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ABSTRACT

Estimating causal effects becomes particularly challenging when outcomes possess
complex, non-Euclidean structures, where conventional approaches often fail to
capture meaningful structural variation. We introduce a novel framework for
topological causal inference, defining treatment effects through changes in the
underlying topological structure of outcomes. In our framework, intervention-
driven topological shifts across homology are summarized via power-weighted
silhouettes. We propose a doubly robust estimator, derive its asymptotic properties,
and develop a formal test for the null hypothesis of no topological effect. Empirical
studies demonstrate that our approach reliably quantifies treatment effects and
remains robust across diverse, complex outcome spaces.

1 INTRODUCTION

Causal inference has recently emerged as a core tool across diverse disciplines, providing a statistical
framework for understanding the effects of interventions beyond associations. Central to this frame-
work is the notion of potential outcomes (Imbens & Rubin, 2015), which conceptualize causal effects
by imagining counterfactual scenarios, i.e., what would have occurred under alternative treatment
conditions. As scientific data grow increasingly complex, existing methods often fail to capture
intervention-induced changes in the structural properties of such outcomes. Surprisingly, relatively
little work has addressed causal inference for outcomes that lie outside vector-valued Euclidean
spaces, particularly in settings involving high-dimensional, unstructured data.

In this work, we focus on settings where changes in underlying topological characteristics, rather
than simple numerical summaries, encode the scientifically relevant causal effects of interest. Such
settings arise naturally in numerous applications: in the biomedical sciences, where interventions may
alter molecular conformations or induce protein folding (Kovacev-Nikolic et al., 2016; (Cang & Weil,
2018 |Axelrod & Gomez-Bombarelli, 2022)); in neuroscience, where brain connectivity networks
evolve in response to stimuli (Sizemore et al.,[2019); and in signal processing or medical imaging,
where detecting structural changes in dynamical systems or CT scans is of primary importance (Kim
et al.,[2018} |Gholizadeh & Zadrozny, [2018)).

Specifically, we study a new class of causal effects designed to capture shifts in the underlying
topological structure of complex outcomes leveraging tools from Topological Data Analysis (TDA).
TDA is an emerging area that applies techniques from algebraic topology to extract robust, multi-
scale features from various forms of complex data structure (Carlsson, |2020). We specifically utilize
persistent homology, which captures the birth and death of topological features (e.g., connected
components, holes, voids) across scales (Chazal & Michel,|2021). Recent advances have demonstrated
the utility of TDA in enhancing robustness of predictive models under covariate shift and data
perturbations (e.g., (Carriere et al., [2020; [2021; [Kim et al.l [2020). However, to the best of our
knowledge, the integration of TDA into causal inference, particularly within the potential-outcome
framework, has not been formally investigated, highlighting a clear gap in the literature.

Expository Example. We illustrate our proposed methodology using a macromolecule dataset
(Axelrod & Gomez-Bombarelli, [2022), depicted in Figure E], which will be revisited in the experi-
mental section. The molecular data are represented as simplified graphs of different sizes. We posit
a hypothetical chemical treatment that induces additional loop-like connected components in the
molecular structure. Such structural shifts are challenging to capture with conventional methods;
however, our approach uncovers clear differences in the first-dimensional homology features, as
reflected in the corresponding persistence diagrams. These topological features are then transformed
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Figure 1: Left: Example of untreated vs. treated macromolecule structures. Right: Corresponding
persistence diagrams, highlighting treatment-induced changes in the 1st-order homology features.

into functional summaries that are suitable for downstream machine learning tasks (Chazal et al.,
2014; Bubenik et al., 2015). Consequently, our framework is closely related to recent work on
functional causal inference (Ecker et al., 2024 Testa et al.,|2025), an area still in the early stages of
methodological development.

Contributions. We propose and analyze a novel class of fopological causal effects, defined as the
expected difference between the silhouette functions of the persistence diagrams under the potential
outcomes before and after intervention. Our work is the first to formally address learning causal
effects in topological spaces, bridging the methodological gap between statistical causal inference
and algebraic topology. This offers several key advantages: it is invariant to smooth perturbations,
captures both local and global structural features, and facilitates causal inference in settings with non-
scalar, non-Euclidean, and structurally complex outcomes. We propose doubly robust estimators and
show that they attain the fast \/n convergence rate, enabling valid and tractable inference even in fully
nonparametric settings. We further derive new stability bounds for weighted silhouettes and develop
a formal hypothesis test for the null of no topological causal effect. Our approach substantially
broadens the expressive capacity of causal inference, as demonstrated in numerical studies, enabling
rigorous analysis of structural effects in complex systems and opening new directions for causal
investigation in diverse, modern data structures.

2  PRELIMINARIES: TOPOLOGICAL TOOLS FOR MACHINE LEARNING

This section provides a brief overview of the foundational concepts in TDA and introduces key
notations used throughout the paper. For a more comprehensive treatment, we refer the reader to
Edelsbrunner & Harer| (2010)); |Chazal & Michel| (2021)).

Simplex and Simplicial Complex. Let wq, . . ., u;, be affinely independent points in R%. A k-simplex
is the convex hull of the k£ + 1 points, o, = conv{uy, ..., ux} (e.g., 0-simplex is a vertex, 1-simplex
is an edge, 2-simplex is a triangle, etc.). 7 is a face of oy, if it is the convex hull of any non-empty
subset of the k£ 4 1 vertices of oy, denoted 7 < oy. A simplicial complex K is a finite collection
of simplices such that (i) the face of any simplex in K is also in K, and (ii) the intersection of two
simplices in K is either empty or a face of both simplices.

Persistent Homology and Diagrams. A filrration F = {K(a) C K : a € R} is a collection
of nested simplicial complexes such that a < b implies K(a) C K(b). Filtrations are often
constructed using a monotonic filtration function f : K — R, where f is monotonic in the sense
that f(7) < f(o) given 7 < 0, i.e., T is a face of 0. By defining K (a) := f~!(—o0, a], we have
K(a) C K(b) whenever a < b. Given a filtration F, persistent homology provides a multi-scale
topological representation of the data by tracking the birth and death of d-dimensional homological
features (e.g., d = 0: connected components, d = 1: loops, d = 2: cavity, etc.). We denote the d-th
homology group as H;. A homological feature is said to be born at a and to die at b if it appears
in K (a) and disappears in K (b). The set of all such birth-death pairs (a,b) can be represented as
points in a plane, which gives us the persistence diagram. A persistence diagram D(F) is defined as
a multiset of points in R** := {(a,b) € (RU00)? : a < b}. We let Dy(F) denote the persistence
diagram corresponding to d-dimensional homological features. For notational simplicity, the filtration
notation F will be dropped when understood from context.
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Weighted Silhouettes. The multiset nature of persistence diagrams complicates the application of
conventional operations, motivating the need for alternative representations that facilitate analysis.
One such representation is weighted silhouette (Chazal et al.,[2014), which is a mapping of persistence
diagrams into a functional Hilbert space. Given a persistence diagram D, we first define a piecewise
linear tent function A, : R — R for each p = (a, b) € D such that

A, (t) = max{0, min{t — a,b —t}}. (1)

A collection of functions kmax,ep{A,(t)}, k € N, ¢ € T is referred to as the persistence landscape
of D (Bubenik et al.l 2015), where kmax is the k-th largest value in the set and T is some compact
interval in R. When D has N off-diagonal points, the weighted silhouette is a weighted average of
the same tent functions (1) used in persistence landscapes:

N
Zj:l w; Ay, (t)
N
Zj:l wj

To reflect topological importance, we generally wish to assign more weights to birth—death pairs with
longer lifespans. Thus, the power-weighted silhouette assigns weights w; = |b; — a;|" such that

N ,
Zj:l |bj - aj| Apj (t)
N
Zj:l |bj — a;|”

for 0 < r < oo, where large r implies the dominance of most persistence pairs, as opposed to
dominance of low persistence pairs for small r. For simplicity, we omit the notation 7 and assume
that all subsequent results hold for an arbitrary choice of r. Both landscapes and silhouettes convert
persistence diagrams into functional summaries. Landscapes preserve detailed rank information,
while silhouettes provide a more efficient and noise-robust summary via weighted averaging.

o(t; D) = , p; €D, teT.

The following lemma establishes that power-weighted silhouette functions are 1-Lipschitz, a property
that will be instrumental in the inferential procedures developed in Section [5}

Lemma 2.1 (Lipschitz Stability of the Weighted Silhouette). For any § > 0, it follows that

E[ sup |¢(siD)—o(t:D)|] < 4.
|s—t|<5

Choice of Filtration. Computing PH descriptors requires specifying a filtration, i.e., a simplicial
complex K and a function f : K — R. The choice depends on the problem and the data structure,
and standard constructions are tailored to each modality to reflect intrinsic structure. For example,
Vietoris—Rips and Alpha filtrations are standard choices for point-cloud data, while sub- or superlevel
filtrations on cubical complexes are natural for grid-structured data such as digital images. For
graph data, common options include clique filtrations and the persistent homology transform (PHT)
(Turner et al.| 2014)), which applies height filtrations from multiple directions. By incorporating these
different filtration types, our framework readily extends to a broad range of complex data modalities.

3 FRAMEWORK

Let {Z; = (X;, A;, Y;)}?_, denote an i.i.d. observed sample. A; € A = {0, 1} is a binary treatment
variable such that A; = 1 if subject i is treated and A; = 0 otherwise. X; € X C RP is a p-
dimensional vector of covariates. Let F; denote the filtration of simplicial complexes embedded
in R? constructed from Y;, and let 72 denote the corresponding potential filtration that would be
observed for the potential outcome Y;* under treatment A = a. Let ¢;(t; Dg) = ¢(t; Dy(F;)) and
¢¢(t; D) = o(t; Dg(Ff)) denote the power-weighted silhouettes (2) of Y; and Y%, respectively,
for d-dimensional homological features. We denote by T the domain of definition of ¢. Our target
parameter of interest is the topological average treatment effect (TATE), defined as a collection of

power-weighted silhouettes; 1) = (¢ (1), ..., 1¥q—1(t)) where
va(t) =E [¢' (,Dg) — ¢°(: Dg)] - 3)

Each function 1)4(t) represents the difference in average silhouettes, capturing the treatment-induced
topological variation in d-dimensional homology across treatment groups. Specifically, we will have
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Figure 2: Silhouette functions revealing differences in 1-dimensional features in the ORBIT dataset
(Adams et al.l[2017). (a) Point clouds A, B, C, D; (b) their power-weighted silhouettes; (c) silhouette
contrasts ¢ 4, — ¢ p (top) and ¢ — ¢ p (bottom). Strong signals in ¢ 4 — ¢ g indicate new 1-dimensional
features in A relative to B, whereas near-zero ¢ — ¢p shows little change between C and D.

¥q(t) > 0if, on average, the treated group exhibits more or stronger d-dimensional features at scale ¢;
14(t) < 0if those features diminish under treatment. Thus, the mapping ¢ — 14(t) is a functional
causal effect that traces how treatment alters topology across all filtration scales.

There are several compelling advantages to interpreting (3) as treatment-induced topological effects.
First, 14 (t) is inherently scale-aware, as the silhouette function preserves the filtration parameter ¢,
thereby allowing v4(t) to localize changes in topology across different geometric scales. Second,
it exhibits robustness to noise: the use of power-weighted silhouettes effectively downweights
ephemeral features, enabling 14(t) to emphasize persistent structural differences that are more
likely to be meaningful. Third, unlike raw persistence diagrams, 14(t) is vectorizable, residing
in a separable Hilbert space, which facilitates theoretical analysis and integration into gradient-
based machine learning frameworks. Fourth, ¢4(¢) can be studied within the framework of recent
advances in functional causal inference. Collectively, 1)4(t) can be viewed as a topology-aware
analogue of the average treatment effect, capturing how an intervention reshapes the d-dimensional
homological structure of the underlying data manifold across treatment groups. One limitation is
that silhouette functions may obscure the exact number of changing homological features, as they
aggregate multiple tent functions into a single weighted summary. In principle, the TATE can be
defined using individual landscape functions across all homology orders up to a specified level; this
may yield a finer topological resolution, at the cost of reduced information efficiency (see Section 2)).

The motivating example in Flgure [] illustrates how the target parameter (3) captures structural
variation. The point cloud pairs (A4, B) and (C, D) in Figure [a) represent potential outcomes for
treated and control groups. The treatment induces a loop in A relative to the control, resulting in
a pronounced silhouette difference in Figure c), whereas the difference for (C, D) remains near
zero, indicating negligible structural change. The sign of the silhouette difference curve encodes
the direction of topological change: positive values correspond to newly emerged features under
treatment, and negative values to features lost relative to control.

For identification, we invoke the standard causal assumptions: (C1) Consistency, F = F® whenever
A = a; (C2) No unmeasured confounding, A 1L ¢°(t; D3) | X; and (C3) Positivity, P(A=a | X) >
0 almost surely for all & € A and homology dimensions d € N. Despite the increased complexity of
our target parameter, the identification conditions closely parallel those in standard causal inference
settings (e.g., Imbens & Rubin, [2015)). We assume that Assumptions (C1)—(C3) hold throughout the
paper. Note that component-wise identification is sufficient for identifying the functional effect ¢4(t)
at each filtration scale ¢. Then, for each d, the target 14(¢) is identified as

balt) = E[E{6(t:Da) | X, A = 1] — E[p(t; Dg) | X, A = 0}] @
_ At Da)  (1— A)g(t;Dy)
‘E{ (%) T n(X) } ©)
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The identifying expressions above motivate the use of plug-in and inverse probability weighting
estimators, which will be discussed in greater detail in the following section.

4 ESTIMATION

In this section, we develop an estimation strategy for 14 defined in (3). For convenience, we let
m(x)=PA=1|X=2), upu(t,z;d) =E[¢(t;Dy) | X =2z, A=al,
denote the propensity score and the silhouette regression function, respectively. Their respective

estimators are denoted by 7 and ji,. We let P denote the empirical distribution on which our
nuisance estimators /i, and 7 are estimated. We assume access to a separate sample distribution P,

independent of P, used for constructing our estimator. Throughout, we fix the homology dimension d
and, when the context is clear, omit its dependence from the target parameter and estimators, since
the subsequent theoretical results do not depend on d. Motivated by the identification results in
and (3)), we propose the plug-in (PI) regression and inverse probability weighting (IPW) estimators as

bp1(t) =Py {fun(t, X;d) — fio(t, X; d)}, (6)

rpw(t) = P, { Ai((t ;))d) S Ae &;)D ) } , @)

respectively. ¥ pr and 7 pyy inherit their convergence rates directly from those of the estimators
for i, and 7, respectively. IPW estimators are generally preferred, as domain knowledge about the
treatment assignment mechanism is often more readily available and can be effectively incorporated
(Imbens & Rubin,|2015). In our setting, ¢pw is particularly advantageous for estimating the TATE, as
estimating the functional regression (i, is substantially more challenging than estimating the standard
propensity score 7.

A more efficient estimator can be constructed using tools from semiparametric efficiency theory. Let

A 1-A

@(tvz1n)_,u1(t7xad) Mo(taX7d>+{ﬂ_(X) ].-’R'(X)
where 1 = {m, 14 } 4, a set of the nuisance functions. ¢ is the uncentered efficient influence function
(EIF) for the target functional (3). The EIF enables construction of the efficient semiparametric
estimator by de-biasing the PI or IPW estimators, where we may achieve local minimax lower bounds
(Bickel et al.| {1993} jvan der Vaart, 2002} |Tsiatis, |2006; Kennedyl, 2016). This also yields desirable
properties for our estimator, such as double robustness or general second-order bias, which allows
us to relax nonparametric conditions on nuisance function estimation. It is immediate to see that
E{¢(t, Z;n)} = 1(t). Based on the EIF (8), we construct an efficient augmented inverse-probability-
weighted (AIPW) estimator as

’J)\AIPW(t) =P, {‘p(t’ Z; ﬁ)} =P, {@(t)} ) )

where 1 = n(P), i.e., {7, [iq }-

} (6(5:D) — palt. X:d)}, ®

To our knowledge, there are two main approaches for constructing AIPW estimators; one is based
on empirical process conditions, and the other is to use sample splitting. One may assume that
the function class for ¢4, 7, and the corresponding estimators are not too complex (e.g., Donsker
or low-entropy type conditions), but this would limit the flexibility of the nuisance estimators. To
avoid this, alternatively, we can use sample splitting (or cross-fitting) to allow for arbitrarily complex
nuisance estimators. Both approaches can be viewed as ways to avoid using the same data twice, one
for constructing relevant nuisance components, and the other for de-biasing, which can introduce
a threat of overfitting (Chernozhukov et al., 2018)). We refer the interested readers to Kennedy
(2016} 2024) and references therein. We remain methodologically agnostic regarding the choice

of estimation approach and assume independence between IP,, and IP. Nonetheless, for the sake of
simplicity and clarity, we adopt the sample splitting method as the default throughout this paper.

Remark 1 (Sample splitting). For nuisance estimation, independent samples P, and P can be
obtained via random data splitting. Full-sample efficiency is recoverable through cross-fitting (e.g.,
Chernozhukov et al.l 2018; INewey & Robins| |2018). For simplicity and clarity, we focus on a single
split, though extending to multiple splits is straightforward (e.g., Kennedy, 2019, |2023|).
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5 INFERENCE

Conditions for achieving desirable statistical properties, such as y/n-rate convergence and asymptotic
normality, are well established in the case of scalar responses for ATE estimation (e.g., Kennedyl
2016} [2024])). In contrast to the conventional setting, the problem addressed here requires additional
structural assumptions to ensure valid statistical inference.

We begin with a simplified setting in which the treatment assignment mechanism is fully known,
as in randomized experiments. Specifically, we assume that the true propensity score 7 is known
almost surely. In this case, the IPW estimator in is unbiased. Furthermore, under relatively mild
conditions, the following weak convergence result can be established.

Theorem 5.1. Let £(Z,t) = {ﬁ — %&)}QS(t;Dd). Assume that for any s,t € T,

cov(&(Z,s),£(Z,t)) < co. Then we have
Va(rpw (t) — ) — G weakly in £°(T),

where G is a mean-zero Gaussian process with covariance function cov|G(s),G(t)] =
cov(§(Z,5),8(Z, 1))
Hence, when the propensity score is known, %pw converges in distribution to a Gaussian process.
In observational settings, it is often preferable to use the AIPW estimator defined in @]) Hereafter,
we use the notation || - ||p,, to denote the L,(P)-norm. To analyze the asymptotic properties, we
introduce the following set of assumptions.

(AD [|1/7[| < o0 and [[1/(1 —7)

(A2) Sample splitting: The nuisance estimators are computed in a separate independent sample.
P(t) = (®)llp.2 = or(1).
(A4) Rate condition on nuisance estimation: For every t S T,

1#(X) = 7Ol { S 2ot X3 ) = pat, X: ), } = 0p(n=2/2), vt € T.

(A5) Uniform consistency: For all x € X, po(t, z;d) is uniformly Lipschitz in ¢ on 7T, and
following conditions hold:

||oo < 00.

(A3) Cross-sectional consistency: For every t € T,

sup ’ﬁa(t,x;d) - /La(t,fl,‘;d)‘ = op(1), sup|%(x) - 71'(1')’ = op(1).
teT,xeX reX

Assumptions [(AT)]- are standard and often employed in semiparametric causal inference. [(AT)
is a mild boundedness condition. [(AZ)| and [(A3)| are required to control the associated empirical
process term (see Remark [T). Note that one may replace[(A2)| with a Donsker-type condition on v
and Yarpw. requires the von Mises remainder to be asymptotically negligible, ensuring double

robustness (Kennedyl, 2024), and is typically combined with the uniform consistency conditions in
Assumption|(A5)|(e.g., Kennedyl 2019} Kennedy et al.,[2023).

It is worth noting that our regularity conditions on the functional regression estimator from Assump-
tion[(AS)|is weaker than that used in (Testa et al.| [2025):

(A5') Regularity condition on [i,: For § > 0 and a € A, the silhouette regression function esti-
mator i, (¢, X; d) satisfies E {sup|s_t|9 lfia (s, X5d) — fia(t, X; d)|} < L4, for some positive

constant L.

(A5")|directly imposes a Lipschitz modulus on the estimator /i, s random sample paths. In contrast,
(A5)[leaves [i,, unspecified apart from uniform consistency. Thus in our case, the estimator itself can
even be non-smooth, provided it converges uniformly to a Lipschitz target, which is often guaranteed
by mild smoothness of the data-generating mechanism.

Depending on the estimation strategy, this regularity condition on the functional regression estimator
can, in fact, be entirely relaxed, as illustrated in the following example.
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Example 5.1 (Functional Linear Smoother). One can use a functional linear smoother for the
scalar-on-function regression L, (e.g., Reiss et al.| |2017), where the estimator takes the form
fiq(t, X;d) = Lq®, with ® = (¢1,...,0,) and Lg € R™*™ denoting the smoothing matrix. In this
case, we have

B[ sup (s, Xsd) = ia(t, X;d)| | =E[LaB{ sup |o(s:D) - ()| }] < E(Las,
[s—t|<d |s—t|<&
where the inequality follows from Lemma Consequently, Assumption |(AS)|can be completely
omitted. A notable special case is the ordinary least squares estimator.

Pointwise /n-consistency and asymptotic normality follow naturally as consequences of semipara-
metric efficiency theory.

Proposition 5.2. Assume that Assumptions - hold. Then for fixed t € T,
> d
Vi (arew () = 0) % N (0, var(p (1)),

and Y a1 pw (t) is efficient, meaning that there exist no other regular estimators that are asymptotically
unbiased and have smaller variance.

The following result forms the foundation of our inferential framework.
Theorem 5.3. Under Assumptions|(Al)H(AS)} the following weak convergence result holds:

Vi(arpw () — ) — G weakly in £(T),
where G is a mean-zero Gaussian process with covariance function cov[G(s),G(t)] =
cov(p(t, Z;m), v(s, Z;n)), and ¢ is defined in .

Building on Theorem [5.3] we may construct confidence bands for inference with simultaneous
coverage. There are several approaches to constructing an asymptotically valid 1 — « confidence
band, depending on the strength of additional assumptions one is willing to impose or the level of
computational complexity one is prepared to accommodate. For instance, one may apply the pivotal
method proposed by |Liebl & Reimherrt| (2023)), or adopt the parametric bootstrap approach developed
by |Pini & Vantini| (2017). For a more detailed discussion and comparison, see|lesta et al.| (2025)).

For many, if not most, practitioners, the primary goal is to test for the presence of topological effects
as captured by persistent homology. Hypothesis tests based on estimated, vectorized topological
summaries (e.g., silhouettes, persistence images, or landscapes) generally do not yield valid inference
in the metric space of persistence diagrams. In contrast, our framework furnishes a formal test of the
null of no topological effect. To this end, we first establish stability bounds for weighted silhouettes,
which, to our knowledge, have not previously appeared in the literature.

Theorem 5.4. Let W, (D, D') denote the q-Wasserstein distance between two persistence diagrams
D and D', and let m* denote the corresponding optimal Wy matching. Assume that

(A6) For the power-weighted silhouette defined in (2)), its corresponding persistence diagram D is
bounded such that for all p; = (aj, bj) €D, —oo < aj < bj < oo. Moreover, there exists a global

constant L > 0 such that, for all p; € D and a given weighting exponent r, 4 bb?:aaj),. < L.
J J

Consider weighted silhouette functions ¢ and ¢’ corresponding to D and D’. Under Assumption|(A6)
I = ¢'lloc < (1+2Lre™ 1) Wi(D,D"),

for some constant ¢ > 0 that depends only on r and an upper bound on the persistences in the
diagrams D, D’

The formal definitions of the Wasserstein distance and the corresponding optimal matching are
provided in Appendix [B.4] The constant ¢ can be chosen as any global upper bound on the lifetimes
(persistences) of the pairs matched under the optimal WW;-matching m*, whose precise definition is
also given in Appendix[B.4] Building on the stability result above and the Gaussian weak convergence
of our estimator, our framework provides, to our knowledge, the first formal test of the null hypothesis
of no topological effect, with asymptotically correct size and consistency against fixed alternatives,
as formally stated below.
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Figure 3: (a) CT-scan images of non-infected (top) and infected (bottom) patients; (b) corresponding
0-dimensional persistence diagrams; (c) average silhouettes of non-infected and infected patients
given r = 0.1 (top) and difference in average silhouettes between non-infected and infected patients.

Corollary 5.5. Consider the null hypothesis
Hy: Wi(DH, DY) =0 as.,

and the test statistic T, := \/n \|1Z)\A1pw||oo. Under Assumptions|(Al)H(AG6), we have T,, = ||G|| oo,

where G is the Gaussian process from Theorem Let G, be a Gaussian- or Rademacher-multiplier
bootstrap process based on the estimated influence function (8), and let ¢,_, be the conditional

(1 — «)-quantile of ||@n||C>o Then the test that rejects Hy when T, > c1_,, has asymptotic size o
and is consistent against any fixed alternative with ||¢)||oo > 0.

6 EXPERIMENTS

To demonstrate the effectiveness of our method, we carry out experiments on two semi-synthetic
datasets and one synthetic dataset; results for the synthetic (ORBIT) data appear in Appendix [C.3|due
to page limitations. For all experiments, we construct a hypothetical dataset (X, A, Y°, Y1), where
the potential outcome pairs are designed to exhibit distinct topological contrasts across treatment
groups. We generate the covariates X € R® from a multivariate Gaussian distribution, imposing
a subgroup structure by specifying different mean vectors for each subgroup. Given X, treatment
A is assigned with probability 7(X) = expit(—0.5X; — 0.1X5 + 0.6X3 + 0.1X4 + 0.1X5 +
0.5X2 X3 — 0.7X7 X3). This treatment mechanism is designed such that one subgroup has a higher
probability of receiving treatment than the other. We model the silhouette regression function g,
using function-on-scalar regression with a Fourier basis expansion, while the propensity score 7 is
estimated via a random forest classifier. Our goal is to estimate the true topological causal effect
based on the observable data. All experiments are repeated over 20 simulations. For complete details
of the experimental setup, see Appendix [C]

SARS-CoV-2 dataset. The first semi-synthetic experiment uses image, possibly in different sizes,
with synthesized covariates and treatment assignments while retaining real outcomes, allowing
controlled yet realistic evaluation of causal estimators. We employ the SARS-CoV-2 dataset (Soares
et al.| 2020), which contains CT-scans collected from real patients who are infected or non-infected
by COVID-19. Infected patients exhibit high rates of ground-glass opacities and consolidations
that appear as isolated regions in CT-scans, which can be captured by 0-dimensional persistence
diagrams of Lower-star filtration (Igbal et al.||2025). In Figure @(a) and (b), the difference between
an infected and a non-infected CT scan image is reflected in the associated persistence diagrams.
Figure [3}(c)-(top) illustrates the average silhouettes of infected and non-infected patients, where
the non-infected group exhibits higher values in [0.2, 0.4] and the infected group exhibits higher
values in [0.7, 0.9]. Thus, a treatment can be assumed to be more effective when TATE exhibits
larger magnitudes over the interval [0.2, 0.4] (positive direction) and [0.7, 0.9] (negative direction),
as illustrated in Figure 3}(c)-(bottom). In this experiment, the true TATE is known, as we manually
construct (Y9, Y1) by assigning 500 infected samples to " and subsequently pairing it with Y1,
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Figure 5: O-dimensional true silhouette functions and its PI, IPW, AIPW estimates along three
directions using persistent homology on the GEOM-Drugs dataset.

which consist of 75% non-infected and 25% infected samples. We compute the PI, IPW, and AIPW

estimators from the observed data and compare their estimates with the true effect.

. . A Silhouette of Hg
Results. Figure[d presents the true silhouette function,

which by design clearly reflects a causal effect. Although ...
all three estimators reasonably capture the overall shape
of the true target, the IPW estimator systematically over-
estimates the true treatment effect, whereas the PI esti- <=

mator underestimates it. In contrast, the AIPW estimator | — :ue Effect
provides an accurate reconstruction of the true silhouette | ... W
function, achieving minimal bias and closely matching ™ T APW

the exact shape of the ground truth.

GEOM-Drugs Dataset. Next, we evaluate our frame- Figure 4: True silhouette and its IPW, PI,
work on graph data through a semi-synthetic experi- AIPW estimates for first-order homologi-
ment with the GEOM-Drugs dataset (Axelrod & Gomez} cal features in the SARS-CoV-2 dataset.
Bombarelli, [2022)), which provides graph-structured representations of molecular compounds. Adopt-
ing procedures analogous to the previous experiment, we randomly select 2000 samples to construct
1000 pairs of (Y, Y'!). To analyze graph-structure data, we utilize the persistent homology transform
defined in (I0)), which produces a silhouette for each direction v. For simplicity, and in line with
standard practice, we use three representative directions equally spaced on the unit circle.

Results. Consistent with the preceding experiment, Figure 5] shows that the IPW estimator overes-
timates the true treatment effect, whereas the PI estimator tends to underestimate them. Across all
three directional settings, the AIPW estimator delivers the most accurate and reliable approximation
of the true silhouettes, consistent with the theoretical results in Section [5}

7 DISCUSSION

We introduce a novel connection between causal inference and TDA, enabling estimation of causal
effects that capture not only shifts in mean or variance but also changes in the meaningful intrinsic
topological structure of the outcome space. This substantially broadens the expressive capacity
of causal inference methodologies and opens new avenues for investigating causal mechanisms in
complex, high-dimensional systems.

Several caveats and prospective solutions deserve attention, highlighting fruitful avenues for future
investigation. First, the proposed TATE framework is designed to capture macroscopic topological
shifts and may be less informative when the primary interest lies in detecting fine-grained, local
changes. In such cases, standard causal estimands could be estimated in parallel if possible, potentially
after appropriate preprocessing. Relatedly, as discussed in Section [3] silhouette functions do not
exactly quantify the number of changing homological features. Nevertheless, the proposed estimators
and the analyses in Sections []and [5]extend naturally to individual persistence landscape functions,
offering finer topological resolution when required. Lastly, the construction of our estimators can
be computationally intensive due to the use of persistent homology. This cost may be mitigated
by adopting more efficient topological summaries, such as Euler characteristic curves. Additional
extensions include adapting the framework to more complex causal settings, such as continuous
treatments, instrumental variable designs, or longitudinal exposures.
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APPENDIX

A MORE BACKGROUND ON TOPOLOGICAL DATA ANALYSIS

Vietoris-Rips Complex. Let X be a finite set of points in R?. For r > 0, the Vietoris-Rips complex
is a collection of simplices where the distance between any two vertices is smaller than 2r:

Rips(r) = {o C X|d(u;, u;) < 2r,Yu;,u; € o}.

Notice that Rips(r1) C Rips(r2) when 71 < 7. Thus, we can build a filtration on the Vietoris-Rips
complex by monotonically increasing .

Alpha Complex. Let X be a finite set of points in R?. For each u; € X, the Voronoi cell of u; is
the set of points that are closest to u;; Vi, = {x € R%|d(u;, z) < d(uj,z),Vu; € X,u; # u;}. For
r > 0 and each u; € X, let us denote the closed r-ball with center u; and radius r as By, (r). Then,
we define Ry, (r) = B, (r) N V,,, which is the intersection of each r-ball with its corresponding
Voronoi cell. The Alpha complex is a collection of simplices such that all R,,, (r) of the vertices in
the simplex have an intersection:

Alpha(r) = {0 C X| Ny,eq Ru, (1) # 0}

Similar to the Vietoris-Rips complex, we can build a filtration on the Alpha complex by monotonically
increasing r.

Cubical Complex. Cubical complex is an analogy of simplicial complex that consists of k-cubes
(e.g., vertices, edges, squares, cubes, etc.). It provides a suitable framework for analyzing data that is
naturally aligned with a grid structure (e.g., digital images). An elementary interval is an interval of
form I = [I,1 4 1] or I = [I,1] for some | € Z, where the former interval is called nondegenerate
and the latter degenerate. An elementary cube is the finite product of elementary intervals, i.e.,
Q=1 x Iy x --- x I,. The dimension of () is the number of nondegenerate elementary intervals
in the product. P is a face of Q if P C @ where P and () are both elementary cubes. A cubical
complex K is a finite collection of elementary cubes such that the face of any cube in K is also in /.
A filtered cubical complex can be constructed by assigning a filtration value to each of the cubes.

Persistence Landscapes. Persistence landscapes (Bubenik et al.,[2015) are a mapping of persistence
diagrams into a functional Hilbert space. The persistence landscape of a diagram D is a collection of
functions {A(k, t; D) }xen defined as

Ak, t; D) = kmax{A,(t)}, keN,teT,
peD

where Ap(t) is the tent function in , kmax is the k-th largest value in the set, and T is some
compact interval in R. When k is given, we write A(¢; D, k) to denote the k-th persistence landscape.
Accordingly, A(t; Dy, k) is the k-th persistence landscape of d-dimensional homological features. If
the corresponding persistence diagram contains /V off-diagonal points, all k-th persistence landscapes
for k > N are zero.

Persistent Homology Transform. The persistent homology transform (PHT) (Turner et al., [2014) is
an injective shape descriptor that consists of persistence diagrams computed from multiple directions.
To construct PHT, we first set the filtration function f as follows. Given a simplicial complex K
embedded in R?, let K be the set of O-simplices in K. For any unit vector » € S%~1, we define the
filtration function f to be

f:K xSt 4R
(o v) = Sg}fag%h v),

where v is a direction and (7, v} is the projection of a vertex 7 onto v. When the direction v is fixed,
we write f, := f(-,v). Defining K, (h) := f,!(—oc, h] for h € R naturally induces a sublevel set
filtration of nested subcomplexes F, = {K,(h) C K : h € R}, where each subcomplex K, (h)
consists of simplices o € K that satisfy (7, ) < h for all vertices T € o. Given F,,, the persistent
homology transformation is defined as

PHT : (K, v) v (Do(Fy), ... Da_1(Fy)).

12
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A key property of PHT is its injectivity, characterizing it as a complete and sufficient descriptor for
shape identification. Notably, PHT remains injective even under a finite set of directions, as long as
the number of directions is sufficiently large (Curry et al.,2022). Throughout this work, we adopt
power-weighted silhouettes in place of persistence diagrams. Accordingly, PHT is reformulated as

PHT : (K7 V) = (¢(t;DO(fV))’ RS (b(t;,Dd—l(Fu)))) . (10)

It is worth noting that replacing persistence diagrams with power-weighted silhouettes results in a
loss of injectivity, in exchange for a more tractable and interpretable representation.

B PROOF

Notation. Hereafter, we let ||z||, denote L, norm for any fixed vector . For a given function f,
£ = P09 = [f1£(2)]9dP(2)] "/ as the Ly (P)-norm of f. Also,
we let P denote the conditional expectation given the sample operator f, as in P(f) = [ f(2)dP(z).
Notice that IP(f) is random only if f depends on samples, in which case P(f) # E(f). Otherwise P
and E can be used exchangeably. For example, if f is constructed on a separate (training) sample
D" = (Z1,....,Z,), then P {f(Z)} =E {f(Z) | D”} for a new observation Z ~ P. We let P,
denote the empirical measure as in P,,(f) = P,{(f(Z)} = 231, f(Z;). Lastly, we use the

n

shorthand a,, < b,, to denote a,, < cb,, for some universal constant ¢ > 0.

~

we use the notation || f

B.1 PROOF OF LEMMA 211

Proof. For notational convenience, we denote ¢(t) := ¢(t; D, r) for any fixed persistence diagram
D and the power parameter r. Fix p = (a,b) € D. The tent function A, is linear on [a, (a + b)/2]
with slope +1 and on [(a + b)/2, b] with slope —1. Hence, for all s,t € R,

[Ap(s) = Ap()] <[5 — 1.

Namely, each A, is 1-Lipschitz.

Rewrite the weighted silhouette as ¢(t) = Z;\Ll oAy, (t) with weights o; = w; />, wi € (0,1)

satisfying » _; a; = 1. Then it follows that

6(5) = 0] = |3 0y (A, (5) = A, ()| £ Sy ls = 1] = s = 1],

which shows the silhouette functions is also Lipschitz with constant L = 1.

Even when the persistence diagram D is random, the inequality holds pathwise; thus, taking expecta-
tions yields

B sup [o(s) = o(t)l| < 4.

|s—t|<d

O

Theorem[5.1]follows as a direct consequence of Theorem[5.3] We therefore focus on proving Theorem
[5.3| directly.

B.2 PROOF OF THEOREM|[5.3] ASSUMPTION

Recall that ¢ is the uncentered EIF for the target functional (3), satisfying a Von Mises expansion:

~

W(t:B) — p(t;P) = / o(t, z:m) d(B — P)(2) + Ro(B. P), (1

13
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where the second-order remainder term is specified as

Ra®.) = [ {W(lx) - F(})} [ (X3 d) — fin (£, X3 )} (X) P

1 1 X
- / { 1-m(X) 1-#(X) } {po(t, X;d) — fo(t, X3 d)} {1 — m(X)} dP, vt (el;r)

First, we prove the asymptotic normality of finite-dimensional causal effect projections as stated
in the following lemma. The proof follows the argument of Theorem 5.31 in|van der Vaart|(2002);
similar techniques to those have also been employed in Kennedy| (2019).

Lemma B.1 (Asymptotic Normality for Discrete-Time Estimators). Let k € Nand ty,...,t, €T
be fixed. Define

~ ~ ~ T +
Bty = (D), D] Prran = Bl alta)]
Under Assumptions (AI{(A5)} we have
\/,E ({p\tl,...,tk - ¢t1,...,tk) i> N(07 Etl,...,tk)a

where the covariance matrix is given by

Ztl-,--~7tk =E [‘ph ----- ty (D)Sotl ----- ty (’D)T} )

for pi,... 0, (D) = (p(t1; D), ..., o(t1; D)) .

Proof. For notational simplicity, let ¢ = ¢4, (D) and ¢ = &4 (D) =
(@(t1:D), ..., 2(ty; D)) ". Recall that G(¢; D) is defined by

P(t:D) = juu(t, X;d) — fio(t, X;d) + {ﬁ&) 1 iﬁ-é{)

}{¢<t; Do) — fialt, X:d)}

where all the nuisance estimators are constructed on a separate, independent sample (Assumption
(A2)). Then, consider the following decomposition:

\/E (ﬁ;tl ..... te — ¢t1 ..... tk) = \/E(P’n - P)‘P + \/ﬁ(Pn - ]P))((ﬁ - QD) + P(@ - 90) (13)

By the multivariate central limit theorem, the first term in equation[I3|converges to a multivariate Nor-
mal distribution with mean 0 and covariance matrix equal to ¥, ., . The third term in equation
is simply /Ry where Ry is the remainder term specified in equation Under the rate condition in
Assumption it follows that v/nR2 = op(1). Thus, it suffices to show that the second empirical
process term is negligible, i.e., of order op(1). By the consistency condition and the triangle
inequality,

k
1 = lle2 =0 [ D 118(t) — o(t;)le2 | = op(1).
j=1

Applying the multidimensional Chebyshev’s inequality to the proof of Lemma 2 in|Kennedy et al.
(2020), it is immediate to get

0= P)(@ - 0) =00 (2202} o i),

Putting all the pieces together into equation [T3] the result follows by Slutsky’s theorem. O

Note that Proposition [5.2]follows by Lemma[B.T] We are now in a position to prove Theorem[5.3]
Here, we impose Assumption |[(A5") and follow the proof strategy of [Testa et al.| (2025). We then
show that the same result holds under the weaker Assumption [(A5)] in Section|[B.3]

14
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Proof. First, we show the stochastic equicontinuity of zZ :

lim limsupP | sup ‘@(s) — @(t)‘ >e| =0,

020 n—oo |s—t|<s
for every € > 0. Fix § > 0 and write

w(ii6) = sup [d(s) —B(t)|.
ls—t]<é
For a € {0,1} set Ay(s,t) = fa(s,X;d) — [ia(t, X;d) and R(s,t) = ¢(s;Dg) — ¢(t; Da) —
{ﬁA(SaX;d) MA t Xad)} Then
B(s) = D(t) = Ai(s,1) = Aols, 1) + { =y — T8y RO, 1),

By Assumption |(A5), P [sup|s_t|S5 |Aa(s,t)|} < Ly, Ya € A. Since persistent pairs with

infinite lifespan are excluded from consideration, we have ||¢||oc < oco. Further, by Lemma [2.1]
¢(t) is 1-Lipschitz continuous in ¢, yielding |¢(s; D) — ¢(t; Da)| < |s — t|. Thus, it follows that
P {sup‘sft‘g(; IR(s, t)ﬂ < (Ly + 1)4. Therefore, by the Markov inequality, for any fixed ¢ > 0,
we have
_ Pluio)] (1,430
Pw(@;0) > ] < < Lot 3

€ €
where the second inequality follows by the triangle inequality. Finally, taking § — 0 and then

lim sup,,_, . yields lims_,o limsup,,_, o P[w(1);6) > €] = 0 for every & > 0, as desired. Having

established the stochastic equicontinuity of 1, the result follows directly from Lemma and
Theorem 7.5 of Billingsley| (1999). O

B.3 PROOF OF THEOREM[3.3| UNDER ASSUMPTION [(A3)]

Assumption |(AS")| furnishes the Lipschitz and uniform consistency conditions that guarantee the
stochastic equicontinuity, playing a key role in the proof of Theorem [5.3]in Section [B.2} Recall that
we must verify

lim hmsupIP’[ sup |@(s) — @(t)| > 5} =0, Ve>0.

=0 nooo  lLs—t|<s
Write 3(t) = ¢(t) + {@(t) — ¢(t)}. Hence
B(s) = @(t) = {p(s) = o(t) } +{B(s) — @(s)} = {B(t) —p(t) } .
() (i1)
We control terms (i) and (ii) separately as follows.

(i). Because each p, (¢, x; d) is Lipschitz in ¢ (first part of Assumption|(A5")) and ¢ (¢; Dy) is Lipschitz
with constant L,

lo(s) —@(t)] < Lyls—t, L,:=2L, + L. (A)
(ii). The uniform consistency conditions in Assumption |(A5")|imply that for each a € A,

sup |[ta(t, z;d) — pa(t, z;d)| = 0p(1),  sup|w(z) —m(z)| = op(1).
t,x x
Thus, denoting A,, := sup, |p(t) — ¢(¢)|, we have A,, = op(1). Consequently, for all s, ¢,
[B(s) — ()] +12(t) — ()] < 24, = op(1). (B)
Hence, combining (A) and (B), we obtain the modulus of continuity:
sup [@(s) — ()| < Lyd +2A,.

[s—t|<é
Choose a deterministic sequence 0 |. 0 such that L,6,, <€ /2. Then
Pl sup [3(s) — B(t) 2 | < P24, 2¢/2) - 0,
[s—t] <6

because A,, = op(1). Having established stochastic equicontinuity, the remaining steps of the proof
proceed unchanged, completing the proof of Theorem 5.3
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B.4 PROOF OF THEOREM[3.4]

We first introduce several definitions that will be used in the development of our stability results.

Definition B.1 (Matching). Let A\ denote the diagonal of a persistence diagram. A matching between
two persistence diagrams D and D’ is defined as a subset m C D x D’ such that every point in
D\ A and D'\ A appears exactly once in m.

Definition B.2 (Wasserstein distance). The d-th Wasserstein distance between two persistence
diagrams D and D' is

1/d

Wa(D,D') = inf > llp—dlls

matching m
(p.g) €M

We denote the matching m that satisfies Definition[B.2]as the optimal Wq matching.

Let ¢ = ¢(t; D) and ¢’ = ¢(t; D’) be the corresponding power-weighted silhouettes for persistence
diagrams D and D', respectively. Throughout the remainder of this section, any quantity derived
from D’ will be denoted with a superscript . With a slight abuse of notation, we let p = (bp,d,) € D,
q = (b, d;) € D', and denote the power weights corresponding to p and ¢ as w, = [d, — by|"
and wf; = \d{l — b;|r, respectively, where 0 < r < oo. Note that under the diagram boundedness
condition of Assumption the absolute value in the power weights may be omitted. Hence, we

assume w;, = (d, — by,)" and wy, = (d;, — by,)" throughout this section.
We now establish the following lemma, which serves as a preliminary result essential for the
development of the main theorem.

Lemma B.2. Given a matching m C D x D', for any (p,q) € m,
wp — wgl < 2l lIp =l

where ¢, is some constant that satisfies the Mean Value Theorem for the function g(z) = ", x €
[0, 00), given points p and q. Consequently,

Jwp — wil < 2re"lp = qloo,

for
¢ = max max{d, —b,, d, —b },
(p.@)EM Ly = by a q}

so ¢ depends only on the weighting exponent r (through the bound) and on the largest matched
lifetime across D and D'.

Proof.
wy — wy| = [(dy = bp)" — (dg — b)"|
= |7"C;q_1 (dp —bp) — (d; - b:;)}|
= T|C;;1 |(dp = bp) — (d; - b;)|
<l { by — b+ |dp — di|}
< 2r|cp | - max {|b, — b |, |d, — di|}
= 2rlcpg |- lIp = alloes
where the second equality uses the Mean Value Theorem. O

Note that a matching—independent choice for ¢, which also suffices is
¢ = max{d, — b, :x € DUD }.
Notice that when r = 1 the bound does not involve c (cf. the special case in the theorem).

Now we give the proof of Theorem 5.4]
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Proof. Letw, = (d, —b,)", wy = (di, — b;,)", and define

1 1
! !/ / / !
S = g Wp, S = g wy, (b:—S E wplp, 1) =3 E wyhy,
pED q€D’ peED 4€D’

where A, denotes the tent function centered at p, i.e., [[A}[loc = (df, — b;)/2. Augmenting the

diagrams with the diagonal if needed, the optimal W7 matching m* is a bijection between D and D',
hence

/ /
wplp _ wyhy

A ' A
lo-olo=| > (“B2-50)| < X

S S’
(p,q)em* o (mg)EM* e
Split each summand as
wphy  wehy Wp wy W
H S 9 | < Hg(Ap —Ag) LT (A lloo R
Summing over (p, q) € m* yields
/ ]- / / wP w"]
l6=¢'loc < Ti4Ta,  Thi= 5 ST owllApAls, Toi= Y A 2
(p.g)em™ (p.g)em™

Bound for 77. By the 1-Lipschitz property of the tent functions, we get [[A, — Afl[oc < [P — ¢l co-
Therefore,

Ts e Y wlr-de < g(Xw)( X Ip-d) = mi@.D),
(p.g)em* pED (p,q)EM*

where the second inequality follows by a simple corollary of Holder’s inequality:

Zax < alli [|zllse < llalh Izl = (Za)(Zw)

for a;, z; > 0, and the last equality is the definition of the W cost of m*.

Bound for 7,. Observe the algebraic identity

[(S" — S)wp + S(wp, —wy)] - |S" — S| w, N [wp — w)|
S.S7 - SS’ S’ '

!
wp Wy

s 9

Hence Ty < Ts, + Tbp, where
|S" — S|w [w, — w! |
Toq = Z ”A;HOOTP, Top = Z ”AIqHOO%'

(p,q)eMm* (p.q)€m*

We first tackle the term T5,. Using Holder’s inequality to separate the sums and cancel S, we have
5" = 5]
T < (D IAGls) P
qeD’
Since §' — S = 37, e+ (Wy — wp), the triangle inequality and Lemmayield
5" =8| < D lwp—wll <0 Y 2retlp—dlle < 20 YT Ip—dll.
(p.q) €M™ (p.g) €M™ (p.g) €M™

Moreover, 3 [|Ag][oc = z D gep (dg—bp)and 8" =3~ 1,/ (dy — by)", so by the boundedness
condition from Assumption [(A6)

Yger Aqlloe 1 20dg —by) _ L
5

S PR
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Therefore

h

Tou < 5.27:0“1 > llp—dlle = Lre™ ' WA(D, D).

(p,q)EM™

The analysis of T5; follows the same steps as above. Again by Lemma[B.2]and the ratio boundedness
condition from Assumption [(A6)}

> gen Mgl
Ty < % Z |w p_w < Z 2rep, Hp—qllee < Lre™ ' Wi(D,D').

(p.q)em* (p q)EM*

Combining the bounds for T5, and T5;, gives

Ty, < 2Lrc™ ' Wy(D, D).

Putting together the bounds for 7} and 75, we obtain

¢ — ¢l < (L+2Lre” ') Wi(D, D).

Special case r = 1. When r = 1, Lemma B.2|gives |w, — wy| < 2||p — ¢|o and

Dgep Mglloo Do (dg —0G)/2 1

S A=) 2

so each of Ty, and Ty, is bounded by W1 (D, D), while Ty < W1 (D, D’), which yields ||¢p— ¢'|| oo <
3W1(D, D).

C EXPERIMENT DETAILS

We perform experiments on three benchmark datasets: the SARS-CoV-2 CT-scan image dataset,
the GEOM-Drugs molecular graph dataset, and the ORBIT point cloud dataset. In all experiments,
we construct a synthetic counterfactual dataset {(X;, A;, Y;?, V;')}™ | to facilitate the evaluation of
estimators against a known true effect. We begin by randomly selectlng and pairing two data samples
to form each potential outcome pair, assigning one to Y'° and the other to Y'! in a manner that induces
a clear topological contrast. Next, we generate the covariates X and treatment A according to a
stochastic data-generating process and treatment assignment mechanism. The same procedures are
identically applied to all experiments, with details outlined below.

Data-generating process. We assume a setting in which a subgroup structure is imposed on the
covariates X € R®. The covariates are generated from two subgroups, each governed by a multivariate
Gaussian distribution with distinct mean vectors j1, f1o, and a common covariance matrix 2. The
covariance matrix X is set as a diagonal matrix with standard deviation 0.5, and the mean vector
of each subgroup is specified as p; = [1,0.6, —0.7,2.2, —1]7 and py = [0.4, —0.4, —0.6,3.3,3.].
Covariates for half of the samples are generated from N (u;,X), while the remaining half are
generated from N (pz, X).

Treatment mechanism. Given the covariates X, treatment A € {0, 1} is assigned with probability
m(X) = expit(—0.5X; — 0.1X5 + 0.6X35 + 0.1X4 + 0.1X5 + 0.5X5X3 — 0.7X;X3). This
treatment mechanism is designed such that one subgroup has a higher probability of receiving
treatment than the other (see Flgure [7H(a)). Upon treatment assignment, the observed outcome is
givenby Y = AY! + (1 — A)Y".

The aforementioned procedure is repeated 20 times to generate multiple datasets with different
realizations of X and A, for each of which the PI, IPW, and AIPW estimators are computed. The
estimators are constructed by modeling the silhouette regression function u,, with function-on-scalar
regression employing a Fourier basis expansion, and estimating the propensity score 7 using a random
forest classifier. To assess the performance of each estimator, we examine the pointwise mean and
the pointwise 1-standard deviation error bands computed across the 20 estimates.
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Figure 6: Visualization of the point-wise mean (dotted line) and the point-wise 1-standard deviation
error bands (shaded area) of PI, IPW, and AIPW estimators on the SARS-CoV-2 dataset. The true
topological causal effect is shown as a blue line.

groupl
group2

Density

oa o5
Propensity Score

(a) Density of propensity score by (b) Sample molecular graph (c) Sample molecular graph
subgroup (Group 2 more likely to A (Axelrod & Gomez-Bombarellil B (Axelrod & Gomez-Bombarelli,
be treated). 2022). 2022).

Figure 7: (a) Propensity score distribution by subgroup; (b—c) representative molecular graphs.

C.1 SARS-CoV-2

The SARS-CoV-2 dataset contains CT-scans collected from real patients in Brazil, who are infected
or non-infected by COVID-19. In our experiment, 500 potential outcomes pairs (Y°, Y1) are
constructed according to the following procedure: (i) 500 infected images are sampled and assigned
to Y0, (ii) 375 non-infected and 125 infected images are sampled and assigned to Y'!, (iii) Y° and
Y'! are randomly paired. By experimental design, TATE exhibits treatment effect since 75% of
Y'! is non-infected where as every individual in Y is infected. Silhouettes are computed using
sublevel set filtration on a filtered cubical complex (see Appendix [A) with = 0.1. For the nuisance
estimators, function-on-scalar regression is implemented with 10 basis functions, while random forest
is constructed with 100 trees. The point-wise 1-standard deviation error bands of the respective
estimators are demonstrated in Figure [f]

C.2 GEOM-DRruGs

The GEOM-Drugs dataset consists of graph-structured representations of molecular compounds, as
shown in Figure[7}(b) and (c). To analyze graph data, we adopt persistent homology transform (I0)
with three directions, yielding three separate estimates per homology dimension for each estimator. In
our experiment, 1000 potential outcomes pairs (Y, Y'!) are constructed according to the following
procedure: (i) sample 2000 graph data from original dataset, (ii) assign samples with large silhouette
magnitudes to Y'!, and the rest to Y'°, (iii) randomly pair Y° and Y'!. This allocation scheme gives
rise to significant topological differences between the counterfactual groups. We compute silhouettes
with » = 1, while the nuisance estimators for 1, and 7 are specified with 5 basis functions and 100
trees, respectively. Figure E] illustrates the PI, IPW, AIPW estimators for 1-dimensional silhouettes,
where similar to the previous result, the AIPW estimator consistently provides the most accurate and
stable approximation of the true effect across all three directional settings. Figures [9]and [TI0|provide
a visualization of the point-wise mean and the point-wise 1-standard deviation error bands of the
estimators for each of the three directions per homology dimension.
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Figure 8: 1-dimensional true silhouette functions and its PI, IPW, AIPW estimates along three
directions using persistent homology on the GEOM-Drugs dataset.
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Figure 9: Visualization of the point-wise mean (dotted line) and the point-wise 1-standard deviation
error bands (shaded area) of 0-dimensional PI, IPW, and AIPW estimators on the GEOM-Drugs
dataset for three directions. The true topological causal effect is shown as a blue line.
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Figure 10: Visualization of the point-wise mean (dotted line) and the point-wise 1-standard deviation
error bands (shaded area) of 1-dimensional PI, IPW, and AIPW estimators on the GEOM-Drugs
dataset for three directions. The true topological causal effect is shown as a blue line.
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Figure 11: 0-dimensional (left) and 1-dimensional (right) true silhouette functions and its PI, IPW,
AIPW estimates for the ORBIT dataset.

C.3 ORBIT

The ORBIT dataset (Adams et al., 2017) is a synthetic point cloud dataset that is generated by
simulating different dynamical systems characterized by a parameter r. Given a random initial point
(w0,y0) € [0,1]% and r > 0, we generate point clouds consisting of 1000 points as follows:

Tpt1 = Tp +7Yn(l —y,) mod 1
Ynt1 = Yn + r2n(l —2x,) mod 1,

In this experiment, we use » = 3.5,4,4.1 to generate 1000 samples for each value of r, with the
resulting point clouds illustrated in Figure 2}(a): » = 3.5 (top right), » = 4 (bottom), r = 4.1
(top left). From each triplet of point clouds generated by r = 3.5,4, 4.1, we randomly select two
point clouds and assign the one corresponding to the higher r value as Y with probability 0.7.
This procedure yields pairs of matched potential outcomes (Y, Y!) for all 1000 samples, where
the treated potential outcome is intentionally designed to possess more pronounced topological
features. Here, we use 3 bases to model the silhouette regression function and 100 trees to estimate
the propensity score, and the silhouettes are computed using Alpha filtration (see Appendix [A) with
power weight r = 3.

Results. Figure [T1]illustrates the true target silhouettes in homology dimensions 0 and 1, which
clearly demonstrate a causal treatment effect on first-order homological features of point clouds. In
particular, the positive values of the 1-dimensional silhouette indicate the emergence of holes in
the treated point cloud. Our aim is to recover the magnitude of this silhouette function, as larger
values correspond to more substantial structural changes. Consistent with previous results, the IPW
estimator tends to overestimate the treatment effect, whereas the plug-in estimator underestimates it.
The AIPW estimator, by contrast, yields a substantially more accurate estimate of the true silhouette
function. Moreover, the near-zero silhouette for 0-dimensional homology features suggests that the
data’s O0-dimensional homology, including connected components, remained largely unchanged after
treatment. Figure [I2]illustrates the pointwise mean and the pointwise 1-standard deviation error
bands for each of the PI, IPW, and AIPW estimators on the ORBIT dataset. The AIPW estimator
exhibits near-perfect alignment with the true causal effect, whereas the IPW and plug-in estimators
fail to encompass the true effect within their respective error intervals.
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Figure 12: Visualization of the pointwise mean (dotted line) and the pointwise 1-standard deviation
error bands (shaded area) of 1-dimensional PI, IPW, and AIPW estimators on the ORBIT dataset.
The true topological causal effect is shown as a blue line.
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