
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-GUIDED PLAN EXTRACTION FOR INSTRUCTION-
FOLLOWING TASKS WITH GOAL-CONDITIONAL REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SuperIgor, a framework for instruction-following tasks. Unlike prior
methods that rely on predefined subtasks, SuperIgor enables a language model to
generate and refine high-level plans through a self-learning mechanism, reduc-
ing the need for manual dataset annotation. Our approach involves iterative co-
training: an RL agent is trained to follow the generated plans, while the language
model adapts and modifies these plans based on RL feedback and preferences.
This creates a feedback loop where both the agent and the planner improve jointly.
We validate our framework in environments with rich dynamics and stochasticity.
Results show that SuperIgor agents adhere to instructions more strictly than base-
line methods, while also demonstrating strong generalization to previously unseen
instructions.

1 INTRODUCTION

Figure 1: Conceptual diagram of the SuperIgor
framework designed for Instruction Following.

The instruction-following task (Shridhar et al.,
2020; Chevalier-Boisvert et al., 2018; Zhong
et al., 2021) involves an AI agent achieving
a goal specified as a textual instruction. This
task can be framed within reinforcement learn-
ing, where the agent must develop a policy to
maximize a reward that reflects how well it fol-
lows the given instruction. The challenge lies in
constructing an optimal policy based on multi-
modal observations, combining textual and vi-
sual information from the environment.

One possible approach to solving the Instruc-
tion Following task involves encoding both vi-
sual data and textual instructions into a shared
latent representation, upon which a policy is
subsequently built (Zhong et al., 2019; Lynch
et al., 2022; Wang & Narasimhan, 2021). Tech-
niques such as CLIP (Yao et al., 2022) and
FiLM (Perez et al., 2018) are commonly used to
enhance this multimodal encoding. However, a
key limitation of this method arises when the
instruction is complex and requires the execution of a lengthy sequence of actions. In partially
observable environments or dynamic settings, it becomes particularly challenging for the agent to
consistently align the appropriate action with the instruction, especially when faced with diverse and
often ambiguous observations.

On the other hand, previous work such as Zhang et al. (2024); Ahn et al. (2022) demonstrate that the
instruction-following task can be approached through plan generation, decomposing the instruction
into a sequence of high-level actions. In such approaches, a large language model first breaks down
the instruction into a structured list of high-level actions. The resulting plan is then encoded into

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a structured representation, which can be an embedding obtained from a language model Zhang
et al. (2022) or a one-hot vector encoding Volovikova et al. (2024) that is passed to the RL agent for
execution. The generated plan, formatted accordingly, is then fed into the RL agent. This approach
improves generalization to out-of-distribution tasks, as complex natural language formulations are
transformed into a deterministic sequence of steps Wang et al. (2023); Logeswaran et al. (2022); Tan
et al. (2024). The primary challenge of such methods is that the set of possible subtasks must be
predefined in advance. The agent constructs a plan by selecting from this limited set of tasks, which
restricts the method’s flexibility when encountering unforeseen situations.

In this paper, we introduce the SuperIgor framework for the instruction-following task. Our ap-
proach extends the idea of plan generation, where a language model first decomposes an instruction
into a structured sequence of subtasks, which is subsequently executed by a reinforcement learning
agent. In contrast to prior methods that depend on a fixed set of predefined subtasks, SuperIgor
adopts a more flexible strategy by incorporating a self-learning mechanism. Rather than relying on
environment-specific datasets to train the language model, our framework enables the model to iter-
atively refine its plan generation through its own outputs, enhancing generalization to unseen tasks
and significantly reducing the need for manual data curation. Furthermore, we demonstrate that
SuperIgor performs effectively in dynamic and partially observable environments such as CrafText.

To conclude, our contributions are as follows:

• We propose a new self-supervised training paradigm for the instruction-following task,
where high-level plans are generated and refined through interaction between a language
model and a reinforcement learning agent—without requiring any manually annotated
datasets.

• We introduce a special curriculum to train an RL agent to accurately follow the plan despite
sparse reward conditions.

• We implement our approach in the CrafText benchmark and achieve state-of-the-art per-
formance on out-of-distribution tasks, demonstrating the robustness and flexibility of our
framework in dynamic and partially observable environments. The dataset and code for
SuperIgor are publicly available1.

2 RELATED WORK

Instruction Follwing Tasks are formulated differently depending on the type of environment.
Construction-centered settings like CraftAssist (Gray et al., 2019) and IGLU (Kiseleva et al., 2022)
define the task as building complex 3D structures based on language instructions. Navigation en-
vironments such as Touchdown (Chen et al., 2020) and Alfred (Shridhar et al., 2020) focus on
guiding an agent through spatial environments or household scenarios using natural language com-
mands. Environments like BabyAI (Chevalier-Boisvert et al., 2018) and HomeGrid (Lin et al., 2023)
emphasize planning sequences of basic actions in dynamic, evolving environments conditioned on
high-level textual goals. Meanwhile, Messenger (Wang & Narasimhan, 2021) and RTFM (Zhong
et al., 2019) present a different formulation: the agent receives textual descriptions of the game’s
mechanics — such as defining allies, enemies, or victory conditions — and must infer new behaviors
by interpreting these dynamically generated rules.

Given the diversity of environments, a variety of approaches to instruction following has been de-
veloped, often tailored to the specific task formulation. Among them, the most common strategy is
to jointly encode the instruction and the observation, bridging visual and textual modalities. One
prominent direction uses shared representation models such as CLIP (Yao et al., 2022), or feature
projection techniques like FiLM layers (Perez et al., 2018), to align linguistic and perceptual fea-
tures Zhong et al. (2019); Paischer et al. (2023); Chevalier-Boisvert et al. (2018). Alternatively,
transformer-based architectures, including EmBERT (Suglia et al., 2021) and Vision-and-Language
Navigation frameworks (Savva et al., 2019), process multimodal inputs jointly to enhance instruc-
tion understanding and execution. Additionally, model-based reinforcement learning approaches,
such as Dynalang (Lin et al., 2023), offer an alternative by learning structured policies conditioned
on textual goals within dynamic environments.

1https://anonymous.4open.science/r/SuperIgor-7A4F

2

https://anonymous.4open.science/r/SuperIgor-7A4F

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Instruction Following and Planning. Recent work has shown that large language models (LLMs),
when fine-tuned on suitable datasets, are capable of producing detailed and coherent High-Level
plans for agents based solely on textual instructions, without relying on visual observations (Jansen,
2020; Zhao et al., 2024; Zhou et al.) (. Building on this capability, a common approach to instruction
following is to provide the LLM with the task description, optionally the current environment state,
and a structured plan format; the model then generates a sequence of subgoals (e.g., DEPS (Wang
et al., 2023), Translated LLM (Huang et al., 2022)). However, such methods have two fundamental
limitations. First, the generated subgoals must correspond to a predefined set of skills available in
the environment, which requires mapping each subgoal to the closest existing skill using additional
heuristics or learned similarity metrics (Logeswaran et al., 2022). Second, these pipelines typically
assume the presence of a pre-trained low-level controller that is already capable of executing the
predicted skills, leaving the problem of learning a low-level policy unaddressed. Methods that jointly
train an RL agent (e.g., SayCan (Ahn et al., 2022), PSL (Wang et al., 2023), or IGOR (Volovikova
et al., 2024)) still rely on a predefined skill library or require dense, manually designed reward
signals for each subtask. Furthermore, many existing planning systems depend on extremely large
LLMs (100B+ parameters), which limits their practicality in resource-constrained settings.

These limitations leave open an important question: how can we learn a low-level policy for in-
struction following in environments where no predefined set of executable skills is available? In this
work, we introduce SuperIgor, a method that addresses this challenge. SuperIgor generates plans
without relying on any predefined skill set, learns a low-level policy under sparse rewards (where
individual subtask completion cannot be directly verified and reward is given only for accomplishing
the full instruction), and adapts the generated plans to support RL training in dynamic and stochastic
environments. Importantly, we demonstrate that our method operates effectively using a planning
model with only 14B parameters, significantly reducing the computational requirements compared
to prior approaches. A detailed comparison of the methods with SuperIgor is presented in the table
3.

3 PROBLEM STATEMENT

The environment is formalized as a goal-based Partially Observable Markov Decision Process
(POMDP), defined by the tuple (S,A,O, T ,R,G, γ). The agent receives a natural language in-
struction I and must achieve the corresponding latent goal g ∈ G. Each observation o ∈ O contains
partial information about both the environment and the instruction I . The agent learns a grounding
function fg(I) to infer the latent goal g = fg(I).

The policy π(a | o) selects actions based on observations to maximize the expected cumulative
reward: π∗ = argmaxπ Eπ

[∑T
t=0 γ

tR(st, at, g)
∣∣∣ o0] . The environment involves stochastic tran-

sitions T (s′ | s, a) and partial observability, requiring the agent to infer goals and act effectively
under uncertainty.

We extend this setup by introducing plans. In the planning-augmented formulation, the agent does
not receive the instruction I directly. Instead, it is provided with a plan p = (p1, p2, . . . , pn) derived
from I , where each step pi corresponds to an intermediate subgoal gi = fg(pi). At each timestep,
the agent observes the environment together with the current plan step pϕ(t). The optimization

objective becomes: π∗ = argmaxπ Eπ

[∑T
t=0 γ

tR
(
st, at, gϕ(t)

) ∣∣∣ o0] , where gϕ(t) is the subgoal
associated with the active plan step.

In contrast to settings with predefined subtasks and explicit intermediate rewards, our formulation
introduces two key challenges:

1. Subtask alignment under sparse rewards. The agent must discover how its behavior
aligns with intermediate subgoals despite only receiving sparse, delayed feedback upon
completing the full instruction. This exacerbates the credit assignment problem.

2. Extended action space. The agent must also decide when to terminate the current subtask.
This requires augmenting the action space with control operations (e.g., a DONE action),
which increases both exploration complexity and the difficulty of learning effective switch-
ing strategies.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 SUPER IGOR

Figure 2: Super Igor Pipeline: The pipeline consists of four stages: (1) a language model generates
multiple plan options for a given instruction; (2) a policy model is trained via PPO to execute each
plan in the environment; (3) each plan is validated by measuring its execution success rate; (4) the
language model is optimized using Direct Preference Optimization (DPO) based on plan perfor-
mance scores. This iterative loop refines both plan generation and execution.

Super Igor framework proposes a method for jointly training a large language model and a reinforce-
ment learning agent to solve instruction-following tasks. The LLM is responsible for transforming
natural language instructions into structured plans, i.e. sequences of subtasks. The RL agent learns
to execute these plans in the environment by interacting with it and maximizing delayed rewards.

The training process proceeds through the following stages:

1. Plan Generation (4.1): The LLM extracts possible subtasks from instructions and gen-
erates multiple candidate plans in natural language during the initial cycle (Cycle 1). In
subsequent cycles (Cycle 2–N), the candidate pool is iteratively refined by filtering and
re-prioritization, based on how well the plans align with the RL agent’s performance.

2. Policy Learning (4.2): The RL agent is trained to execute the selected plans in the envi-
ronment.

3. Plan Validation (4.3): The quality of candidate plans is evaluated according to the RL
agent’s success rate and execution trajectories.

4. LLM Fine-Tuning (4.4): The language model is fine-tuned with feedback derived from
validation, aligning its scoring of plans with the agent’s actual performance.

4.1 PLAN GENERATION

In our approach, we first generate all possible plans for the training set in zero-shot mode during the
initial cycle. In subsequent cycles, we progressively reduce the set of candidate plans by filtering
out those that perform poorly for the agent. Concretely, the initial cycle produces the complete
pool of plans, while later cycles re-prioritize them using the LLM’s negative log-likelihood (NLL)
score. Importantly, we leverage the agent’s performance feedback as a preference signal to fine-tune
the LLM with DPO, so that the model learns to align its scoring with the agent’s actual success in
executing the plans.

Zero-shot plans candidates generation (Cycle 1). Since the language model used for plan gener-
ation may not fully capture the exact dependencies and interaction rules of the target environment,
we propose a structured procedure that separates the identification of goals from the reasoning about
prerequisite constraints. The method unfolds in four steps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

First, we build a subtask base by extracting and canonicalizing possible subtasks from the instruction
dataset, creating a unified vocabulary that reduces synonymy and ensures consistency. Each subtask
is expressed in natural language, but in a strict normalized format that allows passing them one-by-
one to the policy without ambiguity.

Second, the model generates a goal-level plan, producing for each instruction a single conceptual
representation of its intended outcome, expressed in terms of the established subtask base. This step
abstracts away from concrete execution details and captures only the high-level intent.

Third, we induce a subtask ontology that encodes the model’s hypotheses about prerequisite re-
lations, i.e., which subtasks must be completed before others can be attempted. This provides a
structured view of dependencies across the subtask base.

Finally, we perform plan expansion, where the single conceptual plan is unfolded into multiple
detailed plans, with their number corresponding to the hypotheses proposed by the model. The
ontology ensures that these expanded variants remain consistent with prerequisite relations and avoid
contradictions.

This approach provides two key benefits. First, it improves plan consistency by constructing plans
from a shared set of subtasks and their relations, rather than from independent and potentially con-
tradictory structures. Second, it supports partial normalization, since the model, when processing
new instructions, tends to reuse previously identified subtasks, thereby reducing the proliferation of
synonymous formulations. The details of the method and pseudocode are provided in Appendix A,
and the prompts are presented in Appendix B.

Plans re-prioretizing for RL-agent (Cycles 2-N). After obtaining the initial feedback on agent
performance for the generated plans and applying LLM fine-tuning (Subsection 4.4), subsequent
cycles focus on re-prioritizing the candidate set. In each cycle, plans are rescored using the language
model’s negative log-likelihood (NLL), which reflects how natural or plausible a plan is according
to the model. Plans are then ranked by this score, and only the top-performing subset is retained for
further training. As cycles progress, this iterative filtering process gradually narrows the candidate
space, aligning the remaining plans both with the agent’s empirical success and with the model’s
learned preferences.

4.2 POLICY LEARNING

Algorithm 1 Skill Curriculum Learning
Require: Set of all plans P , success-rate threshold τ
1: Initialize mastered skillsM← ∅
2: Initialize PPO agent πθ

3: Initialize active plans

S ← {p ∈ P | p contains exactly one skill}

4: while training not converged do
5: Train πθ on active plans S and collect rollouts
6: For each skill s, compute success rate:

SR(s) =
Successful episodes containing s

Total episodes containing s

7: if SR(s) ≥ τ then
8: Add to mastered skillsM←M∪ {s}
9: end if

10: Update plans

S ← {p ∈ P | p has at most one unmastered skill}

11: end while
12: return πθ,M

After the plans have been generated, we train
a reinforcement learning agent using the step-
wise plan observation setting (Subsection 3).
At each timestep, the agent observes the envi-
ronment and receives an embedding of the cur-
rent plan step. It must learn to align actions
with plan steps based on a delayed reward sig-
nal provided only upon successful completion
of the entire plan. We use the PPO algorithm to
train the policy.

To address the sparse reward problem in train-
ing, we introduce Skill Curriculum Learning.
The core principle is to create a dynamic cur-
riculum that begins with the simplest single-
subtask tasks, allowing the agent to learn foun-
dational behaviors under a relatively dense re-
ward signal.

As the agent trains, we monitor its Success Rate
(SR) for each subtask. Once a subtask’s SR sur-
passes a predefined threshold τ , it is marked as
”mastered.” This mastery triggers an update to
the curriculum: the set of active training plans
is expanded to include any plan composed of already mastered subtasks and, at most, one new, un-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

mastered subtask. This incremental expansion, detailed in Algorithm 1, ensures a smooth learning
gradient and prevents the agent from being overwhelmed.

4.3 PLAN VALIDATION

To evaluate the quality of each proposed plan, we repeatedly execute the RL agent in the environment
using that specific plan as input. This process is essential due to the highly dynamic and stochastic
nature of the environment, where outcomes can vary significantly across runs even for the same plan
and initial instruction.

As a result, a single rollout is not sufficient to reliably assess plan effectiveness. Instead, we aggre-
gate statistics over multiple rollouts, such as the average success rate or reward, to obtain a more
stable and interpretable estimate of how well the plan supports instruction completion. This repeated
evaluation allows us to more confidently associate a given plan with its empirical performance and
to use this signal to guide future training and model selection.

4.4 LLM FINE-TUNING

In the first cycle, we warm-start the language model by supevised finetuning (SFT) to reproduce the
same plans that were obtained during the zero-shot generation stage (see Section 4.1). This step
adapts the model to the specific distribution of plans relevant to the target environment, ensuring
better alignment with the initial candidate pool.

After this supervised adaptation, subsequent cycles incorporate plan-level quality signals collected
during execution and validation. These signals capture how well individual plans support the agent
in solving the target task. Based on them, we construct a dataset of plan pairs with explicit prefer-
ences—each pair contains a higher-scoring (preferred) and a lower-scoring (non-preferred) candi-
date. This preference dataset is then used to fine-tune the model with DPO, allowing the LLM to
internalize the agent’s feedback and improve its plan generation over time.

Importantly, the DPO signal in our framework serves as a lightweight plan-selection bias rather
than a precise credit assignment mechanism. During early learning, the RL agent naturally makes
progress on some plan structures more easily than others. DPO increases the probability of these
early-learnable plans, effectively forming an automated curriculum over plan decompositions. Plans
that produce no early progress are not labeled as incorrect; they are simply deprioritized because
the agent is not yet able to learn from them effectively. This approach intentionally sidesteps the
challenge of precisely attributing failures and instead focuses on accelerating training by reinforcing
empirically useful plan patterns.

5 EXPERIMENTS

In this section, we describe the experiments conducted to answer the following research questions
(RQ):

RQ1. (Effectiveness and Generalization of Auto-Generated Plans): How well can the SuperIgor
agent learn to follow instructions by leveraging LLM-generated plans, and how well does this
learned behavior generalize to new instructions? We measure effectiveness as the agent’s final
success rate on training tasks (Atomic and Combo splits). We measure generalization using final
success rates on two test sets: Paraphrases (same goals, new wording) and New Objects (new goal
combinations).

RQ2. (Policy Training under Sparse Feedback): How well can the SuperIgor policy model be
trained to follow plans under sparse feedback? The primary metric for this is the final SR on the
training tasks.

RQ3. (Agent Effectiveness with Iterative SuperIgor Cycles): How does the agent’s performance
evolve over multiple iterations of the SuperIgor planning-training cycle?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 ENVIRONMENT.

We conduct our experiments in the CrafText benchmark (Volovikova et al., 2025), which provides
a unified testbed for evaluating instruction-following agents in multimodal, dynamic, and partially
observable environments. It enables us to assess both the agent’s ability to interpret diverse linguistic
formulations and to adapt to novel goals. The world of CrafText closely resembles Minecraft, with
episodes varying due to autonomous stochastic mob behavior, randomized resource distribution,
and asynchronous events. Moreover, the agent must manage survival constraints such as hunger,
thirst, and hostile entities, introducing competing objectives beyond mere instruction completion.
Importantly, the conditions under which the agent must execute instructions change across episodes,
further increasing the complexity of the setting.

We use the EASY split of the dataset, which contains over 900 instructions and a vocabulary of more
than 1,500 unique words. The dataset is structured to rigorously test different aspects of learning
and generalization. The training set consists of two types of instructions: Atomic, which specify a
single, indivisible goal (e.g., “craft a furnace”), and Combo, which combine multiple atomic goals
into a sequence (e.g., “craft a furnace and then collect wood”).

To evaluate the agent’s ability to generalize, the evaluation protocol employs two distinct test sets.
The Paraphrases set contains Combo instructions from the training set (the same goals as in
Combo) reformulated with novel vocabulary and syntax, testing robustness to linguistic variation.
The New Objects set introduces new combinations of atomic goals that appeared during training but
never occurred together in a single instruction, directly testing compositional generalization. The
sizes of the Combo / Paraphrases / New Objects splits are comparable.

In this dataset, task composition often involves overlapping subtasks. For example, crafting a fur-
nace first requires making a wooden pickaxe and collecting stone—the same steps needed to craft a
stone pickaxe or to smelt metal. As a result, agents may learn to rely on broadly useful routines that
solve many tasks without attending to the instruction itself. This undermines the central objective
of instruction-conditioned learning: instead of interpreting language, agents simply optimize reward
by executing generic behavioral patterns. To prevent such behavior, we apply a strict interaction
protocol: an instruction is marked as successful only when all of its goals are fully and precisely
completed, with no extraneous steps added. To distinguish this challenging setting from the stan-
dard benchmark, we refer to it as EASY-STRICT in our experiments. Further details regarding the
environment and instruction examples are provided in Appendix D.

5.2 EXPERIMENTS SETUP

In our pipeline, we generate plans using Qwen2.5-14B-Instruct2, fine-tune it for one epoch with
DPO (β = 0.5, lr = 1 × 10−5) to stabilize local updates, and then train policies with PPO-T
(lr = 0.001, ε = 0.02) and Skill Curriculum Learning for 2.5B steps. We validate by executing 10
plans across 50 seeds to assess robustness. Two full cycles were conducted, with evaluations before
and after LLM fine-tuning, and results compared against baselines at 2.5B and 5B steps (Figure 3).
Additional hyperparameters are described in more detail in Appendix N.

5.3 BASELINES

For our comparative analysis, we use several established baselines from the original CrafText study
(Volovikova et al., 2025). PPO-T (Text-Augmented PPO) augments PPO with textual grounding: in-
structions are encoded using a frozen DistilBERT [CLS] embedding, concatenated with CNN-based
visual features, and processed by a GRU to maintain temporal context. PPO-T+ (Plan-Augmented
PPO) extends this by first translating each instruction into a structured plan with GPT-4, and then
providing the agent with a plan embedding instead of the raw instruction.

FiLM (Perez et al., 2018) offers an alternative integration of language and vision. Here, instruction
embeddings generate parameters that modulate CNN outputs via Feature-wise Linear Modulation
layers, allowing textual context to directly shape visual feature processing.

2https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

7

https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

To ensure consistency, all baselines follow a strict protocol requiring the DONE action to signal
task completion, with success only counted when both the instruction is satisfied and DONE in-
voked. We also evaluate an Auto-DONE (Soft-) variant, where episodes terminate automatically
upon completion, and include an Oracle agent trained with PPO-T and Skill Curriculum Learning
on human-written ground-truth plans.

(a) Performance on Atomic CrafText Tasks (b) Performance on Combo CrafText Tasks

(c) Performance on New Object CrafText Tasks (d) Performance on Paraphrases CrafText Tasks

0.

0.

0.1

0.2

0.3

0.4

0.5

0.

0.1

0.2

0.3

0.4

0.5

0.05

0.10

0.20

0.25

0.30

0.15

Su
cc

es
s

R
at

e
Su

cc
es

s
R

at
e

Cycle 1

Cycle 1 Cycle 1

Cycle 1 Cycle 2

Cycle 2Cycle 2

Cycle 2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.

Oracle SI-DPO Soft PPO-T Soft PPO-T+ Soft FiLM

PPO-T PPO-T+ FiLM

Figure 3: Comparison of SuperIgor and baseline performance on CrafText tasks (Atomic / Combo
/ New Objects / Paraphrases). SI-SFT denotes SuperIgor validated on plans generated after LLM
supervised fine-tuning, while SI-DPO denotes SuperIgor validated after LLM DPO fine-tuning. All
agents were evaluated at 2.5 billion steps (corresponding to the first cycle in the SuperIgor approach)
and 5 billion steps (corresponding to the second cycle).

5.4 EXPERIMENTS RESULT

RQ1. Effectiveness and Generalization of Auto-Generated Plans in the SuperIgor Pipeline

a) Auto-generated plans train agents far more effectively than instruction-only baselines. On
Atomic tasks (Figure 3(a)), SuperIgor agents (SI-DPO / SI-SFT) reach 0.35–0.45, compared to only
0.10–0.19 for instruction-only RL baselines. Oracle remains higher at 0.56–0.65, but the SuperIgor
→ Oracle gap (≈ 0.20) is much smaller than the Baselines→ SuperIgor gap (≈ 0.25–0.30), clearly
showing the value of plan supervision. On Combo tasks (Figure 3(b)), SuperIgor achieves 0.21,
outperforming baselines at 0.08, while Oracle reaches 0.46. The wider gap to Oracle here can be
explained by the fact that SI agents must simultaneously learn up to 20 alternative plans, whereas
Oracle is trained on a single expert-aligned plan, which simplifies optimization.

b) Agents trained with auto-generated plans generalize on unseen goals better than those
trained with Oracle plans.

On Combo tasks, Oracle achieves 0.46, while SuperIgor reaches 0.21. But on New Object tasks
(Figure 3(c)), Oracle drops sharply to ≈ 0.22, while SI decreases more moderately to 0.12–0.17.
Thus, although SI lags in absolute terms, its performance is more stable: the Oracle–SI gap shrinks
from 0.25 on Combo to only 0.05–0.10 on New Object tasks. We attribute this stronger generaliza-
tion precisely to the fact that SI agents learn from multiple alternative plans per instruction, which
exposes them to richer variability during training.

c) Agents trained with auto-generated plans do not lose performance when instructions are
paraphrased.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Paraphrases reuse (Figure 3 (d)) the same goals as in Combo tasks but are expressed in different
linguistic forms. In Cycle 1, SI-DPO performance increases from 0.07 on Combo to 0.09 on Para-
phrases. In Cycle 2, SI-DPO remains stable, with 0.21 on Combo and 0.20 on Paraphrases. This
shows that SuperIgor agents can successfully transfer their learned strategies to differently worded
instructions, maintaining performance even when the language of the goal changes.

RQ2. Policy Training under Sparse Feedback

a) Skill Curriculum Learning enhances agent to learn more subtasks compared to unstruc-
tured training

We evaluate the training process by the number of unique subtasks the agent masters over time.
A subtask is considered ”mastered” once its success rate surpasses a 70% threshold. This metric
provides a clearer insight into the agent’s growing capabilities and its ability to handle compositional
tasks. We compare three configurations, with the results visualized in Figure 4.

The agent trained with Skill Curriculum on Oracle Plans sets a practical upper bound for perfor-
mance. By the 10 billion step mark, it successfully masters 14 distinct subtasks. It signifies that the
agent has acquired almost the entire ’mining’ technology tree: all the achievements from collecting
wood to collecting iron. Furthermore, it demonstrates the ability to execute complex, combined
instructions that require interleaving subtasks from different progression branches, such as eating,
drinking, and collecting resources within a single, coherent plan.

Agent trained on Oracle plans without the Skill Curriculum perform worse with only mastered 5
basic subtasks. Even with a flawless plan, the agent fails to learn without a structured progression
that allows it to build foundational skills first. This finding confirms that Skill Curriculum helps to
overcome sparse feedback problem and enables agent abilities to learn more subtasks.

b) SI-Initial plans are a good initial approximation of optimal plans

Skill Curriculum with SI-Initial plans graph follows this trajectory closely, mastering 12 subtasks
within the same timeframe. This demonstrates the high quality of our SI-INITIAL plan generation,
as it enables the agent to acquire most of the subtasks achievable even with perfect plans. The gap
between these two curves represents the remaining challenge in our automated plan generation.

In conclusion, the curriculum is not just beneficial, it is critical for meaningful skill ac-
quisition in this environment. The ablation clearly shows that our Skill Curriculum Learn-
ing framework is the key enabler of learning, while our SI-INITIAL procedure gener-
ates plans of sufficient quality to unlock a significant portion of the agent’s potential and
a good baseline for futhermore plan generation improvement using SuperIgor framework.

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (in billions)

2

4

6

8

10

12

14

Nu
m

be
r o

f M
as

te
re

d
Sk

ills

Oracle Plans,
Skill Curriculum

SI-Initial plans,
Skill Curriculum

Oracle plans,
No Skill Curriculum

Figure 4: A comparative analysis of the number
of mastered subtasks over 10 billion environment
steps. The results highlight the critical role of the
Skill Curriculum, as agents trained without it fail
to learn, even with optimal Oracle Plans.

RQ3. Agent Effectiveness with Iterative Su-
perIgor Cycles

a) Plan-following quality improves across cy-
cles. On Atomic tasks (training, Figure 3, (a)),
SI-DPO increases from 0.34 in Cycle 1 to 0.43
in Cycle 2. On Combo tasks (training, Figure
3, (b)), SI-DPO grows from 0.06 in Cycle 1
to ≈ 0.21 in Cycle 2. On New Object tasks
(testing, Figure 3, (c)), SI-DPO declines only
slightly from ≈ 0.21 to 0.12–0.17, showing
that performance improves with additional Su-
perIgor cycles on both training and testing se-
tups and remains relatively stable when moving
to unseen goals.

b) Plan reprioritization under DPO illus-
trates the process by which language mod-
els are incrementally grounded in the agent’s
behavior and the underlying environment mechanics.. The re-ranking visualization (Appendix
F, Figure 8) shows how plans shift across SFT, DPO-C1, and DPO-C2. Success Rates range from
0.68 to 0.86. A plan with SR = 0.86 steadily climbs to the top across cycles, while weaker plans

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

with SR ≈ 0.68 remain consistently at the bottom. These changes are gradual rather than abrupt,
suggesting that DPO provides a soft grounding signal that progressively aligns plan priorities with
the agent’s execution success. Exposure to multiple alternative plans per instruction during train-
ing enriches variability, which explains why SI agents, although weaker in performance, generalize
better than Oracle on unseen tasks.

6 CONCLUSION

In this work, we introduced SUPERIGOR, a novel framework that teaches agents to follow complex
instructions in sparse-reward environments by iteratively aligning an LLM planner with an RL policy
using agent feedback. Our experiments lead to several key conclusions.

First, our core contribution—the iterative alignment of plans using DPO—is highly effective. The
SUPERIGOR framework improves both plan quality and agent performance across training cycles by
providing a soft grounding signal that progressively aligns the LLM’s preferences with the agent’s
real-world execution capabilities.

Second, we find that a structured curriculum is essential. Our experiments revealed that even with
perfect, human-authored Oracle Plans, the agent fails to learn complex subtasks. Our Skill Cur-
riculum Learning framework solves this by enabling the agent to master foundational skills first,
demonstrating that managing task complexity is as crucial as providing a correct plan.

Finally, our work revealed that agents trained on a single, optimal Oracle Plan generalize poorly to
unseen goal combinations. In contrast, agents trained on the diverse set of auto-gengerated plans
from SUPERIGOR exhibit far more robust generalization. This suggests that exposure to a varied set
of ”good-enough” plans is more beneficial for developing flexible policies than training on a single,
narrow path to success.

REPRODUCIBILITY STATEMENT
The learning process is described in detail in the section 5.2. The hyperparameters are shown in the
Appendix N. The computing resources used for conducting experiments are described in the section
J. The full code base is available for download to ensure reproducibility of the results, the link is in
the Introduction section.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments, 2020. URL https:
//arxiv.org/abs/1811.12354.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Jonathan Gray, Kavya Srinet, Yacine Jernite, Haonan Yu, Zhuoyuan Chen, Demi Guo, Siddharth
Goyal, C. Lawrence Zitnick, and Arthur Szlam. Craftassist: A framework for dialogue-enabled
interactive agents, 2019. URL https://arxiv.org/abs/1907.08584.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Peter A Jansen. Visually-grounded planning without vision: Language models infer detailed plans
from high-level instructions. arXiv preprint arXiv:2009.14259, 2020.

Julia Kiseleva, Alexey Skrynnik, Artem Zholus, Shrestha Mohanty, Negar Arabzadeh, Marc-
Alexandre Côté, Mohammad Aliannejadi, Milagro Teruel, Ziming Li, Mikhail Burtsev, Maartje
ter Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan Sun, Kavya Srinet, Arthur Szlam, Ahmed

10

https://arxiv.org/abs/1811.12354
https://arxiv.org/abs/1811.12354
https://arxiv.org/abs/1907.08584

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Awadallah, Seungeun Rho, Taehwan Kwon, Daniel Wontae Nam, Felipe Bivort Haiek, Edwin
Zhang, Linar Abdrazakov, Guo Qingyam, Jason Zhang, and Zhibin Guo. Interactive grounded
language understanding in a collaborative environment: Retrospective on iglu 2022 competition.
In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), Proceedings of the NeurIPS
2022 Competitions Track, volume 220 of Proceedings of Machine Learning Research, pp. 204–
216. PMLR, 28 Nov–09 Dec 2022. URL https://proceedings.mlr.press/v220/
kiseleva23a.html.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, P. Abbeel, Dan Klein, and Anca D. Dragan.
Learning to model the world with language. ArXiv, abs/2308.01399, 2023. URL https://
api.semanticscholar.org/CorpusID:260438420.

Lajanugen Logeswaran, Yao Fu, Moontae Lee, and Honglak Lee. Few-shot subgoal planning with
language models. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 5493–5506,
2022.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. CoRR,
abs/2210.06407, 2022. doi: 10.48550/ARXIV.2210.06407. URL https://doi.org/10.
48550/arXiv.2210.06407.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic helm: A
human-readable memory for reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, and Vladlen Koltun. Habitat: A
platform for embodied AI research. In 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 9338–9346. IEEE,
2019. doi: 10.1109/ICCV.2019.00943. URL https://doi.org/10.1109/ICCV.2019.
00943.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740–10749, 2020.

Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and Gaurav S. Sukhatme.
Embodied bert: A transformer model for embodied, language-guided visual task comple-
tion. ArXiv, abs/2108.04927, 2021. URL https://api.semanticscholar.org/
CorpusID:236975859.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning llms with embodied environments via reinforcement learning.
arXiv preprint arXiv:2401.14151, 2024.

Zoya Volovikova, Alexey Skrynnik, Petr Kuderov, and Aleksandr I Panov. Instruction following
with goal-conditioned reinforcement learning in virtual environments. In ECAI 2024, pp. 650–
657. IOS Press, 2024.

Zoya Volovikova, Gregory Gorbov, Petr Kuderov, Aleksandr Panov, and Alexey Skrynnik. CrafText
benchmark: Advancing instruction following in complex multimodal open-ended world. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 26131–26151, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1267. URL
https://aclanthology.org/2025.acl-long.1267/.

11

https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://api.semanticscholar.org/CorpusID:260438420
https://api.semanticscholar.org/CorpusID:260438420
https://doi.org/10.48550/arXiv.2210.06407
https://doi.org/10.48550/arXiv.2210.06407
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/ICCV.2019.00943
https://api.semanticscholar.org/CorpusID:236975859
https://api.semanticscholar.org/CorpusID:236975859
https://aclanthology.org/2025.acl-long.1267/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

H. J. Austin Wang and Karthik Narasimhan. Grounding language to entities and dynamics for
generalization in reinforcement learning. ArXiv, abs/2101.07393, 2021. URL https://api.
semanticscholar.org/CorpusID:231639188.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, Chunjing
Xu, and Hang Xu. Detclip: Dictionary-enriched visual-concept paralleled pre-training for open-
world detection. Advances in Neural Information Processing Systems, 35:9125–9138, 2022.

Jingwei Zhang, Thomas Lampe, Abbas Abdolmaleki, Jost Tobias Springenberg, and Martin
Riedmiller. Game on: Towards language models as rl experimenters. arXiv preprint
arXiv:2409.03402, 2024.

Yichi Zhang, Jianing Yang, Jiayi Pan, Shane Storks, Nikhil Devraj, Ziqiao Ma, Keunwoo Peter Yu,
Yuwei Bao, and Joyce Chai. Danli: Deliberative agent for following natural language instructions.
arXiv preprint arXiv:2210.12485, 2022.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to novel environment
dynamics via reading. arXiv preprint arXiv:1910.08210, 2019.

Victor Zhong, Austin W Hanjie, Sida I Wang, Karthik Narasimhan, and Luke Zettlemoyer. Silg:
The multi-environment symbolic interactive language grounding benchmark. arXiv preprint
arXiv:2110.10661, 2021.

Zhiyuan Zhou, Pranav Atreya, Abraham Lee, Homer Walke, Oier Mees, and Sergey Levine.
Autonomous improvement of instruction following skills via foundation models, 2024. URL
https://arxiv. org/abs/2407.20635.

12

https://api.semanticscholar.org/CorpusID:231639188
https://api.semanticscholar.org/CorpusID:231639188

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A PLANS GENERATION:CANDIDATES GENERATION

Algorithm 2 Subtask Bank Update
Require: Instruction stream D, language model fLLM
Ensure: Subtask bank B, goals plans P
1: Initialize subtask bank B ← ∅
2: Initialize goals plans P ← ∅
3: for each instruction I ∈ D do
4: Identify goal subtasks conditioned on B:

S ← fLLM(I, B)

5: for each subtask s ∈ S do
6: if s /∈ B then
7: B ← B ∪ {s}
8: end if
9: end for

10: Goals plan for I: P[I]← S
11: end for
12: return B,P

In or plan extraction method the goal is to elicit
the model’s hypotheses about the dependencies
between subtasks in the environment. In the
first step we construct a subtask bank B, i.e.,
the set of all candidate subtasks derived from
the instruction set. For each instruction I ∈ D,
we prompt the language model fLLM to gener-
ate a goals plan P[I], i.e., the set of goal sub-
tasks directly required by the instruction. The
model is provided with the current contents of
the subtask bank B, which encourages reuse of
already known subtasks and reduces the intro-
duction of redundant synonyms. If the gener-
ated goals contain subtasks not yet present in
B, they are added. At the initial iteration the
bank is empty, so all subtasks generated by the
model are included. The complete process is
summarized in Algorithm 2.

Algorithm 3 Ontology Construction
Require: Subtask bank B, language model fLLM,

queries per pass N , threshold τ
Ensure: Ontology graph G = (V,E)
1: Initialize counts count(r, t) ← 0 for all r, t ∈

B, r ̸= t
2: for each target subtask t ∈ B do
3: for two passes do
4: Define candidate set C:

C ←

{
B \ {t}, pass 1
{r ∈ B : count(r, t) > 0}, pass 2

5: for i = 1 . . . N do
6: Query prerequisites:

R← fLLM(t, C)

7: for each r ∈ R do
8: count(r, t)← count(r, t) + 1
9: end for

10: end for
11: end for
12: end for
13: Initialize edge set E ← ∅
14: for each pair (r, t) do
15: Compute probability:

p̂(r → t) =
count(r, t)

N

16: Compute Wilson lower bound LB(p̂, N)
17: if LB ≥ τ then
18: E ← E ∪ {(r → t)}
19: end if
20: end for
21: return G = (V = B,E)

Once a sufficiently rich subtask bank B has
been established, ontological dependencies be-
tween subtasks are extracted. For each target
subtask t ∈ B, the language model is queried
multiple times to determine which elements
from B are required for the completion of t.
For every candidate dependency (r → t), its
probability is estimated as

P (r → t) =
kt
N

,

where kt denotes the number of times subtask
r was identified as necessary for t and N is the
number of queries. To filter out spurious associ-
ations, the Wilson confidence interval is applied
to the resulting probabilities. The procedure is
carried out in two passes: first over the entire
bank B, and then restricted to the subtasks pre-
viously identified as relevant, which refines the
weighting of relations. The final output is an
ontology graph G = (V,E) that encodes the
model’s hypothesized structure of interrelations
among subtasks. The full procedure is summa-
rized in Algorithm 3.

After constructing the ontology G = (V,E),
each goal plan P[I] is expanded with its de-
pendencies. For every subtask s ∈ P[I], we
recursively collect all prerequisites in G. The
union of these subtasks with the original goals
defines the plan’s vertices, which are then topo-
logically sorted so that prerequisites precede
dependents. The result is a linearized plan P
containing the goals and all supporting subtasks
(Algorithm 4).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4 Final Plan Generation from Ontology

Require: Instruction I , goals mapping G, goals plan P , ontology G = (V,E)
Ensure: Final plan P

1: Retrieve goal subtasks: S ← G[I]
2: Initialize plan vertex set: U ← S
3: for each s ∈ S do
4: Expand prerequisites via ontology:

D ← PREREQCLOSURE(s,G)

5: U ← U ∪D
6: end for
7: Extract induced subgraph: GU ← G[U]
8: Topologically sort GU to obtain ordered plan P
9: return P

B PLANS GENERATION: PROMPT FOR PLAN GENERATION

You control an agent in a 2D game with simplified Minecraft environment.
You will need to provide a detailed step-by-step plan for following the user’s instructions.
You must include all the preliminary steps that it needs to complete.

You are controlling an agent in a 2D game set within a simplified Minecraft-like environment.
The agent starts from scratch with an empty inventory and no gathered resources.
Your task is to generate a step-by-step plan that enables the agent to follow a given user instruction.

What you must do:
- Break down the instruction into atomic actions the agent needs to perform.
- Include all necessary preliminary steps, such as gathering or crafting resources.
- Assume the agent has nothing at the beginning | you must plan from the ground up.
- Output your answer as a Python list of strings.
- Each string must represent one atomic skill invocation, written on a separate line.

Format for each step:
"skill_name(arg1 = value1, arg2 = value2, ...)"
- skill_name: the name of the primitive skill or action the agent will execute.
- Inside the parentheses, list all required arguments with their names and corresponding values.

Example:
gather_resource(resource_type = wood)

Each of the step agents will be implemented without knowledge of what it did before,
so it can only rely on observation and the current step.
Therefore, each step must be self-sufficient and not require knowledge of past steps.

"If the instruction doesn’t specify what the agent needs to do and is more general|like
’Explore the world’ or ’Go out and examine the world around you’|send explore(object=world).
In this case, the plan should consist of only one step: "explore(object=world)"."

Send your answer as a python list.
Instruction: Make a pickaxe from wood
Answer:
["gather_resource(resource_type = wood)",
"gather_resource(resource_type = wood)",
"create_item(item_type = table)",
"gather_resource(resource_type = wood)",
"gather_resource(resource_type = wood)",
"create_item(item_type = wooden_pickaxe)"]

Send your answer as a python list.
Instruction: $INSTRUCTION$
Answer:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY: SUPERIGOR FRAMEWORK

To quantify the contribution of each module of the SuperIgor framework, we conduct an ablation
study in which individual components are removed from the training pipeline. We evaluate the in-
fluence of four factors: (1) Ontology-Based Training Plan Generation, (2) Curriculum design in the
RL stage, (3) LLM plan-model pretraining (SFT), and (4) DPO finetuning based on RL agent per-
formance signals. Table 1 presents the results of this experiment, where we measure the SuperIgor
agent’s SuccessRate on the Atom subset of the CrafText instruction dataset. The analysis of the
results yields two central findings.

Table 1: Ablation study of the SuperIgor framework, measuring agent SuccessRate on the Atom
subset of the CrafText dataset across two training cycles

Ontology Curriculum DPO SFT Cycle-1 Cycle-2

✗ ✓ ✓ ✓ 0.06 N/A
✓ ✗ ✓ ✓ 0.08 N/A
✓ ✓ ✗ ✓ 0.34 0.39
✓ ✓ ✓ ✗ 0.25 0.13
✓ ✓ ✓ ✓ 0.35 0.45

(1) Curriculum is effective only when paired with high-quality, ontology-structured plans. Al-
though a full-cycle evaluation may give the impression that the primary gains come from curriculum
learning, the results of this ablation study show that its effectiveness emerges only in combina-
tion with ontology-guided plan generation. Without ontology (i.e., without structured, hierarchical
plans), the curriculum has no meaningful ordering signal and fails to provide improvement: Cycle-1
performance drops to 0.06 when ontology is removed.

Ontology-based plans, however, naturally encode a hierarchy of instructions and goals, enabling a
principled progression from simpler to more complex targets. This hierarchical structure is precisely
what makes a curriculum implementable: the RL agent can first master low-complexity goals and
then gradually advance to more difficult ones. When ontology is present, this alignment between
plan structure and staged learning produces large gains, improving Cycle-1 performance from 0.06
(no curriculum) to 0.35 (with curriculum).

0.2 0.4 0.6 0.8 1.0
Environment steps 1e10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

E
va

lu
at

io
n

sc
or

e

sr=0.5
sr=0.6
sr=0.7
sr=0.8
sr=0.9

Figure 5: Ablation of the skill-mastery threshold τ .
The plot shows evaluation scores on the Atomic and
Combo tasks during training for different τ values.

(2) DPO improves the RL agent by
learning to prioritize plans that lead
to higher-quality behavior. Unlike
SFT, which is trained to reproduce the
ontology-induced distribution of plans,
DPO directly leverages RL performance
as a preference signal: it learns to rank
plans higher when they empirically yield
better agent behavior. Removing DPO
results in weaker prioritization: the RL
agent reaches only 0.39 in Cycle-2 with-
out DPO, compared to 0.45 when DPO is
included. Thus, DPO systematically shifts
the plan distribution toward behaviorally
effective plans, accelerating and amplify-
ing the RL agent’s improvement across cy-
cles.

C.2 ABLATION STUDY: SKILL MASTERY THRESHOLD

We conducted an ablation study to analyze the sensitivity of the Skill Curriculum Learning to the
mastery threshold parameter τ . Figure 5 presents the final performance of the Skill Curriculum

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Learning agent after 10 billion environment steps in CrafText-Symbolic configuration for different
values of τ ranging from 0.5 to 0.9.

The results demonstrate that τ = 0.7 provides an optimal balance for curriculum progression. We
hypothesize that lower thresholds (τ = 0.5) allow the agent to progress too quickly to complex
skills before achieving reliable proficiency, while higher thresholds (τ = 0.9) cause the agent to
spend excessive time perfecting basic skills, slowing overall learning. The τ = 0.7 value strikes an
optimal balance between progression speed and skill reliability.

C.3 ABLATION STUDY: CHOICE OF LLM FOR ONTOLOGY AND TRAINING-PLAN
GENERATION

To understand how the choice of language model affects the quality of the ontology and the generated
training plans we conducted an ablation study comparing several families of LLMs. For each model,
we regenerated both the ontology and the full training dataset (plans), and then trained an RL agent
using our Skill Curriculum Learning procedure.

Table 2 reports the agent’s success rate on the training split under different planner models.
The experiment includes models from the Qwen and Gemma families, as well as the larger
microsoft/NextCoder-32B model.

Table 2: Ablation on the choice of LLM used for generating both ontology and training plans. We
report success rate on the training set.

LLM Qwen1.5-32B NextCoder-32B Qwen1.5-14B Gemma-12B Qwen-7B

SR (Train) 0.43 0.26 0.35 0.14 0.22

Plan:

gather_resource(resource_type = wood)

create_item(item_type = table)

create_item(item_type = wooden_pickaxe)

gather_resource(resource_type = wood)

gather_resource(resource_type = stone)

create_item(item_type = table)

create_item(item_type =stone_pickaxe)

gather_resource(resource_type = iron) ← Current Subtask

Instruction: Harvest metallic resources for use.

Plan:

attack(item = zombie)

gather_resource(resource_type = wood)
gather_resource(resource_type = wood)
create_item(item_type = table)

create_item(item_type = wood_sword)

gather_resource(resource_type = iron) ← Current Subtask

Instruction: Vanquish a zombie while avoiding any conflict with skeletons.

Plan:

gather_resource(resource_type = wood)

gather_resource(resource_type = wood)

create_item(item_type = table)

gather_resource(resource_type = wood)

create_item(item_type = wooden_pickaxe)

gather_resource(resource_type = coal)

gather_resource(resource_type = sapling)

place_item(item = plant, x = event.x, y = event.y)

gather_resource(resource_type = water) ← Current Subtask

Instruction: Assemble a quantity of carbon, install flora and collect hydration.

Figure 6: Example of instructions and corre-
sponding plans

(1) Larger models do not necessarily pro-
duce better ontologies or plans. Although one
may expect the largest models to generate the
most structured plans, but NextCoder-32B perfor-
mance is surpassed by significantly smaller Qwen
models. Qwen-32B yields the highest perfor-
mance (0.43), and even Qwen-7B outperforms
Gemma-12B, indicating that model family and
training specialization matter more than raw pa-
rameter count.

(2) Qwen models produce more stable and se-
mantically consistent plan structures. Mod-
els from the Qwen family demonstrate higher ro-
bustness in generating hierarchical task decom-
positions that align with our ontology constraints.
This leads to more reliable curriculum construc-
tion and more effective RL training.

(3) Some widely used LLMs fail to benefit from
the alignment stage. We also conducted ex-
periments with several other well-known models,
including microsoft/phi-4, mistralai/Mistral-7B-
Instruct-v0.2, and openai/gpt-oss-20b, and found
that the alignment stage does not provide any
measurable benefit for them. Despite explicit
prompt constraints on which subtasks should be
used, these models tend to generate large num-
bers of synonymously similar subtasks. Conse-
quently, the set of goals that the agent must re-
cover becomes even larger than when instructions
are provided directly, rendering it impractical to
run the full pipeline with these models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D CRAFTEXT

To provide a concrete example of our method,
Figure 6 visualizes the agent’s state at a single timestep. The CrafText environment, shown on
the left, is a dynamic grid-world where the agent must gather resources, craft items, and navigate
diverse terrains to survive and complete tasks.

The core of our approach lies in the hierarchical decomposition of complex goals. As shown on the
right, a high-level instruction, which may be ambiguous or require long-term planning (e.g., ”Craft
an iron pickaxe.”), is first translated into a deterministic, multi-step plan. Each step in this plan
constitutes a distinct subtask.

Crucially, the agent’s policy is not conditioned on the entire plan. Instead, it focuses solely on the
currently active subtask. This transforms a challenging long-horizon problem into a more tractable
sequence of short-horizon tasks. The agent’s objective at any moment is to complete the highlighted
subtask and then invoke the DONE action. For example, optimal agent can choose DONE action
based on the inventory state (when completing subtasks such as collecting resources and crafting
items), player status (for subtasks that are related to eating, drinking or sleeping) or map state (for
subtasks such as placing blocks).

Upon successful completion, the framework provides the next subtask in the sequence, guiding the
agent through the overall plan until the final goal is achieved.

For our work we used a variation of Easy Craftext dataset EASY-STRICT, which introduces more
strict instruction completition protocol. The structure of the dataset is as follows:

Training Set:

• Atomic: Single, indivisible goals (e.g., ”Craft a furnace”).

• Combo: Sequences of multiple atomic goals (e.g., ”Craft a furnace and then collect wood”).

• Crucially, each instruction in the training set also has a paraphrased version to encourage
linguistic robustness from the start.

Test Sets (Out-of-Distribution):

• Paraphrases: Contains the same underlying goals as the Combo training set, but expressed
with novel vocabulary and syntax. This tests robustness to linguistic variation.

– Training Combo: ”Consume beef and create a stone pickaxe.”
– Test Paraphrase: ”Eat steak and forge a stone pickaxe.” or ”Devour cow meat and

create a stone pickaxe.”

• New Objects: Introduces new combinations of atomic goals that appeared during training
but never occurred together in a single instruction in the training set. This directly tests
compositional generalization. These instructions also come with their own paraphrases.

• Training contained: ”Consume beef” and ”Forge a stone pickaxe” and ”Forge a stone
blade” as separate atomic or part of other combos.

• Test New Object: ”Consume beef and forge a stone blade.” or ”Eat cow meat and create a
sword from stone.”

This structure allows us to rigorously dissect the agent’s capabilities: learning from language (Atom-
ic/Combo), generalizing to new phrasing (Paraphrases), and generalizing to new goal combinations
(New Objects).

E COMPLETE SUPERIGOR TRAINING PIPELINE

The SuperIgor framework integrates multiple components that exchange specific inputs and outputs
during training. Below we describe the key data flows between components:

Component Interfaces:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• LLM Planner (fLLM)

– Input: Instruction I
– Output: Candidate plan P consisting of a sequence of subtasks from subtask bank B

• RL Policy (πθ)

– Input: Environment observations ot, current plan step DistilBERT [CLS] embedding
pϕ(t) of a plan P

– Output: Action at from extended action space containing default Craftext actions and
additional DONE action that gives the agent the next plan step embedding pϕ(t+1) of
a plan P

The complete training procedure integrating all components is summarized in Algorithm 5

Algorithm 5 Complete SuperIgor Training Pipeline
Require:
1: Environment E
2: Instruction dataset Dtrain = {I1, I2, . . . , IN}
3: Initial LLM planner fLLM with parameters θLLM
4: Initial RL policy πθ with parameters θRL
5: Mastery threshold τ , number of cycles C

Ensure:
6: Optimized planner f∗

LLM
7: Trained policy π∗

θ

8:
9: Initialize subtask bank B ← ∅

10: Initialize candidate plans P ← {}
11: Initialize mastered subtasksM← ∅
12:
13: Initial Plan Generation (Cycle 1):
14: Extract subtasks: S ← fLLM(Dtrain)
15: Build ontology: O ← BuildOntology(S, fLLM)
16: Generate initial plans: Pinitial ← ExpandPlans(Dtrain,O)
17:
18: Fine-tune fLLM on Pinitial using SFT
19: Generate training plans: P ← fLLM(Dtrain)
20:
21: for cycle c = 1 to C do
22:
23: Policy Training with Skill Curriculum:
24: Train πθ on P using PPO with Skill Curriculum Learning
25: Update mastered subtasksM based on success rates
26:
27: Plan Validation:
28: Execute πθ with plans P for multiple seeds
29: For every plan P in compute average success rate SR(p)
30: Construct preference dataset Dpref
31:
32: LLM Fine-tuning:
33: Fine-tune fLLM on Dpref using DPO
34:
35: Plan Generation:
36: Select plans for new training epoch: P ← SelectPlans(fLLM,Dtrain,P)
37: end for
38:
39: return fLLM, πθ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F DPO PLANS REPRIEORETIZATION

Figure 7: Example of DPO plan reprioritization for the instruction:”Forge a stone pickaxe and mine
coal”

G TRAINING DETAILS: POLICY OPTIMIZATION

Our low-level policy, which is responsible for executing individual subtasks, is trained using Prox-
imal Policy Optimization (PPO). The agent’s goal at this stage is to learn an optimal strategy for
completing a given subtask based on its visual observations. The standard clipped surrogate objec-
tive for PPO is defined as:

LPPO(θ) = Et

[
min

(
ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where ρt(θ) =
πθ(at|ot)
πθold (at|ot) is the probability ratio and Ât is the estimated advantage at timestep t.

Our agent’s policy and value functions are parameterized by a single neural network with a shared
multimodal feature extractor and separate actor and critic heads. The visual stream processes the
63×63 pixel image with 3 channels observations using a three-layer Convolutional Neural Network
(CNN). Each convolutional layer utilizes 32 filters with a 5×5 kernel, followed by a ReLU activation
and max-pooling. For the language stream, textual instructions are encoded using a pre-trained
BERT model (bert-base-uncased), and we use the embedding of the [CLS] token as the
final text representation.

The flattened output of the CNN and the text embedding are then concatenated to form a unified
multimodal representation. This combined feature vector is fed into two separate feed-forward
networks: the actor head, which outputs the logits for the categorical action distribution, and the
critic head, which outputs a scalar estimate of the state-value function.

H LLM FOR PLANNING IN INSTRUCTION FOLLOWING TASK

We conducted an additional comparison with prior works dedicated to solving the task of following
language instructions by incorporating planning with language models, in order to illustrate the
applicability of our approach and how it differs from existing methods. We examined whether
current approaches can be used without predefined skills and verification functions, whether there

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

exist frameworks for training a low-level strategy and a planner, and we were also interested in the
size of the model used for planning. The results of this comparison are presented in the table 3.

Table 3: Comparison of LLM-based planning methods across subgoal extraction, RL usage, reward
specification, and model size.

Method L
in

k

O
pe

ra
te

s
w

ith
ou

t
pr

ed
efi

ne
d

sk
ill

s

L
L

M
Pl

an
er

Tr
ai

ni
ng

L
ow

-L
ev

el
Po

lic
y

Tr
ai

ni
ng

W
or

k
w

ith
Sp

ar
se

R
ew

ar
d

Pl
an

M
od

el
Si

ze
<

20
B

Pl
an

M
od

el
N

am
e

Plan-Seq-Learn (PSL) link ✗ ✗ ✓ ✗ ✗ GPT-4

DEPS link ✗ ✗ ✗ N/A ✗ ChatGPT

SayCan link ✗ ✗ ✓ ✗ ✗ PaLM 540B

Translated LLM link ✗ ✗ ✗ N/A ✓
GPT-3 and
Codex-12B

Few-shot Subgoal Plan-
ning with LMs link ✗ ✗ ✗ N/A ✓ GPT-2-XL

IGOR link ✗ ✓ ✓ ✗ ✓ Gemma-7B

SuperIgor (ours) ... ✓ ✓ ✓ ✓ ✓ Qwen1.5-14B

I TRAINING DETAILS: LLM FINE-TUNING

To improve the high-level planner (the LLM), we employ a reinforcement learning-based feedback
loop. The planner generates a sequence of subtasks (a plan), which is then executed by the PPO
agent. The final outcome of the agent’s execution (e.g., task success or failure, efficiency) serves as
a signal to update the planner.

Direct Preference Optimization (DPO). This method aligns the model toward preferred comple-
tions using pairwise preference data. The DPO loss is:

LDPO = − log σ
(
β
(
log π(x+ | q)− log π(x− | q)

))
,

where x+ and x− are preferred and less preferred plans for instruction q, and β is a temperature
parameter.

J COMPUTE RESOURCES

All experiments were conducted on a high-performance computing cluster equipped with nodes
containing 1 NVIDIA A100 GPU with 80 GB of VRAM. Each node was powered by an 12 CPU
Cores CPU with 96 GB of system RAM.

The total computational budget can be broken down into two primary stages:

Policy Training and Evaluation. The primary computational cost stems from training the PPO
agent. Each full training run for a single configuration up to 10 billion environment steps took
approximately 120-150 GPU-hours. Reproducing all presented experiments, including the baseline
comparisons and ablation studies, required a total of 10 such training runs.

LLM Traininga and Generation. The initial generation of plans using the Qwen2.5-14B-Instruct
model for the entire dataset required approximately X GPU-hours on a single NVIDIA A100 GPU.
Epoch of finetuning LLM with DPO on evaluated plans takes approximately 15 GPU-hours.

In total, we estimate the full computational cost to reproduce all results presented in this paper to be
approximately 2000-2500 GPU-hours.

20

https://arxiv.org/abs/2405.01534
https://arxiv.org/pdf/2302.01560
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.05495
https://arxiv.org/abs/2205.14288
https://arxiv.org/abs/2407.09287

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

K LIMITATION

Although our proposed method demonstrates a promising direction for integrating large language
models with reinforcement learning for instruction-following tasks, it is not without limitations.

A primary limitation is the ambiguity in the attribution of failures. When the RL agent fails to com-
plete a given plan, it is difficult to determine whether the failure stems from a flawed plan generated
by the LLM or from inadequately trained policy in the RL agent. This ambiguity complicates the
fine-tuning process for the language model, as the feedback signal may incorrectly penalize a vi-
able plan that the agent was simply unable to execute. This can lead to a noisy training signal and
potentially degrade the LLM’s planning capabilities.

L AGENT’S PLAN FOLLOWING

Figure 8: Example of how the agent follows the plan and chooses actions. For each subtask, there
are two frames: the first shows the observation up to the moment when the agent takes the action
that completes the subtask, along with the action distribution at that time; the second shows a few
timesteps later, when the agent decides to skip the subtask in order to solve a new one.

M LLM USAGE

Large language models were employed solely for the purpose of refining and revising textual con-
tent, focusing on aspects such as grammar, spelling, and word selection.

N TRAINING DETAILS: HYPERPARAMETERS

The hyperparameters for our experiments are detailed in Table 4. For the PPO agent training, we
adopt the configuration from the original CrafText baseline study (Volovikova et al., 2025). For
the LLM planner fine-tuning, we use a Q-LoRA approach with a comprehensive set of parameters
optimized for efficient large model training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters used for training the low-level agent and fine-tuning the high-level plan-
ner.

Hyperparameter Value
PPO Agent Training

Learning rate 0.0002
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Clipping epsilon (ϵ) 0.2
PPO epochs 4
Number of minibatches 8
Entropy coefficient 0.01
Value function coef. 0.5
Activation function Tanh
Hidden layer size 512

LLM Planner Fine-Tuning

Base model Qwen2.5-14B-Instruct
Training epochs 1
Learning rate (SFT) 2e-4
Learning rate (DPO) 1e-5
Beta (DPO) 0.5
Optimizer Paged AdamW (32-bit)
LR scheduler Cosine
Warmup ratio 0.03
Batch size (per device) 16
Gradient accumulation 1
Gradient clipping norm 0.3
Weight decay 0.001
Mixed precision bf16

LoRA Configuration

LoRA rank (r) 64
LoRA alpha (α) 16
LoRA dropout 0.1

Quantization (4-bit)

Quantization type nf4
Compute dtype float16

22

	Introduction
	Related Work
	Problem Statement
	Super Igor
	Plan Generation
	Policy Learning
	Plan Validation
	LLM Fine-Tuning

	Experiments
	Environment.
	Experiments Setup
	Baselines
	Experiments Result

	Conclusion
	Plans Generation:candidates generation
	Plans Generation: Prompt for plan generation
	Additional Experiments
	Ablation Study: SuperIgor Framework
	Ablation Study: Skill Mastery Threshold
	Ablation Study: Choice of LLM for Ontology and Training-Plan Generation

	CrafText
	Complete SuperIgor Training Pipeline
	DPO plans reprieoretization
	Training Details: Policy Optimization
	LLM for planning in Instruction Following Task
	Training Details: LLM Fine-Tuning
	Compute Resources
	Limitation
	Agent’s plan following
	LLM Usage
	Training Details: Hyperparameters

