent across patients. Most S. haematobium eggs were consistently
trapped in the two FOVs closest to the outlet hole, which were the first to be acquired in the
imaging routine. In some high parasitemia cases, additional eggs were found in FOV's closer
to the capillary inlet, and more FOVs along the capillary could be imaged or analyzed for
higher egg counting accuracy. Based on previous field studies, we do not expect all eggs found
in a urine sample to be captured by the capillaries [22].

Each FOV was imaged using both BF and DF illumination. We implemented BF imaging
with an LED illuminator below the sample and DF imaging with an LED illuminator above
the sample, oriented at an angle such that unscattered light was not collected by the camera
lens. To capture BF and DF images of a single FOV, we turned on the BF illuminator, focused
automatically, captured an image, turned off the BF illuminator, turned on the DF illumina-
tor, refocused, captured an image, and then turned off the DF illuminator. The entire imaging
sequence, including autofocus, took an average of 60 seconds (range 47-72 sec).

The SchistoScope images are 4032 x 3024 pixels, with pixel pitch &1 um/pixel. The opti-
cal resolution of the SchistoScope is estimated to be <5 pm [22]. Example images of two dis-
tinct FOV's for one capillary, captured in BF and DF, are shown in Fig 1B. Due to the tapered
design of the capillaries, most eggs were trapped in the region near the outlet hole, corre-
sponding to the first two imaged FOVs in each capillary. Examples of S. haematobium eggs
and “distractor objects”, non-egg debris in urine samples, that were trapped in capillaries and
imaged are found in Fig 1C.

Dataset preparation

The images used for this work were acquired during two separate visits to S. haematobium-
endemic regions in Cote d’Ivoire. We created two datasets using the data from these two vis-
its, described below. These datasets have been fully described and are publicly available [26].
Information for these datasets is summarized in Fig 1D.

The first field visit was completed in the Azaguié region in March of 2020, as described
in [23]. One hundred and seventy individuals provided urine specimens, out of which 35
(20.6%) were found to contain S. haematobium eggs using standard light microscopy. Only
three urine specimens contained more than 50 eggs per 10 mL of urine, meeting the WHO
criteria for a high-burden infection [27]. From these urine specimens, 349 individual samples
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Dataset | Acquired | Numberof | Total Total Average Parasitemia
9 patlents p05|t|ves negatlves parasitemia range

March 2020 34 eggs/patient 0-361 eggs/patient
2 November 2021 375 58 317 12 eggs/patient 0-62 eggs/patient
3 VBTN ATADE 362 69 293 27 eggs/patient 0-275 eggs/patient

(test set) November 2021

Fig 1. Sample processing, image acquisition and dataset information. A: Diagram showing urine sample processing using a capillary and image acquisition with
SchistoScope (Ai). Diagram showing capillary dimensions and egg trapping (Aii). Partially created with BioRender.com B: Example images in BF and DF of two fields of
view of a capillary containing S. haematobium eggs and other debris. C: Examples of S. haematobium eggs and distractor objects trapped in capillaries and imaged with
the SchistoScope. D: Information about Datasets 1, 2, and 3. Dataset 1 was collected in March 2020 [23] and Dataset 2 was collected in November 2021 [24], in different
field sites in Cote d’Ivoire. Dataset 3 is a combination of Datasets 1 and 2 and was randomly split into train and test sets—the table shows information for the test set of
Dataset 3. In the field studies where they were collected, the percentage of urine specimens examined that were found to contain S. haematobium eggs using conventional
light microscopy was 20.6% for Dataset 1 and 13.4% for Dataset 2.

https://doi.org/10.1371/journal.pntd.0012879.9001
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(consisting of 10mL of urine) were processed using capillaries and imaged using the Schis-
toScope, as described above. Given that these samples were processed using different vol-
ume fractions of urine, we will henceforth consider each individual sample to be a separate
“patient” for the purposes of this work. We will refer to the images from this first field visit as
“Dataset 1”. The average parasitemia (number of eggs per positive patient) in this dataset was
34 eggs/patient, as shown in Fig 1D. The parasitemia range was 0-361 eggs/patient. Most eggs
were found in the two FOV's closest to the capillary outlet hole for each patient sample, i.e.
these FOVs effectively contained the relevant contents of the 10 mL urine sample. Therefore,
we used only these two images for the purpose of evaluating this dataset. We also included,
for training purposes only, any additional FOVs that contained eggs (which only happened
in 34 samples, all of which had very high parasitemia, and contained the most eggs in the first
two FOVs). This resulted in a dataset of 748 total images for each contrast (BF and DF). Of
those images, 186 BF images and 188 DF images were subsequently annotated as containing
S. haematobium eggs.

The second field visit occurred in the Koubi village near the Tiébissou district in November
of 2021, as described in [24]. Of the 365 urine specimens evaluated, 49 (13.4%) were positive
for S. haematobium via standard light microscopy, with only 4 samples quantified as being a
heavy burden infection with 50 or more eggs per 10mL of urine. From these urine specimens,
375 individual samples (consisting of 10mL of urine) were processed using capillaries and
imaged on the SchistoScope. As above, we considered each individual sample a patient for the
purposes of this work. We refer to the images from this field visit as “Dataset 2”. The average
parasitemia in Dataset 2 was 12 eggs/patient and the parasitemia range was 0-62 eggs/patient,
both lower than those of Dataset 1. The position of the capillaries in the SchistoScope was
slightly shifted in this Dataset compared to Dataset 1, meaning that the second and third
FOVs contained most S. haematobium eggs. We therefore included the images from those
FOVss for all patients, resulting in 750 images per illumination contrast. Of those images, 92
BF images and 91 DF images were subsequently annotated as containing S. haematobium
eggs.

We created “Dataset 3” by combining the images from both datasets into one, in order
to assess whether our ML models were affected by distribution shifts, an effect commonly
observed when using ML for medical tasks, where even small deviations from training con-
ditions can lead to changes in performance [28-31]. We randomly split Dataset 3 into a train
set and a test set. The average parasitemia for the test set of Dataset 3 was 27 eggs/patient and
the parasitemia range was 0-275 eggs/patient.

Image annotation

Patient sample images were annotated for the presence of S. haematobium eggs by a micro-
scopist with experience in egg identification. These annotations were then verified by another
microscopist. In cases of disagreement, a third microscopist was consulted. To carry out the
annotations, each image was opened in Microsoft Paint, and the center of each visible egg was
labelled with a blue dot. Objects that the annotator was unsure of and needed consultation
with the second annotator were marked with a red dot. Unlabelled objects in the images were
considered distractor objects, some of which are shown in Fig 1C.

ML model training

Due to the relatively small size of our dataset, we used transfer learning to fine-tune
pre-trained models to detect Schistosoma eggs (Fig 2A). We chose YOLOVS, developed by
Ultralytics and pre-trained on the COCO 2017 dataset, in part because it can be exported
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to formats such as ONNX and TensorFlow Lite for use on mobile devices [25]. To fit the
YOLOVS input image size of 640 x 640 pixels, we cropped our 4032 x 3042 pixel images into
30 individual, partially overlapping, image tiles. We trained the YOLOv8 model using the
“detect” task and the following training parameters: stochastic gradient descent optimizer,
learning rate of 0.01, and batch size of 16.

Having data from two different field studies allowed us to use one as a holdout set to eval-
uate the performance of our trained ML models when tested on unseen data. In this work, we
set aside Dataset 2 (since we had collected it second) and used Dataset 1 to explore ML model
architectures and different ways to combine BF and DF images, as well as for ML hyperpa-
rameter tuning. We eventually used all of Dataset 1 to train a final pair of ML models, one
for BF and one for DF images. We then used Dataset 2 as our holdout set, using the data to
evaluate the models trained on Dataset 1.

We used 5-fold cross-validation (a standard technique to assess model stability), stratified
by patient, during our exploratory model training phase using Dataset 1. We divided the 748
dataset images into five different “splits”, each containing a partially overlapping set of images
for training, but a completely different set of images for testing. For each of these splits, we
trained ML models on the train set images and then evaluated these models on the test set
images, as illustrated in Fig 2A. To ensure that images from the same patient were not split
between the train and test sets, images that originated from the same patient sample were
assigned to the same “group” during k-fold cross-validation.

To ensure an even distribution of eggs and distractor objects across the splits, we divided
the patients into 8 classes: classes 1-3 were positive patients with images that contained eggs
in increasing amounts, classes 4-8 were negative patients that contained distractor objects in
increasing amounts. We then used the ‘StratifiedGroupKFold’ function from the scikit-learn
Python library [32], which splits the data into folds and assigns to each fold roughly equal
proportions of each class and also stratifies by patient (i.e. all of a patient’s images are assigned
to one fold).

When training the 5-fold split models using Dataset 1, we trained for 200 epochs. When
training the final models using all of Dataset 1 to test on Dataset 2, we trained for 300 epochs.
In all training instances, we trained separate object-detection models for the BF and DF
images.

To compare our ML results with YOLOVS to other commonly used models, we trained
models using ResNet50 [33] and YOLOV5 [34] architectures. These models were trained
and tested using the same 5-fold split of Dataset 1. ResNet50 models (pre-trained on the
COCO2017 dataset) were trained using an Adam optimizer, a learning rate of 0.00167, and
batch size of 29. YOLOv5 models (pre-trained on the COCO2017 dataset) were trained using
the “detect” task and the following parameters: stochastic gradient descent optimizer, learning
rate of 0.01, and batch size of 16.

Patient classification

Our trained egg-detection models produce a series of detections in each test image that the
model identifies as eggs, with an associated confidence score that goes from 1-100%. These
detections are indicated by bounding boxes (Fig 2B). Since patient-level, not object-level, per-
formance is what matters clinically, we converted the object-level detections to patient-level
diagnostic classification as follows:

First, after running each individual image (composed of 30 image tiles) through the
trained model, we combined the detections from the two images corresponding to each
patient (Fig 2B). We then evaluated whether each patient would have been classified as
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Fig 2. Dataset preparation, ML model training and evaluation of Dataset 1 k-fold splits. A: Diagram of the ML model training pipeline.
First, S. haematobium eggs are annotated in dataset images. For Dataset 1, the patients are then split into 5 folds containing different subsets
of training and test data. Transfer learning is done by fine-tuning the ML models (YOLOV8 pre-trained on the COCO 2017 dataset) using the
training set for each split. B: Diagram of the model evaluation pipeline. After training, the test images are run through the trained model,
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generating bounding boxes surrounding detections with a confidence score assigned by the model. The number of detections above a certain
confidence score threshold are counted for each patient. Each patient is represented by the first two images of a capillary. Subsequently, patients
are classified as positive or negative depending on the presence or absence of detections with a confidence score above a given threshold.
Sensitivity and specificity metrics are calculated on a patient population level. C: Full and zoomed-in receiver operator characteristic (ROC)
curves for the first split of the data of Dataset 1, showing results for the BF and DF ML models and the area under each curve. The partial ROC
curve is displayed as an inset of the full curve, it shows specificity values from 95% to 100%. The vertical lines indicate the targeted specificity
for the transmission interruption and surveillance (TI&S) and monitoring and evaluation (M&E) TPP use cases (99.5% and 96.5%, respectively).
D: Violin plots showing the patient-level sensitivity values for the 5 splits of Dataset 1 for the TI&S (Di) and M&E (Dii) use cases. The mean
sensitivity is displayed above each violin and the targeted sensitivity for each use case is shown as a vertical line. Di shows the sensitivity at a
threshold that resulted in 99.5% specificity. Dii shows the sensitivity at a threshold that resulted in 96.5% specificity. BF is brightfield and DF

is darkfield.

https://doi.org/10.1371/journal.pntd.0012879.9002

positive or negative as we varied a threshold on the confidence score. A patient was consid-
ered positive if there was at least one detected object with a confidence score greater or equal
to the threshold in any of the images for a patient. Otherwise, the patient was negative. This
method applies the patient diagnosis framework in [28], where the noise floor is set to 0 due
to the high accuracy of the detection algorithms used. The object-level precision-recall curves
for all splits of the BF and DF models trained and tested on Dataset 1 are shown in S1 Fig. All
other results shown in this work are at the patient-level.

Evaluation metrics

We evaluated our ML models at the patient-level in the test dataset by calculating sensitivity
and specificity, using the presence of eggs that were captured in the capillary, imaged by the
SchistoScope, and annotated by an expert as the ground truth. We then compared the results
to the target metrics for each schistosomiasis diagnostic use case in the WHO Diagnostic
Target Product Profiles (TPP) for schistosomiasis control programmes [3].

The following equations define sensitivity (Eq 1) and specificity (Eq 2):

Sensitivit True Positives W
ensitivity =
Y™ True Positives + False Negatives

True Negatives

Specificity = T Ne ()

gatives + False Positives

Consistent with convention, True Positive patients are those that were annotated as hav-
ing S. haematobium eggs and were classified as positive by the ML model, while False Nega-
tives are patients that were annotated as having eggs but were classified as negative by the ML
model. True Negative patients were both annotated and classified as negative, and False Pos-
itives were annotated as negative by human annotators but classified as positive by the ML
model.

To show how patient-level sensitivity and specificity depend on the threshold confidence
score for model detections, we generated receiver operator characteristic (ROC) curves for
each model (BF and DF), which plot sensitivity, or True Positive Rate (TPR), vs 1-specificity,
or False Positive Rate (FPR).

To assess the performance of our ML models in the context of schistosomiasis diagnos-
tics, we evaluated whether we would meet the target metrics established in the WHO TPP.
The TPPs are used to guide the development of new diagnostic tools for schistosomiasis for
two use cases: (i) Monitoring and Evaluation (M&E) and (ii) Transmission Interruption and
Surveillance (TI&S). The TPPs outline the target characteristics of a suitable diagnostic test in
categories such as portability, training requirements, throughput, time to results, and clinical
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sensitivity and specificity. The target sensitivity and specificity for both use cases are shown in
Table 1.

We focused our performance analysis on the relevant regions of the ROC curve where
specificity was above what is targeted by each WHO use case. Fig 2C shows the full ROC
curves for one of the splits (split 1) of the BF and DF ML models trained and evaluated on
subsets of Dataset 1, together with a zoomed-in portion of the ROC curve showing the speci-
ficity values above 95%. The two vertical lines indicate the specificity values targeted by both
of the TPP use cases (96.5% for M&E and 99.5% for TI&S).

To directly compare performance with the TPP use cases, we took the sensitivity at the
confidence threshold that resulted in the patient-level specificity targeted by each use case.
That is, we set the operating point by requiring that the model meet the specificity in the
TPP, then assessed whether it also met the TPP’s sensitivity [28]. Fig 2D shows the sensitiv-
ity values for each of the splits of Dataset 1 when evaluated at the targeted specificity for the
TI&S (top) and M&E (bottom) use cases. The targeted sensitivity values for each use case are
displayed as a horizontal line.

Multi-contrast combinations

We explored different approaches to combine BF and DF images and assessed whether
they would result in improved sensitivity and specificity. The pre-trained YOLOv8 mod-
els that we used for transfer learning use 3-channel images as an input. We thus trained
separate 3-channel models for BF and DF images and then combined the model outputs
with boolean AND or OR, at either object-level or patient-level, for a total of four com-
bination methods. The workflow for these combinations is illustrated in Fig 3A. Con-
verting BF and DF images into greyscale and merging them into a 3-channel image to
train ML models (e.g., [BF(greyscale), BF(greyscale), DF(greyscale)]) did not yield good
results.

For patient-level combinations, we first used the BF and DF model outputs to classify the
patients as positive or negative separately for each contrast. After this, we used patient-level
ANDY/OR operations to combine the BF and DF results and arrive at a final diagnosis. For
patient-level AND, we called a patient positive only when both BF and DF classified them as
positive. For patient-level OR, a positive classification for either BF or DF resulted in a posi-
tive combined classification (Fig 3B). After these combinations, we calculated the sensitivity
and specificity for the test patient populations and generated ROC curves for the AND and
OR cases.

For object-level combinations, we follow the same procedure as above by first separately
evaluating images with the BF and DF models, which generates a list of bounding box detec-
tions for each contrast. We then apply AND/OR operations at the object level to generate new
object scores, as described below, followed by patient-level classification (Fig 3Aii).

To generate new object scores from the BF and DF detections and scores, we:

Table 1. Diagnostic Target Product Profile (TPP) requirements.

TI&S M&E
sensitivity 88% 75%
specificity 99.5% 96.5%

WHO TPP requirements for Monitoring and Evaluation (M&E) and Transmission Interruption and Surveillance
(TI&S) of schistosomiasis control programmes.

https://doi.org/10.1371/journal.pntd.0012879.t001
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Fig 3. Contrast combination rubrics and patient-level sensitivity on 5-fold splits, Dataset 1. A: Combination pipelines.
Ai: Diagram of the patient-level combination pipeline. Aii: Diagram of the object-level combination pipeline. B: Truth
table for patient-level combinations, showing the four possible combinations of patient classifications based on BF and DF
models individually, followed by the result after patient-level combinations. Positive patients are shown in magenta and
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negative patients are shown in green. C: Examples of object-level combinations on three objects in the images, showing
original confidence scores assigned by BF and DF models, followed by resulting confidence scores after each combination.
Green boxes represent true positive detections and magenta boxes represent false positive detections. D: Violin plots
showing the sensitivity values after applying patient-level combinations to the 5 splits of Dataset 1 for the TI&S (Di) and
M&E (Dii) use cases. The mean sensitivity is displayed above each violin and the targeted sensitivity for each use case is
shown as a vertical line. Di shows the sensitivity at a threshold that resulted in 99.5% specificity. Dii shows the sensitivity
at a threshold that resulted in 96.5% specificity. ‘BF’ is brightfield, ‘DF’ is darkfield, ‘PL AND’ is patient-level AND,

‘PL OR is patient-level OR, ‘OL AND’ is object-level AND, ‘OL OR’ is object-level OR. E: Violin plots showing the
sensitivity values after applying object-level combinations to the 5 splits of Dataset 1 for the TI&S (Ei) and M&E (Eii) use
cases. The mean sensitivity is displayed above each violin and the targeted sensitivity for each use case is shown as a vertical
line. Ei: sensitivity at a threshold that resulted in 99.5% specificity. Eii: sensitivity at a threshold that resulted in 96.5%
specificity.

https://doi.org/10.1371/journal.pntd.0012879.g003

(i) pair up each individual detection on a BF image with each individual detection on
the DF version of that image. Each of these pairs consists of the xy coordinates for the
bounding box detection in BF and in DF, as well as their associated confidence scores
(scoregr and scorepr).

(if) use the BF and DF xy box coordinates to calculate the intersection over union (IoU) for
each detection pair. IoU goes from 0-1 and it measures the overlap between the bound-
ing boxes. If the boxes overlap completely, the IoU is 1. If they are partially overlapping,
the IoU is smaller. If the boxes are not overlapping, meaning that a particular object was
only detected in one of the contrasts, the IoU is 0.

(iii) ~carry out object-level AND/OR operations to assign a new object score.
(a) For AND, the score is given by:

scoresnp = scoregg * scorepg * IoU

Because the IoU is zero for non-overlapping detections, the object-level AND
score eliminates detections that are not represented in both BF and DE This is a
stringent filter, only detections where BF and DF agree on the presence of an egg
make it through.

(b) for OR, objects that are only found in BF or DF are not eliminated, but their con-
fidence scores are reduced. To do this, we first eliminate all object pairs that are
not overlapping (i.e. pairs with IoU of zero). We then go through the original
detection lists for BF and DF, find any detections that are not represented in the
combined list, and add them back to the list as “lonely detection pairs”. For these
pairs, we assign a confidence score of zero to the missing contrast. For example,
if an object is detected only in BF with score = scoregy, a lonely detection pair is
added to the list with scorepr = scoregr and scorepr = 0.

After adding the lonely detections, we calculate the object-level OR score as:

Scoregr + SCOrepr

SCOrepRr =
2

When using the object-level OR combination, we are not removing objects that
are only detected in either BF or DF, and by this we hope to avoid eliminating
true eggs that were only detected once. However, since we expect a true egg detec-
tion to be more likely to be found in both BF and DEF, the object-level OR reduces
the overall confidence score of lonely detections. Fig 3C shows examples of the
resulting scores for object pairs when object-level combinations are applied.
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After calculating the object-level AND/OR scores, the patients are classified as positive
or negative on a patient-level, based on the presence of combined bounding boxes at a given
confidence score threshold. Subsequently, patient-level sensitivity and specificity are calcu-
lated and compared to the TPP targets for each use case, as described above.

Bootstrapping

We used bootstrapping to gain insights into the variability of our patient-level metrics and to
run statistical tests on the results of our models and combinations. To do this, we iteratively
resampled the patient population with replacement, re-running our analysis 100 times on
random subsets of 40% of our test patients. For each iteration, we found the threshold that
resulted in the TPP target specificity, then calculated the patient-level sensitivity using this
threshold for the BF-only, DF-only, and combination models. We then used a Kruskal-Wallis
test (the non-parametric equivalent of an ANOVA test) with Dunn’s correction for multiple
comparisons, to determine whether there were statistically significant differences between the
BF and DF models and the combinations. We performed two sets of comparisons: we tested
whether the DF model and all the BF-DF combinations were significantly different from the
BF model, and we tested whether the BF-DF combinations were significantly different from
the DF model alone. All statistical analyses were done using GraphPad Prism (version 10.2.2).

Comparison with standard light microscopy

We used standard light microscopy results collected in the field during the acquisition of
Dataset 2 to evaluate our ML models and our BF and DF combinations. We used the same
strategy for patient-level analysis described above but, rather than using the eggs captured and
annotated on the images as the ground truth, we considered patients positive if their standard
light microscopy counts were above zero, and negative otherwise. We excluded two patients
due to a lack of standard light microscopy results for them in our records. We also excluded
seven patients that had clear, annotated examples of Schistosoma eggs in the images, despite
having a standard light microscopy count of zero eggs.

Results
ML model performance on Dataset 1 splits

BF and DF models were trained on subsets of Dataset 1. We used 5-fold splits to better assess
their performance before training a set of final models for evaluation using Dataset 2. Results
for the BF and DF models on these splits are shown in Fig 2, and the results for the BF and DF
combinations of those models on these splits are shown in Fig 3, all of these results are at the
patient-level.

The average sensitivity at the TPP specificity for TI&S for the 5 splits was higher for DF
(84%) than for BF (80%). The targeted sensitivity for this TPP use case is 88%; only one split
for BF and two splits for DF reached this requirement. However, for the M&E use case, all of
the DF splits and most of the BF splits reached the targeted sensitivity of 75%. For this use
case, the average sensitivity was also higher for DF (88%) than for BF (84%).

Using DF alone or BF-DF combinations resulted a 4-10% increase in mean sensitivity at
the targeted TPP specificity values. Notably, when applying both object-level and patient-level
combinations, all of the splits of the March 2020 dataset met the TPP requirements for sen-
sitivity and specificity for the M&E use case. Despite not reaching the targeted TPP sensitiv-
ity for the TI&S use case on all splits of the data, both object- and patient-level combinations
increased the average sensitivity, bringing it closer to the WHO targets.
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Results for BF and DF models and combinations trained and tested on the 5-fold splits of
Dataset 1 using three different architectures (ResNet50, YOLOv5, and YOLOVS8) are shown
in S2 Fig. For all architectures tested and for both TPP use cases, the DF model and BF-DF
combinations had an average performance that was greater than the BF models alone.

ML model performance on hold-out Dataset 2

After model training was complete and we confirmed that the performance on Dataset 1 was
adequate, we trained models using all of Dataset 1 and tested them on Dataset 2 as a holdout
set. This is the scenario that is most realistic and consistent with future diagnostic work in the
field, and does not incorporate any information from the test dataset into the training. The
patient-level results are shown in Fig 4. A diagram illustrating the data used for training and
testing is shown in Fig 4A.

All models and combinations performed worse when trained on Dataset 1 and tested on
Dataset 2, compared to the average performance of 5-fold split models trained and tested on
subsets of Dataset 1. This is expected, and gives us a better idea of how our trained models
would perform with unseen data in future field studies.

Both BF and DF models met the targeted sensitivity for the M&E use case, but they did not
meet the targeted sensitivity for the TI&S use case. The DF models performed better than BF
when we evaluated the models for both use cases (Fig 4B).

The results when the BF and DF models are combined on an object-level and patient-level
are shown in Fig 4C. The full ROC curves and AUC of the BF and DF models and combina-
tions are shown in S3 Fig. All BF-DF combinations reached the target sensitivity for the M&E
use case and performed better than the BF model. The patient-level combinations performed
slightly worse than DF, and the object-level combinations had the same performance as DE.
None of the BF-DF combinations achieved the target sensitivity for the TI&S use case, but
all combinations resulted in a sensitivity greater or equal to that achieved with the BF and
DF models separately. The greatest increase was achieved when using a patient-level AND
combination.

We used bootstrapping to investigate how our patient-level metrics would have varied had
the patient population been a subset of what is in Dataset 2 (Fig 4D). The median sensitivity
of the bootstrap populations is similar to the sensitivity obtained when testing over the full
holdout set. There are statistically significant differences (p <0.05) between the BF and DF
models, as well as between the BF model and most model combinations (with the exception
of object-level AND for TI&S). A statistical comparison between the bootstrapped DF models
and combinations is shown in $4 Fig. There was not a significant difference between DF and
combination models for the M&E use case, but for the more stringent TI&S use case, some
combinations (PL AND and OL OR) were significantly better than DF alone.

Models trained on Dataset 1 and tested on Dataset 2 were evaluated using standard light
microscopy results as the ground truth (S5 Fig). The trend of DF models and most BF-DF
combinations performing better than BE—seen when using annotated eggs on images as
the ground truth—was maintained, with the exception of object-level combinations for the
TI&S use case. For the TI&S use case, BE, DF, and patient-level BF-DF combinations per-
formed similarly to when evaluated using the image annotations as the ground truth, but the
object-level BF-DF combinations had much worse performance. No model or combination
reached the required sensitivity at the TI&S TPP specificity. For the M&E use case, all mod-
els and combinations (with the exception of DF) performed slightly worse than when the
image annotations were used as the gold standard. All models and combinations reached the
required sensitivity at the thresholds that resulted in the required TPP specificity.
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Fig 4. Patient-level results on Dataset 2 as a holdout. A: Diagram of data used for training and testing. B: Results for
brightfield (BF) and darkfield (DF) models trained on Dataset 1 and tested on Dataset 2. Bi: zoomed-in ROC curve
showing specificity values from 95% to 100%, with TPP specificity requirements shown as vertical lines. Bii and Biii:
patient-level sensitivity for BF and DF models for the TI&S (Bii) and M&E (Biii) use cases, with sensitivity values for
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each model displayed above each bar and target sensitivity displayed as a horizontal line. C: Results for model
combinations on Dataset 2. Ci: zoomed-in ROC curve showing specificity values from 95% to 100%, with TPP
specificity requirements shown as vertical lines. Cii and Ciii: sensitivity results for BF and DF models and combinations
for the TI&S (Cii) and M&E (Ciii) use cases. PL AND is patient-level AND, PL OR is patient-level OR, OL AND is
object-level AND, OL OR is object-level OR. D: Bootstrapping results on the holdout set for TI&S and M&E TPP

use cases. The violin plots show the distribution of patient-level sensitivity values at thresholds resulting in the targeted
TPP specificity. Bootstrapping was performed for 100 iterations, with sample size = 40% of the patient population. The
dashed lines inside violins show the median of the distribution, dotted lines show the quartiles. The median of each
distribution is displayed above each violin. A Kruskal-Wallis test with Dunn’s correction for multiple comparisons was
used to compare the BF model with the DF model and the combination models. We report multiplicity-adjusted
p-values, “ns” is p>0.05, * is p < 0.05, *** is p < 0.001, **** is p <0.0001.

https://doi.org/10.1371/journal.pntd.0012879.q004

ML model performance on merged dataset (Dataset 3)

Overall, the performance of the ML models on Dataset 3 was better than the performance of
the models trained on Dataset 1 and tested on Dataset 2 (Fig 5). When evaluated at thresh-
olds that met the TPP target specificity, all contrasts and combinations met the TPP target
sensitivity for the M&E use case. For the TI&S use case, no contrast or combination met the
target TPP sensitivity. The object-level OR combination was the closest, with only 2% lower
sensitivity than the target.

We performed bootstrapping to gain insight on the variability of the patient-level metrics.
For the TI&S use case, DF and all of the contrast combinations performed significantly better
than BE The object-level combinations (AND and OR) had both the highest median sensi-
tivity and the tightest distributions. Notably, the third quartile for both of these distributions
was above the sensitivity targeted by the TPP (88% sensitivity). 29/100 iterations for object-
level AND and 30/100 iterations for object-level OR had a sensitivity above the TPP target for
TI&S.

Fig 5Bii shows the sensitivity distributions for the M&E use case. DF and all of the com-
binations performed significantly better than BE. Notably, for all of the contrasts and com-
binations and for all of the 100 iterations, the models had a sensitivity above or equal to that
targeted by the TPP (75% sensitivity) at a threshold that resulted in the targeted specificity.

A comparison between the bootstrapped DF models and combinations is shown in 54
Fig. There was not a significant difference between DF and combination models for the M&E
use case, but for the more stringent TI&S use case, most combinations (with the exception of
patient-level OR) were significantly better than DF alone.

Discussion

Diagnostic technologies that are low-cost, simple to use, and achieve WHO performance met-
rics are needed to advance schistosomiasis control and elimination goals. The development of
mobile phone-based microscopes for image-based diagnosis of S. haematobium, such as the
SchistoScope, partially achieve those goals through their portability and simplicity. However,
the best strategy for automated egg detection and patient diagnosis for mobile microscopes
with moderate resolution has been unclear, as many existing ML models rely on images col-
lected with high-resolution imaging systems. Moderate resolution systems, including the
SchistoScope, may need additional information to achieve the combination of sensitivity and
specificity needed for field applications. This paper highlights the potential of DF as a means
to break the zero-sum trade-off between accuracy and practicality, by enabling portable, lower
resolution systems, to support high accuracy detection.

We use multi-contrast images of patient urine samples containing S. haematobium
acquired in endemic regions of Cote d'Ivoire using the SchistoScope to train ML models for
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Fig 5. Patient-level results on Dataset 3. A: Patient-level results on the test set of Dataset 3. Ai: zoomed-in ROC curve with specificity val-
ues ranging from 95% to 100%, with TPP specificity requirements shown as vertical lines. Aii and Aiii: patient-level sensitivity results for
BF and DF models and combinations for the TI&S and M&E use cases (at thresholds resulting in TPP specificity). The target sensitivity for
each use case is shown as a horizontal line. BF is brightfield, DF is darkfield, PL AND is patient-level AND, PL OR is patient-level OR, OL
AND is object-level AND, OL OR is object-level OR. B: Bootstrapping results on the test set of Dataset 3 for TI&S and M&E TPP use cases.
The violin plots show the distribution of patient-level sensitivity values at thresholds resulting in the targeted TPP specificity. Bootstrap-
ping was performed for 100 iterations, with sample size = 40% of the patient population. The dashed lines inside violins show the median
of the distribution, dotted lines show the quartiles. The median of each distribution is displayed above each violin. A Kruskal-Wallis test
with Dunn’s correction for multiple comparisons was used to compare the BF model with the DF model and the combination models. We
report multiplicity-adjusted p-values, “ns” is p > 0.05, * is p < 0.05, *** is p <0.001, **** is p < 0.0001.

https://doi.org/10.1371/journal.pntd.0012879.9005

automated diagnosis. Importantly, the ML models we trained can be efficiently deployed on
mobile devices. We find that DF models alone and combinations of BF and DF models lead
to greater performance than BF alone, which is the typical contrast used to identify eggs with
light microscopy. The combinations of BF and DF models meet the WHO target sensitivity
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and specificity for monitoring and evaluation of schistosomiasis control programmes, with
DF consistently showing better performance than BE A relatively small dataset of less than
1000 images was sufficient to train the models and demonstrate improved diagnostic per-
formance, taking advantage of the availability of pre-trained, off-the-shelf ML models that
can be used for fine-tuning to a particular application. We achieved performance improve-
ments by using DF and BF-DF combinations to train models of three different ML archi-
tectures: YOLOvS, YOLOV5, and ResNet50. We used YOLOvV8 most heavily in this work,

but other algorithms could be more suitable depending on the specific application. YOLOvV5
models could be more appropriate for resource-constrained applications or for running on
devices with limited computational power, while YOLOv8 models would be suitable for high-
accuracy applications [35]. While the best ML architecture for detection of Schistosoma eggs
or for multi-contrast ML is not yet clear, we expect our findings to generalize to other com-
monly used ML architectures and models based on the consistent performance improvements
seen with DF on the three architectures tested.

Our multi-contrast machine learning approach benefited from BF and DF images pro-
viding complimentary information about the Schistosoma eggs, with brightfield contrast
reporting light absorption by the sample and darkfield contrast showing scattering by sam-
ple edges and other features. The use of darkfield imaging for ML-based disease identifica-
tion and image classification has shown promise in other fields [36-47]. However, to our
knowledge, this is the first demonstration of its combined use with brightfield as a means to
improve diagnostic performance in the context of limited data for diagnosis of neglected dis-
eases. Darkfield, or pseudo-darkfield, can be easily (and fairly inexpensively) implemented
in a standard light microscope by adding an oblique or annular illumination source, or by
blocking illumination angles that are captured by the imaging lens, an example of which is
shown in [48]. Hence, DF imaging could be implemented by other groups integrating ML
with portable microscopy for diagnosis of S. haematobium and other diseases with egg-
based diagnostics, such as Schistosoma mansoni and soil-transmitted helminths. In fact, DF
imaging alone can be helpful for semi-automatic diagnostic strategies where clinicians or
field technicians make diagnostic calls based on digitized images of patient samples. Our
annotators and clinical collaborators noted that they preferred annotating/evaluating DF
images because S. haematobium eggs are easier to identify in DF versus the traditional BF
contrast.

In cases where a microscopy system supports both BF and DF imaging, these can be com-
bined in relatively simple ways to get better ML results. We showed that simple, boolean com-
binations of models trained on images of different contrasts can lead to improvements in per-
formance. Our bootstrapping results suggest that combining BF and DF models can result in
more stability, especially in more stringent diagnostic use cases. This is particularly evident in
the tighter spread over bootstraps for most BF-DF combination models in the TI&S use cases
(Figs 4Di and 5Di) This was also evident when performing statistical comparisons between
the DF models and the combinations (54 Fig), where some combinations performed signifi-
cantly better than DF for the TI&S use case. Incorporating additional contrasts, such as dif-
ferential phase contrast and fluorescence, into portable and low-cost microscopes could pro-
vide additional sample information that might further improve multi-contrast machine learn-
ing performance. In particular, the autofluorescence of Schistosoma eggs and other parasites
makes this an attractive direction for future device development. Improvements in ML model
development could also advance the goal of high performance detection with lower resolu-
tion images, including altering the model architecture to train on images of both contrasts
simultaneously, increasing hyperparameter optimization, and training on more egg images.
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As the field of ML continues to evolve rapidly, novel models and architectures could also lead
to performance improvements, potentially reaching the TI&S target metrics.

An additional strategy for multi-contrast ML could be an analytical combination of BF and
DF images (i.e., merging BF and DF into a single input image), followed by model training.
Given our use of transfer learning with models that use 3-channel RGB images, we attempted
analytical combination by converting BF and DF images to greyscale and using these to cre-
ate 3-channel images (e.g., [BF(greyscale), BF(greyscale), DF(greyscale)]), followed by model
training with these new images. These models did not perform better than our BF models, we
suspect due to differences in focus and slight movements between BF and DF image acquisi-
tion. Analytical combination of BF and DF could be attempted on a dataset where focus was
kept constant during image acquisition, or by using bespoke ML models with a 6-channel
input.

Our models trained on Dataset 1 and tested on Dataset 2 had similar performance when
using the annotated images and the standard light microscopy results as the ground truth. We
observed some discrepancies between the image annotations and light microscopy counts,
where some patients were classified as positive via microscopy and negative via egg anno-
tations on the images, and vice versa. Discrepancies could arise from inhomogeneous egg
distribution in urine samples, especially in low-parasitemia patients. Cases where patients
were positive via light microscopy but had no annotated eggs on their images could be due
to imperfect capillary capture efficiency [22] or due to focus errors or dirty capillaries dur-
ing image acquisition. Patients that were negative via standard light microscopy but had
annotated eggs in the SchistoScope images could be due to field technicians missing eggs
during sample examination, given that each sample was only evaluated by one technician.
However, ML models and combinations reached the required TPP sensitivity and speci-
ficity when evaluated for the M&E use case, with DF models and BE-DF combinations per-
forming better than BF models. These results show the potential of this strategy for future
field studies, and highlight the usefulness of incorporating DF imaging in schistosomiasis
diagnostics.

An important next step to validate the usefulness of multi-contrast machine learning
will be to do live field testing of ML models loaded onto the SchistoScope or its successor.
This will require exporting our ML models to a mobile phone-compatible format to evalu-
ate performance and processing time. Any future field deployment will also require select-
ing confidence score thresholds in advance and providing patient-level diagnosis based on
them.

We observed ML model performance improvements when training on the combined
dataset (Dataset 3) compared to training on data from one site (Dataset 1) and testing on data
from the second site (Dataset 2), which is what we would expect if there was a shift in distri-
bution between Dataset 1 and Dataset 2 due to their acquisition during different field visits.
By using Dataset 3, we saw how our models would perform in the ostensibly best available
case, where maximum training data is used and testing is done in-distribution. Variations in
performance between study sites have been observed during field-testing of other diagnos-
tic products, including those that use more standardized sample processing techniques (e.g.,
thin smear for malaria) [31]. Future field deployments of the SchistoScope could benefit from
real-time updates of the ML models to accommodate inter-clinic variability and uneven algo-
rithm accuracy at new sites due to distribution shifts in training and testing populations. It is
also worth noting that the WHO TPP for TI&S is in the context of disease elimination, which
generally implies lower parasitemia distributions, making it harder to hit the sensitivity tar-
gets [28]. With further improvements to the model, we expect our multi-contrast strategy to
be particularly promising in this context.
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Conclusion

Mobile phone-based microscopy platforms in conjunction with multi-contrast machine
learning and novel sample preparation techniques can be used for rapid, sensitive, and
portable diagnosis of S. haematobium that meets WHO diagnostic requirements. Performance
of ML models to identify Schistosoma eggs can be significantly improved by adding DF imag-
ing to standard BF microscopes, which requires minimal changes in microscope optics and
no additional sample preparation. Multi-contrast machine learning offers a practical means

to improve performance of low-cost, automated diagnostics for S. haematobium egg detection
and could be applied to other microscopy-based diagnostics.
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