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ABSTRACT

Video-text retrieval aims to precisely search for videos most relevant to text
queries within a video corpus. However, existing methods are largely limited
to single-text (single-event) queries and are not effective at handling multi-text
(multi-event) queries. Furthermore, these methods typically focus solely on re-
trieval and do not attempt to locate multiple events within the retrieved videos.
To address these limitations, our paper proposes a novel method named Disentan-
gling Inter- and Intra-Video Relations, which jointly addresses multi-event video-
text retrieval and grounding. This method leverages both inter-video and intra-
video event relationships to enhance retrieval and grounding performance. At the
retrieval level, we devise a Relational Event-Centric Video-Text Retrieval mod-
ule based on the principle that comprehensive textual information leads to pre-
cise correspondence between text and video. It incorporates event relationship
features at different hierarchical levels and exploits the hierarchical structure of
video relationships to achieve multi-level contrastive learning between events and
videos. This approach enhances the richness, accuracy, and comprehensiveness
of event descriptions, improving alignment precision between text and video and
enabling effective differentiation among videos. For event grounding, we propose
Event Contrast-Driven Video Grounding, which accounts for positional differ-
ences among events on the 2D-temporal Score Map and achieves precise ground-
ing of multiple events through divergence learning for their locations. Our solu-
tion not only provides efficient text-to-video retrieval but also accurately grounds
events within the retrieved videos, addressing the shortcomings of existing meth-
ods. Extensive experimental results on the ActivityNet Captions and Charades-
STA benchmark datasets demonstrate the superior performance of our method,
validating its effectiveness. The innovation of this research lies in introducing
a new joint framework for video-text retrieval and multi-event grounding while
offering new ideas for further research and applications in related fields.

1 INTRODUCTION

The video-to-text retrieval task (Zhao et al. (2022); Gorti et al. (2022); Liu et al. (2022); Zhang et al.
(2023)) aims to accurately identify the video that best matches a text query from a video database.
Due to its broad application prospects in video search, recommendation systems, film entertainment,
intelligent surveillance, and other fields, it has become a focal point for researchers. Early research
primarily focused on single-text (single-event) queries, where a single textual description was used
to retrieve the most relevant video. However, given the limited temporal information provided by
a single text description, extending this task to multi-text-to-video retrieval, also known as Multi-
event Video-Text Retrieval (MVT-R), is essential to address the ambiguity issues associated with
single-text descriptions. Compared to single-text queries, multi-text queries offer richer and more
detailed event descriptions, enabling the system to better understand the structure and flow of video
content, thereby significantly enhancing retrieval performance.

Currently, in the realm of MVT-R, only MeVTR (Zhang et al. (2023)) method has explored match-
ing videos based on multi-text queries. However, the MeVTR method relies on event time labels
corresponding to each textual query, significantly increasing annotation costs. Furthermore, MeVTR
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Figure 1: Comparison of MVT-R, SVT-RG, and our proposed MVT-RG method: (a) MVT-R re-
trieves videos relevant to multi-text queries from a video corpus; (b) SVT-RG retrieves videos and
grounds specific events based on a single-sentence query; (c) MVT-RG retrieves videos using multi-
text queries and grounds the specific events associated with each query.

primarily focuses on retrieval and is unable to perform temporal grounding of multiple events within
the retrieved videos. Therefore, achieving video-text retrieval and grounding based on multi-text
queries without corresponding time labels for the textual queries presents a substantial challenge.
In terms of jointly achieving video retrieval and grounding, JSG (Chen et al. (2023)) proposes a
method for Single-event Video-Text Retrieval and Grounding (SVT-RG). This method uses a single
sentence as a query to retrieve the corresponding video from a video corpus while also achieving pre-
cise temporal grounding. Although effective, this method is specifically designed for single-sentence
queries and does not account for the complexity of multi-text queries or the contextual relationships
between different events involved in such queries. As a result, JSG still faces significant challenges
when dealing with video-text retrieval and grounding based on multi-text queries.

In this paper, we explore a novel task within a weakly supervised setting: Multi-event Video-Text
Retrieval and Grounding (MVT-RG). As illustrated in Figure 1, this task is compared with MVT-R
and SVT-RG. From this comparison, we observe that the task defined in this paper not only requires
the use of multiple texts to retrieve events but also assumes that the event locations in the training
samples are unlabeled within the videos. Therefore, MVT-RG requires the efficient extraction of
event-related features from each sentence while leveraging the intrinsic connections between texts.
This allows us to enable the retrieval of relevant videos from a large corpus and the precise grounding
of event timestamps within the videos. To address this challenge, we propose an innovative method,
Disentangling Inter- and Intra-Video Relations, which deeply explores the decoupling of inter- and
intra-video event relations, covering both retrieval and event grounding.

At the retrieval level, recognizing that more comprehensive textual query information leads to clearer
correspondences between texts and videos, we construct the Relational Event-Centric Video-Text
Retrieval (RE-CVTR) module. This module aims to decouple relationships between videos, mak-
ing their features more distinctive. By embedding multi-level event relations into the hierarchical
structure of corresponding videos, it enables contrastive learning between events and videos at mul-
tiple levels. This enhances the richness, accuracy, and comprehensiveness of event descriptions,
improving alignment precision between texts and videos. For event grounding, we observe the po-
sitional differences among events on the 2D-temporal Score Map and propose the Event Contrast-
Driven Video Grounding (EC-DVG) method. This method successfully separates different events
and achieves precise grounding of multiple events. In summary, our approach not only excels in
text-to-video retrieval but also accurately locates events in textual queries under weakly supervised
settings, addressing the shortcomings of existing methods. In summary, the significant contributions
of this research are as follows:

• We introduce a novel task, MVT-RG, and propose the Disentangling Inter- and Intra-Video
Relations method. This is the first approach to jointly address multi-text retrieval and event
grounding under a weakly supervised setting.

• For video retrieval, recognizing that more comprehensive textual descriptions lead to
clearer correspondences with videos, we develop the relational RE-CVTR module. This
module embeds features representing event relations at various levels into the hierarchical
structure of corresponding video relations, enabling multi-level contrastive learning be-
tween events and videos.

• For event grounding, we propose the EC-DVG module. It leverages positional differences
of events on the 2D-temporal Score Map and introduces an event position divergence loss,
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allowing the model to distinguish multiple events and achieve precise grounding, even
without event temporal labels.

2 RELATED WORK

Video-Text Retrieval. Video-Text Retrieval can be categorized into SVT-R (Single-event Video-
Text Retrieval) and MVT-R, based on the number of text queries used. SVT-R focuses on retrieving
the video most relevant to a single text query, with the primary challenge being the effective align-
ment of video and text features. Early works (Torabi et al. (2016); Yu et al. (2018)) in SVT-R
concentrated on designing feature alignment mechanisms. With the introduction of the large-scale
image-text pre-trained model CLIP (Radford et al. (2021)), many researchers extended (Luo et al.
(2022); Zhao et al. (2022)) its application from static images to video. However, the existing meth-
ods primarily focused on single-query video retrieval. In contrast, MVT-R requires multiple text
queries for video retrieval, a task first introduced in MeVTR. This approach used the CLIP model
to extract visual features from videos and text query features from the input queries. It then applied
the K-Medoids clustering algorithm to identify key events in the video and calculated the cosine
similarity between the CLIP-extracted text query features and the visual features of each key event.
Finally, the proposed MeVTR loss function ensured that each text query matched its corresponding
event, thereby improving retrieval accuracy. Overall, both SVT-R and MVT-R methods are limited
to retrieval and have yet to address the temporal grounding of events within the retrieved videos.

Video Grounding. Video Grounding aims to locate specific temporal intervals of events in
untrimmed videos based on textual queries. Compared to Video-Text Retrieval, the main chal-
lenge in Video Grounding is the precise alignment of visual content with the semantic information
in the query. Existing Video Grounding approaches can generally be categorized into supervised
and weakly supervised methods. Supervised methods require annotations of event start and end
times corresponding to each textual query during training. These methods can be further divided
into proposal-based (Zhang et al. (2020a; 2021b); Wang et al. (2021)) and proposal-free (Mun et al.
(2020); Zhang et al. (2020b)) approaches, depending on whether a proposal generation module is
used. Proposal-based approaches adopt a two-stage model design: first, generating candidate pro-
posals, then jointly modeling these proposals’ corresponding video segments and textual queries,
and finally selecting the best proposal for the query. A representative work of this type is 2D-TAN
(Zhang et al. (2020a)).

Proposal-free approaches, on the other hand, employ a single-stage design, directly predicting event
start and end times from the fused video and text features (Zhang et al. (2020b)). Both types have
shown impressive performance in Video Grounding. However, these methods assume that the cor-
respondence between videos and textual queries is known during both training and testing. In real-
world applications, this correspondence is often unknown, requiring relevant videos to be retrieved
from a video corpus before performing the Video Grounding. This adds an extra layer of complex-
ity, as the system must first retrieve the relevant video from a large corpus, then localize the specific
event.

To reduce the manual cost of constructing time labels in supervised methods, several studies have
focused on Video Grounding under weak supervision. In this setting, only the correspondence be-
tween videos and textual queries is provided for model training, without requiring event time labels.
Existing weakly supervised Video Grounding(WSVG) methods can be roughly divided into Multiple
Instance Learning (MIL)-based (Mithun et al. (2019); Gao et al. (2019)) and reconstruction-based
models (Lin et al. (2020); Zheng et al. (2022a); Yang et al. (2021); Zheng et al. (2022b)), depending
on their grounding mechanism. Among them, TGA (Mithun et al. (2019)) was the first method to
address the weak supervision problem within the MIL framework. It treats videos relevant to the
query as positive samples and irrelevant videos as negative samples, achieving fine-grained visual-
text alignment by maximizing the matching score of positive samples while minimizing the score
for negative ones. Reconstruction-based methods, on the other hand, take videos and textual queries
as input and generate proposals that match the queries through inter-modal interactions. The vi-
sual features corresponding to these proposals are then used to reconstruct masked textual queries,
thereby localizing events. A representative method is SCN (Lin et al. (2020)). Building upon this,
LCNet (Yang et al. (2021)) proposed a hierarchical representation of video and text features and
introduced self-supervised reconstruction loss to accurately model the local correspondences be-
tween video and text, thereby improving WSVGg performance. Meanwhile, CNM (Zheng et al.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the Proposed Method: The method comprises three components. (a) presents
the feature extraction process, including both video and text feature extraction. (b) illustrates video
retrieval, featuring the RE-CVTR. (c) demonstrates EC-DVG. By disentangling inter-video relations
in the retrieval module and intra-video relations in the grounding module, the method aligns visual
and textual modalities, ensuring accurate correspondence between text and events in the video.

(2022b)) proposed optimizing the feature alignment between video and query through contrastive
negative sample mining and reconstruction loss, further enhancing the performance of WSVG tasks.
While WSVG methods reduce the manual cost of time label construction, they still assume known
correspondence between videos and textual queries during testing, which is not always practical.
Recently, JSG proposed SVT-RG. This method aims to retrieve the corresponding video and pre-
cisely locate relevant moments using a single sentence (event) as a query. Although JSG performs
well in SVT-RG, it struggles with MVT-RG due to its focus on single event.

3 METHODOLOGY

3.1 PROBLEM STATEMENT AND APPROACH OVERVIEW

Let’s first provide a concrete definition for the MVT-RG task. Suppose we have a video corpus
consisting of N unedited long videos, denoted as V = {Vn}Nn=1, where Vn = {xl,n}Ll=1 and xl,n

represents the l-th frame of the video, with L being the total number of frames. A multi-text query
is represented as Q = {Qm}Mm=1, where Qm denotes the m-th textual sub-query, and M is the total
number of textual sub-queries for a video. Our goals are twofold: (1) to retrieve the corresponding
video V ∗ from the video corpus V based on the multi-text query Q; (2) to locate the time intervals
T = {(ts,m, te,m)}Mm=1 for each textual sub-query Qm within the retrieved video V ∗, where ts,m
and te,m represent the start and end times of the event, respectively. It is worth noting that this study
adopts a weakly supervised setting. Specifically, during training, we only know the correspondence
between each multi-text query and the video, but the specific event time intervals corresponding
to each textual sub-query are unknown. During the testing, we have no knowledge of either the
correspondence between the multi-text queries and the videos or the specific time intervals of the
events described in the text within the videos. The main task of our designed model is to not only
retrieve videos that match the textual descriptions from the video corpus but also to accurately locate
the time intervals of the events described in the text within the videos.

As illustrated in Figure 2, the method proposed in this paper consists of three components: feature
extraction, Relational Event-Centric Video-Text Retrieval (RE-CVTR), and Event Contrast-Driven
Video Grounding (EC-DVG). In the feature extraction stage, we meticulously extract features from
both videos and texts to ensure an adequate representation of cross-modal information. RE-CVTR
innovatively incorporates multi-level relational associations between different events into the mod-
eling framework, employing an event-centric multi-level interaction mechanism to overcome cross-
modal challenges in video-text retrieval. For event grounding, EC-DVG introduces an event con-
trast mechanism and proposes a multi-event grounding strategy based on event differences, enabling
more precise event-level cross-modal alignment. Through these innovative designs, the method
presented in this paper demonstrates significant performance improvements in simultaneously ad-
dressing cross-modal video-text retrieval and multi-event grounding tasks.
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Figure 3: Visualization of the 2D Temporal Score Map with Ground Truth Temporal Labels for
Multiple Text Queries on the ActivityNet Captions Dataset. Brighter pixel areas indicate higher
probability scores at the current proposal moments. In these Ground Truth score maps, red boxes
represent the true locations of the candidate moments corresponding to each sentence.

3.2 FEATURE EXTRACTION

Text Feature Extraction. Given a multi-text query Q containing M sentences, where each sentence
describes an event. Let the m-th sentence be denoted as Qm = {qm,j}Jj=1, where qm,j represents
the j-th word in the m-th sentence, and J is the total number of words in that sentence. We first
use Word2Vec (Mikolov et al. (2013)) to tokenize and embed each sentence, converting it into word
vectors. The word vectors of the entire sentence are then input into an LSTM, with the final output
of the network, fm,t ∈ R1×d, serving as the feature representation of sentence Qm. The feature
representations of all sentences in Q can be expressed as {f1,t,f2,t, . . . ,fM,t} ∈ RM×d. We con-
catenate the text representations {f1,t,f2,t, . . . ,fM,t} with a class token fcls,t ∈ R1×d to form
a new feature representation {fcls,t;f1,t,f2,t, . . . ,fM,t} ∈ R(M+1)×d. This new feature repre-
sentation is fed into the text transformer encoder Et, and the output text features are denoted as
{f̃cls,t; f̃1,t, f̃2,t, . . . , f̃M,t} ∈ R(M+1)×d.

Video Feature Extraction:. For video feature extraction, given an untrimmed video V containing
T frames, we first segment the video into K non-overlapping video clips. Then, we use a pre-trained
C3D network (Tran et al. (2015)) to extract the visual features of each video clip. The features of
the entire video can be represented as {f1,v,f2,v, . . . ,fK,v} ∈ RK×d. We concatenate these fea-
tures with a video class token fcls,v ∈ R1×d to form {fcls,v;f1,v,f2,v, . . . ,fK,v} ∈ R(K+1)×d.
This feature set is fed into the video transformer encoder Ev , and the output features are repre-
sented as {f̃cls,v; f̃1,v, f̃2,v, . . . , f̃K,v} ∈ R(K+1)×d. Next, we adopt the method from 2D-TAN to
construct candidate moments for subsequent event grounding. Specifically, given a candidate mo-
ment Tij = [ti, tj ], where 1 ≤ i ≤ j ≤ K, we perform max pooling on the sequence features
f̃i,v, f̃i+1,v, . . . , f̃j,v to aggregate them into a single feature vector f̃ij ∈ R1×d. This aggregated
feature f̃ij serves as the video feature for the candidate moment Tij . Finally, we assemble all ag-
gregated features into a temporal feature map F ∈ RK×K×d.

To ensure that the features output by the text and visual branch transformer encoders are highly
discriminative, we optimize Et and Ev using the InfoNCE loss function(He et al. (2020)):

Lnce = Lt2v
nce + Lv2t

nce (1)

Lt2v
nce = − 1

B

B∑
b=1

[
log

eS(f̃b
cls,t,f̃

b
cls,v)λ∑B

z=1 e
S(f̃b

cls,t,f̃
z
cls,v)λ

]
(2)

Lv2t
nce = − 1

B

B∑
b=1

[
log

eS(f̃b
cls,v,f̃

b
cls,t)λ∑B

z=1 e
S(f̃b

cls,v,f̃
z
cls,t)λ

]
(3)

where B is the batch size, λ is a learnable scaling parameter, and f̃ b
cls,t and f̃ b

cls,v denote the
class token features for the b-th pair of text and video features within a batch B, respectively.
S(f̃ b

cls,t, f̃
b
cls,v) represents the cosine similarity between the class token features f̃ b

cls,t and f̃ b
cls,v.
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3.3 RELATIONAL EVENT-CENTRIC VIDEO-TEXT RETRIEVAL

In the Video-Text Retrieval task, a single text query often corresponds to events that appear in multi-
ple videos. This issue arises from the intrinsic ambiguity of text queries and the repetition of events
across various videos, making it more difficult to retrieve the relevant video. To address this, some
researchers propose generating multi-text queries for the target video to reduce ambiguity in event
descriptions. However, effectively disentangling the relationship between multi-text (event) queries
and videos remains challenging. In response, we propose the Relational Event-Centric Video-Text
Retrieval (RE-CVTR) module, based on the understanding that more detailed text descriptions fa-
cilitate clearer associations between text and video. To fully exploit the hierarchical nature of fea-
tures that embed event relationships at various levels and their corresponding videos, we propose
a hierarchical relationship construction mechanism, as illustrated in Fig. 1(b), enabling multi-level
contrastive learning between events and videos.

Specifically, we assume that the input to the RE-CVTR module consists of multi-text query features
{f̃m,t}Mm=1 and video features f̃cls,v. To achieve multi-level interaction and contrastive learning
between text queries and videos, we need to create different hierarchies for the multi-text query fea-
tures, where the input at each hierarchy level is the multi-text query features {f̃m,t}Mm=1. At the first
hierarchical level, the input features {f̃m,t}Mm=1 are treated as isolated nodes, with no associations
constructed between different nodes. This level primarily serves to highlight the individual role of
each text. At this level, we concatenate the original text features {f̃m,t}Mm=1 and denote the result
as F (1)

t = [f̃1,t, · · · , f̃M,t]. At the second hierarchical level, we treat {f̃m,t}Mm=1 as root nodes. For
each root node feature f̃m,t, we randomly sample a different sentence feature f̃n,t from the set and
feed these two features into a Graph Convolutional Network (GCN) for feature aggregation:

f̄
(2)
m,t = GCN

((
f̃m,t, f̃n,t

)
,A(2)

m

)
m,n ∈ {1, 2, ...,M},m ̸= n (4)

Here, f̄ (2)
m,t represents the feature of the m-th sentence output by the GCN at the second hierarchy

level. A
(2)
m ∈ R1×M is an adjacency matrix consisting of 0s and 1s, which indicate the presence

or absence of connections between nodes. Through this approach, we obtain the features at the
second hierarchical level, denoted as F

(2)
t = [f̄

(2)
1,t , · · · , f̄

(2)
M,t]. At each subsequent hierarchical

level, we re-randomly sample a new node (sentence) different from the current nodes in the graph
and incorporate it into the graph for hierarchical feature aggregation. This process continues until the
M -th hierarchical level is reached. We denote the text features at all hierarchical levels as {F (l)

t }Ml=1,
where F

(l)
t = [f̄

(l)
1,t , f̄

(l)
2,t , ..., f̄

(l)
M,t].

To ensure that text query features at each hierarchical level can accurately retrieve corresponding
videos, we adopt cross-entropy loss to constrain the retrieval results at each level. This enhances
the ability of features at each level to describe events, which is beneficial for subsequent video
retrieval and event grounding. Suppose the current batch of video features at the l-th level is denoted
as {f̃cls,v,b}Bb=1, where B is the batch size. We compute the cosine similarity between each text
feature and each video feature individually. Using this approach, we obtain the cosine similarity
score matrix S(l) ∈ RM×B at the l-th level:

S(l) =


s
(l)
1,1 s

(l)
1,2 · · · s

(l)
1,B

s
(l)
2,1 s

(l)
2,2 · · · s

(l)
2,B

...
...

. . .
...

s
(l)
M,1 s

(l)
M,2 · · · s

(l)
M,B

 (5)

Here, each element s(l)m,b in S(l) represents the similarity between the m-th text query and the b-
th video features. To compute the cross-entropy loss at each level, we calculate the column-wise
average of S(l), resulting in the cosine similarity score vector S̄(l) = [s̄

(l)
1 , s̄

(l)
2 , . . . , s̄

(l)
B ], where

S̄(l) ∈ R1×B . The cross-entropy loss at the l-th level is computed as:

L(l)
ce = −

B∑
b=1

yb log
(
s̄
(l)
b

)
(6)
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Here, yb is a label consisting of 0 or 1, where 1 indicates that the text query matches the current
video, and 0 indicates no match. The total cross-entropy loss across all levels is expressed as:

Lce =
1

M

M∑
l=1

L(l)
ce (7)

In the M hierarchy levels constructed for the multi-text query features {f̃m,t}Mm=1, each text query
at a deeper level acquires more information from other queries within the same video. As we move
from the first level to the M -th level, the text queries accumulate richer information describing
events. This makes the retrieval results at deeper levels more reliable. Based on this, we design a
multi-level contrastive ranking loss based on ( Balntas et al. (2016); Zheng et al. (2022a)) to enable
the model to perform multi-level contrastive learning. Specifically, we use the cross-entropy loss
at each level to evaluate retrieval performance and define the multi-level contrastive ranking loss as
follows:

Lrank =
1

(M − 1)

M∑
l=2

max
(
L(l)
ce − L(l−1)

ce + h∗, 0
)

(8)

Here, h∗ is a hyperparameter used to control the threshold of the contrastive loss, and l and l − 1
represent the current level and the previous level, respectively.

3.4 EVENT CONTRAST-DRIVEN VIDEO GROUNDING

In Multi-event Video-Text Grounding, multiple textual queries for the same video often describe
a series of events that are interrelated yet temporally distinct. These temporal differences lead to
different spatial positions for the events on the 2D-temporal Score Map, as illustrated in Figure 3.
Manually annotating the timestamps of corresponding events for each query during training would
be highly labor-intensive. To address this, we propose the Event Contrast-Driven Video Grounding
(EC-DVG) method. This method leverages the positional differences of events on the 2D-temporal
Score Map to design a feature learning strategy driven by event position divergence. By utilizing
temporal distinctions between events, this strategy effectively differentiates events while preserving
their correlations, enabling efficient cross-modal Multi-event Video-Text Grounding without requir-
ing temporal labels. The detailed implementation of EC-DVG is shown in Figure 2(c).

Suppose the feature of the m-th sentence query in the multi-text query is denoted as f̃m,t, and the
temporal feature map corresponding to the video for this text query is Fv ∈ RK×K×d. We obtain
the fused temporal feature map F̃m,v through Equation (8):

F̃m,v(i, j, :) =
(
Ws × f̃m,t

)
⊙ (Wv × Fv(i, j, :)) (9)

where Ws ∈ Rd×d and Wv ∈ Rd×d are two learnable parameters, and ⊙ represents the Hadamard
product. We then feed F̃m,v into a convolutional layer to capture the contextual relationships among
adjacent candidate temporal features, denoting the output as F̄m,v .

To obtain the response scores of different candidate moments for the m-th sentence, we feed F̄m,v

into a prediction layer consisting of a fully connected layer and a Sigmoid activation function, re-
sulting in a 2D-temporal Score Map Pm = (pm,ij)K×K . Here, pm,ij represents the relevance
probability score between the candidate moment starting at i and ending at j, relative to the m-th
sentence. By this means, we can generate corresponding 2D-temporal Score Maps for M sentence
queries, which we denote as P ∈ RK×K×M , where P = {Pm}Mm=1. To effectively leverage the
differences between events and disentangle the correspondences among different textual sub-queries
within the video, we propose a Contrastive Loss driven by the divergence of event positions on the
2D-temporal Score Map:

Lcon =
1

M

M∑
m=1

∥Pm ⊙ Pn∥2F where m ̸= n (10)

Here, Pn is a 2D-temporal Score Map randomly sampled from the set P . ∥·∥F denotes the Frobe-
nius norm. By minimizing the loss function in Eq. (10), we encourage events located in Pm and Pn
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to exhibit spatial dispersion, which preserves the independence of each event’s features and disen-
tangles the correlations between events within the video. At the same time, under the constraint of
hierarchical relationships, minimizing this loss does not render Pm and Pn completely unrelated.
This design ensures that the associations between different events are maintained. Therefore, the
loss function in Eq. (10) strikes a good balance between event position diversity and the hierarchical
relationships for feature extraction.

3.5 TRAINING AND INFERENCE

Training: The entire network is trained end-to-end, optimizing the model parameters using the
following total loss function:

Ltotal = Lnce + Lce + Lrank + Lrec + Lcon (11)

where Lrec is the reconstruction loss, which reconstructs the masked text query using the visual
features corresponding to the predicted best candidate moment.

Inference: During inference, we first compute the cosine similarity between all videos in the video
corpus and the text query features at the M -th level, selecting the video with the highest similarity
as the retrieval result. Subsequently, within the retrieved video, we predict the start and end times of
the event corresponding to each sentence query.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOL

Datasets. In the domain of video-text retrieval and grounding, the mainstream datasets that suit the
task requirements are primarily ActivityNet Captions (Caba Heilbron et al. (2015)) and Charades-
STA (Rohrbach et al. (2012a)). Following the protocols established by existing methods, our pro-
posed approach has been evaluated against related methods on these datasets, which encompass
videos along with their corresponding multi-text queries. Additionally, to provide a more compre-
hensive evaluation, we conducted supplementary experiments where our method was further as-
sessed against related approaches on the less commonly used dataset, TaCoS(Regneri et al. (2013)).

ActivityNet Captions. The dataset contains 14,926 untrimmed videos, from which 19,811 video-
multi-text query pairs are constructed. Notably, a single video may correspond to multiple multi-text
queries. The average video duration is 117.60 seconds, with each multi-text query containing an
average of 3.63 sentences. The dataset is divided into three subsets: a training set, validation set 1,
and validation set 2, containing 10,009, 4,917, and 4,885 video-multi-text query pairs, respectively.
Following established protocols, we use validation set 2 as the test set for subsequent evaluations.

Charades-STA. The dataset comprises 6,672 videos of indoor activities. We follow the established
data split protocol, with 5,338 video-multi-text query pairs in the training set and 1,334 in the test
set. On average, the videos are 29.8 seconds long, with each multi-text query corresponding to one
video and containing an average of 2.41 sentences.

Evaluation Protocol. In this paper, we adopt the same evaluation metrics as the JSG method,
namely Recall@K (R@K) and IoU=m, to objectively assess the performance of our model. Specif-
ically, the joint use of R@K and IoU=m indicates the percentage of cases where, for each text
query, the model’s predicted grounding results in the top K retrieved videos have an Intersection
over Union (IoU) exceeding m with the corresponding temporal labels. For ease of comparison with
the existing SVT-RG method, the calculation of evaluation metrics in our experiments follows the
same approach as methods based on single-sentence queries.

4.2 IMPLEMENTATION DETAILS

Similar to the 2D-TAN method, this paper uses a C3D model pre-trained on the UCF101 dataset
(Karpathy et al. (2014)) to extract video features. Additionally, word2vec is used to obtain word
embeddings. During training, for both the ActivityNet Captions and Charades-STA datasets, we set
the batch size to 16 and train the model for 200 epochs, with the hyperparameter h∗ set to 0.5.
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Table 1: Comparison of the proposed method with state-of-the-art methods on the ActivityNet Cap-
tions and Charades-STA datasets. The best and second-best values are highlighted in bold and
underline, respectively. JSG** denotes the JSG method adapted for multi-event tasks.

Method
ActivityNet Captions Charades-STA

IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7
R@10 R@100 R@10 R@100 R@10 R@100 R@10 R@100 R@10 R@100 R@10 R@100

MCN – – 0.18 1.26 0.09 0.70 – – 0.52 2.96 0.31 1.75
CAL – – 0.21 1.58 0.10 0.90 – – 0.75 4.39 0.42 2.78
XML 3.21 12.48 1.69 7.58 0.10 0.90 0.70 2.47 0.32 1.42 0.16 0.78

HMAN – – 0.66 4.75 0.32 2.27 – – 1.40 7.79 1.05 4.69
ReLoCLNet 4.82 15.80 3.01 11.22 1.47 6.30 1.51 3.28 0.94 2.26 0.59 1.21

MS-SL 10.80 28.31 5.85 15.65 2.46 6.60 4.46 17.61 2.55 10.05 0.91 3.76
JSG 13.27 40.61 8.76 29.98 3.83 15.78 7.23 28.71 5.67 22.50 3.28 12.34

JSG** 14.21 42.89 9.05 33.76 5.62 18.07 7.93 30.16 6.84 22.93 4.59 14.37
Ours 19.54 59.45 16.58 50.37 11.13 33.45 12.82 46.25 11.62 28.54 8.92 18.83

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

In this section, we compare the proposed method with existing approaches on two public datasets,
with detailed results shown in Table 1. Additionally, since the MVT-RG task is introduced for
the first time in this paper, we only compare our method with the JSG method from SVT-RG to
verify its effectiveness. Furthermore, in Table I, we present the results of MCN(Anne Hendricks
et al. (2017)), CAL (Escorcia et al. (2019)), XML(Lei et al. (2020)), HMAN(Paul et al. (2021)),
ReLoCLNet(Zhang et al. (2021a)), and MS-SL(Dong et al. (2022)), reproduced by the authors of
the JSG method, on the ActivityNet Captions and Charades-STA datasets. The original JSG method
was designed for single-event video-text retrieval and grounding. We adapted it to create the JSG**
version, supporting multi-event tasks for a fair comparison with our method. For details on the
adaptation process, please refer to the supplementary materials.

Results on ActivityNet Captions. Table 1 presents a performance comparison between the pro-
posed method and currently achievable video retrieval and grounding methods on the ActivityNet
Captions dataset. The results demonstrate that our method outperforms existing methods across all
evaluation metrics. Specifically, compared to JSG, the proposed method exhibits significant per-
formance improvements in the MVT-RG task, including a 6.27% increase at R@10, IoU=0.3; an
18.84% increase at R@100, IoU=0.3; a 7.82% increase at R@10, IoU=0.5; a 20.39% increase at
R@100, IoU=0.5; a 7.30% increase at R@10, IoU=0.7; and a 17.67% increase at R@100, IoU=0.7.
Additionally, our method improves by 5.33%, 16.56%, 7.53%, 16.61%, 5.51%,and 15.35% in all
evaluation metrics, respectively, compared to JSG**. These notable improvements not only validate
the effectiveness of our proposed method but also indicate that MVT-RG has a more pronounced
performance advantage over SVT-RG. This is because the proposed method fully leverages the re-
lationships between inter-video and intra-video events, enabling us to achieve more accurate cross-
modal matching and grounding.

Results on Charades-STA. Table 1 also presents a performance comparison between our method
and JSG on the Charades-STA dataset. Notably, the proposed method outperforms existing meth-
ods across all evaluation metrics. Specifically, compared to the second-ranked JSG method, our
approach achieves improvements of 5.59% at R@10, IoU=0.3; 17.54% at R@100, IoU=0.3; 5.95%
at R@10, IoU=0.5; 6.04% at R@100, IoU=0.5; 5.64% at R@10, IoU=0.7; and 6.49% at R@100,
IoU=0.7. It is worth noting that our method improves by 4.89%, 16.09%, 4.78%, 5.61%, 4.33%, and
4.46% in all evaluation metrics, respectively, compared to JSG**. These results fully demonstrate
the effectiveness and advancement of our method.

Visualization of Results. Figure 4 showcases the visualization of retrieval and joint grounding re-
sults of our method compared to the JSG method on the ActivityNet Captions dataset. As illustrated
in Figure 4 (a), our proposed method achieves correct matching at rank 2 when using multiple text
queries. The JSG method focuses on single-event video-text retrieval and grounding. Following
the retrieval approach of the JSG method, we apply it independently to each of the three sentence
queries, yielding three different retrieval results. Among them, when using the first and third sen-
tences as queries, JSG does not achieve correct matching at rank 10; however, when using the second
text query, JSG achieves correct matching at rank 8. This further demonstrates the effectiveness and
superiority of our proposed method in the task of multi-event video-text retrieval. Furthermore, the
visualization of grounding results in Figure 4 (b) indicates that the event timestamps grounded by
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Figure 4: Visualization of Prediction Results for Different Models: (a) shows the top 10 retrieval
results from the proposed method in the first row, with the second to fourth rows showing the top
10 results from the JSG model. Green borders indicate correct retrievals, and red borders indicate
incorrect ones. (b) presents grounding results based on retrieval outcomes for different models,
where ”Unavailable” marks a retrieval failure preventing event grounding for the current text query.

our method for each text query are closer to the ground truth, providing additional evidence of the
effectiveness of our proposed method in multi-event grounding.
4.4 ABLATION STUDIES

The proposed method primarily consists of two modules: RE-CVTR and EC-DVG. To evaluate the
individual contributions of these modules, we conduct an ablation study on the ActivityNet Captions
dataset, as shown in Table 2. In these experiments, we employ SCN as the baseline model, referred
to as “Base”, and introduce the InfoNCE loss to fine-tune and optimize it.

Effectiveness of RE-CVTR. We integrate RE-CVTR into the baseline model, referred to as ’Base
+ RE-CVTR.’ As shown in Table 3, compared to Base, adding RE-CVTR leads to improvements
of 3.95%, 15.02%, 4.01%, 7.05%, 4.15%, and 6.59% across all evaluation metrics. Additionally, to
assess the impact of the contrastive ranking loss (CRL), we remove it from the RE-CVTR module,
naming it “Base + RE-CVTR w/o CRL”. Table 2 demonstrates the efficacy of CRL.

Table 2: Ablation studies on ActivityNet Captions dataset.

Base RE-CVTR
w/o CRL RE-CVTR EC-DVG

IoU=0.3 IoU=0.5 IoU=0.7
R@10 R@100 R@10 R@100 R@10 R@100

✓ 13.41 40.25 10.53 36.71 4.49 20.78
✓ ✓ 15.61 50.36 13.88 40.58 7.91 25.79
✓ ✓ 17.36 55.27 14.54 43.76 8.64 27.37
✓ ✓ ✓ 19.54 59.45 16.58 50.37 11.13 33.45

Effectiveness of EC-DVG. We integrate EC-DVG into Base+RE-CVTR to evaluate its impact. As
shown in Table 2, Base+RE-CVTR+EC-DVG improves by 2.18%, 4.18%, 2.04%, 6.61%, 2.49%,
and 6.08% across all metrics, respectively, highlighting EC-DVG’s effectiveness in event grounding.

5 CONCLUSION
In this paper, we present a novel approach for the MVT-RG task. This method addresses signifi-
cant limitations in existing techniques that focus on single-text queries and lack the capability to
ground multiple events within retrieved videos. By leveraging both inter-video and intra-video
event relationships, we enhance retrieval and grounding performance. At the retrieval level, our
RE-CVTR module facilitates precise alignment between text and video by utilizing comprehensive
textual information and hierarchical event relationships. This multi-level contrastive learning not
only enriches event descriptions but also improves alignment precision, allowing effective differ-
entiation among videos. Moreover, the EC-DVG method accounts for positional variations on the
2D temporal Score Map among events, achieving accurate grounding through divergence learning.
The experimental results highlight the superior performance of our method compared to existing
approaches, validating its effectiveness in addressing the MVT-RG task.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

TaCoS. This dataset combines the MPII corpus (Rohrbach et al. (2012b)) with kitchen scene videos,
resulting in 127 videos focused on cooking activities. Each video is associated with multiple textual
queries. The training set, validation set, and test set contain 1,107, 418, and 380 video-multi-text
query pairs, respectively. The average video length in the dataset is 4.79 minutes, and each multi-text
query consists of an average of 8.75 sentences.

Table 3: Compare the proposed method with state-of-the-art method on the TaCoS dataset. The
bolded data represents the optimal result. The underscore indicates the second-best result. JSG*
represents our retrained JSG model for the single-event task on the TaCoS dataset. JSG** denotes
the JSG method adapted for multi-event tasks.

Methods
IoU=0.3 IoU=0.5 IoU=0.7

R@10 R@100 R@10 R@100 R@10 R@100

JSG* 7.23 28.71 5.67 22.50 3.28 12.34

JSG** 8.37 31.24 7.38 25.92 3.79 14.05

Ours 20.03 42.36 11.52 27.39 6.95 16.13

Results on TaCoS . Table 3 presents a performance comparison between the proposed method and
JSG on the TaCoS dataset. Since the events in the TaCoS dataset all occur within the same kitchen
scene with minimal variation, this presents a significant challenge for event grounding. Despite these
difficulties, our method outperforms JSG across all evaluation metrics. Specifically, the proposed
method achieves a 12.80% improvement in R@10 with IoU=0.3, a 13.65% improvement in R@100
with IoU=0.3, a 5.85% improvement in R@10 with IoU=0.5, a 4.89% improvement in R@100 with
IoU=0.5, a 3.67% improvement in R@10 with IoU=0.7, and a 3.79% improvement in R@100 with
IoU=0.7. Since the JSG method is designed for single-event video-text retrieval and grounding,
we have adapted it to support multi-event tasks for a fair comparison with our proposed method.
Specifically, we modify JSG to calculate cosine similarity scores between each sub-event text query
in the multi-event text query and all videos in the video corpus. The scores from each sub-text event
query are then summed and averaged, with the video having the highest similarity chosen as the final
ranking result for multi-event retrieval. This adaptation allows a fair comparison between JSG and
our method under the same framework. As shown in Table 3, even after adapting JSG from handling
single-event tasks to multi-event tasks, our method consistently outperforms the adapted JSG**
method across all metrics on the TaCoS datasets. These results further confirm the effectiveness and
versatility of the proposed method.

Figure 5: Impact of Different Values of Hyperparameter h∗ on Model Performance
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A.2 PARAMETER SELECTION AND ANALYSIS

In Figure 5, we analyze the impact of the hyperparameter h∗ in Eq. (8) on the model’s perfor-
mance. This analysis demonstrates how the model’s performance varies with different values of h∗

on the ActivityNet Captions dataset. The results in Figure 5 show that the model achieves optimal
performance when h∗ = 0.5. Therefore, in all experiments conducted in this paper, we set h∗ to 0.5.

A.3 VISUALIZATION OF MORE RETRIEVAL RESULTS

In Figure 6, we present a visualization of retrieval results and analyze the impact of different ranking
strategies on the retrieval subtask. Specifically, the third and fourth columns of Figure 6 illustrate
the retrieval results for each sub-event, where cosine similarity scores are calculated between the
textual query of each sub-event and all videos in the video corpus. These scores are computed using
the first layer and the final (M-th) layer of the RE-CVTR module, respectively. The video with the
highest similarity score is selected as the retrieval result for each sub-event. The results demonstrate
that retrieval performance using the final (M-th) layer surpasses that of the first layer, validating
the effectiveness of the RE-CVTR module, as it leverages hierarchical modeling to extract more
comprehensive textual information, leading to more accurate text-video correspondences. Moreover,
as shown in the last column of Figure 6, the best retrieval performance is achieved by averaging the
cosine similarity scores from the final layer and selecting the video with the highest average score
as the retrieval result.

Figure 6: Visualization of Retrieval Results with Different Ranking Strategies
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