
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-GUIDED PLAN EXTRACTION FOR INSTRUCTION-
FOLLOWING TASKS WITH GOAL-CONDITIONAL REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SuperIgor, a framework for instruction-following tasks. Unlike prior
methods that rely on predefined subtasks, SuperIgor enables a language model to
generate and refine high-level plans through a self-learning mechanism, reduc-
ing the need for manual dataset annotation. Our approach involves iterative co-
training: an RL agent is trained to follow the generated plans, while the language
model adapts and modifies these plans based on RL feedback and preferences.
This creates a feedback loop where both the agent and the planner improve jointly.
We validate our framework in environments with rich dynamics and stochasticity.
Results show that SuperIgor agents adhere to instructions more strictly than base-
line methods, while also demonstrating strong generalization to previously unseen
instructions.

1 INTRODUCTION

Figure 1: Conceptual diagram of the SuperIgor
framework designed for Instruction Following.

The instruction-following task (Shridhar et al.,
2020; Chevalier-Boisvert et al., 2018; Zhong
et al., 2021) involves an AI agent achieving
a goal specified as a textual instruction. This
task can be framed within reinforcement learn-
ing, where the agent must develop a policy to
maximize a reward that reflects how well it fol-
lows the given instruction. The challenge lies in
constructing an optimal policy based on multi-
modal observations, combining textual and vi-
sual information from the environment.

One possible approach to solving the Instruc-
tion Following task involves encoding both vi-
sual data and textual instructions into a shared
latent representation, upon which a policy is
subsequently built (Zhong et al., 2019; Lynch
et al., 2022; Wang & Narasimhan, 2021). Tech-
niques such as CLIP (Yao et al., 2022) and
FiLM (Perez et al., 2018) are commonly used to
enhance this multimodal encoding. However, a
key limitation of this method arises when the
instruction is complex and requires the execution of a lengthy sequence of actions. In partially
observable environments or dynamic settings, it becomes particularly challenging for the agent to
consistently align the appropriate action with the instruction, especially when faced with diverse and
often ambiguous observations.

On the other hand, previous work such as Zhang et al. (2024); Ahn et al. (2022) demonstrate that the
instruction-following task can be approached through plan generation, decomposing the instruction
into a sequence of high-level actions. In such approaches, a large language model first breaks down
the instruction into a structured list of high-level actions. The resulting plan is then encoded into
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a structured representation, which can be an embedding obtained from a language model Zhang
et al. (2022) or a one-hot vector encoding Volovikova et al. (2024) that is passed to the RL agent for
execution. The generated plan, formatted accordingly, is then fed into the RL agent. This approach
improves generalization to out-of-distribution tasks, as complex natural language formulations are
transformed into a deterministic sequence of steps Wang et al. (2023); Logeswaran et al. (2022); Tan
et al. (2024). The primary challenge of such methods is that the set of possible subtasks must be
predefined in advance. The agent constructs a plan by selecting from this limited set of tasks, which
restricts the method’s flexibility when encountering unforeseen situations.

In this paper, we introduce the SuperIgor framework for the instruction-following task. Our ap-
proach extends the idea of plan generation, where a language model first decomposes an instruction
into a structured sequence of subtasks, which is subsequently executed by a reinforcement learning
agent. In contrast to prior methods that depend on a fixed set of predefined subtasks, SuperIgor
adopts a more flexible strategy by incorporating a self-learning mechanism. Rather than relying on
environment-specific datasets to train the language model, our framework enables the model to iter-
atively refine its plan generation through its own outputs, enhancing generalization to unseen tasks
and significantly reducing the need for manual data curation. Furthermore, we demonstrate that
SuperIgor performs effectively in dynamic and partially observable environments such as CrafText.

To conclude, our contributions are as follows:

• We propose a new self-supervised training paradigm for the instruction-following task,
where high-level plans are generated and refined through interaction between a language
model and a reinforcement learning agent—without requiring any manually annotated
datasets.

• We introduce a special curriculum to train an RL agent to accurately follow the plan despite
sparse reward conditions.

• We implement our approach in the CrafText benchmark and achieve state-of-the-art per-
formance on out-of-distribution tasks, demonstrating the robustness and flexibility of our
framework in dynamic and partially observable environments. The dataset and code for
SuperIgor are publicly available1.

2 RELATED WORK

Instruction Follwing Tasks are formulated differently depending on the type of environment.
Construction-centered settings like CraftAssist (Gray et al., 2019) and IGLU (Kiseleva et al., 2022)
define the task as building complex 3D structures based on language instructions. Navigation en-
vironments such as Touchdown (Chen et al., 2020) and Alfred (Shridhar et al., 2020) focus on
guiding an agent through spatial environments or household scenarios using natural language com-
mands. Environments like BabyAI (Chevalier-Boisvert et al., 2018) and HomeGrid (Lin et al., 2023)
emphasize planning sequences of basic actions in dynamic, evolving environments conditioned on
high-level textual goals. Meanwhile, Messenger (Wang & Narasimhan, 2021) and RTFM (Zhong
et al., 2019) present a different formulation: the agent receives textual descriptions of the game’s
mechanics — such as defining allies, enemies, or victory conditions — and must infer new behaviors
by interpreting these dynamically generated rules.

Given the diversity of environments, a variety of approaches to instruction following has been de-
veloped, often tailored to the specific task formulation. Among them, the most common strategy is
to jointly encode the instruction and the observation, bridging visual and textual modalities. One
prominent direction uses shared representation models such as CLIP (Yao et al., 2022), or feature
projection techniques like FiLM layers (Perez et al., 2018), to align linguistic and perceptual fea-
tures Zhong et al. (2019); Paischer et al. (2023); Chevalier-Boisvert et al. (2018). Alternatively,
transformer-based architectures, including EmBERT (Suglia et al., 2021) and Vision-and-Language
Navigation frameworks (Savva et al., 2019), process multimodal inputs jointly to enhance instruc-
tion understanding and execution. Additionally, model-based reinforcement learning approaches,
such as Dynalang (Lin et al., 2023), offer an alternative by learning structured policies conditioned
on textual goals within dynamic environments.

1https://anonymous.4open.science/r/SuperIgor-7A4F

2

https://anonymous.4open.science/r/SuperIgor-7A4F


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Instruction Following and Planning. Recent work has shown that large language models (LLMs),
when fine-tuned on suitable datasets, are capable of producing detailed and coherent High-Level
plans for agents based solely on textual instructions, without relying on visual observations (Jansen,
2020; Zhao et al., 2024; Zhou et al.) (. Building on this capability, a common approach to instruction
following is to provide the LLM with the task description, optionally the current environment state,
and a structured plan format; the model then generates a sequence of subgoals (e.g., DEPS (Wang
et al., 2023), Translated LLM (Huang et al., 2022)). However, such methods have two fundamental
limitations. First, the generated subgoals must correspond to a predefined set of skills available in
the environment, which requires mapping each subgoal to the closest existing skill using additional
heuristics or learned similarity metrics (Logeswaran et al., 2022). Second, these pipelines typically
assume the presence of a pre-trained low-level controller that is already capable of executing the
predicted skills, leaving the problem of learning a low-level policy unaddressed. Methods that jointly
train an RL agent (e.g., SayCan (Ahn et al., 2022), PSL (Wang et al., 2023), or IGOR (Volovikova
et al., 2024)) still rely on a predefined skill library or require dense, manually designed reward
signals for each subtask. Furthermore, many existing planning systems depend on extremely large
LLMs (100B+ parameters), which limits their practicality in resource-constrained settings.

These limitations leave open an important question: how can we learn a low-level policy for in-
struction following in environments where no predefined set of executable skills is available? In this
work, we introduce SuperIgor, a method that addresses this challenge. SuperIgor generates plans
without relying on any predefined skill set, learns a low-level policy under sparse rewards (where
individual subtask completion cannot be directly verified and reward is given only for accomplishing
the full instruction), and adapts the generated plans to support RL training in dynamic and stochastic
environments. Importantly, we demonstrate that our method operates effectively using a planning
model with only 14B parameters, significantly reducing the computational requirements compared
to prior approaches. A detailed comparison of the methods with SuperIgor is presented in the table
3.

3 PROBLEM STATEMENT

The environment is formalized as a goal-based Partially Observable Markov Decision Process
(POMDP), defined by the tuple (S,A,O, T ,R,G, γ). The agent receives a natural language in-
struction I and must achieve the corresponding latent goal g ∈ G. Each observation o ∈ O contains
partial information about both the environment and the instruction I . The agent learns a grounding
function fg(I) to infer the latent goal g = fg(I).

The policy π(a | o) selects actions based on observations to maximize the expected cumulative
reward: π∗ = argmaxπ Eπ

[∑T
t=0 γ

tR(st, at, g)
∣∣∣ o0] . The environment involves stochastic tran-

sitions T (s′ | s, a) and partial observability, requiring the agent to infer goals and act effectively
under uncertainty.

We extend this setup by introducing plans. In the planning-augmented formulation, the agent does
not receive the instruction I directly. Instead, it is provided with a plan p = (p1, p2, . . . , pn) derived
from I , where each step pi corresponds to an intermediate subgoal gi = fg(pi). At each timestep,
the agent observes the environment together with the current plan step pϕ(t). The optimization

objective becomes: π∗ = argmaxπ Eπ

[∑T
t=0 γ

tR
(
st, at, gϕ(t)

) ∣∣∣ o0] , where gϕ(t) is the subgoal
associated with the active plan step.

In contrast to settings with predefined subtasks and explicit intermediate rewards, our formulation
introduces two key challenges:

1. Subtask alignment under sparse rewards. The agent must discover how its behavior
aligns with intermediate subgoals despite only receiving sparse, delayed feedback upon
completing the full instruction. This exacerbates the credit assignment problem.

2. Extended action space. The agent must also decide when to terminate the current subtask.
This requires augmenting the action space with control operations (e.g., a DONE action),
which increases both exploration complexity and the difficulty of learning effective switch-
ing strategies.

3
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4 SUPER IGOR

Figure 2: Super Igor Pipeline: The pipeline consists of four stages: (1) a language model generates
multiple plan options for a given instruction; (2) a policy model is trained via PPO to execute each
plan in the environment; (3) each plan is validated by measuring its execution success rate; (4) the
language model is optimized using Direct Preference Optimization (DPO) based on plan perfor-
mance scores. This iterative loop refines both plan generation and execution.

Super Igor framework proposes a method for jointly training a large language model and a reinforce-
ment learning agent to solve instruction-following tasks. The LLM is responsible for transforming
natural language instructions into structured plans, i.e. sequences of subtasks. The RL agent learns
to execute these plans in the environment by interacting with it and maximizing delayed rewards.

The training process proceeds through the following stages:

1. Plan Generation (4.1): The LLM extracts possible subtasks from instructions and gen-
erates multiple candidate plans in natural language during the initial cycle (Cycle 1). In
subsequent cycles (Cycle 2–N), the candidate pool is iteratively refined by filtering and
re-prioritization, based on how well the plans align with the RL agent’s performance.

2. Policy Learning (4.2): The RL agent is trained to execute the selected plans in the envi-
ronment.

3. Plan Validation (4.3): The quality of candidate plans is evaluated according to the RL
agent’s success rate and execution trajectories.

4. LLM Fine-Tuning (4.4): The language model is fine-tuned with feedback derived from
validation, aligning its scoring of plans with the agent’s actual performance.

4.1 PLAN GENERATION

In our approach, we first generate all possible plans for the training set in zero-shot mode during the
initial cycle. In subsequent cycles, we progressively reduce the set of candidate plans by filtering
out those that perform poorly for the agent. Concretely, the initial cycle produces the complete
pool of plans, while later cycles re-prioritize them using the LLM’s negative log-likelihood (NLL)
score. Importantly, we leverage the agent’s performance feedback as a preference signal to fine-tune
the LLM with DPO, so that the model learns to align its scoring with the agent’s actual success in
executing the plans.

Zero-shot plans candidates generation (Cycle 1). Since the language model used for plan gener-
ation may not fully capture the exact dependencies and interaction rules of the target environment,
we propose a structured procedure that separates the identification of goals from the reasoning about
prerequisite constraints. The method unfolds in four steps.

4
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First, we build a subtask base by extracting and canonicalizing possible subtasks from the instruction
dataset, creating a unified vocabulary that reduces synonymy and ensures consistency. Each subtask
is expressed in natural language, but in a strict normalized format that allows passing them one-by-
one to the policy without ambiguity.

Second, the model generates a goal-level plan, producing for each instruction a single conceptual
representation of its intended outcome, expressed in terms of the established subtask base. This step
abstracts away from concrete execution details and captures only the high-level intent.

Third, we induce a subtask ontology that encodes the model’s hypotheses about prerequisite re-
lations, i.e., which subtasks must be completed before others can be attempted. This provides a
structured view of dependencies across the subtask base.

Finally, we perform plan expansion, where the single conceptual plan is unfolded into multiple
detailed plans, with their number corresponding to the hypotheses proposed by the model. The
ontology ensures that these expanded variants remain consistent with prerequisite relations and avoid
contradictions.

This approach provides two key benefits. First, it improves plan consistency by constructing plans
from a shared set of subtasks and their relations, rather than from independent and potentially con-
tradictory structures. Second, it supports partial normalization, since the model, when processing
new instructions, tends to reuse previously identified subtasks, thereby reducing the proliferation of
synonymous formulations. The details of the method and pseudocode are provided in Appendix A,
and the prompts are presented in Appendix B.

Plans re-prioretizing for RL-agent (Cycles 2-N). After obtaining the initial feedback on agent
performance for the generated plans and applying LLM fine-tuning (Subsection 4.4), subsequent
cycles focus on re-prioritizing the candidate set. In each cycle, plans are rescored using the language
model’s negative log-likelihood (NLL), which reflects how natural or plausible a plan is according
to the model. Plans are then ranked by this score, and only the top-performing subset is retained for
further training. As cycles progress, this iterative filtering process gradually narrows the candidate
space, aligning the remaining plans both with the agent’s empirical success and with the model’s
learned preferences.

4.2 POLICY LEARNING

Algorithm 1 Skill Curriculum Learning
Require: Set of all plans P , success-rate threshold τ
1: Initialize mastered skillsM← ∅
2: Initialize PPO agent πθ

3: Initialize active plans

S ← {p ∈ P | p contains exactly one skill}

4: while training not converged do
5: Train πθ on active plans S and collect rollouts
6: For each skill s, compute success rate:

SR(s) =
# Successful episodes containing s

# Total episodes containing s

7: if SR(s) ≥ τ then
8: Add to mastered skillsM←M∪ {s}
9: end if

10: Update plans

S ← {p ∈ P | p has at most one unmastered skill}

11: end while
12: return πθ,M

After the plans have been generated, we train
a reinforcement learning agent using the step-
wise plan observation setting (Subsection 3).
At each timestep, the agent observes the envi-
ronment and receives an embedding of the cur-
rent plan step. It must learn to align actions
with plan steps based on a delayed reward sig-
nal provided only upon successful completion
of the entire plan. We use the PPO algorithm to
train the policy.

To address the sparse reward problem in train-
ing, we introduce Skill Curriculum Learning.
The core principle is to create a dynamic cur-
riculum that begins with the simplest single-
subtask tasks, allowing the agent to learn foun-
dational behaviors under a relatively dense re-
ward signal.

As the agent trains, we monitor its Success Rate
(SR) for each subtask. Once a subtask’s SR sur-
passes a predefined threshold τ , it is marked as
”mastered.” This mastery triggers an update to
the curriculum: the set of active training plans
is expanded to include any plan composed of already mastered subtasks and, at most, one new, un-
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mastered subtask. This incremental expansion, detailed in Algorithm 1, ensures a smooth learning
gradient and prevents the agent from being overwhelmed.

4.3 PLAN VALIDATION

To evaluate the quality of each proposed plan, we repeatedly execute the RL agent in the environment
using that specific plan as input. This process is essential due to the highly dynamic and stochastic
nature of the environment, where outcomes can vary significantly across runs even for the same plan
and initial instruction.

As a result, a single rollout is not sufficient to reliably assess plan effectiveness. Instead, we aggre-
gate statistics over multiple rollouts, such as the average success rate or reward, to obtain a more
stable and interpretable estimate of how well the plan supports instruction completion. This repeated
evaluation allows us to more confidently associate a given plan with its empirical performance and
to use this signal to guide future training and model selection.

4.4 LLM FINE-TUNING

In the first cycle, we warm-start the language model by supevised finetuning (SFT) to reproduce the
same plans that were obtained during the zero-shot generation stage (see Section 4.1). This step
adapts the model to the specific distribution of plans relevant to the target environment, ensuring
better alignment with the initial candidate pool.

After this supervised adaptation, subsequent cycles incorporate plan-level quality signals collected
during execution and validation. These signals capture how well individual plans support the agent
in solving the target task. Based on them, we construct a dataset of plan pairs with explicit prefer-
ences—each pair contains a higher-scoring (preferred) and a lower-scoring (non-preferred) candi-
date. This preference dataset is then used to fine-tune the model with DPO, allowing the LLM to
internalize the agent’s feedback and improve its plan generation over time.

Importantly, the DPO signal in our framework serves as a lightweight plan-selection bias rather
than a precise credit assignment mechanism. During early learning, the RL agent naturally makes
progress on some plan structures more easily than others. DPO increases the probability of these
early-learnable plans, effectively forming an automated curriculum over plan decompositions. Plans
that produce no early progress are not labeled as incorrect; they are simply deprioritized because
the agent is not yet able to learn from them effectively. This approach intentionally sidesteps the
challenge of precisely attributing failures and instead focuses on accelerating training by reinforcing
empirically useful plan patterns.

5 EXPERIMENTS

In this section, we describe the experiments conducted to answer the following research questions
(RQ):

RQ1. (Effectiveness and Generalization of Auto-Generated Plans): How well can the SuperIgor
agent learn to follow instructions by leveraging LLM-generated plans, and how well does this
learned behavior generalize to new instructions? We measure effectiveness as the agent’s final
success rate on training tasks (Atomic and Combo splits). We measure generalization using final
success rates on two test sets: Paraphrases (same goals, new wording) and New Objects (new goal
combinations).

RQ2. (Policy Training under Sparse Feedback): How well can the SuperIgor policy model be
trained to follow plans under sparse feedback? The primary metric for this is the final SR on the
training tasks.

RQ3. (Agent Effectiveness with Iterative SuperIgor Cycles): How does the agent’s performance
evolve over multiple iterations of the SuperIgor planning-training cycle?

6
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5.1 ENVIRONMENT.

We conduct our experiments in the CrafText benchmark (Volovikova et al., 2025), which provides
a unified testbed for evaluating instruction-following agents in multimodal, dynamic, and partially
observable environments. It enables us to assess both the agent’s ability to interpret diverse linguistic
formulations and to adapt to novel goals. The world of CrafText closely resembles Minecraft, with
episodes varying due to autonomous stochastic mob behavior, randomized resource distribution,
and asynchronous events. Moreover, the agent must manage survival constraints such as hunger,
thirst, and hostile entities, introducing competing objectives beyond mere instruction completion.
Importantly, the conditions under which the agent must execute instructions change across episodes,
further increasing the complexity of the setting.

We use the EASY split of the dataset, which contains over 900 instructions and a vocabulary of more
than 1,500 unique words. The dataset is structured to rigorously test different aspects of learning
and generalization. The training set consists of two types of instructions: Atomic, which specify a
single, indivisible goal (e.g., “craft a furnace”), and Combo, which combine multiple atomic goals
into a sequence (e.g., “craft a furnace and then collect wood”).

To evaluate the agent’s ability to generalize, the evaluation protocol employs two distinct test sets.
The Paraphrases set contains Combo instructions from the training set (the same goals as in
Combo) reformulated with novel vocabulary and syntax, testing robustness to linguistic variation.
The New Objects set introduces new combinations of atomic goals that appeared during training but
never occurred together in a single instruction, directly testing compositional generalization. The
sizes of the Combo / Paraphrases / New Objects splits are comparable.

In this dataset, task composition often involves overlapping subtasks. For example, crafting a fur-
nace first requires making a wooden pickaxe and collecting stone—the same steps needed to craft a
stone pickaxe or to smelt metal. As a result, agents may learn to rely on broadly useful routines that
solve many tasks without attending to the instruction itself. This undermines the central objective
of instruction-conditioned learning: instead of interpreting language, agents simply optimize reward
by executing generic behavioral patterns. To prevent such behavior, we apply a strict interaction
protocol: an instruction is marked as successful only when all of its goals are fully and precisely
completed, with no extraneous steps added. To distinguish this challenging setting from the stan-
dard benchmark, we refer to it as EASY-STRICT in our experiments. Further details regarding the
environment and instruction examples are provided in Appendix D.

5.2 EXPERIMENTS SETUP

In our pipeline, we generate plans using Qwen2.5-14B-Instruct2, fine-tune it for one epoch with
DPO ( β = 0.5, lr = 1 × 10−5 ) to stabilize local updates, and then train policies with PPO-T
(lr = 0.001, ε = 0.02) and Skill Curriculum Learning for 2.5B steps. We validate by executing 10
plans across 50 seeds to assess robustness. Two full cycles were conducted, with evaluations before
and after LLM fine-tuning, and results compared against baselines at 2.5B and 5B steps (Figure 3).
Additional hyperparameters are described in more detail in Appendix N.

5.3 BASELINES

For our comparative analysis, we use several established baselines from the original CrafText study
(Volovikova et al., 2025). PPO-T (Text-Augmented PPO) augments PPO with textual grounding: in-
structions are encoded using a frozen DistilBERT [CLS] embedding, concatenated with CNN-based
visual features, and processed by a GRU to maintain temporal context. PPO-T+ (Plan-Augmented
PPO) extends this by first translating each instruction into a structured plan with GPT-4, and then
providing the agent with a plan embedding instead of the raw instruction.

FiLM (Perez et al., 2018) offers an alternative integration of language and vision. Here, instruction
embeddings generate parameters that modulate CNN outputs via Feature-wise Linear Modulation
layers, allowing textual context to directly shape visual feature processing.

2https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
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To ensure consistency, all baselines follow a strict protocol requiring the DONE action to signal
task completion, with success only counted when both the instruction is satisfied and DONE in-
voked. We also evaluate an Auto-DONE (Soft-) variant, where episodes terminate automatically
upon completion, and include an Oracle agent trained with PPO-T and Skill Curriculum Learning
on human-written ground-truth plans.

(a) Performance on Atomic CrafText Tasks (b) Performance on Combo CrafText Tasks

(c ) Performance on New Object CrafText Tasks (d) Performance on Paraphrases CrafText Tasks
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Figure 3: Comparison of SuperIgor and baseline performance on CrafText tasks (Atomic / Combo
/ New Objects / Paraphrases). SI-SFT denotes SuperIgor validated on plans generated after LLM
supervised fine-tuning, while SI-DPO denotes SuperIgor validated after LLM DPO fine-tuning. All
agents were evaluated at 2.5 billion steps (corresponding to the first cycle in the SuperIgor approach)
and 5 billion steps (corresponding to the second cycle).

5.4 EXPERIMENTS RESULT

RQ1. Effectiveness and Generalization of Auto-Generated Plans in the SuperIgor Pipeline

a) Auto-generated plans train agents far more effectively than instruction-only baselines. On
Atomic tasks (Figure 3(a)), SuperIgor agents (SI-DPO / SI-SFT) reach 0.35–0.45, compared to only
0.10–0.19 for instruction-only RL baselines. Oracle remains higher at 0.56–0.65, but the SuperIgor
→ Oracle gap (≈ 0.20) is much smaller than the Baselines→ SuperIgor gap (≈ 0.25–0.30), clearly
showing the value of plan supervision. On Combo tasks (Figure 3(b)), SuperIgor achieves 0.21,
outperforming baselines at 0.08, while Oracle reaches 0.46. The wider gap to Oracle here can be
explained by the fact that SI agents must simultaneously learn up to 20 alternative plans, whereas
Oracle is trained on a single expert-aligned plan, which simplifies optimization.

b) Agents trained with auto-generated plans generalize on unseen goals better than those
trained with Oracle plans.

On Combo tasks, Oracle achieves 0.46, while SuperIgor reaches 0.21. But on New Object tasks
(Figure 3(c)), Oracle drops sharply to ≈ 0.22, while SI decreases more moderately to 0.12–0.17.
Thus, although SI lags in absolute terms, its performance is more stable: the Oracle–SI gap shrinks
from 0.25 on Combo to only 0.05–0.10 on New Object tasks. We attribute this stronger generaliza-
tion precisely to the fact that SI agents learn from multiple alternative plans per instruction, which
exposes them to richer variability during training.

c) Agents trained with auto-generated plans do not lose performance when instructions are
paraphrased.
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Paraphrases reuse (Figure 3 (d)) the same goals as in Combo tasks but are expressed in different
linguistic forms. In Cycle 1, SI-DPO performance increases from 0.07 on Combo to 0.09 on Para-
phrases. In Cycle 2, SI-DPO remains stable, with 0.21 on Combo and 0.20 on Paraphrases. This
shows that SuperIgor agents can successfully transfer their learned strategies to differently worded
instructions, maintaining performance even when the language of the goal changes.

RQ2. Policy Training under Sparse Feedback

a) Skill Curriculum Learning enhances agent to learn more subtasks compared to unstruc-
tured training

We evaluate the training process by the number of unique subtasks the agent masters over time.
A subtask is considered ”mastered” once its success rate surpasses a 70% threshold. This metric
provides a clearer insight into the agent’s growing capabilities and its ability to handle compositional
tasks. We compare three configurations, with the results visualized in Figure 4.

The agent trained with Skill Curriculum on Oracle Plans sets a practical upper bound for perfor-
mance. By the 10 billion step mark, it successfully masters 14 distinct subtasks. It signifies that the
agent has acquired almost the entire ’mining’ technology tree: all the achievements from collecting
wood to collecting iron. Furthermore, it demonstrates the ability to execute complex, combined
instructions that require interleaving subtasks from different progression branches, such as eating,
drinking, and collecting resources within a single, coherent plan.

Agent trained on Oracle plans without the Skill Curriculum perform worse with only mastered 5
basic subtasks. Even with a flawless plan, the agent fails to learn without a structured progression
that allows it to build foundational skills first. This finding confirms that Skill Curriculum helps to
overcome sparse feedback problem and enables agent abilities to learn more subtasks.

b) SI-Initial plans are a good initial approximation of optimal plans

Skill Curriculum with SI-Initial plans graph follows this trajectory closely, mastering 12 subtasks
within the same timeframe. This demonstrates the high quality of our SI-INITIAL plan generation,
as it enables the agent to acquire most of the subtasks achievable even with perfect plans. The gap
between these two curves represents the remaining challenge in our automated plan generation.

In conclusion, the curriculum is not just beneficial, it is critical for meaningful skill ac-
quisition in this environment. The ablation clearly shows that our Skill Curriculum Learn-
ing framework is the key enabler of learning, while our SI-INITIAL procedure gener-
ates plans of sufficient quality to unlock a significant portion of the agent’s potential and
a good baseline for futhermore plan generation improvement using SuperIgor framework.
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Figure 4: A comparative analysis of the number
of mastered subtasks over 10 billion environment
steps. The results highlight the critical role of the
Skill Curriculum, as agents trained without it fail
to learn, even with optimal Oracle Plans.

RQ3. Agent Effectiveness with Iterative Su-
perIgor Cycles

a) Plan-following quality improves across cy-
cles. On Atomic tasks (training, Figure 3, (a)),
SI-DPO increases from 0.34 in Cycle 1 to 0.43
in Cycle 2. On Combo tasks (training, Figure
3, (b)), SI-DPO grows from 0.06 in Cycle 1
to ≈ 0.21 in Cycle 2. On New Object tasks
(testing, Figure 3, (c)), SI-DPO declines only
slightly from ≈ 0.21 to 0.12–0.17, showing
that performance improves with additional Su-
perIgor cycles on both training and testing se-
tups and remains relatively stable when moving
to unseen goals.

b) Plan reprioritization under DPO illus-
trates the process by which language mod-
els are incrementally grounded in the agent’s
behavior and the underlying environment mechanics.. The re-ranking visualization (Appendix
F, Figure 8) shows how plans shift across SFT, DPO-C1, and DPO-C2. Success Rates range from
0.68 to 0.86. A plan with SR = 0.86 steadily climbs to the top across cycles, while weaker plans

9
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with SR ≈ 0.68 remain consistently at the bottom. These changes are gradual rather than abrupt,
suggesting that DPO provides a soft grounding signal that progressively aligns plan priorities with
the agent’s execution success. Exposure to multiple alternative plans per instruction during train-
ing enriches variability, which explains why SI agents, although weaker in performance, generalize
better than Oracle on unseen tasks.

6 CONCLUSION

In this work, we introduced SUPERIGOR, a novel framework that teaches agents to follow complex
instructions in sparse-reward environments by iteratively aligning an LLM planner with an RL policy
using agent feedback. Our experiments lead to several key conclusions.

First, our core contribution—the iterative alignment of plans using DPO—is highly effective. The
SUPERIGOR framework improves both plan quality and agent performance across training cycles by
providing a soft grounding signal that progressively aligns the LLM’s preferences with the agent’s
real-world execution capabilities.

Second, we find that a structured curriculum is essential. Our experiments revealed that even with
perfect, human-authored Oracle Plans, the agent fails to learn complex subtasks. Our Skill Cur-
riculum Learning framework solves this by enabling the agent to master foundational skills first,
demonstrating that managing task complexity is as crucial as providing a correct plan.

Finally, our work revealed that agents trained on a single, optimal Oracle Plan generalize poorly to
unseen goal combinations. In contrast, agents trained on the diverse set of auto-gengerated plans
from SUPERIGOR exhibit far more robust generalization. This suggests that exposure to a varied set
of ”good-enough” plans is more beneficial for developing flexible policies than training on a single,
narrow path to success.

REPRODUCIBILITY STATEMENT
The learning process is described in detail in the section 5.2. The hyperparameters are shown in the
Appendix N. The computing resources used for conducting experiments are described in the section
J. The full code base is available for download to ensure reproducibility of the results, the link is in
the Introduction section.
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APPENDIX

A PLANS GENERATION:CANDIDATES GENERATION

Algorithm 2 Subtask Bank Update
Require: Instruction stream D, language model fLLM
Ensure: Subtask bank B, goals plans P
1: Initialize subtask bank B ← ∅
2: Initialize goals plans P ← ∅
3: for each instruction I ∈ D do
4: Identify goal subtasks conditioned on B:

S ← fLLM(I, B)

5: for each subtask s ∈ S do
6: if s /∈ B then
7: B ← B ∪ {s}
8: end if
9: end for

10: Goals plan for I: P[I]← S
11: end for
12: return B,P

In or plan extraction method the goal is to elicit
the model’s hypotheses about the dependencies
between subtasks in the environment. In the
first step we construct a subtask bank B, i.e.,
the set of all candidate subtasks derived from
the instruction set. For each instruction I ∈ D,
we prompt the language model fLLM to gener-
ate a goals plan P[I], i.e., the set of goal sub-
tasks directly required by the instruction. The
model is provided with the current contents of
the subtask bank B, which encourages reuse of
already known subtasks and reduces the intro-
duction of redundant synonyms. If the gener-
ated goals contain subtasks not yet present in
B, they are added. At the initial iteration the
bank is empty, so all subtasks generated by the
model are included. The complete process is
summarized in Algorithm 2.

Algorithm 3 Ontology Construction
Require: Subtask bank B, language model fLLM,

queries per pass N , threshold τ
Ensure: Ontology graph G = (V,E)
1: Initialize counts count(r, t) ← 0 for all r, t ∈

B, r ̸= t
2: for each target subtask t ∈ B do
3: for two passes do
4: Define candidate set C:

C ←

{
B \ {t}, pass 1
{r ∈ B : count(r, t) > 0}, pass 2

5: for i = 1 . . . N do
6: Query prerequisites:

R← fLLM(t, C)

7: for each r ∈ R do
8: count(r, t)← count(r, t) + 1
9: end for

10: end for
11: end for
12: end for
13: Initialize edge set E ← ∅
14: for each pair (r, t) do
15: Compute probability:

p̂(r → t) =
count(r, t)

N

16: Compute Wilson lower bound LB(p̂, N)
17: if LB ≥ τ then
18: E ← E ∪ {(r → t)}
19: end if
20: end for
21: return G = (V = B,E)

Once a sufficiently rich subtask bank B has
been established, ontological dependencies be-
tween subtasks are extracted. For each target
subtask t ∈ B, the language model is queried
multiple times to determine which elements
from B are required for the completion of t.
For every candidate dependency (r → t), its
probability is estimated as

P (r → t) =
kt
N

,

where kt denotes the number of times subtask
r was identified as necessary for t and N is the
number of queries. To filter out spurious associ-
ations, the Wilson confidence interval is applied
to the resulting probabilities. The procedure is
carried out in two passes: first over the entire
bank B, and then restricted to the subtasks pre-
viously identified as relevant, which refines the
weighting of relations. The final output is an
ontology graph G = (V,E) that encodes the
model’s hypothesized structure of interrelations
among subtasks. The full procedure is summa-
rized in Algorithm 3.

After constructing the ontology G = (V,E),
each goal plan P[I] is expanded with its de-
pendencies. For every subtask s ∈ P[I], we
recursively collect all prerequisites in G. The
union of these subtasks with the original goals
defines the plan’s vertices, which are then topo-
logically sorted so that prerequisites precede
dependents. The result is a linearized plan P
containing the goals and all supporting subtasks
(Algorithm 4).
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Algorithm 4 Final Plan Generation from Ontology

Require: Instruction I , goals mapping G, goals plan P , ontology G = (V,E)
Ensure: Final plan P

1: Retrieve goal subtasks: S ← G[I]
2: Initialize plan vertex set: U ← S
3: for each s ∈ S do
4: Expand prerequisites via ontology:

D ← PREREQCLOSURE(s,G)

5: U ← U ∪D
6: end for
7: Extract induced subgraph: GU ← G[U ]
8: Topologically sort GU to obtain ordered plan P
9: return P

B PLANS GENERATION: PROMPT FOR PLAN GENERATION

You control an agent in a 2D game with simplified Minecraft environment.
You will need to provide a detailed step-by-step plan for following the user’s instructions.
You must include all the preliminary steps that it needs to complete.

You are controlling an agent in a 2D game set within a simplified Minecraft-like environment.
The agent starts from scratch with an empty inventory and no gathered resources.
Your task is to generate a step-by-step plan that enables the agent to follow a given user instruction.

What you must do:
- Break down the instruction into atomic actions the agent needs to perform.
- Include all necessary preliminary steps, such as gathering or crafting resources.
- Assume the agent has nothing at the beginning | you must plan from the ground up.
- Output your answer as a Python list of strings.
- Each string must represent one atomic skill invocation, written on a separate line.

Format for each step:
"skill_name(arg1 = value1, arg2 = value2, ...)"
- skill_name: the name of the primitive skill or action the agent will execute.
- Inside the parentheses, list all required arguments with their names and corresponding values.

Example:
gather_resource(resource_type = wood)

Each of the step agents will be implemented without knowledge of what it did before,
so it can only rely on observation and the current step.
Therefore, each step must be self-sufficient and not require knowledge of past steps.

"If the instruction doesn’t specify what the agent needs to do and is more general|like
’Explore the world’ or ’Go out and examine the world around you’|send explore(object=world).
In this case, the plan should consist of only one step: "explore(object=world)"."

Send your answer as a python list.
Instruction: Make a pickaxe from wood
Answer:
["gather_resource(resource_type = wood)",
"gather_resource(resource_type = wood)",
"create_item(item_type = table)",
"gather_resource(resource_type = wood)",
"gather_resource(resource_type = wood)",
"create_item(item_type = wooden_pickaxe)"]

Send your answer as a python list.
Instruction: $INSTRUCTION$
Answer:

14
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C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY: SUPERIGOR FRAMEWORK

To quantify the contribution of each module of the SuperIgor framework, we conduct an ablation
study in which individual components are removed from the training pipeline. We evaluate the in-
fluence of four factors: (1) Ontology-Based Training Plan Generation, (2) Curriculum design in the
RL stage, (3) LLM plan-model pretraining (SFT), and (4) DPO finetuning based on RL agent per-
formance signals. Table 1 presents the results of this experiment, where we measure the SuperIgor
agent’s SuccessRate on the Atom subset of the CrafText instruction dataset. The analysis of the
results yields two central findings.

Table 1: Ablation study of the SuperIgor framework, measuring agent SuccessRate on the Atom
subset of the CrafText dataset across two training cycles

Ontology Curriculum DPO SFT Cycle-1 Cycle-2

✗ ✓ ✓ ✓ 0.06 N/A
✓ ✗ ✓ ✓ 0.08 N/A
✓ ✓ ✗ ✓ 0.34 0.39
✓ ✓ ✓ ✗ 0.25 0.13
✓ ✓ ✓ ✓ 0.35 0.45

(1) Curriculum is effective only when paired with high-quality, ontology-structured plans. Al-
though a full-cycle evaluation may give the impression that the primary gains come from curriculum
learning, the results of this ablation study show that its effectiveness emerges only in combina-
tion with ontology-guided plan generation. Without ontology (i.e., without structured, hierarchical
plans), the curriculum has no meaningful ordering signal and fails to provide improvement: Cycle-1
performance drops to 0.06 when ontology is removed.

Ontology-based plans, however, naturally encode a hierarchy of instructions and goals, enabling a
principled progression from simpler to more complex targets. This hierarchical structure is precisely
what makes a curriculum implementable: the RL agent can first master low-complexity goals and
then gradually advance to more difficult ones. When ontology is present, this alignment between
plan structure and staged learning produces large gains, improving Cycle-1 performance from 0.06
(no curriculum) to 0.35 (with curriculum).
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Figure 5: Ablation of the skill-mastery threshold τ .
The plot shows evaluation scores on the Atomic and
Combo tasks during training for different τ values.

(2) DPO improves the RL agent by
learning to prioritize plans that lead
to higher-quality behavior. Unlike
SFT, which is trained to reproduce the
ontology-induced distribution of plans,
DPO directly leverages RL performance
as a preference signal: it learns to rank
plans higher when they empirically yield
better agent behavior. Removing DPO
results in weaker prioritization: the RL
agent reaches only 0.39 in Cycle-2 with-
out DPO, compared to 0.45 when DPO is
included. Thus, DPO systematically shifts
the plan distribution toward behaviorally
effective plans, accelerating and amplify-
ing the RL agent’s improvement across cy-
cles.

C.2 ABLATION STUDY: SKILL MASTERY THRESHOLD

We conducted an ablation study to analyze the sensitivity of the Skill Curriculum Learning to the
mastery threshold parameter τ . Figure 5 presents the final performance of the Skill Curriculum
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Learning agent after 10 billion environment steps in CrafText-Symbolic configuration for different
values of τ ranging from 0.5 to 0.9.

The results demonstrate that τ = 0.7 provides an optimal balance for curriculum progression. We
hypothesize that lower thresholds (τ = 0.5) allow the agent to progress too quickly to complex
skills before achieving reliable proficiency, while higher thresholds (τ = 0.9) cause the agent to
spend excessive time perfecting basic skills, slowing overall learning. The τ = 0.7 value strikes an
optimal balance between progression speed and skill reliability.

C.3 ABLATION STUDY: CHOICE OF LLM FOR ONTOLOGY AND TRAINING-PLAN
GENERATION

To understand how the choice of language model affects the quality of the ontology and the generated
training plans we conducted an ablation study comparing several families of LLMs. For each model,
we regenerated both the ontology and the full training dataset (plans), and then trained an RL agent
using our Skill Curriculum Learning procedure.

Table 2 reports the agent’s success rate on the training split under different planner models.
The experiment includes models from the Qwen and Gemma families, as well as the larger
microsoft/NextCoder-32B model.

Table 2: Ablation on the choice of LLM used for generating both ontology and training plans. We
report success rate on the training set.

LLM Qwen1.5-32B NextCoder-32B Qwen1.5-14B Gemma-12B Qwen-7B

SR (Train) 0.43 0.26 0.35 0.14 0.22

Plan:

gather_resource(resource_type = wood)

create_item(item_type = table)

create_item(item_type = wooden_pickaxe)

gather_resource(resource_type = wood)

gather_resource(resource_type = stone)

create_item(item_type = table)

create_item(item_type =stone_pickaxe)

gather_resource(resource_type = iron) ← Current Subtask

Instruction: Harvest metallic resources for use.

Plan:


attack(item = zombie)



gather_resource(resource_type = wood) 
gather_resource(resource_type = wood) 
create_item(item_type = table)

create_item(item_type = wood_sword)

gather_resource(resource_type = iron) ← Current Subtask


Instruction: Vanquish a zombie while avoiding any conflict with skeletons.

Plan:

gather_resource(resource_type = wood)

gather_resource(resource_type = wood)

create_item(item_type = table)

gather_resource(resource_type = wood)

create_item(item_type = wooden_pickaxe)

gather_resource(resource_type = coal)

gather_resource(resource_type = sapling)

place_item(item = plant, x = event.x, y = event.y)

gather_resource(resource_type = water) ← Current Subtask

Instruction: Assemble a quantity of carbon, install flora and collect hydration.

Figure 6: Example of instructions and corre-
sponding plans

(1) Larger models do not necessarily pro-
duce better ontologies or plans. Although one
may expect the largest models to generate the
most structured plans, but NextCoder-32B perfor-
mance is surpassed by significantly smaller Qwen
models. Qwen-32B yields the highest perfor-
mance (0.43), and even Qwen-7B outperforms
Gemma-12B, indicating that model family and
training specialization matter more than raw pa-
rameter count.

(2) Qwen models produce more stable and se-
mantically consistent plan structures. Mod-
els from the Qwen family demonstrate higher ro-
bustness in generating hierarchical task decom-
positions that align with our ontology constraints.
This leads to more reliable curriculum construc-
tion and more effective RL training.

(3) Some widely used LLMs fail to benefit from
the alignment stage. We also conducted ex-
periments with several other well-known models,
including microsoft/phi-4, mistralai/Mistral-7B-
Instruct-v0.2, and openai/gpt-oss-20b, and found
that the alignment stage does not provide any
measurable benefit for them. Despite explicit
prompt constraints on which subtasks should be
used, these models tend to generate large num-
bers of synonymously similar subtasks. Conse-
quently, the set of goals that the agent must re-
cover becomes even larger than when instructions
are provided directly, rendering it impractical to
run the full pipeline with these models.
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D CRAFTEXT

To provide a concrete example of our method,
Figure 6 visualizes the agent’s state at a single timestep. The CrafText environment, shown on
the left, is a dynamic grid-world where the agent must gather resources, craft items, and navigate
diverse terrains to survive and complete tasks.

The core of our approach lies in the hierarchical decomposition of complex goals. As shown on the
right, a high-level instruction, which may be ambiguous or require long-term planning (e.g., ”Craft
an iron pickaxe.”), is first translated into a deterministic, multi-step plan. Each step in this plan
constitutes a distinct subtask.

Crucially, the agent’s policy is not conditioned on the entire plan. Instead, it focuses solely on the
currently active subtask. This transforms a challenging long-horizon problem into a more tractable
sequence of short-horizon tasks. The agent’s objective at any moment is to complete the highlighted
subtask and then invoke the DONE action. For example, optimal agent can choose DONE action
based on the inventory state (when completing subtasks such as collecting resources and crafting
items), player status (for subtasks that are related to eating, drinking or sleeping) or map state (for
subtasks such as placing blocks).

Upon successful completion, the framework provides the next subtask in the sequence, guiding the
agent through the overall plan until the final goal is achieved.

For our work we used a variation of Easy Craftext dataset EASY-STRICT, which introduces more
strict instruction completition protocol. The structure of the dataset is as follows:

Training Set:

• Atomic: Single, indivisible goals (e.g., ”Craft a furnace”).

• Combo: Sequences of multiple atomic goals (e.g., ”Craft a furnace and then collect wood”).

• Crucially, each instruction in the training set also has a paraphrased version to encourage
linguistic robustness from the start.

Test Sets (Out-of-Distribution):

• Paraphrases: Contains the same underlying goals as the Combo training set, but expressed
with novel vocabulary and syntax. This tests robustness to linguistic variation.

– Training Combo: ”Consume beef and create a stone pickaxe.”
– Test Paraphrase: ”Eat steak and forge a stone pickaxe.” or ”Devour cow meat and

create a stone pickaxe.”

• New Objects: Introduces new combinations of atomic goals that appeared during training
but never occurred together in a single instruction in the training set. This directly tests
compositional generalization. These instructions also come with their own paraphrases.

• Training contained: ”Consume beef” and ”Forge a stone pickaxe” and ”Forge a stone
blade” as separate atomic or part of other combos.

• Test New Object: ”Consume beef and forge a stone blade.” or ”Eat cow meat and create a
sword from stone.”

This structure allows us to rigorously dissect the agent’s capabilities: learning from language (Atom-
ic/Combo), generalizing to new phrasing (Paraphrases), and generalizing to new goal combinations
(New Objects).

E COMPLETE SUPERIGOR TRAINING PIPELINE

The SuperIgor framework integrates multiple components that exchange specific inputs and outputs
during training. Below we describe the key data flows between components:

Component Interfaces:
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• LLM Planner (fLLM)

– Input: Instruction I
– Output: Candidate plan P consisting of a sequence of subtasks from subtask bank B

• RL Policy (πθ)

– Input: Environment observations ot, current plan step DistilBERT [CLS] embedding
pϕ(t) of a plan P

– Output: Action at from extended action space containing default Craftext actions and
additional DONE action that gives the agent the next plan step embedding pϕ(t+1) of
a plan P

The complete training procedure integrating all components is summarized in Algorithm 5

Algorithm 5 Complete SuperIgor Training Pipeline
Require:
1: Environment E
2: Instruction dataset Dtrain = {I1, I2, . . . , IN}
3: Initial LLM planner fLLM with parameters θLLM
4: Initial RL policy πθ with parameters θRL
5: Mastery threshold τ , number of cycles C

Ensure:
6: Optimized planner f∗

LLM
7: Trained policy π∗

θ

8:
9: Initialize subtask bank B ← ∅

10: Initialize candidate plans P ← {}
11: Initialize mastered subtasksM← ∅
12:
13: Initial Plan Generation (Cycle 1):
14: Extract subtasks: S ← fLLM(Dtrain)
15: Build ontology: O ← BuildOntology(S, fLLM)
16: Generate initial plans: Pinitial ← ExpandPlans(Dtrain,O)
17:
18: Fine-tune fLLM on Pinitial using SFT
19: Generate training plans: P ← fLLM(Dtrain)
20:
21: for cycle c = 1 to C do
22:
23: Policy Training with Skill Curriculum:
24: Train πθ on P using PPO with Skill Curriculum Learning
25: Update mastered subtasksM based on success rates
26:
27: Plan Validation:
28: Execute πθ with plans P for multiple seeds
29: For every plan P in compute average success rate SR(p)
30: Construct preference dataset Dpref
31:
32: LLM Fine-tuning:
33: Fine-tune fLLM on Dpref using DPO
34:
35: Plan Generation:
36: Select plans for new training epoch: P ← SelectPlans(fLLM,Dtrain,P)
37: end for
38:
39: return fLLM, πθ

18
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F DPO PLANS REPRIEORETIZATION

Figure 7: Example of DPO plan reprioritization for the instruction:”Forge a stone pickaxe and mine
coal”

G TRAINING DETAILS: POLICY OPTIMIZATION

Our low-level policy, which is responsible for executing individual subtasks, is trained using Prox-
imal Policy Optimization (PPO). The agent’s goal at this stage is to learn an optimal strategy for
completing a given subtask based on its visual observations. The standard clipped surrogate objec-
tive for PPO is defined as:

LPPO(θ) = Et

[
min

(
ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where ρt(θ) =
πθ(at|ot)
πθold (at|ot) is the probability ratio and Ât is the estimated advantage at timestep t.

Our agent’s policy and value functions are parameterized by a single neural network with a shared
multimodal feature extractor and separate actor and critic heads. The visual stream processes the
63×63 pixel image with 3 channels observations using a three-layer Convolutional Neural Network
(CNN). Each convolutional layer utilizes 32 filters with a 5×5 kernel, followed by a ReLU activation
and max-pooling. For the language stream, textual instructions are encoded using a pre-trained
BERT model (bert-base-uncased), and we use the embedding of the [CLS] token as the
final text representation.

The flattened output of the CNN and the text embedding are then concatenated to form a unified
multimodal representation. This combined feature vector is fed into two separate feed-forward
networks: the actor head, which outputs the logits for the categorical action distribution, and the
critic head, which outputs a scalar estimate of the state-value function.

H LLM FOR PLANNING IN INSTRUCTION FOLLOWING TASK

We conducted an additional comparison with prior works dedicated to solving the task of following
language instructions by incorporating planning with language models, in order to illustrate the
applicability of our approach and how it differs from existing methods. We examined whether
current approaches can be used without predefined skills and verification functions, whether there
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exist frameworks for training a low-level strategy and a planner, and we were also interested in the
size of the model used for planning. The results of this comparison are presented in the table 3.

Table 3: Comparison of LLM-based planning methods across subgoal extraction, RL usage, reward
specification, and model size.
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Plan-Seq-Learn (PSL) link ✗ ✗ ✓ ✗ ✗ GPT-4

DEPS link ✗ ✗ ✗ N/A ✗ ChatGPT

SayCan link ✗ ✗ ✓ ✗ ✗ PaLM 540B

Translated LLM link ✗ ✗ ✗ N/A ✓
GPT-3 and
Codex-12B

Few-shot Subgoal Plan-
ning with LMs link ✗ ✗ ✗ N/A ✓ GPT-2-XL

IGOR link ✗ ✓ ✓ ✗ ✓ Gemma-7B

SuperIgor (ours) ... ✓ ✓ ✓ ✓ ✓ Qwen1.5-14B

I TRAINING DETAILS: LLM FINE-TUNING

To improve the high-level planner (the LLM), we employ a reinforcement learning-based feedback
loop. The planner generates a sequence of subtasks (a plan), which is then executed by the PPO
agent. The final outcome of the agent’s execution (e.g., task success or failure, efficiency) serves as
a signal to update the planner.

Direct Preference Optimization (DPO). This method aligns the model toward preferred comple-
tions using pairwise preference data. The DPO loss is:

LDPO = − log σ
(
β
(
log π(x+ | q)− log π(x− | q)

))
,

where x+ and x− are preferred and less preferred plans for instruction q, and β is a temperature
parameter.

J COMPUTE RESOURCES

All experiments were conducted on a high-performance computing cluster equipped with nodes
containing 1 NVIDIA A100 GPU with 80 GB of VRAM. Each node was powered by an 12 CPU
Cores CPU with 96 GB of system RAM.

The total computational budget can be broken down into two primary stages:

Policy Training and Evaluation. The primary computational cost stems from training the PPO
agent. Each full training run for a single configuration up to 10 billion environment steps took
approximately 120-150 GPU-hours. Reproducing all presented experiments, including the baseline
comparisons and ablation studies, required a total of 10 such training runs.

LLM Traininga and Generation. The initial generation of plans using the Qwen2.5-14B-Instruct
model for the entire dataset required approximately X GPU-hours on a single NVIDIA A100 GPU.
Epoch of finetuning LLM with DPO on evaluated plans takes approximately 15 GPU-hours.

In total, we estimate the full computational cost to reproduce all results presented in this paper to be
approximately 2000-2500 GPU-hours.
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K LIMITATION

Although our proposed method demonstrates a promising direction for integrating large language
models with reinforcement learning for instruction-following tasks, it is not without limitations.

A primary limitation is the ambiguity in the attribution of failures. When the RL agent fails to com-
plete a given plan, it is difficult to determine whether the failure stems from a flawed plan generated
by the LLM or from inadequately trained policy in the RL agent. This ambiguity complicates the
fine-tuning process for the language model, as the feedback signal may incorrectly penalize a vi-
able plan that the agent was simply unable to execute. This can lead to a noisy training signal and
potentially degrade the LLM’s planning capabilities.

L AGENT’S PLAN FOLLOWING

Figure 8: Example of how the agent follows the plan and chooses actions. For each subtask, there
are two frames: the first shows the observation up to the moment when the agent takes the action
that completes the subtask, along with the action distribution at that time; the second shows a few
timesteps later, when the agent decides to skip the subtask in order to solve a new one.

M LLM USAGE

Large language models were employed solely for the purpose of refining and revising textual con-
tent, focusing on aspects such as grammar, spelling, and word selection.

N TRAINING DETAILS: HYPERPARAMETERS

The hyperparameters for our experiments are detailed in Table 4. For the PPO agent training, we
adopt the configuration from the original CrafText baseline study (Volovikova et al., 2025). For
the LLM planner fine-tuning, we use a Q-LoRA approach with a comprehensive set of parameters
optimized for efficient large model training.
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Table 4: Hyperparameters used for training the low-level agent and fine-tuning the high-level plan-
ner.

Hyperparameter Value
PPO Agent Training

Learning rate 0.0002
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Clipping epsilon (ϵ) 0.2
PPO epochs 4
Number of minibatches 8
Entropy coefficient 0.01
Value function coef. 0.5
Activation function Tanh
Hidden layer size 512

LLM Planner Fine-Tuning

Base model Qwen2.5-14B-Instruct
Training epochs 1
Learning rate (SFT) 2e-4
Learning rate (DPO) 1e-5
Beta (DPO) 0.5
Optimizer Paged AdamW (32-bit)
LR scheduler Cosine
Warmup ratio 0.03
Batch size (per device) 16
Gradient accumulation 1
Gradient clipping norm 0.3
Weight decay 0.001
Mixed precision bf16

LoRA Configuration

LoRA rank (r) 64
LoRA alpha (α) 16
LoRA dropout 0.1

Quantization (4-bit)

Quantization type nf4
Compute dtype float16
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