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Abstract

Discovering causal relations from observational time series without making the
stationary assumption is a significant challenge. In practice, this challenge is
common in many areas, such as retail sales, transportation systems, and medical
science. Here, we consider this problem for a class of non-stationary time series.
The structural causal model (SCM) of this type of time series, called the semi-
stationary time series, exhibits that a finite number of different causal mechanisms
occur sequentially and periodically across time. This model holds considerable
practical utility because it can represent periodicity, including common occurrences
such as seasonality and diurnal variation. We propose a constraint-based, non-
parametric algorithm for discovering causal relations in this setting. The resulting
algorithm, PCMCIΩ, can capture the alternating and recurring changes in the
causal mechanisms and then identify the underlying causal graph with conditional
independence (CI) tests. We show that this algorithm is sound in identifying
causal relations on discrete-valued time series. We validate the algorithm with
extensive experiments on continuous and discrete simulated data. We also apply
our algorithm to a real-world climate dataset.

1 Introduction

In modern sciences, causal discovery aims to identify the collection of causal relations from obser-
vational data, as in Pearl [1980], Peters et al. [2017] and Spirtes et al. [2000]. One of the most
popular causal discovery approaches is the so-called constraint-based method. Constraint-based
approaches assume that the probability distribution of variables is causal Markov and faithful to a
directed acyclic graph called the causal graph. Given large enough data, they can then recover the
corresponding Markov equivalence class by exploiting conditional independence relationships of the
variables. See Peters et al. [2017]. There are many constraint-based algorithms such as PC and FCI
algorithms Spirtes et al. [2000]. The standard assumption of these approaches is that data samples are
independent and identically distributed, which makes it possible to perform CI tests. See Bergsma
[2004], Zhang et al. [2012] and Shah and Peters [2020].

Recently, there have been numerous efforts to extend such constraint-based algorithms to accommo-
date time series data. For instance, PCMCI in Runge et al. [2019] and LPCMCI in Gerhardus and
Runge [2020] are the PC-based algorithms for time series. Inspired by FCI algorithms, approaches
designed for time series include ANLSTM in Chu and Glymour [2008], tsFCI in Entner and Hoyer
[2010] and SVAR-FCI in Malinsky and Spirtes [2018]. This setup is relevant in several industrial
applications since many data points have an associated time-point, such as root-cause analysis in
Ikram et al. [2022]. Most of the existing causal discovery algorithms make the stationary assumption.
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See Chu and Glymour [2008], Hyvärinen et al. [2010], Entner and Hoyer [2010], Peters et al. [2013],
Malinsky and Spirtes [2018], Runge et al. [2019], Pamfil et al. [2020]and Assaad et al. [2022].

Non-stationary temporal data makes causal discovery more challenging since the statistics are
time-variant, and it is unreasonable to expect that the underlying causal structure is time-invariant.
Identifying causal relations from non-stationary time series without imposing any restriction on the
data is difficult. Here, we focus on a specific class of non-stationary time series, called the semi-
stationary time series, whose structural causal model (SCM) exhibits that a finite number of different
causal mechanisms occur sequentially and periodically across time. One example is illustrated in
Fig.1, where the time series X1 has three different causal mechanisms across time, shown as red
edges, green edges, and blue edges, respectively. Similarly, time series X2 has two alternative causal
mechanisms. This setting holds considerable practical utility. Periodic nature is commonly observed
in many real-world time series data. See Han et al. [2002], Nakamura et al. [2003], Carskadon et al.
[2005] and Komarzynski et al. [2018]. Here are a few additional intuitive examples: poor traffic
conditions often coincide with commute time and weekends; household electricity consumption
typically follows a pattern of being higher at night and lower during the daytime. Consequently, it
is reasonable to expect periodic changes in the causal relations underlying this type of time series
without assuming stationarity. Here, the constraint-based methods in Chu and Glymour [2008], Entner
and Hoyer [2010], Malinsky and Spirtes [2018] and Runge et al. [2019], designed for stationary time
series, may fail. Given observational data with periodically changing causal structures, it is hard
to apply CI tests directly. Most of the other algorithms designed for non-stationary time series rely
heavily on model assumptions, as in Gong et al. [2015], Pamfil et al. [2020], and Huang et al. [2019].
These algorithms are discussed further in the related work.

In this paper, we propose an algorithm to address this problem, namely non-parametric causal
discovery in time series data with semi-stationary SCMs. The key contributions of our work are:

• We develop an algorithm to discover the causal structure from semi-stationary time series
data where the underlying causal structures change periodically. Our algorithm systemati-
cally uses the PCMCI algorithm proposed for the stationary setting in Runge et al. [2019].
The resulting algorithm is hence named PCMCIΩ where Ω denotes periodicity.

• We validate our method with synthetic simulations on both continuous-valued and discrete-
valued time series, showing that our method can correctly learn the periodicity and causal
mechanism of the synthetic time series.

• We utilize our method in a real-world climate application. The result reveals the potential
existence of periodicity in those time series, and the stationary assumption made by previous
works could be relaxed in some practical situations.

1.1 Related Work

PCMCI has been applied in diverse domains to investigate atmospheric interactions in the biosphere,
as demonstrated in Krich et al. [2020], global wildfires as explored in Qu et al. [2021], water usage
as studied in Zou et al. [2022], ultra-processed food manufacturing as examined in Menegozzo
et al. [2020], and causal feature selection as discussed in Peterson [2022], among other applications.
See Arvind et al. [2021], Gerhardus and Runge [2020], Castri et al. [2023a,b]. While PCMCI has
achieved considerable success, it is not without its limitations. One notable assumption that can be
challenged is the concept of causal stationary, that is, causal relations are time-invariant. PCMCI
exhibits robustness when applied to linear models with an added non-stationary trend. See also Runge
et al. [2019]. However, there is an ongoing exploration to enhance its performance in a wider range
of non-stationary settings.

Although not as extensively as the stationary case, causal discovery in non-stationary time series has
been studied by some authors. However, many of those algorithms rely on parametric assumptions
such as the vector autoregressive model in Gong et al. [2015] and Malinsky and Spirtes [2019]; linear
and nonlinear state-space model in Huang et al. [2019]. One non-parametric algorithm in the literature
is CD-NOD proposed by Huang et al. [2020], which has been extended to recover time-varying
instantaneous and lagged causal relationships. In very recent work, Fujiwara et al. [2023] proposed
an algorithm JIT-LiNGAM to obtain a local approximated linear causal model combining algorithm
LiNGAM and JIT framework for non-linear and non-stationary data. To the best of our knowledge,
no other non-parametric approaches can discover causal relations underlying time series without
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Figure 1: Partial causal graph for 3-variate time series V = {X1,X2,X3} with a Semi-Stationary
SCM where τmax = 3, ω1 = 3, ω2 = 2, ω3 = 1, Ω = 6 and δ = 6. The first 3(=τmax) time slices
{Xt}1≤t≤3 are the starting points. The same color edges represent the same causal mechanism. E.g.
for X1: there are 3 (= ω1) time partition subsets {Π1

k}1≤k≤3. The time points t of nodes X1
t sharing

the same filling color are in the same time partition subsets. The time points t of nodes X1
t sharing

both the same filling color and the same outline shape are in the same homogenous time partition
subsets (the definitions are in the supplementary material). There are 6 (= δ) different Markov
chains in this multivariate time series V , and the first element of these 6 Markov chains is shown
as {Zq

1}1≤q≤6 and are tinted with a gradient of blue hues. The superscript q of Zq
i is the index of

different Markov chains, whereas the subscript i denotes the running index of that specific Markov
chain. For instance, Z1

1 and Z1
2 denote the first two elements of the first Markov chain, while Z2

1 and
Z2
2 denote the first two elements of the second Markov chain.

assuming stationarity and can also allow for sudden changes in causal mechanisms. Our proposed
approach does not directly enforce the stationary assumption on the time series. The SCM also
integrates a finite set of causal mechanisms that exhibit periodic variations over time.

2 PCMCIΩ: Capturing Periodicity of the Causal Structure

In this section, we formulate the problem of learning the causal graph on multi-variate time series data
when the SCM exhibits periodicity in causal mechanisms. In section 2.1, we present the necessary
definitions and provide an overview of the problem setting. In section 2.2, we introduce the required
assumption.

2.1 Preliminaries

Let G(V,E) denote the underlying causal graph, and for each variable X ∈ V , we denote the set of
all incoming neighbors as parents, denoted by Pa(X).

For any two variables X,Y ∈ V and S ⊂ V , we denote the CI relation X is independent of Y
conditioned on S, by X ⊥⊥ Y | S.

For simplicity’s sake, define sets: [b] := {1, 2, ..., b} and [a, b] := {a, a+ 1, ..., b}, where a, b ∈ N.

In the time series setting, let Xj
t ∈ R1 denote the variable of jth time series at time t, Xj =

{Xj
t }t∈[T ] ∈ RT denote a univariate time series and Xt = {Xj

t }j∈[n] ∈ Rn denote a slice of all
variables at time point t. V = {Xj}j∈[n] = {Xt}t∈[T ] ∈ Rn×T denotes a n-variate time series. By
default, we assume n > 1 and hence Xj ⊊ V , and p(V ) ̸= 0, where p(.) denotes the probability or
probability density.
Definition 2.1 (Non-Stationary SCM). A Non-Stationary Structural Causal Model (SCM) is a tuple
M = ⟨V,F , E ,P⟩ where there exists a τmax ∈ N+, defined as:

τmax := argmax
τ
{τ : Xi

t−τ ∈ Pa(Xj
t ), i, j ∈ [n]}, (1)

such that with this τmax, each variable Xj
t>τmax

∈ V is a deterministic function of its parent set
Pa(Xj

t>τmax
) ∈ V and an unobserved (exogenous) variable ϵjt>τmax

∈ E :

Xj
t = fj,t(Pa(X

j
t ), ϵ

j
t ), j ∈ [n], t ∈ [τmax + 1, T ], (2)
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and there exist at least two different time points t0, t1 ∈ [τmax + 1, T ] satisfying

fj,t0 ̸= fj,t1 , ∃ j ∈ [n], {t0, t1} ⊂ [τmax + 1, T ]. (3)

where fj,t, fj,t0 , fj,t1 ∈ F and {ϵjt}t∈[T ] are jointly independent with probability measure P. τmax is
the finite maximal lag in terms of the causal graph G.
Definition 2.2 (Semi-Stationary SCM). A Semi-Stationary SCM is a Non-Stationary SCM that
additionally satisfies the following conditions. For each j ∈ [n], there exists an ω ∈ N+such that:

a) fj,t = fj,t+Nω, (4)

b) Pa(Xj
t+Nω) = {X

i
s+Nω : Xi

s ∈ Pa(Xj
t ), i ∈ [n]}, (5)

c) ϵjt , ϵ
j
t+Nω are i.i.d. (6)

are satisfied for all t ∈ [τmax + 1, T ], N ∈ {N : N ∈ N, t + Nω ≤ T}. This means that a finite
number of causal mechanisms are repeated periodically for every univariate time series Xj in V . One
example of this model is illustrated in Fig.1. For X1 in Fig.1, three causal mechanisms are reiterated
periodically with ω1 = 3, represented by red, green, and blue edges, respectively.

The minimum value that satisfies the above conditions for Xj is defined as the periodicity of Xj ,
denoted by ωj . Furthermore, for an n-variate time series V , Ω denotes the minimum periodicity
across all time series Xj , j ∈ [n]. The number of causal mechanisms occurring sequentially and
periodically of univariate time series Xj is ωj , and that number of causal mechanisms of multivariate
time series V is Ω. For Xj , the causal mechanisms are associated with each variable Xj

t . However,
for V , the causal mechanisms are related to each time slice vector Xt as a whole. The relationship
between Ω and ωj can be captured by:

Ω = LCM({ωj : j ∈ [n]}) (7)

where LCM(.) is an operation to find the least common multiple between any two or more numbers.
Here, Ω is the smallest common multiple among {ω1, ...ωn}. In Fig.1, Ω = LCM(3, 2, 1) = 6.
Definition 2.3 (Time Partition). A time partition Πj(T ) of a univariate time series Xj in a Semi-
Stationary SCM with periodicity ωj is a way of dividing all time points t ∈ [T ] into a collection of
non-overlapping non-empty subsets {Πj

k(T )}k∈[ωj ] such that:

Πj
k(T ) := {t : τmax + 1 ≤ t ≤ T, (t mod ωj) + 1 = k}. (8)

where mod denotes the modulo operation. For instance, 5 mod 3 = 2.

We can observe that the variables in {Xj
t }t∈Πj

k(T ) share the same causal mechanism. Since the
number of potentially different causal mechanisms of variables in Xj is ωj , the number of such
time partition subsets is ωj . For simplicity, notations Πj and Πj

k are used instead of Πj(T ) and
Πj

k(T ). In Fig.1, Π1
1 = {4, 7, 10, 13, .., 4 + 3N, ...}, Π1

2 = {5, 8, 11, 14, .., 5 + 3N, ...} and Π1
3 =

{6, 9, 12, 15, .., 6 + 3N, ...} where N ∈ N+. The nodes X1
t are classified into their associated time

partition subsets by the matching colors.
Definition 2.4 (Illusory Parent Sets). For a univariate time series Xj ∈ V with Semi-Stationary
SCM having periodicity ωj > 1, parent set index pIndjk∈[ωj ]

is defined as:

pIndjk := {(yi, τi)}i∈[n′], given Pa(Xj
t ) = {X

y1

t−τ1 , X
y2

t−τ2 , ..., X
yn′
t−τn′}, ∀t ∈ Πj

k (9)

where n′ = |Pa(Xj
t ))|, τi is the time lag and yi is the variable index. Given pIndjk, Illusory Parent

Sets are defined as:

Pak(X
j
t ) =

{
Xyi

t−τi : (yi, τi) ∈ pIndjk
}
, ∀k ∈ {k : t /∈ Πj

k} (10)

Put simply, the illusory parent sets of Xj
t are the time-shift version of the parent set of other variables

in Xj that have a different causal mechanism from Xj
t . Note that the illusory parent sets are

constructed specifically in the Semi-Stationary SCM. For stationary SCM, there is no illusory parent
set needed. To maintain consistency in notation, for time points t ∈ Πj

k, the notation Pak(X
j
t ) can

also be extended to encompass the true parent set of Xj
t :

Pak(X
j
t ) := Pa(Xj

t ), ∀t ∈ Πj
k (11)
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By doing so, Pa(Xj
t ) ⊂ ∪k∈[ωj ]Pak(X

j
t ). In Fig.1, by observing Pa(X1

7 ), we have pInd11 =

{(1, 1), (2, 2)}; by observing Pa(X1
8 ), we have pInd12 = {(1, 1), (3, 1)} and finally by observ-

ing Pa(X1
9 ), pInd

1
3 = {(1, 1), (1, 2)}. Based on those indexes, Pa1(X

1
7 ) = {X1

7−1, X
2
7−2} =

{X1
6 , X

2
5}, Pa2(X

1
7 ) = {X1

7−1, X
3
7−1} = {X1

6 , X
3
6} and Pa3(X

1
7 ) = {X1

7−1, X
1
7−2} =

{X1
6 , X

1
5}. The first one is the true parent set of X1

7 and the latter two are the illusory parent
sets. The order of those parent sets is not important.

At last, we need to further define a series of Markov chains that are associated tightly with Semi-
Stationary SCM. The presence and characteristics of these Markov chains are thoroughly examined
in the supplementary materials. The motivation behind creating such Markov chains is to introduce
assumptions on them rather than directly on the original data V .
Definition 2.5 (Time Series as a Markov Chain). For time series V with Semi-Stationary SCM, there
are (potentially) δ different Markov chains {Zq

n}n∈N , q ∈ [δ]:

Zq
n = {Xτmax+q+(n−1)δ,Xτmax+q+1+(n−1)δ, ...,Xτmax+q−1+nδ},

where N := {n ∈ N+ : τmax + q − 1 + nδ ≤ T}, δ = ⌈ τmax+1
Ω ⌉Ω. Note that in {Zq

n}, q is used to
indicate a specific Markov chain, while n serves as the running index for that particular Markov chain.
Such a Markov chain {Zq

n}, q ∈ [δ] exists as long as Pa(Zq
n) ⊂ Zq

n ∪ Zq
n−1 for all n. This is a finite

state Markov Chain if all time series in V are discrete-valued time series. The state space of {Zq
n}

is the set containing all possible realization of {Xτmax+q+(i−1)+(n−1)δ}i∈[δ],n∈N. The transition
probabilities between the states are the product of associated causal mechanisms based on Assumption
A2, which is elaborated by an example in section C.1 (Eq.(10)-(11)) of the supplementary material.

2.2 Assumptions for PCMCIΩ

A1. Sufficiency: There are no unobserved confounders.
A2. Causal Markov Condition: Each variable X is independent of all its non-descendants, given its

parents Pa(X) in G.
A3. Faithfulness Condition (Pearl [1980]): Let P be a probability distribution generated by G.
⟨G, P ⟩ satisfies the Faithfulness Condition if and only if every conditional independence relation
true in P is entailed by the Causal Markov Condition applied to G.

A4. No Contemporaneous Causal Effects: Edges between variables at the same time are not allowed.
A5. Temporal Priority: Causal relations that point from the future to the past are not permitted.

A6. Hard Mechanism Change: If at time points t1 and t2, the causal mechanisms of Xj
t1 and Xj

t2 are
different, then their corresponding parent sets can not be transformed to each other by time shifts:

fj,t1 ̸= fj,t2 ⇒ Pa(Xj
t2) ̸= {X

i
s+(t2−t1)

: Xi
s ∈ Pa(Xj

t1), i ∈ [n]}.

A7. Irreducible and Aperiodic Markov Chain: The Markov chains {Zn} of V are assumed to be
irreducible (Serfozo [2009]): for all states i and j of {Zn}, ∃n so that

p
(n)
ij := p(Zn+1 = j|Z1 = i) > 0 (12)

and aperiodic(Karlin [2014]): for every state i of {Zn}, d(i) = 1, where the period d(i) of the
state i is the greatest common divisor of all integers n for which p

(n)
ii > 0.

Assumptions A1-A5 are conventional and commonly employed in causal discovery methods for time
series data. On the other hand, our approach requires additional Assumptions A6-A7 to be in place.
To clarify, A6 is essential because our method may encounter challenges in distinguishing distinct
causal mechanisms for variables in {Xj

n}n∈[T ] if they share identical parent sets after time shifts. As
for A7, it serves a crucial role in establishing the soundness of our algorithm.

3 PCMCIΩ Algorithm

In this section, we propose an algorithm called PCMCIΩ, and in section 3.1, we present a theorem
demonstrating the soundness of PCMCIΩ and its ability to recover the causal graph. Our algorithm
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Algorithm 1 PCMCIΩ
1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), periodicity upper bound ωub, time

lag upper bound τub. By default, we assume τub and ωub are larger than their true value.
2: A superset of parent set is obtained using PCMCI with τub and denote it by ŜPa(Xj

t ) ∀j, t.
3: for Xj where j ∈ [n] do
4: for a guess ω ∈ [ωub] of ωj do
5: Let Π̂j := {Π̂j

k|k ∈ [ω]} where Π̂j
k = {2τub + k, 2τub + ω + k, 2τub + 2ω + k, · · · }.

6: for k ∈ [ω] do
7: Initialize the parent set for Xj

t , t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k} (with guess ω) denoted by

P̂aω(X
j
t )← ŜPa(Xj

t ).
8: Consider Xi

t−τ ∈ P̂aω(X
j
t ). Remove Xi

t−τ from P̂aω(X
j
t ) if Xi

t−τ ⊥⊥ Xj
t |(

ŜPa(Xj
t ) ∪ ŜPa(Xi

t−τ )
)
\Xi

t−τ using a CI Test with samples t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k}.

9: Store P̂aω(X
j
t ) for Xj

t , t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k}.

10: end for
11: end for
12: ω̂j ← argminω∈[ωub] maxk∈[ω] |P̂aω(Xj

t∈Π̂j
k

)|.

13: Set P̂a(Xj
t )← P̂aω̂j (X

j
t ) for Xj

t , t ∈ {t : t ≥ 2τub}.
14: end for
15: return ω̂j and P̂a(Xj

t ) ∀j ∈ [n], t ≥ 2τub.

PCMCIΩ builds on the Algorithm PCMCI in Runge et al. [2019]. Additional details about PCMCI
are provided in the supplementary material.

Overview of Algorithm 1 PCMCIΩ. We assume that the periodicity and time lag are upper bounded
by ωub and τub respectively. Using PCMCI Runge et al. [2019], we obtain a superset of parents for
every variable Xj

t denoted by ŜPa(Xj
t ) (line 2). Our goal is to identify the correct set of parents

along with its periodicity for every variable in V . For a variable Xj
t , we guess its periodicity ω by

iterating over all possible values in [ωub]. Next, we construct time partition subsets Π̂j
k, k ∈ [ω]

based on the guess of periodicity ω. In each time partition subset, we maintain a parent set, denoted
by P̂aω(X

j
t ), initializing it with the superset ŜPa(Xj

t ). Then we test the causal relations between
Xi

t−τ ∈ P̂aω(X
j
t ) and Xj

t using a CI test on the sample t ∈ Π̂j
k (lines 6-10).

For each guess ω, every variable in Xj should have its estimated parent set (line 9), and there are total
ω potentially different parent set index pIndjk∈[ω] in Xj . We return an estimate ω̂j that maximizes the
sparsity of the causal graph (Lemma 3.4). Therefore, we select the value of ω ∈ [ωub] that minimizes
the maximum value of |P̂aω(Xj

t )|, t ∈ [T ] as the estimator of ωj (line 12).

3.1 Theoretical Guarantees

Our main theorem shows that PCMCIΩ recovers the true causal graph on discrete data. There are
three important lemmas. We provide all the detailed proof in the supplementary material.

Theorem 3.1. Let Ĝ be the estimated graph using the Algorithm PCMCIΩ. Under assumptions
A1-A7 and with an oracle (infinite sample size limit), we have that:

Ĝ = G (13)

almost surely.

Lemma 3.2 and Lemma 3.3 jointly state that if CI tests are conducted on samples generated by
different causal mechanisms, the obtained parent sets ŜPa(Xj

t ) should be the superset of the union of
the true and illusory parent sets ∪kPak(Xj

t ). That is, the estimated graph should be denser than the
correct graph. The true parent set can then be obtained by directly testing the independent relations
between the target variable Xj

t and the variables in ŜPa(Xj
t ), assuming a consistent CI test. Note

that the CI tests in our algorithm are assumed to be consistent given i.i.d. samples. We do not assume
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the consistency of CI tests with respect to semi-stationary data. Therefore, any CI tests that maintain
consistency with i.i.d. samples can be seamlessly integrated into our algorithm.

Lemma 3.2. Denote that {Pak(Xj
t )}k∈[ωj ] contain the true and illusory parent sets, where ωj is the

true periodicity of Xj . For any random variable Xj
t with large enough t, under assumptions A1-A7

and with an oracle (infinite sample size limit), we have:

p

(
p(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) ̸= p(Xj

t | ∪
ωj

k=1 Pak(X
j
t ) \ y)

)
= 1, ∀y ∈ ∪ωj

k=1Pak(X
j
t ) (14)

Here, p(Xj
t | ∪

ωj

k=1 Pak(X
j
t )) = limT→∞ p̂(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) where p̂(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) is

an estimated conditional distribution using all samples t ∈ [τmax + 1, T ]:

p̂(Xj
t | ∪

ωj

k=1 Pak(X
j
t )) =

∑
t 1(X

j
t ,∪

ωj

k=1Pak(X
j
t ))∑

t 1(∪
ωj

k=1Pak(X
j
t ))

. (15)

Proof sketch. We argue that the estimated conditional distribution in Eq.(15) can be written as a linear
combination of p̂(Xj

t |Pa(X
j
t )) where t ∈ Πj

k, k ∈ [ωj ], i.e., as a mixture of conditional distributions.
The coefficients in the linear function, say αk, k ∈ [ωj ], can be further decomposed based on a
finer time partition called the homogenous time partition, which consists of subsets constructed
according to the Markov chains {Zq

n}q∈[δ] corresponding to the time series. Based on Assumption
A7, the Markov chains are stationary and ergodic. Therefore, after sufficiently large time steps, the
distribution of {Zq

n}q∈[δ] will be invariant across n as it achieves unique equilibrium. With this type
of stationary sample, we can express αk by joint distributions instead of the indicators. Then, we can
complete the proof of our inequality claim in Eq.(14) using Assumption A2 and Bayes theorem.

Lemma 3.3. Let ŜPa(Xj
t ) denote the estimated superset of parent set for Xj ∈ V obtained from

the Algorithm 1 (line 2). {Pak(Xj
t )}k∈[ωj ] contain the true and illusory parent sets, where ωj is the

true periodicity of Xj . Under assumptions A1-A7 and with an oracle (infinite sample size limit), we
have that:

∪ωj

k=1Pak(X
j
t ) ⊆ ŜPa(Xj

t ), ∀t ∈ [τmax + 1, T ]

almost surely.

Proof sketch. Assume the contrary, i.e., there exists s ∈ ∪kPak(Xj
t ) \ ŜPa(X

j
t ). From Lemma 3.2,

we have Xj
t��⊥⊥s

∣∣∣∪ωj

k=1Pak(X
j
t ) \ s . By the Definition 2.4, we have Pa(Xj

t ) ⊂ ∪
ωj

k=1Pak(X
j
t ). If

s ̸∈ Pa(Xj
t ), by the causal Markov property (Assumption A2), the dependence relation can not be

true because s is a non-descendant of Xj
t . If s ∈ Pa(Xj

t ), our Algorithm would have concluded that
Xj

t��⊥⊥s
∣∣∣ŜPa(Xj

t ) (line 2), evident from the causal Markov property, contradicting our assumption.
Hence, the lemma.

Based on Lemma 3.2 and Lemma 3.3, we can identify the true ωj for Xj through Lemma 3.4.

Lemma 3.4. Let ωj denote the true periodicity for Xj ∈ V and P̂aω(X
j

t∈Πj
k

) denote the estimated

parent set for Xj
t obtained from Algorithm 1 line 9, where t ∈ Πj

k. Define:

ω̂j = arg min
ω∈[ωub]

max
k∈[ω]

|P̂aω(Xj

t∈Πj
k

)| (16)

Under assumptions A1-A7 and with an oracle (infinite sample limit), we have that ω̂j = ωj , ∀j ∈ [n]
almost surely.

Proof sketch. Assume the contrary that ω̂j ̸= ωj , then in the Algorithm 1, we have an incorrect
time partition Π̂j . Hence, CI tests that are performed use samples with different causal mechanisms.
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Figure 2: PCMCIΩ is tested on 5-variate time series with τmax = 5. Set τub = 15, ωub = 15 for all
variables. Every line corresponds to a different time series length. Every marker corresponds to the
average accuracy rate or average running time over 100 trials. a) The accuracy rate of ω̂ for different
time series lengths and different ωmax. b) Illustration of Runtime (in sec.) when ωmax varies.

p̂(Xj
t | ∪

ωj

k=1 Pak(X
j
t )) in Eq.(15) is estimated from a mixture of two or more time partition subsets,

say Πj
1 and Πj

2. We can apply Lemma 3.2 with ∪2k=1Pak(X
j
t ). With Lemma 3.3, ∪2k=1Pak(X

j
t ) ⊆

P̂aω̂j
(Xj

t ). Hence, for ω̂j , |P̂aω̂j
(Xj

t )| ≥ | ∪2k=1 Pak(X
j
t )| using mixture samples t ∈ ∪2k=1Π

j
k.

For true ωj , we have |P̂aωj (X
j
t )| = |Pa(X

j
t )|. With Assumption A6 the Hard Mechanism Change,

| ∪2k=1 Pak(X
j
t )| > |Pa(X

j
t )| so that ωj always leads to a smaller size of estimated parent sets than

ω̂j , contrary to the definition of ω̂j . Hence, ω̂j = ωj .

4 Experiments

4.1 Experiments on Continuous-valued Time Series

To validate the correctness and effectiveness of our algorithm, we perform a series of experiments.
The Python code is provided at https://github.com/CausalML-Lab/PCMCI-Omega. In this section,
we test four algorithms1, PCMCIΩ, PCMCI Runge et al. [2019], VARLiNGAM Hyvärinen et al.
[2010] and DYNOTEARS Pamfil et al. [2020], on continuous-valued time series with Gaussian noise.
The experiments for continuous-valued time series with exponential noise and binary-valued time
series are in the supplementary material.

Following Runge et al. [2019], we generate the continuous-valued time series in three steps:

1. Construct an n-variate time series V with length T using independent and identical (Standard
Gaussian or Exponential) noise temporarily. Determine τmax and ωmax where ωmax =
max{ωj}j∈{n}. After making sure that one univariate time series, say Xj , has periodicity
ωmax, the periodicity of the remaining time series Xi, i ̸= j is randomly selected from
{1, · · · , ωmax} respectively.

2. Randomly generate ωj binary edge matrices with shape (n, τmax) for each time series
Xj , j ∈ [n]. 1 denotes an edge and 0 denotes no edge. Each binary matrix represent one
parent set index pIndjk, k ∈ [ωj ]. Randomly generate ωj coefficient matrices with shape
(n, τmax) for each time series Xj , j ∈ [n]. One binary edge matrix and one coefficient
matrix jointly determine one causal mechanism. Hence, total ωj causal mechanisms are
constructed. Here, make sure that V satisfies Assumption A6.

3. Starting from time point t > τmax, generate vector Xt over time according to all the causal
mechanisms of V , until t achieves T .

1We did not conduct experiments on JIT-LiNGAM because this is from a very recent paper Fujiwara et al.
[2023] and is considered concurrent per NeurIPS policy.
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Figure 3: 4 algorithms are tested on 5-variate time series. Set τub = 15, ωub = 15 for all variables.
Every line corresponds to a different algorithm. Every marker corresponds to the average performance
over 100 trials.

Following the previous work in Huang et al. [2020], F1 score, Adjacency Precision, and Adjacency
Recall are used to measure the performance of the algorithms. The details of calculating these metrics
are described in the Appendix. All the performance statistics are averaged over 100 trials. The
standard error of the averaged statistics is displayed either by color filling or by error bars.

A correct estimator ω̂ is the prerequisite for obtaining the correct causal graph. Fig.2(a) shows the
accuracy rate of ω̂ for different time lengths T . Here, elements in {Nωj} where N ∈ [ωub

ωj
] are all

treated as correct estimations. By Definition 2.2 and 2.3, the multiple of ωj is still associated with
a correct causal graph. However, it leads to a finer time point partition Πj , decreasing the sample
size used in each CI test from approximately T/ωj to approximately T/(Nωj). The accuracy rate is
sensitive to ωmax for small T . This result verifies that algorithm PCMCIΩ has the capacity to detect
the true periodicity of each Xj ∈ V with a large enough time length.

We evaluate the performances of PCMCIΩ on continuous-valued time series with Gaussian noise
shown as Fig.3(a). As T increases, it is natural to see a continuous improvement in performance.
The sub-figures show that all three evaluation metrics decrease when ωmax gets larger. The precision
of PCMCIΩ is always far better than other algorithms when ωmax is not equal to 1. Given the fact
that the parent sets P̂a(Xj

t ) ∀j, t obtained from PCMCIΩ are subsets of the parent set ŜPa(Xj
t ) ∀j, t

estimated from PCMCI, the recall rate of PCMCI should be the upper bound of the recall rate of
PCMCIΩ. This assertion has been verified as the red recall line of PCMCIΩ is always below the blue
recall line of PCMCI as T increases.

In Fig.3(a), the recall of PCMCIΩ is worse than PCMCI for T = 500. In this regime, the accuracy
rate of ω̂ is low, shown as the dark blue line in Fig.2(a). Small sample sizes in CI tests may result in
a sparser causal graph. Hence the number of true positive edges may decrease. This is a common
problem for many constraint-based algorithms, but it hurts PCMCIΩ the most because in PCMCIΩ,
the sample sizes in each CI test are approximate T/ω̂ instead of T . As T increases, the red recall line
of PCMCIΩ push forward to the blue recall line of PCMCI. The high value of both adjacent precision
and recall rate with large T verify that PCMCIΩ can identify the correct causal graph.

We also observe the performance of our algorithm as τmax and N varies in Fig.3(b). As the
performance of PCMCIΩ is consistent over n-variate time series with different n, large τmax may
lead to a smaller precision and recall rate.
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4.2 Case Study

Here, we construct an experiment with a real-world climate time series dataset. In Runge et al. [2019],
the authors tested dependencies among monthly surface pressure anomalies in the West Pacific and
surface air temperature anomalies in the Central Pacific, East Pacific, and tropical Atlantic from 1948
to 2012. Our application explores the causal relations among the monthly mean of the same set of
variables from 1948-2022 with 900 months. Let Xwp

t denote the monthly mean of surface pressure in
the West Pacific, Xcp

t , Xep
t and X ta

t denote the monthly mean of air temperature in the Central Pacific,
East Pacific, and tropical Atlantic, respectively.

The parent sets for each variable obtained from PCMCIΩ algorithms are shown in Table 1. Sets of
true and illusory parents of a variable at time t are separated by curly braces. For instance, variable
Xwp

t with ω̂wp = 1 means that the causal mechanism of the surface pressure in the West Pacific
remains invariant over time with the estimated parent set {Xwp

t−1, X
wp
t−2, X

ep
t−1, X

ta
t−1}. Only time

series Xcp has three different parent sets, including one true parent set and two illusory parent sets,
which appear periodically over time. The three parent sets of Xcp

t imply that the causal effect from
the tropical Atlantic air temperature X ta

t−1 to the Central Pacific air temperature Xcp
t would disappear

every quarter of a year. Note that we do not have a ground truth in this case, and we do not possess
the necessary knowledge in this area, so the significance of these results is under-explored. More
discussion about this application can be found in the supplementary materials.

Table 1: Climate application results estimated from PCMCIΩ.

PCMCIω

X ω̂ {P̂ak}k∈[ω̂]: true and illusory parent sets

Xwp
t 1 {Xwp

t−1, X
wp
t−2, X

ep
t−1, X

ta
t−1}

Xcp
t 3 {Xcp

t−1}; {Xcp
t−1, X

cp
t−2, X

ta
t−1}; {Xcp

t−1, X
ta
t−1}

Xep
t 1 {Xep

t−1, X
ta
t−1, X

ta
t−2, X

cp
t−1}

X ta
t 1 {X ta

t−1, X
wp
t−1}

5 Conclusions

In this paper, we propose a non-parametric, constraint-based causal discovery algorithm PCMCIΩ
designed for semi-stationary time-series data, in which a finite number of causal mechanisms are
repeated periodically. We establish the soundness of our algorithm and assess its effectiveness on
continuous-valued and discrete-valued time series data. The algorithm PCMCIΩ has the capacity to
reveal the existence of periodicity of causal mechanisms in real-world datasets.
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Appendix

A PCMCI Algorithm

The PCMCI algorithm is proposed by Runge et al. [2019], aiming to detect time-lagged causal
relations in a window causal graph. There are two stages of PCMCI: the condition-selection stage
and the causal discovery stage. In the first stage, unnecessary edges are removed based on the
conditional independencies from an initialized partially connected graph where Assumption A4-A5
should be satisfied. In the second stage, Momentary Conditional Independence tests (MCI) are
used to further remove the false positive edges caused by autocorrelations in time series data. More
specifically, these two steps can be briefly formalized as follows:

• PC1 in Algorithm A1: Condition selection stage. PC1 is a variant of the skeleton-discovery
part of the PC algorithm in a more robust version named stable-PC Le et al. [2016]. The goal
in this stage is to obtain a superset of the parents P̂a(Xj

t ) for all variables Xj∈[n]
t∈[τmax+1,T ] ∈ V.

Initialize P̂a(Xj
t ) = {Xi

t−τ}i∈[n],τ∈[τmax]. P̂a(X
j
t ) will remove Xi

t−τ if

Xi
t−τ ⊥⊥ Xj

t

∣∣∣P̂a(Xj
t )\{Xi

t−τ} (1)

• MCI in Algorithm A2: Causal discovery stage. In this stage, do MCI tests for all variable
pairs (Xi

t−τ , X
j
t ) with i, j ∈ [n] and time delays τ ∈ [τmax]:

MCI(Xi
t−τ , X

j
t |P̂a(X

j
t )\{Xi

t−τ}, P̂a(Xi
t−τ )) (2)

where P̂a(Xj
t ) and P̂a(Xi

t−τ ) are estimated from the PC1 stage.

Note that τmax in this section is the same as τub in the main paper, serving as the upper bound for the
time lag that exhibits causal effects. On the other hand, τmax in the main paper denotes the maximum
time lag observed within the multivariate time series. Essentially, in the main paper, τub is a parameter
that must be fed into the algorithm, and τmax is observed from the true causal graph. As a default, we
assume τub is configured with a value greater than τmax, ensuring that the algorithm uncovers the
correct causal relations. See Fig.1 for more detail.

Figure 1: Set τub to be 5, then all parent candidates of variables at t = 15 are included in the large
orange box, ranging from t = 10 to t = 14. Consequently, the algorithm will only examine causal
effects with a time lag not exceeding 5. In the causal graph, τmax is 3, representing the maximum
time lag observed among the 3-variate time series. Specifically, the maximum time lag for each
component time series is τ1 = 2, τ2 = 3, τ3 = 1, respectively, and τmax represents the largest value
among these three maximum lags.
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Algorithm A1 PCqmax

1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), target time series Xj , maximum
time lag τmax, significance threshold αPC , maximum condition dimension pmax (default pmax =
nτmax), maximum number of combinations qmax (default qmax = 1), conditional independence
test function CI

2: function CI(X,Y,Z)
3: Test X ⊥⊥ Y |Z using test statistic measure I
4: return p-value, test statistic value I

5: Initialize preliminary set of parents P̂ a(Xj
t ) = {Xi

t−τ : i ∈ {1, ..., n}, τ ∈ {1, ..., τmax}}
6: Initialize dictionary of test statistic values Imin(Xi

t−τ → Xj
t ) =∞ ∀Xi

t−τ ∈ P̂ a(Xj
t )

7: for p = 0, 1, 2, ..., pmax do
8: if |P̂ a(Xj

t )| − 1 < p then
9: Break for-loop

10: end if
11: for all Xi

t−τ in P̂ a(Xj
t ) do

12: q = −1
13: for all lexicographically chosen subsets S ⊆ P̂ a(Xj

t ) \ {Xi
t−τ} with |S| = p do

14: q = q + 1
15: if q ≥ qmax then
16: Break from inner for-loop
17: end if
18: Run CI test to obtain (p-value, I)← CI(Xi

t−τ , X
j
t ,S)

19: if |I| < Imin(Xi
t−τ → Xj

t ) then ▷Store min. I of parent among all tests
20: Imin(Xi

t−τ → Xj
t ) = |I|

21: end if
22: if p-value > αPC then ▷Removed only after all Xi

t−τ have been tested
23: Mark Xi

t−τ for removal from P̂ a(Xj
t )

24: Break from inner for-loop
25: end if
26: end for
27: end for
28: Remove non-significant parents from P̂ a(Xj

t )

29: Sort parents in P̂ a(Xj
t ) by Imin(Xi

t−τ → Xj
t ) from largest to smallest

30: end for
31: return P̂ a(Xj

t )

Algorithm A2 MCI

1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), sorted parents P̂ a(Xj
t ) for all

variables Xj estimated with Algorithm A1, maximum time lag τmax, maximum number pX of
parents of variable Xi, and conditional independence test function CI

2: for all (Xi
t−τ , X

j
t ) with i, j ∈ {1, ..., n}, τ ∈ {0, ..., τmax}, excluding (Xj

t , X
j
t ) do

3: Remove Xi
t−τ from P̂ a(Xj

t ) if necessary
4: Define P̂ apX

(Xi
t−τ ) as the first pX parents from P̂ a(Xi

t), shifted by τ

5: Run MCI test to obtain (p-value, I)← CI(Xi
t−τ , X

j
t ,Z = {P̂ a(Xj

t ), P̂ apX
(Xi

t−τ )})
6: end for
7: Optionally adjust p-value of all links by False Discovery Rate-approach (FDR)
8: return p-value and MCI test statistic values
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B PCMCIΩ

For simplicity’s sake, define sets: [b] := {1, 2, ..., b} and [a, b] := {a, a+ 1, ..., b}, where a, b ∈ N.

Algorithm B1 PCMCIΩ

1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), periodicity upper bound ωub, time
lag upper bound τub. By default, we assume τub and ωub are larger than their true value.

2: A superset of parent set is obtained using PCMCI with τub and denote it by ŜPa(Xj
t ) ∀j, t.

3: for Xj where j ∈ [n] do
4: for a guess ω ∈ [ωub] of ωj do
5: Let Π̂j := {Π̂j

k|k ∈ [ω]} where Π̂j
k = {2τub + k, 2τub + ω + k, 2τub + 2ω + k, · · · }.

6: for k ∈ [ω] do
7: Initialize the parent set for Xj

t , t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k} (with guess ω) denoted by

P̂aω(X
j
t )← ŜPa(Xj

t ).
8: Consider Xi

t−τ ∈ P̂aω(X
j
t ). Remove Xi

t−τ from P̂aω(X
j
t ) if Xi

t−τ ⊥⊥ Xj
t |(

ŜPa(Xj
t ) ∪ ŜPa(Xi

t−τ )
)
\Xi

t−τ using a CI Test with samples t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k}.

9: Store P̂aω(X
j
t ) for Xj

t , t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k}.

10: end for
11: end for
12: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13: if there exists turning points Sj , Sj ∈ [ωub] then
14: ω̂j ← minSj

15: else
16: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17: ω̂j ← argminω∈[ωub] maxk∈[ω] |P̂aω(Xj

t∈Π̂j
k

)|.
18: end if
19: Set P̂a(Xj

t )← P̂aω̂j
(Xj

t ) for Xj
t , t ∈ {t : t ≥ 2τub}.

20: end for
21: return ω̂j and P̂a(Xj

t ) ∀j ∈ [n], t ≥ 2τub.

C Soundness of PCMCIΩ

C.1 Stationary Markov Chain

Claim: Any discrete-valued time series V with Semi-Stationary Structural Causal Model (SCM)
satisfying assumption A1, A2, A4, A5 can be written as a Markov chain {Zn} as long as this Markov
chain satisfies Pa(Zn) ⊂ Zn ∪ Zn−1 for all n, where Zn is a set of variables in V . This Markov
chain has a finite number of states if all time series in V are discrete-valued time series.

Note that when the notation n is related to a Markov chain Zn, it means the running index. In the
context of Xj∈[n]

t , n represents the index of component time series within the n-variate time series.

To simplify, assume that one associated Markov chain of V = {X,Y} has Zn =
{Xt, Yt, Xt−1, Yt−1} with t ∈ {t ∈ N+ :, t ≤ T} satisfying Pa(Zn) ⊂ Zn ∪ Zn−1. Here, the
notation for the time points of variables is simplified as t and t − 1, even though it should be a
function of n, the running index of the Markov chain. Note that Zn−1 = {Xt−2, Yt−2, Xt−3, Yt−3}
rather than {Xt−1, Yt−1, Xt−2, Yt−2}, as the simplified notation could erroneously suggest the latter
sequence. A simple proof is shown below through Markov assumption (A2).
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Figure 2: Partial causal graph for 3-variate time series V = {X1,X2,X3} with a Semi-Stationary
SCM where τmax = 3, ω1 = 3, ω2 = 2, ω3 = 1, Ω = 6 and δ = 6. The first 3(=τmax) time slices
{Xt}1≤t≤3 are the starting points. The same color edges denote the same causal mechanism. E.g.
for X1: there are 3 (= ωj) time partition subsets {Π1

k}1≤k≤3. The time points t of nodes X1
t sharing

the same filling color are in the same time partition subsets. The time points t of nodes X1
t sharing

both the same filling color and the same outline shape are in the same homogenous time partition
subsets. There are 6 (= δ) different Markov chains in this multivariate time series V , and the first
element of these 6 Markov chains is shown as {Zq

1}1≤q≤6 and are tinted with a gradient of blue hues.
Z1
1 and Z1

2 denote the first two elements of the first Markov chain while Z2
1 and Z2

2 denote the first
two elements of the second Markov chain.

Proof.
p(Zn|Zn−1, Zn−2, ...) (3)
= p(Xt, Yt, Xt−1, Yt−1|Zn−1, Zn−2, ...) (4)

= p(Xt|Zn ∪ Zn−1 \Xt, Zn−2, · · · )p
(
Yt|Zn ∪ Zn−1 \ (Xt ∪ Yt), Zn−2, · · ·

)
· · · (5)

= p

(
Xt|Pa(Xt), Zn ∪ Zn−1 \ (Xt ∪ Pa(Xt))

)
(6)

× p

(
Yt|Pa(Yt), Zn ∪ Zn−1 \ (Xt ∪ Yt ∪ Pa(Yt))

)
× p

(
Xt−1|Pa(Xt−1), Zn ∪ Zn−1 \ (Xt ∪ Yt ∪Xt−1 ∪ Pa(Xt−1))

)
· · ·

= p(Xt|Zn ∪ Zn−1 \Xt)p

(
Yt|Zn ∪ Zn−1 \ (Xt ∪ Yt)

)
· · · (7)

= p(Xt, Yt, Xt−1, Yt−1|Zn−1) (8)
= p(Zn|Zn−1) (9)

Assume that the space of both Xt and Yt with t < T are {1, 2}. There are total 24 = 16 states of
Markov Chain {Zn} = {{Xt, Yt, Xt−1, Yt−1}}. The transition probability P for this Markov Chain
is illustrated as a 16× 16 matrix:

P =

(1, 1, 1, 1) (2, 1, 1, 1) · · ·[ ]
(1, 1, 1, 1) p1,1 p1,2 · · ·
(2, 1, 1, 1) p2,1 p2,2 · · ·

· · · · · · · · · · · · 16×16

where (1, 1, 1, 1) means Xt = 1, Yt = 1, Xt−1 = 1, Yt−1 = 1. Each row in this transition probability
matrix is a conditional distribution of Zn given one realization of Zn−1. Each entry is a probability
of having one specific realization of Zn given one realization of Zn−1. This probability can be
decomposed by conditional distributions based on Markov assumption (A2). Take p1,1 as an example:
p1,1 = p(Xt = 1, Yt = 1, Xt−1 = 1, Yt−1 = 1|Xt−2 = 1, Yt−2 = 1, Xt−3 = 1, Yt−3 = 1) (10)

= p(Xt = 1|Pa(Xt))p(Yt = 1|Pa(Yt))p(Xt−1 = 1|Pa(Xt−1))p(Yt−1 = 1|Pa(Yt−1)) (11)
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where Pa(.) here are realizations, not random variables.

For time series V with Semi-Stationary SCM, there are (potentially) δ different Markov chains
{Zq

n}, q ∈ [δ]:

Zq
n = {Xτmax+q+(n−1)δ,Xτmax+q+1+(n−1)δ, ...,Xτmax+q−1+nδ},

where n ∈ {n : n ∈ N+, τmax + q − 1 + nδ ≤ T}, δ = ⌈ τmax+1
Ω ⌉Ω. As proved in the claim, such a

Markov chain exists as long as Pa(Zq
n) ⊂ Zq

n ∪ Zq
n−1 for all n. The value of δ can guarantee the

existence of such Markov chain because δ is larger than τmax + 1 and is a multiple of Ω, that is,
a multiple of all {ωj}j∈[n]. By doing so, Pa(Zq

n) ⊂ Zq
n ∪ Zq

n−1 is satisfied; for any variable Xj
t ,

there exists q ∈ [δ] and n ∈ N+ such that variable Xj
t and its parent set Pa(Xj

t ) can be included in
Zq
n; and the causal mechanism generating Zq

n is invariant for different n. The state space of {Zq
n}

is the set containing all possible realizations of {Xτmax+q+(i−1)+(n−1)δ}i∈[δ],n∈N. The transition
probabilities between the states are the product of associated causal mechanisms based on Markov
assumption (A2).

Determined by the starting slice Xt where τmax < t ≤ τmax + δ, there should be δ potentially
different Markov chains {Zq

n} where 1 ≤ q ≤ δ. To be more specific, those Markov chains are:

Markov Chain 1: Z1
n = {Xτmax+1+(n−1)δ,Xτmax+2+(n−1)δ, ...,Xτmax+nδ}, (12)

where n ∈ {n : n ∈ N+, τmax + nδ ≤ T}.
Markov Chain 2: Z2

n = {Xτmax+2+(n−1)δ,Xτmax+3+(n−1)δ, ...,Xτmax+1+nδ}, (13)

where n ∈ {n : n ∈ N+, τmax + 1 + nδ ≤ T}.
...

Markov Chain δ: Zδ
n = {Xτmax+nδ,Xτmax+1+nδ, ...,Xτmax−1+(n+1)δ}, (14)

where n ∈ {n : n ∈ N+, τmax − 1 + (n+ 1)δ ≤ T}.
Given Irreducible and Aperiodic Markov Chain assumption (A7), discrete-time Markov chain
{Zq

n}0<n, q ∈ [δ] with finite states should be a stationary and ergodic Markov chain, and there is a
unique stationary distribution πq (Bertsekas and Tsitsiklis [2008], Karlin [2014]). Additionally, the
large power of the associate transition matrix Pq will eventually converge to a matrix in which each
row is the stationary distribution πq . Equivalently,

lim
n→∞

p(Zq
n = a|Zq

1 = b) = p(Zq
n = a),∀a, b ∈ S. (15)

where S is the state space of Zq
n.

In other words, after a sufficiently long time, equivalently, n is large enough, the distribution of {Zq
n}

does not change with increasing n. That is, for large enough n:

p(Zq
n1
) = p(Zq

n2
),∀n1, n2 > n. (16)

Returning from the stationary and ergodic Markov chains {Zq
n}, q ∈ [δ] back to the original data

V through Eq.(12) to Eq.(14), the distribution of the original data V must adhere to the following
condition:

p(Xτmax+q+n1δ,Xτmax+q+1+n1δ, ...,Xτmax+q+δ−1+n1δ)

= p(Xτmax+q+n2δ,Xτmax+q+1+n2δ, ...,Xτmax+q+δ−1+n2δ) (17)

for any q ∈ [δ] and n1, n2 > n.

Given these clarifications, we can naturally introduce a more refined time partition that is based on,
yet finer than, the time partition defined in Definition 2.3 in the main paper.
Definition C.1 (Homogenous Time Partition). For a univariate time series Xj in a Semi-Stationary
SCM with periodicity ωj , the time partition Πj

k of Xj can be further divided into a series of non-
overlapping and non-empty subsets {πj

(k,s)}1≤s≤ δ
ωj

. For each t ∈ [τmax + 1, T ], there exists

k ∈ [ωj ] so that t ∈ Πj
k and further there exists s ∈ [ δ

ωj
] so that t ∈ πj

(k,s). π
j
(k,s) can be written as:

πj
(k,s) := {t : τmax + 1 ≤ t ≤ T, (t mod ωj) + 1 = k, (t mod

δ

ωj
) + 1 = s}. (18)

5



With this definition, we have ∪
δ
ωj

s=1π
j
(k,s) = Πj

k. While time partition Πj
k guarantees that all variables

in {Xj
t }t∈Πj

k
share the same causal mechanism, homogenous time partition πj

(k,s) guarantees that all

variables in {Xj
t }t>t′,t∈πj

(k,s)
share the same distribution where t′ represent the steps needed by the

associated Markov chain to achieve equilibrium.

Fig.2 shows a partial causal graph for a 3-variate time series with Semi-Stationary SCM. τmax = 3
means that the causal mechanisms start from t = 4, and the random variables with t ∈ {1, 2, 3} are
random noises. For the first time series X1, the periodicity ω1 is 3. And the periodicity of the time
series X2 and X3 is 2 and 1, respectively. The periodicity of the whole time series V is obtained by
LCM(3, 2, 1) = 6. δ = ⌈ τmax+1

Ω ⌉Ω = ⌈ 3+1
6 ⌉ × 6 = 1× 6 = 6.

In Fig.2, periodicity ω1 = 3 means that the causal mechanisms repeat every three time points and
hence there are three time partition subsets Π1

k, k ∈ [3]. More specifically, Π1
1 = {4, 7, 10, 13, ..., 4 +

3N, ...},Π1
2 = {5, 8, 11, 14, ..., 5 + 3N, ...},Π1

3 = {6, 9, 12, 15, ..., 6 + 3N, ...} where N ∈ N+.
Random variables {X1

t } with t in the same time partition subset share the same causal mechanism.
However, they may not share the same marginal distribution.

Still in Fig.2, based on the definition of homogenous time partition, time partition subset Π1
1 for

X1 can be further decomposed as π1
(k=1,s=1) = {4, 10, ..., 4 + δN, ...}, π1

(k=1,s=2) = {7, 13, ..., 7 +
δN, ...}. where s ∈ [ δ

ω1
]. After a long run n, Z1

n and Z1
n+1 will eventually share the same distri-

bution, that is, all the variables inside Zq
n will share the same joint or marginal distribution as the

corresponding variables inside Zq
n+1. To illustrate this, we assume that this Markov chain has already

achieved its equilibrium at time point t = 4. Based on Eq.(12) and Eq.(17), we have:

p(X4,X5, ...,X9) = p(X10,X11, ...,X15) = p(X16,X17, ...,X21) = · · · (19)

From the identical joint distribution, we can further have:

p(X1
4 ) = p(X1

10) = p(X1
16) = · · · (20)

as X1
4 ∈ X4, X1

10 ∈ X10 and X1
16 ∈ X16.

Therefore, for sufficiently large values of t ensuring that Z1
n has reached its stationary distribution, all

variables within {Xj
t }t∈πj(k,s) will share the same distribution.

In Fig.2, there are 6(= δ) potentially different Markov chains {Zq
n}, q ∈ [δ] in V . For any time

window with length δ, {Xt, ...,Xt+δ−1}, there exists q ∈ [δ], n ∈ N+, so that this time window
can be completely included in Zq

n. For instance, set {X5,X6, ...,X10} is in Z2
1 , which is the first

element of Markov chain {Z2
n}.

Constructing Markov chains and applying the Irreducible and Aperiodic Markov Chain assumption
(A7) enable us to obtain a consistent estimator for the conditional and joint distributions of interest.

C.2 Consistent Estimator

The conditional distributions for variables in {Xj
t }t∈Πj

k
are the same, that is, p(xj

t1 |Pa(x
j
t1)) =

p(xj
t2 |Pa(x

j
t2)), ∀t1, t2 ∈ Πj

k. For simplicity, denote

pt∈Πj
k
(xj

t |Pa(x
j
t )) := p(xj

t |Pa(x
j
t )), ∀t ∈ Πj

k (21)

Consider an indicator function such that 1(xj
t ,Pa(x

j
t )) = 1 if configuration (xj

t ,Pa(x
j
t )) has realized,

otherwise 1(xj
t ,Pa(x

j
t )) = 0.

Since every t ∈ πj
(k,s) is apart from each other with Nδ steps where N ∈ N+, and there must exist

q ∈ [ωj ] and n1 ∈ N+ so that {xj
t ,Pa(x

j
t )} ∈ Zq

n1
, then for the same q, there must exist another n2 so

that {xj
t+Nδ,Pa(x

j
t+Nδ)} ∈ Zq

n2
. Hence, we have {1(xj

t ,Pa(x
j
t ))}t∈πj

(k,s)
= {f(Zq(t)

n1(t)
)}t∈πj

(k,s)

with some function f : Rn×δ → R1 satisfying E|f(Zq(t)
n1(t)

)| < ∞. Since the value of t deter-
mines q and n1, we use q(t) and n1(t) to emphasize their relations. For large enough t > t′,
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{1(xj
t ,Pa(x

j
t ))}t>t′,t∈πj

(k,s)
are identical samples where t′ is the time point needed by the associate

Markov chain to achieve its equilibrium after n1(t
′) steps.

Without loss of generality, we assume T is a multiple of δ all the time.

We can construct an estimator of p(xj
t ,Pa(x

j
t )) with large enough t as:

p̂(xj
t ,Pa(x

j
t )) =

δ

T

∑
t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (22)

where k, s is determined by t and there must exist one and only one k, s satisfying t ∈ πj
(k,s). Now,

we are going to show this estimator is consistent.

We first decompose the estimator into two parts: time point t ≤ t′ and t > t′, where t′ represents the
time point when the equilibrium of the associated Markov chain is achieved.

δ

T

∑
t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (23)

=
δ

T

( ∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t ))

)
(24)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

δ

T

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (25)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

δ

T − t′
T − t′

δ

δ

T

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (26)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

δ

T − t′
T − t′

δ

δ

T

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (27)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

T − t′

T

(
δ

T − t′

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t ))

)
(28)

(29)

Take a limit of Eq.(23), we have:

lim
T→∞

δ

T

∑
t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (30)

= lim
T→∞

δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) + lim

T→∞

T − t′

T

(
δ

T − t′

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t ))

)
(31)

= 0 + lim
T→∞

T − t′

T

(
1

n1(T )− n1(t′)

n1(T )∑
n1(t)>n1(t′)

f(Z
q(t)
n1(t)

)

)
,where t > t′, t ∈ πj

(k,s) (32)

Birkhoff’s Ergodic Theorem
================ 0 + E

(
f(Z

q(t)
n1(t)

)

)
(33)

= E

(
1(xj

t ,Pa(x
j
t ))

)
,where t > t′, t ∈ πj

(k,s) (34)

= p(xj
t ,Pa(x

j
t )),where t > t′, t ∈ πj

(k,s) (35)

Denote

pt∈πj
(k,s)

(xj
t ,Pa(x

j
t )) := p(xj

t ,Pa(x
j
t )),where t > t′, t ∈ πj

(k,s) (36)
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Based on the definition of homogenous time partition and time partition, pt∈πj
(k,s)

(xj
t |Pa(x

j
t )) =

pt∈Πj
k
(xj

t |Pa(x
j
t )), ∀s ∈ [ δ

ωj
].

Similar to Eq.(22), one estimator of pt∈Πj
k
(xj

t |Pa(x
j
t )), ∀k = [ωj ] is

p̂t∈Πj
k
(xj

t |Pa(x
j
t )) =

∑
t∈Πj

k
1(xj

t ,Pa(x
j
t ))∑

t∈Πj
k
1(Pa(xj

t ))
(37)

=

∑ δ
ωj

s=1

∑
t∈πj

(k,s)
1(xj

t ,Pa(x
j
t ))∑ δ

ωj

s=1

∑
t∈πj

(k,s)
1(Pa(xj

t ))

(38)

=

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(xj

t ,Pa(x
j
t ))∑ δ

ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(Pa(xj

t ))

(39)

Take a limit of Eq.(37), we have:

lim
T→∞

p̂t∈Πj
k
(xj

t |Pa(x
j
t )) (40)

Eq.(35)
=====

∑ δ
ωj

s=1 pt∈πj
(k,s)

(xj
t ,Pa(x

j
t ))∑ δ

ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))

(41)

=

∑ δ
ωj

s=1 pt∈πj
(k,s)

(xj
t |Pa(x

j
t ))pt∈πj

(k,s)
(Pa(xj

t ))∑ δ
ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))

(42)

p
t∈π

j
(k,s)

(xj
t |Pa(x

j
t)) are same for all s

========================
pt∈Πj

k
(xj

t |Pa(x
j
t ))

∑ δ
ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))∑ δ

ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))

(43)

= pt∈Πj
k
(xj

t |Pa(x
j
t )) (44)

Hence, p̂t∈Πj
k
(xj

t |Pa(x
j
t )) is a consistent estimator of pt∈Πj

k
(xj

t |Pa(x
j
t )).

Similarly, we construct an estimator of p(xj
t | ∪h Pah(x

j
t )) where t ∈ [T ]:

p̂(xj
t | ∪h Pah(x

j
t )) =

∑
t

1(xj
t | ∪h Pah(x

j
t )) (45)

=

∑
t 1(x

j
t ,∪hPah(x

j
t ))∑

t 1(∪hPah(x
j
t ))

. (46)

We will prove that this estimator is converged as T goes to infinity in Lemma D.2. Hence, it is a
consistent estimator.

In this section, we have proved that p̂(xj
t ,Pa(x

j
t )) in Eq.(22) is a consistent estimator of p(xj

t ,Pa(x
j
t ))

using samples with t in the same homogenous time partition subset and p̂(xj
t |Pa(x

j
t )) in Eq.(37) is a

consistent estimator of p(xj
t |Pa(x

j
t )) using samples with t in the same time partition subset.

D Theorem

Theorem D.1. Let Ĝ be the estimated graph using the Algorithm PCMCIΩ. Under assumptions
A1-A7 and with an oracle (infinite sample size limit), we have that:

Ĝ = G (47)
almost surely.
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Lemma D.2. Denote that {Pak(Xj
t )}k∈[ωj ] contain the true and illusory parent sets, where ωj is

the true periodicity of Xj . For any random variable Xj
t with large enough t, under assumptions

A1-A7 and with an oracle (infinite sample size limit), we have:

p

(
p(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) ̸= p(Xj

t | ∪
ωj

k=1 Pak(X
j
t ) \ y)

)
= 1, ∀y ∈ ∪ωj

k=1Pak(X
j
t ) (48)

Here, p(Xj
t | ∪

ωj

k=1 Pak(X
j
t )) = limT→∞ p̂(Xj

t | ∪
ωj

k=1 Pak(X
j
t )).

Proof. We first prove that there exist a sequence of coefficients {αk}k∈[ωj ] satisfying
∑ωj

k=1 αk = 1
so that:
∀ configuration ∪h Pah(x

j
t ),

p̂(xj
t | ∪h Pah(x

j
t )) =

ωj∑
k=1

αkp̂k(x
j
t |Pa(x

j
t )) (49)

If this is correct, then p̂(xj
t | ∪h Pah(x

j
t )) would be a consistent estimator of p(xj

t | ∪h Pah(x
j
t )).

Based on Eq.(46), we have:

p̂(xj
t | ∪h Pah(x

j
t )) (50)

=

∑
t 1(x

j
t ,∪hPah(x

j
t ))∑

t 1(∪hPah(x
j
t ))

(51)

=

∑
t

∑
k 1(x

j
t ,∪hPah(x

j
t ))1(t ∈ Πj

k)∑
t 1(∪hPah(x

j
t ))

(52)

=
∑
k

∑
t 1(x

j
t ,∪hPah(x

j
t ))1(t ∈ Πj

k)∑
t 1(∪hPah(x

j
t ))

(53)

=
∑
k

∑
t∈Πj

k
1(xj

t ,∪hPah(x
j
t ))∑

t 1(∪hPah(x
j
t ))

(54)

=
∑
k

(∑t∈Πj
k
1(xj

t ,∪hPah(x
j
t ))

((((((((∑
t 1(∪hPah(x

j
t ))

((((((((∑
t 1(∪hPah(x

j
t ))∑

t∈Πj
k
1(∪hPah(xj

t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(55)

=
∑
k

(∑t∈Πj
k
1(xj

t ,∪hPah(x
j
t ))∑

t∈Πj
k
1(∪hPah(xj

t ))

∑
t∈Πj

k
1(∪kPat∈Πj

k
(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(56)

=
∑
k

(
p̂t∈Πj

k
(xj

t | ∪h Pah(x
j
t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(57)

=
∑
k

(
p̂t∈Πj

k
(xj

t |Pa(x
j
t ),∪hPah(x

j
t ) \ Pa(x

j
t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(58)

=
∑
k

(
p̂t∈Πj

k
(xj

t |Pa(x
j
t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(59)

=
∑
k

αk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t )), (60)

where αk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

. (61)
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Using the same logic in Eq.(30)-(35), we can decompose the numerator and denominator of αk with
homogenous time partition until each component converges to a stationary distribution.

αk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
k

∑
t∈Πj

k
1(∪hPah(xj

t ))
(62)

=

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ))∑
k

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ))

(63)

lim
T→∞

αk(T ) =

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))

(64)

Without loss of generality, assume y ∈ Pa(xj
t ),where t ∈ Π1

j and y /∈ Pa(xj
t ),where t /∈ Π1

j . Then
we have

p̂(xj
t | ∪h Pah(x

j
t ) \ y) =

∑
t 1(x

j
t ,∪hPah(x

j
t ) \ y)∑

t 1(∪hPah(x
j
t ) \ y)

(65)

=

ωj∑
k=2

(
p̂t∈Πj

k
(xj

t | ∪h Pah(x
j
t ) \ y)

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)∑
t 1(∪hPah(x

j
t ) \ y)

)
(66)

+

∑
t∈Πj

1
1(xj

t ,∪hPah(x
j
t ) \ y)∑

t∈Πj
1
1(∪hPah(xj

t ) \ y)

∑
t∈Πj

1
1(∪hPah(xj

t ) \ y)∑
t 1(∪hPah(x

j
t ) \ y)

=

ωj∑
k=2

βk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t )) + β1(T )p̂t∈Πj

1
(xj

t |Pa(x
j
t ) \ y) (67)

where βk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)∑
t 1(∪hPah(x

j
t ) \ y)

(68)

Similarly, we have:

βk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)∑
k

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)
(69)

=

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ) \ y)∑
k

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ) \ y)
(70)

lim
T→∞

βk(T ) =

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

(71)

Proving p(xj
t | ∪h Pah(x

j
t )) ̸= p(xj

t | ∪h Pah(x
j
t ) \ y) is equal to proving:

p(xj
t | ∪h Pah(x

j
t ))− p(xj

t | ∪h Pah(x
j
t ) \ y) ̸= 0 (72)
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Substitutes Eq.(60) and Eq.(67) in Eq.(72), we have the following derivation:

p(xj
t | ∪h Pah(x

j
t ))− p(xj

t | ∪h Pah(x
j
t ) \ y) (73)

= lim
T→∞

( ωj∑
k=1

αk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t ))

)
− (74)

lim
T→∞

( ωj∑
k=2

βk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t )) + β1(T )p̂t∈Πj

1
(xj

t |Pa(x
j
t ) \ y)

)

=

ωj∑
k=1

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))

pt∈Πj
k
(xj

t |Pa(x
j
t )) (75)

−
( ωj∑

k=2

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

pt∈Πj
k
(xj

t |Pa(x
j
t ))

+

∑ δ
ωj

s=1 pt∈Πj
(1,s)

(∪hPah(xj
t ) \ y)∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

pt∈Πj
1
(xj

t |Pa(x
j
t ) \ y)

)

After equating the denominators, the numerator is:

( ωj∑
k=1

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ))pt∈Πj

k
(xj

t |Pa(x
j
t ))

)( ωj∑
k=1

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

)

−
( ωj∑

k=2

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)pt∈Πj

k
(xj

t |Pa(x
j
t ))

+

δ
ωj∑
s=1

pt∈Πj
(1,s)

(∪hPah(xj
t ) \ y)pt∈Πj

1
(xj

t |Pa(x
j
t ) \ y)

)

×
( ωj∑

k=1

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ))

)
(76)

For the sake of simplicity, denote

ak :=

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t )) (77)

bk :=

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ) \ y) (78)

ck := pt∈Πj
k
(xj

t |Pa(x
j
t )) (79)

c′1 := pt∈Πj
1
(xj

t |Pa(x
j
t ) \ y) (80)
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After substituting the simple notations in Eq.(76):

(

ωj∑
k=1

akck)(

ωj∑
k=1

bk)− (

ωj∑
k=2

bkck + b1c
′
1)(

ωj∑
k=1

ak) (81)

=

ωj∑
k=1

(ck − c1′)akb1 +

ωj∑
k=1

ωj∑
i>1,i̸=k

(ck − ci)akbi (82)

= b1

ωj∑
k=1

ckak − c1′b1

ωj∑
k=1

ak +

ωj∑
k=1

ckak

ωj∑
i>1,i̸=k

bi −
ωj∑
k=1

ak

ωj∑
i>1,i̸=k

cibi (83)

Define

Vt = {Xt′ |0 < t′ < t} (84)

That is, Vt contains all the nodes before time point t.

Denote {bti}i∈[n] = ∪hPah(xj
t ) and assume {bti}1≤i≤n1<n = Pa1(x

j
t ), where t ∈ Πj

(k,s)

We express pt∈Πj
(k,s)

(∪hPah(xj
t )) by marginalizing all other random variables occurring before the

latest variables in ∪hPah(xj
t ) and utilizing the Causal Markov assumption (A2):

pt∈Πj
(k,s)

(∪hPah(xj
t )) (85)

= p(∪hPah(xj
t )|t ∈ Πj

(k,s)) (86)

=
∑

Vh\{bti}i∈[n]

p(bt1 , bt2 , ...btn , Vh \ {bti}i∈[n]|h = max{ti, 1 ≤ i ≤ n}, t ∈ Πj
(k,s)) (87)

=
∑

{Pa(bti )}i∈[n]

p(bti |Pa(bti))
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax) (88)

Note that xj
t′ ∈ Vh \ {bti}i∈[n].

This joint distribution is now represented by conditional distributions of one related variable given its
parents.

Similarly, assume y = bt1 , we have

pt∈Πj
(k,s)

(∪hPah(xj
t ) \ y) (89)

= pt∈Πj
(k,s)

(∪hPah(xj
t ) \ bt1) (90)

= p(∪hPah(xj
t \ y)|t ∈ Πj

(k,s)) (91)

=
∑

Vtn\{bti}i̸=1

p(bt2 , ...btn−1
, btn , Vtn \ {bti}i ̸=1|h = max{ti, 2 ≤ i ≤ n}) (92)

=
∑

{Pa(bti )}i̸=1

p(bti |Pa(bti))
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax) (93)

Note that xj
t′ ∈ Vtn \ {bti}i ̸=1.
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pt∈Πj
1
(xj

t |Pa(x
j
t ) \ y) can also be represented by those conditional distributions based on Bayes rule.

pt∈Πj
1
(xj

t |Pa(x
j
t ) \ bt1) (94)

=
pt∈Πj

1
(xj

t , bt2 , .., btn1
)

pt∈Πj
1
(bt2 , ..., btn1

)
(95)

=

∑
bt1

pt∈Πj
1
(xj

t , bt1 , ..., btn1
)∑

bt1
pt∈Πj

1
(bt1 , ..., btn1

)
(96)

=

∑
bt1

pt∈Πj
1
(xj

t ,Pa1(x
j
t ))∑

bt1
pt∈Πj

1
(Pa1(x

j
t ))

(97)

=

∑
bt1

p(xj
t |Pa1(x

j
t ))pt∈Πj

1
(bt1 , ..., btn1

)∑
bt1

pt∈Πj
1
(bt1 , ..., btn1

)
(98)

=

∑
bt1

p(xj
t |Pa1(x

j
t ))

∑
Vh\{bti∈[n1]

} pt∈Πj
1
(bt1 , ...btn1

, Vh \ {bti∈[n1]
}|h = max{ti∈[n1]})∑

bt1

∑
Vh\{bti∈[n1]

} pt∈Πj
1
(bt1 , ...btn1

, Vh \ {bti∈[n1]
}|h = max{ti∈[n1]})

(99)

=

∑
bt1

AB∑
bt1

CD
(100)

where

A = p(xj
t |Pa1(x

j
t ))

∑
{Pa(bti )}i∈[n1]

p(bti |Pa(bti)) (101)

B =
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax) (102)

C =
∑

{Pa(bti )}i∈[n1]

p(bti |Pa(bti)) (103)

D =
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax

) (104)

Note that t ∈ Πj
1 for distributions in above section from Eq.(94) to Eq.(104) and that xj

t′ ∈ Vh \
{bti}i∈[n1].

Hence, every term in Eq.(83) can be expressed as a function of those conditional distributions.
Substituting Eq.(88), Eq.(93) and Eq.(100) in Eq.(83), we have a polynomial equation only composed
of conditional distributions {p

(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t except the joint distribution of the starting

points p(Vτmax
). Note that the conditional distributions of variables in {Xj

t }t∈Πj
k
, j ∈ [n], k ∈ [ωj ]

are the same. Since sets do not allow duplicate values, set {p
(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t contains

only different conditional distributions. There should be potentially total
∑n

j=1 ωj different causal
mechanisms. The total number of conditional probabilities should be jointly determined by the
number of causal mechanisms and also the number of realizations that variables can take. After
adjusting those conditional distributions by the linear restriction

∑
y p(x|y) = 1, all components

in the set {p
(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t are mutually independent, and p(Vτmax

) is also independent
of all the causal mechanisms because the first starting points are random noises. That is, upon
adjustments, all the terms in Eq.(83) should be rendered independent of each other, without any
imposed constraints across them.

After expanding all the summations in Eq.(83), the coefficients of this polynomial equation are
either 1 or −1. Each coefficient is accompanied by one unique monomial as index (k, s) in the joint
distribution pt∈πj

k,s
determined a unique product of conditional distributions, i.e., with a different

pair of (k, s), the product should be different. Considering all random and independent conditional
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distributions in {p
(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t, the polynomial is not identically zero, and the probability

of choosing a root of this polynomial is zero.

Denote the polynomial equation in Eq.(83) as A, we have:

p(A = 0) = 0 (105)

Back to the original Eq.(73), we finally have p
(
p(xj

t | ∪h Pah(x
j
t )) ̸= p(xj

t | ∪h Pah(x
j
t ) \ y)

)
=

1, ∀y ∈ ∪hPah(xj
t ).

Lemma D.3. Let ŜPa(Xj
t ) denote the estimated superset of parent set for Xj ∈ V obtained from

the Algorithm B1 (line 2). {Pak(Xj
t )}k∈[ωj ] contain the true and illusory parent sets, where ωj is

the true periodicity of Xj . Under assumptions A1-A7 and with an oracle (infinite sample size limit),
we have:

∪ωj

k=1Pak(X
j
t ) ⊆ ŜPa(Xj

t ), ∀t ∈ [τmax + 1, T ]

almost surely.

Proof. Assume the contrary, i.e., there exists s ∈ ∪kPak(Xj
t ) \ ŜPa(X

j
t ). From Lemma D.2,

we have Xj
t��⊥⊥s

∣∣∣∪ωj

k=1Pak(X
j
t ) \ s . By the Definition 2.4, we have Pa(Xj

t ) ⊂ ∪
ωj

k=1Pak(X
j
t ).

If s ̸∈ Pa(Xj
t ), by the causal Markov property (A2), the dependence relation can not be true,

because s is a non-descendant of Xj
t . If s ∈ Pa(Xj

t ), our Algorithm would have concluded that
Xj

t��⊥⊥s
∣∣∣ŜPa(Xj

t ) (line 2) with a consistent CI test, evident from the causal Markov property,
contradicting our assumption. Hence, the lemma.

Lemma D.4. Let P̂ a(Xj
t ) denote the estimated parent set for Xj ∈ V obtained from the Algorithm B1

(line 19) assuming that true ωj has obtained (line 17). {Pak(Xj
t )}k∈[ωj ] contain the true and illusory

parent sets. Under assumptions A1-A7 and with an oracle (infinite sample size limit), we have:

P̂ a(Xj
t ) = Pa(Xj

t ), ∀t ∈ [τmax + 1, T ] (106)

almost surely.

Proof. From Lemma D.3,

Pa(Xj
t ) ⊂ ∪

ωj

k=1Pak(X
j
t ) ⊆ ŜPa(Xj

t ), ∀t ∈ [τmax + 1, T ], j ∈ [n] (107)

In Runge et al. [2019], the author proved P̂ a(Xj
t ) = Pa(Xj

t ) if we run PCMCI on stationary time
series. Using the same logic, we have the following proof.

Suppose Xi
t−τ /∈ P̂ a(Xj

t ) but Xi
t−τ ∈ Pa(Xj

t ). With a consistent conditional independence test
and correct time partition, the MCI test (line 8 in Algorithm B1) will remove Xi

t−τ from P̂ aωj
(Xj

t )
if and only if:

Xi
t−τ ⊥⊥ Xj

t

∣∣∣ŜPa(Xj
t ) \ {Xi

t−τ}, ŜPa(Xi
t−τ ) (108)

Based on Eq.(107), the rule is equivalent to removing Xi
t−τ from P̂ aωj

(Xj
t ) if and only if:

Xi
t−τ ⊥⊥ Xj

t

∣∣∣∣∣
{
Pa(Xj

t ) \ {Xi
t−τ}, Pa(Xi

t−τ ) ,

ŜPa(Xj
t ) \ (Pa(Xj

t ) ∪ {Xi
t−τ}), ŜPa(Xi

t−τ ) \ Pa(Xi
t−τ )

}
(109)

⇒Xi
t−τ ⊥⊥ Xj

t

∣∣∣Pa(Xj
t ) \ {Xi

t−τ}, Pa(Xi
t−τ ) (110)
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Based on Causal Markov Condition assumption (A2) and Faithfulness Condition (A3), from Eq.(110)
we have Xi

t−τ /∈ Pa(Xj
t ). In other words, if Xi

t−τ /∈ P̂ a(Xj
t ) then Xi

t−τ /∈ Pa(Xj
t ). That is,

Pa(Xj
t ) ⊆ P̂ a(Xj

t )

Suppose Xi
t−τ ∈ P̂ a(Xj

t ) but Xi
t−τ /∈ Pa(Xj

t ). By the contraposition of Faithfulness (A1), we know

that Xi
t−τ��⊥⊥Xj

t

∣∣∣P̂ a(Xj
t ) \ {Xi

t−τ}, P̂ a(Xi
t−τ ) . Denote W =

{
P̂ a(Xj

t ) \ {Pa(Xj
t ), X

i
t−τ}

}
∪{

P̂ a(Xi
t−τ ) \ Pa(Xi

t−τ )
}

. Since Xi
t−τ /∈ Pa(Xj

t ), based on Causal Markov Condition assumption
(A2),

W ∪Xi
t−τ ⊥⊥ Xj

t

∣∣∣Pa(Xj
t )

=⇒W ∪Xi
t−τ ⊥⊥ Xj

t

∣∣∣Pa(Xj
t ), Pa(Xi

t−τ )

Weak Union
======⇒ Xi

t−τ ⊥⊥ Xj
t

∣∣∣{Pa(Xj
t ), Pa(Xi

t−τ )} ∪W

=⇒ Xi
t−τ ⊥⊥ Xj

t

∣∣∣P̂ a(Xj
t ) \ {Xi

t−τ}, P̂ a(Xi
t−τ )

This is contrary to the assumption so that there is no such Xi
t−τ satisfying Xi

t−τ ∈ P̂ a(Xj
t )

but Xi
t−τ /∈ Pa(Xj

t ). In other words, if Xi
t−τ ∈ P̂ a(Xj

t ), then Xi
t−τ ∈ Pa(Xj

t ). That is,
P̂ a(Xj

t ) ⊆ Pa(Xj
t ). Combined with the previous conclusion that Pa(Xj

t ) ⊆ P̂ a(Xj
t ), we have

P̂ a(Xj
t ) = Pa(Xj

t ).

Based on Lemma D.2, Lemma D.3 and Lemma D.4, we can identify the true ωj for Xj through
Lemma D.5.
Lemma D.5. Let ωj denote the true periodicity for Xj ∈ V and P̂a(Xj

t∈Πj
k

) denote the estimated

parent set for Xj
t obtained from Algorithm B1 where t ∈ Πj

k. Define:

ω̂j = arg min
ω∈[ωub]

max
k∈[ω]

|P̂a(Xj

t∈Πj
k

)| (111)

Under assumptions A1-A7 and with an oracle (infinite sample limit), we have that ω̂j = ωj , ∀j ∈ [n]
almost surely.

Proof. Assume the contrary that ω̂j ̸= ωj , then in the Algorithm B1, we have an incorrect time
partition Π̂j . Hence, CI tests that are performed use samples with different causal mechanisms.
p̂(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) in Eq.(50) is estimated from a mixture of two or more time partition subsets,

say Πj
1 and Πj

2. We can apply Lemma D.2 where ∪ωj

k=1Pak(X
j
t ) is replaced by ∪2k=1Pak(X

j
t ) and

then in Lemma D.3, ŜPa(Xj
t ) is replaced by P̂aω̂j (X

j
t ) and hence ∪2k=1Pak(X

j
t ) ⊆ P̂aω̂j (X

j
t )

where P̂aω̂j (X
j
t ) is obtained from samples with t from the mixture of two different partition subsets

(line 8). Hence, with ω̂j , |P̂aω̂j
(Xj

t )| ≥ | ∪2k=1 Pak(X
j
t )| using mixture samples t ∈ ∪2k=1Π

j
k.

However, with true ωj , we have |P̂aωj
(Xj

t )| = |Pa(X
j
t )| based on Lemma D.4. With Assumption

A6 the Hard Mechanism Change, | ∪2k=1 Pak(X
j
t )| > |Pa(X

j
t )| so that ωj always leads to a smaller

size of estimated parent sets than ω̂j , contrary to the definition of ω̂j . Hence, ω̂j = ωj .

With those lemmas, we can prove Theorem 1.

Proof. Assuming that a correct ωj has already been obtained, from Lemma D.4 we have

P̂ a(Xj
t ) = Pa(Xj

t ), ∀t ≥ 2τub, j ∈ [n]

From Lemma D.5, we know that a correct ωj must be obtained with consistent CI tests, that is,
ω̂j = ωj ,∀j ∈ [n]. Therefore from Algorithm B1, we have

P̂ a(Xj
t ) = Pa(Xj

t ), ∀t ≥ 2τub, j ∈ [n]

15



Figure 3: In the above illustration of the "turning point," the sizes of parent sets for different estimates
ω̂j are depicted as |P̂ak(Xj

t )|, k ∈ [ω̂j ]. It is worth noting that P̂ak(X
j
t ) represents either the true

parent set or the illusory parent set of Xj
t . In this context, we are interested in the sizes of these parent

sets. The first occurrence of the "turning point" happens at ω̂j = 3 since the sizes of parent sets
obtained when ω̂j = 2 and ω̂j = 4 are larger than the corresponding size when ω̂j = 3, respectively.
The term "turning point" denotes that as ω̂j increases, the size of the parent set initially decreases
and then starts increasing once the local minimum is reached. The corresponding relations exist
because as long as ω̂j is not a multiple of the true ωj , the estimated time partition subsets with ω̂j

must be a mixture of some correct time partition subsets with ωj . Therefore, it is reasonable to use
this trick rather than looking at the maximum size of the parent sets P̂ak(X

j
t ), k ∈ [ω̂j ] (line 17 in

Algorithm B1).

If the causal mechanism is fixed across time, i.e., ωj = 1, j ∈ [n], the proof of PCMCI Runge et al.
[2019] showed that for all Xj ∈ V ,

Xi
t−τ → Xj

t /∈ G =⇒ Xi
t−τ → Xj

t /∈ Ĝ

Xi
t−τ → Xj

t ∈ G =⇒ Xi
t−τ → Xj

t ∈ Ĝ

Therefore Ĝ = G.

If ∃ωj > 1, we can simply separate the whole graph G into sub graphs {Gωj

k }k∈[ωj ] consisting of
only target variable Xj

t with corresponding t ∈ {Πj
k}k∈[ωj ] and parent variables Xi

t′ ∈ Pa(Xj
t ).

Focusing only on one time partition subset Πj
k, k ∈ [ωj ], we have

Ĝωj

k = Gωj

k (112)

for any k ∈ [ωj ] and j ∈ [n] based on the proof of Proposition 1 in the supplementary materials of
Runge et al. [2019].
Each sub-graph Gωj

k includes only variable Xj
t , the edges entering Xj

t for time points t ∈ Πj
k and the

corresponding parent variables Xi
t′ ∈ Pa(Xj

t ). Given Πj = ∪
k∈[ωj ]

Πj
k and V = ∪

j∈[n]
Xj , we have:

Ĝ = ∪
j∈[n], k∈[ωj ]

Ĝωj

k (113)

G = ∪
j∈[n], k∈[ωj ]

Gωj

k (114)

On the basis of Eq.(112), we finally have:

Ĝ = G

E Turning Points

Given infinite samples, our estimate ω̂j (line 17 in Algorithm B1) is the exact value ωj (see Lemma
D.5). However, for finite samples, estimating ωj by the equation in line 17 in Algorithm B1 does
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not yield good performance when T is small. While searching, larger guesses ω lead to finer time
partitions in Πj , resulting in smaller sizes for Πk

j (see Line 5 in Algorithm B1). Due to the power
limit of CI tests on a smaller sample given by Πk

j , the number of false negative edges increases. In
order to solve this issue, we introduce turning points. A turning point is a guess ω̂ satisfying:

max
t
|P̂aω̂(Xj

t )| < min{max
t
|P̂aω̂−1(X

j
t )|,max

t
|P̂aω̂+1(X

j
t )|}

where |P̂aω̂(Xj
t )| is the estimated parent set for Xj

t with periodicity guess ω̂. See line 19 in Algorithm
B1.

We illustrate it with a special example in Fig.3. If there are several turning points, then ω̂j is the first
turning point. If there is no turning point, then we obtain ω̂j using Line 17 of Algorithm B1.

The concept of the turning point is not based on any formal theorem but rather on experimental
observations. In experiments, the turning point often corresponds to a multiple of the true periodicity
when T is not large. This occurs due to the limitations of CI tests on finite samples. In such cases,
the causal graph can still be correct because the estimated time partition remains accurate. In these
experiments, the accuracy rate is calculated by considering {Nωj}N∈⌊ωub

ωj
⌋ as correct estimations.

F Computational Complexity

Executing the PCMCI algorithm on the entire time series constitutes the initial phase of the proposed
approach (Algorithm B1 line 2). The algorithm’s worst-case overall computational complexity is
O(n3τ2ub) +O(n2τub), discussed in Runge et al. [2019]. Here, the symbol n denotes n-variate time
series and τub represents the upper boundary for time lags.

The subsequent computational load stemming from the remaining components of our algorithm
follows a complexity of O(ω2

ubn
2τub) . This encompasses the O(n2τub) complexity associated with

conducting Momentary Conditional Independence (MCI) tests on all n univariate time series. The
parameter ω2

ub here arises due to the search procedure involving ω, iterating through values from 1 to
ωub for all n univariate time series.

The runtime of the computation is further influenced by the scaling behavior of the CI test concerning
the dimensionality of the conditioning set and the temporal series length T . For further details, see
section 5.1 in Runge et al. [2019].

G Experiments

All experiments, including those detailed in the main paper, are conducted on a single node with one
core, utilizing 512 GB of memory in the Gilbreth cluster at Purdue University.

Here, we describe how to calculate the metrics (F1 score, Adjacency Precision, and Adjacency Recall)
in our setting. In stationary time series, the output of the causal discovery algorithm is typically
an adjacency matrix with dimensions [n, n, τmax + 1]. Within the three-dimensional binary array,
the value 1 signifies an edge pointing from one variable to another with a specific time lag, while 0
indicates the absence of an edge. For instance, if element [i, j, k] in the matrix is 1, then there is an
edge pointing from Xi

t−k to Xj
t . In semi-stationary time series, due to the presence of multiple causal

mechanisms, the binary edge matrix is a four-dimensional array with dimensions [n,Ω, n, τmax + 1],
where Ω is defined as Eq.(7) in the main paper. This expanded binary matrix is constructed based on
the edge matrix of each variable Xj

t , j ∈ [n], through repetition. For instance, if Ω = 2ωj, setting
the third dimension of the large binary matrix to j should yield ωj potentially different parent sets
(including illusory and true parent sets), each appearing twice.

We should have two such binary arrays, one representing the ground truth with dimensions
[n,Ω, n, τmax + 1] and one obtained from the algorithm with dimensions [n, Ω̂, n, τmax + 1]. If
the estimator Ω̂ is incorrect, those two binary arrays will have different sizes, so we can not directly
compare them. To solve this problem, we do the same operation and calculate the least common multi-
ple of Ω and Ω̂. Denoting this least common multiple as LCM(Ω,Ω̂), we create two four-dimensional
binary arrays with dimensions of [n,LCM(Ω, Ω̂), n, τmax + 1] based on the true edge array and the
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estimated edge array, respectively, through repetition. The metrics are then computed by comparing
the values in these two arrays.

G.1 More Discussion regarding the Case Study

As stated in the main paper, we express our inability to comment on the significance of the case study
results. We open a door for the related experts; if assumptions A1-A7 are satisfied, the stationary
assumption may not hold in this real-world dataset, and such periodicity exists. However, if the
finding is not correct from an expert’s viewpoint, the following assumptions may be violated:

• Assumption A4 No Contemporaneous Causal Effects: There is a possibility of potential
causal effects from X ta

t to Xcp
t that the algorithm is unable to capture.

• Assumption A6 Hard Mechanism Change combined with limited power of CI tests: If there
is a soft mechanism change in the variables, the reliability of the CI test of two variables
given their parents will be influenced by the skewed distribution of the parent variables. This
effect will be exacerbated by the fact that the sample size will be shrunk by ω̂.

We provide a sound and robust algorithm for experts in various fields who are interested in validating
the presence of periodicity within the causal mechanisms specific to their domain.

G.2 Experiments on Continuous-valued Time Series with Exponential Noise

Considering that VARLiNGAM is a temporal extension of LiNGAM and LiNGAM is an algorithm
designed for non-Gaussian data, following the work in Pamfil et al. [2020], we also construct
experiments on continuous-valued time series data with Exponential noise. Shown as Fig.4(a), the
performance of PCMCIΩ, PCMCI and VARLiNGAM, are quite similar with their performance on
Gaussian noise. The recall rate of DYNOTEARS, however, gets worse with Exponential noise.

G.3 Experiments on Binary Time Series

Similar to the process of generating continuous-valued time series, the generation of binary time series
also involves three steps. However, the main difference lies in the last two steps. In the third step,
we simulate the conditional distributions of each child variable based on all possible combinations
of parent variable values. Subsequently, we randomly generate the value of the child variable by
considering the corresponding conditional distribution given its parent sets.

For discrete-valued time series, a longer time length is required. To evaluate performance, we
conduct a series of experiments following the same methodology as described in section 4.1. Fig.4(b)
illustrates the variation in comprehensive performance with respect to ωmax. PCMCIΩ demonstrates a
similar performance to PCMCI in terms of the F1 score, indicating a well-balanced trade-off between
precision and recall. This outcome is expected since discrete-valued time series demand larger sample
sizes, and the increases in ωmax negatively impact the power of MCI tests. This observation is further
supported by Fig.5(a), where an increase in time length T from 4000 to 12000 does not lead to a
significant improvement in the accuracy rate of ω̂, while the accuracy decreases rapidly with higher
values of ωmax.

Comparing these results to the experiments conducted on continuous-valued time series, it becomes
evident that the demand for efficient samples is even more substantial for binary time series, and the
influence of increasing ωmax on performance becomes more pronounced.

Fig.5(b) shows how the performance of the algorithm varies across τmax and the same trade-off
between recall and precision has been shown.

G.4 More experiments on Continuous-valued time series

In this section, we conduct more experiments with continuous-valued time series with Gaussian
noises.

In Fig.6(a), we test our algorithm with and without utilizing the turning point rule. See lines 13-14
in Algorithm B1 and section E for more information about the turning point rule. Let PCMCIΩ TP
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Figure 4: a)F1 Score, Adjacency Precision, and Adjacency Recall when ωmax varies for experiments
on continuous-valued time series with Exponential noise, length T = {500, 2000, 8000}, τmax =
5 and n = 5. b) F1 Score, Adjacency Precision, and Adjacency Recall when ωmax varies for
experiments on binary time series with length T = {4000, 8000, 12000}, τmax = 3 and n = 3.
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Figure 5: PCMCIΩ is tested on 3-variate binary time series. Every marker corresponds to the average
accuracy rate or average running time over 100 trials. a) The accuracy rate of ω̂ for different time
series lengths and different ωmax. b) F1 Score, Adjacency Precision, and Adjacency Recall when
τmax varies for experiments with time series length T = 4000, ωmax = 3 and n = 3.

denote the version of PCMCIΩ that the turning point rule is utilized in choosing ω. PCMCIΩ non-TP
means that the turning point rule is not applied and ω is chosen directly according to Lemma D.5.

Fig.6(a) shows that the algorithm PCMCIΩ non-TP and PCMCIΩ TP have similar performance
with various T and ωmax. With T = 500, PCMCIΩ non-TP yields slightly larger standard errors
for those metrics, compared to PCMCIΩ TP. As time length T increases, the performance of the
algorithm PCMCIΩ non-TP has consistently increased and is even slightly better than PCMCIΩ TP.
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The consistent performance of PCMCIΩ under different chosen rules of ω supports our theoretical
result; that is, the correct periodicity leads to the most sparse causal graph.

In Fig.6(b), non-stationary time series are produced instead of semi-stationary ones. Consequently,
the causal mechanisms for each univariate time series no longer appear sequentially and periodically.
The proposed method performs slightly better in terms of F1 score and precision. However, the recall
rate is the worst compared to other baselines.

In Fig.6(c), we conduct experiments in the nonlinear setting. The proposed algorithms PCMCIΩ TP
and PCMCIΩ non-TP perform the best.

In Fig.6(d), with ωub < ωmax, the performance of the proposed algorithm is significantly worse
compared to the scenario where ωub > ωmax. However, with ωub < ωmax, the proposed algorithm
can still detect a less dense graph in comparison to other baselines. Based on these outcomes, it is
essential to maintain a slightly higher ωub without significantly impacting the number of efficient
samples utilized in each CI test.
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Figure 6: Multiple algorithms are tested on 5-variate time series with different time lengths T . Every
line corresponds to a different algorithm. Every marker corresponds to the average performance over
50 trials. In (a), the consistent performance of PCMCI under different chosen rules of ω supports our
theoretical result; that is, the correct periodicity ω leads to the most sparse causal graph. In (b), data
sets are in a non-stationary setting without periodicity. In (c), the structural causal model (SCM) is
non-linear. In (d), algorithm PCMCIΩ are tested under conditions that ωub > ωmax and ωub < ωmax

respectively.
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