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Abstract

This work examines the claim in recent work that Bayesian neural networks (BNNs) are
inherently robust to adversarial perturbations. To study this question, we investigate
whether it is possible to successfully break state-of-the-art BNN inference methods and
prediction pipelines using even relatively unsophisticated attacks for three tasks: (1)
label prediction under the posterior predictive mean, (2) adversarial example detection
with Bayesian predictive uncertainty, and (3) semantic shift detection. We find that
BNNs trained with state-of-the-art approximate inference methods, and even with HMC
inference, are highly susceptible to adversarial attacks and identify various conceptual
and experimental errors in previous works that claimed inherent adversarial robustness of
BNNs. We conclusively demonstrate that BNNs and uncertainty-aware Bayesian prediction
pipelines are not inherently robust against adversarial attacks and open up avenues for the
development of Bayesian defenses for Bayesian prediction pipelines.

1. Introduction

Modern machine learning systems have been shown to lack robustness in the presence of
adversarially chosen inputs—so-called adversarial examples—that are perceptually indistin-
guishable from data the model can successfully handle.

An intriguing corpus of recent works—largely outside of the more established adversarial
examples literature—has initiated the study of adversarial robustness of Bayesian neural
networks (bnns; MacKay (1992); Neal (1996); Murphy (2013)) and claims to provide
empirical and theoretical evidence that bnns are able to detect adversarial examples (Rawat
et al., 2017; Smith and Gal, 2018) and to defend against gradient-based attacks on predictive
accuracy to a higher degree than their deterministic counterparts (Bortolussi et al., 2022;
Carbone et al., 2020; Zhang et al., 2021). This has led to a growing body of work that
operates under the premise of “inherent robustness” of bnns, alluding to this “well-known”
fact as a starting point (e.g., De Palma et al. (2021); Pang et al. (2021); Yuan et al. (2021);
Zhang et al. (2021)).

In this paper, we perform an investigation into the claims that bnns are inherently robust
to adversarial attacks and able to detect adversarial examples.

There are good reasons to suspect that, in principle, bnns are in fact more robust than
deterministic neural networks in general and in terms of adversarial robustness is particular.
bnns offer a principled way to quantify a model’s predictive uncertainty, by viewing the
network parameters as random variables and inferring a posterior distribution over the
network parameters using Bayesian inference. One of the profound advantages of a bnn
is that—unlike a deterministic neural networks—it can provide uncertainty estimations
attributed to its own model limitations (epistemic uncertainty), which has been successfully
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Figure 1: Left (Prediction): Accuracy and robust accuracy on test and adversarial inputs on
MNIST with CNN architecture. Right (Detection): Average selective prediction
accuracy (ASA) for adversarial examples and semantically shifted OOD inputs on MNIST
(with FashionMNIST as OOD). Note that by definition ASA≥ 12.5%. bnn inference
methods used are hmc (the “gold standard”), fsvi (state of the art for approximate
inference), and psvi and mcd (well-established approximate inference methods). Simple
PGD attacks break all pipelines. See Section 3 for further details.

applied to various tasks to build more reliable and robust systems (Neal, 1996; Gal and
Ghahramani, 2016). This development is spurred by recent advances in approximate inference
methods, such as function-variational inference (fsvi, Rudner et al. (2022)), that tackle the
problem of analytical and computational intractability of exact Bayesian inference due to
the massively parameterized non-linear nature of bnns. It is thus natural and relevant to
hope that a bnn’s predictive uncertainty can successfully identify adversarial examples and
provide a certain level of inherent adversarial robustness.

To evaluate the empirical claims about high levels of inherent adversarial robustness
of bnns (e.g., in Smith and Gal (2018); Bortolussi et al. (2022); Carbone et al. (2020)),
we begin by reviewing the body of prior evidence and identify errors in implementations
of prior works, such that, after fixing the errors, we are unable to reproduce results in
favor of robustness. Since bnn inference methods have evolved since those initial papers,
we follow up with a thorough, independently implemented evaluation of well-established
and state-of-the-art approximate inference methods for bnns and find that none of them
withstand adversarial attacks. A summary of our results is shown in Figure 1.

We focus on three key tasks: 1) adversarial example (AE) detection; 2) classification
under the posterior predictive mean; and 3) semantic shift detection. Semantic shift detection
(or “OOD detection”) is a staple application of bnns, previously not considered in the context
of adversarial attacks. We show how simple adversarial attacks can completely fool the
models to mainly reject in-distribution samples, thus completely failing on the detection
task. To summarize, our key contributions are as follows:

• We re-examine prior evidence in the literature on robustness of bnns for 1) AE detection
(Smith and Gal, 2018) and 2) prediction (Bortolussi et al., 2022; Carbone et al., 2020;
Zhang et al., 2021) and find that none of them convincingly demonstrates robustness
against adversarial attacks. We find that results in favor of bnn robustness presented in
previously published works are due to implementation errors and cannot be replicated
once the errors are fixed. We extract common pitfalls and provide a series of guiding
principles to evaluate robustness of bnns with suitable attack methods. We hope that this
effort not only corrects previous misconceptions, but also helps evaluate bnn robustness
with more confidence in the future (Section 2).
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• We conduct thorough evaluations of models with well-established state-of-the-art predictive
uncertainty estimates (hmc, Neal (2010); psvi Blundell et al. (2015); mcd, Gal and
Ghahramani (2016); fsvi, Rudner et al. (2022)) on benchmarking tasks such as MNIST,
FashionMNIST, and CIFAR-10. We demonstrate that 1) classification with the posterior
lacks predictive accuracy under adversarial attacks, 2) AE detection fails even under attacks
targeting accuracy only, and 3) in semantic shift detection (on MNIST vs. FashionMNIST
and CIFAR-10 vs. SVHN) adversarial attacks fool bnns to mainly reject in-distribution
samples (our work is the first to break semantic-shift detection by bnns) (Section 3).

Our analysis suggests that Bayesian neural networks with standard inference methods,
and the Bayesian selective prediction pipeline, are not inherently robust against adversarial
attacks. Moreover, relatively unsophisticated default attacks like PGD-variants are sufficient
to break existing Bayesian pipelines. While a few prior works have cast doubt about the
robustness claims made about bnns in the literature—Grosse et al. (2018) show that Gaussian
processes (gps; (Rasmussen and Williams, 2006)), a non-parametric alternative to bnns, are
not robust to adversarial attacks on simple prediction tasks and (Blaas, 2021) demonstrate
that bnns with simple architectures are not robust to adversarial attacks in small-data
settings—our results allow us to contextualize prior work and to settle the ambiguous state
of affairs on the robustness of bnns and their prediction pipelines.

2. Evaluating Claims about BNN Robustness
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Figure 2: Selective Accuracy for the AE detection
in Smith and Gal (2018). Total and
Epistemic refer to the thresholding un-
certainty. The downward sloping curves
as rejection rate increases indicate that
the model rejects more clean than adver-
sarial samples. Even for the weakest at-
tack on accuracy alone, the essentially flat
curve demonstrates that detection is no
better than random. There is no advan-
tage in using epistemic uncertainty rather
than total uncertainty.

Here, we examine (and refute) all papers
(to the best of our knowledge) that make
adversarial robustness claims about bnns
that have publicly accessible code and have
not been previously refuted (Smith and
Gal, 2018; Bortolussi et al., 2022; Carbone
et al., 2020; Zhang et al., 2021). Each of
them provides a different failure mode that
will help illustrate our recommendations
for evaluating robustness of bnns at the
end of this section. We note that in adver-
sarial robustness community, a model is
considered robust only when it can resist
adversarial perturbations generated with
any method, as long as these perturbations
are within the constraint set. As we will
see, a common failure mode is careless at-
tack evaluation, for instance, because of
double application of the softmax function
in Equation (1.2) through inappropriate
use of standard packages.

AE detection with epistemic uncertainty. Smith and Gal (2018) examine adversarial
detection with mcd using a ResNet-50 on the large-scale ASSIRA Cats & Dogs dataset
consisting of clean test images, adversarial samples on that test set, and noisy test images
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with the same perturbation levels as the adversarial ones, where they use pgd10 in their
attacks. They present empirical findings claiming that epistemic uncertainty in particular
may help detect adversarial examples.However, after investigating their code, we find several
problems: leakage of batch statistics at test time, faulty cropping of noisy images and the
“double-softmax” problem resulting in improper evaluation (more details in Appendix 6).
This leads the bnn to accept the noisy images and reject the clean and adversarial ones,
resulting in misleading, overly optimistic ROC curves. After correcting these errors, no
evidence of successful AE detection from selective prediction remains.

Table 1: Robust accuracy on MNIST for bnns trained with
hmc and psvi. We show results reported in Car-
bone et al. (2020); Bortolussi et al. (2022) and
our reevaluation.

Clean fgsm pgd40

hmc
Reported - 96.0 97.0

Reevaluated 95.89±0.23 11.62±2.49 2.19±0.12

psvi
Reported - 93.6 93.8

Reevaluated 97.35±0.18 51.45±3.70 0.07±0.05

Figure 2 shows the updated se-
lective accuracy using both total
and epistemic uncertainty thresh-
olds. A successful AE detector
would have a monotonically increas-
ing accuracy curve, whereas we see
flat or decreasing curves meaning no
better than random detection and
no advantage of epistemic over total
uncertainty. Lastly, we implement
stronger attacks (pgd40 and Transferpgd+, see Appendix 6) to demonstrate the complete
failure of this AE detection method.

Robustness of BNN accuracy. Carbone et al. (2020) and Bortolussi et al. (2022)
present empirical results claiming robustness of bnn accuracy due to vanishing gradients of
the input with respect to the posterior. They implement fgsm and pgd for bnns with hmc
and psvi on MNIST and FashionMNIST to show robust accuracy. However, when examining
the publicly accessible code, we found that instead of using Equation (1.3) to calculate
gradients, they compute expectations of gradients. Combined with large logit values before
the softmax layer that lead to numerical overflow and result in zero gradients for a large
fraction of samples, this leads to inadvertent gradient masking. In addition, we also found
the double-softmax problem mentioned above. After correcting and rescaling logits to avoid
numerical issues (see Appendix 6), their models are entirely broken by pgd40, see Table 1.

Regularization for robust accuracy of BNNs. Zhang et al. (2021) propose to
defend against adversarial attacks by adding a regularization term and present empirical
results for enhanced accuracy robustness for MNIST and CIFAR (most for non-standard
settings of attack parameters like smaller radius). We again found the same “double-softmax”
problem plaguing other implementations and show that after fixing it the claims do not hold
anymore (see Appendix 6).

Recommendations for Evaluating BNN Robustness. Having examined these
three robustness claims, we draw several conclusions about pitfalls and failure modes, we list
detailed recommendations to avoid them when attacking Bayesian pipelines in Appendix 7.

3. Empirical Evaluation of Adversarial Robustness in BNNs

Here we present our findings on the lack of adversarial robustness of bnn pipelines for the
three tasks: 1) classification with posterior prediction mean (Section 3.1), 2) AE detection
(Section 3.2), and 3) OOD detection (Appendix 5). We evaluate four Bayesian Inference
methods, hmc, mcd, psvi, and fsvi for three datasets: MNIST, FashionMNIST, and CIFAR-
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Table 2: Robustness of Bayesian neural networks to adversarial attacks. The table shows robust
accuracy (in %). Deterministic nns have close to 0% robust accuracy, while we show low
single digits, but we have not optimized our attacks for this proof-of-principle analysis.

Methods
MNIST (ϵ = 0.3) FashionMNIST (ϵ = 0.1) CIFAR-10 (ϵ = 8/255)

Clean fgsm pgd Clean fgsm pgd Clean fgsm pgd

hmc CNN 99.26±0.00 21.44±0.58 0.57±0.05 92.33±0.04 32.79±0.829 6.73±0.30 – – –

mcd
CNN 99.39±0.04 10.19±1.51 0.52±0.03 93.04±0.10 18.45±2.78 5.37±0.14 – – –

ResNet-18 99.39±0.05 10.19±1.51 5.20±0.03 94.27±0.05 7.58±0.29 4.40±0.11 94.12±0.07 26.45±0.15 4.23±0.17

psvi
CNN 99.21±0.02 2.60±0.02 0.64±0.02 92.58±0.01 13.95±0.88 5.50±0.14 – – –

ResNet-18 99.59±0.02 2.07±0.25 0.36±0.02 94.22±0.08 16.86±5.64 4.32±0.10 94.75±0.26 37.17±1.11 5.25±2.27

fsvi
CNN 99.27±0.01 41.94±1.82 0.60±0.06 92.58±0.25 23.93±1.87 5.45±0.28 – – –

ResNet-18 99.58±0.02 6.45±3.33 0.39±0.02 93.62±0.33 28.23±2.63 4.60 ±0.02 93.48±0.18 43.85±0.94 5.18±0.27

10. We implement two architectures, a four-layer CNN and ResNet-18. For a description of
the threat models and evaluation, see Appendix 4. All hyperparameters can be found in
Appendix 9.

3.1. Robust Accuracy of Bayesian Neural Networks

Table 2 shows the predictive accuracies from our evaluation. It demonstrates a significant
deterioration in predictive accuracy when evaluated on adversarial examples even for the
weakest attacks (fgsm) with a complete breakdown for pgd for all methods and datasets
considered. Note that for deterministic neural networks, robust accuracy under adversarial
attacks approaches 0% while for our attacks on bnns it is in the low single digits (still below
the 10% accuracy for random guessing). Since the goal of this work is to evaluate claims
of significant adversarial robustness of bnns, we have not optimized our attacks to drive
accuracy to approach zero but believe this to be possible.

3.2. Detecting Adversarial Examples

AE detection setting: We evaluate all AE detectors on test data consisting of 50% clean
samples and 50% adversarially perturbed samples, using total uncertainty for the rejection
as described in Sections 1.2 and 1.6. In the idealized case of perfect accuracy on clean

Table 3: Selective Prediction with bnns. The table shows the average accuracy for selective prediction
(ASA). Note that we did not use CNN for CIFAR-10, since ResNet is the standard model
for this dataset.

CNN ResNet-18
Clean Noisy fgsm pgd pgd+ Clean Noisy fgsm pgd pgd+

MNIST

hmc 99.98±0.00 99.95±0.00 86.67±0.13 63.16±0.73 60.16±0.33 - - - - -
mcd 99.99±0.00 99.97±0.00 83.33±1.48 24.58±1.21 27.33±1.78 99.99±0.00 80.67±2.35 83.10±0.38 23.20±0.63 16.25±0.12

psvi 99.98±0.00 99.98±0.00 74.98±0.83 35.28±1.88 20.28±0.70 99.99±0.00 87.49±0.79 83.00±0.83 19.30±0.46 15.95±0.07

fsvi 99.98±0.00 98.84±1.09 88.53±1.31 38.79±2.72 17.52±0.68 99.37±0.88 88.82±9.03 81.52±5.85 26.86±3.81 20.14±5.48

FMNIST

hmc 98.99±0.00 98.76±0.01 76.22±0.41 47.73±0.67 41.30±0.60 - - - - -
mcd 99.18±0.01 99.07±0.01 75.31±0.35 31.92±0.77 28.89±0.45 99.23±0.02 98.68±0.03 69.73±1.99 20.18±0.46 19.89±0.19

psvi 98.98±0.01 98.86±0.03 62.03±2.02 30.68±0.58 24.92±0.49 98.72±0.16 97.91±0.22 79.97±3.92 19.73±0.51 19.56±0.44

fsvi 98.58±0.04 97.93±0.28 69.59±1.48 30.94±1.91 24.17±0.82 98.87±0.12 98.06±0.17 78.49±1.79 21.45 ±0.08 20.49±0.43

CIFAR
mcd - - - - - 99.37±0.01 99.35±0.01 76.97±0.21 22.85±0.49 19.73±0.24

psvi - - - - - 99.40±0.04 99.36±0.04 82.38±0.50 19.78±0.97 19.89±1.51

-10 fsvi - - - - - 99.06±0.08 99.04±0.07 85.16±0.35 20.82±0.38 20.09±0.33
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Figure 3: AE detection statistics for all four methods on MNIST with a four-layer CNN architecture.
Higher curves correspond to better AE detection. The adversarial attacks are able to
significantly deteriorate OOD detection in all settings and for all methods.

data and 0% accuracy on adversarial samples, a perfect AE detector would start with 50%
accuracy at 0% rejection rate, increasing linearly to 100% accuracy at 50% rejection rate,
for a maximum ASA of 87.5%. A completely defunct AE detector, on the other hand, would
start at 50% and reject clean samples first, reaching 0% accuracy at 50% rejection rate for a
minimum ASA of 12.5%. A random detector would yield a horizontal curve with ASA 50%.
To benchmark, we also show ASA for 100% clean test data (“Clean”) and for a 50-50 mix
of clean and noisy data where we add a pixel-wise Gaussian perturbation with the same
standard deviation as the radius in our adversarial perturbations (“Noisy”).

Results: Table 3 lists our results for ASA, with all methods failing under attack, coming
quite close to the idealized minimum ASA of 12.5%. Figure 3 (MNIST with CNN) (and
Figures 8, 5, 6, 7 in Appendix 8 for the other datasets and architectures) illustrate the
selective accuracy curve for the benchmarks and our three attacks, fgsm, pgd and pgd+,
and show a histogram of uncertainties for adversarial samples. Table 6 in Appendix 8
further lists ANLL. Our results show that our iterative attacks, pgd and pgd+, essentially
completely fool AE detection.

4. Discussion and Conclusions

Our empirical analysis has refuted prior accessible evidence that bnns enjoy some natural
inherent robustness to adversarial attacks, or that they can be successfully deployed a
priori for AE detection. We benchmarked a set of contemporary bnn inference methods to
substantiate this claim.

In our empirical evaluation, we found that even bnns trained with hmc, the gold
standard for inference in bnns, do not withstand adversarial attacks and exhibit a significant
deterioration in robust accuracy, average selective accuracy, and semantic shift detection
when either their predictions or their predictive uncertainty are attacked. Unfortunately,
our analysis of hmc is limited to a CNN with only 100,000 parameters, since training
larger bnns with hmc is computationally infeasible without super computer-grade hardware,
leaving the adversarial robustness of larger bnns trained with hmc an open question. As
would be expected, the different approximate inference methods examined in this work
were less robust than hmc on the uncertainty-aware selective prediction metrics, and for
ResNet-18 models, fsvi, a state-of-the-art approximate inference method is more robust
against strong attacks on the uncertainty-aware selective prediction metrics than psvi and
mcd, two well-established but empirically worse methods (see Table 3).
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Code to Reproduce Results

Our code for evaluating bnns can be found at:

https://colab.research.google.com/drive/
1No18WniX2C8bX7sCZEUSdCcnZbDysQd0?usp=sharing.

Code for evaluating Smith and Gal (2018) (with errors fixed) can be found at:

https://colab.research.google.com/drive/1iyeMtMS39U7kf-
P EQOH03UvGBP6l3hI?usp=sharing.

Our code for evaluating Carbone et al. (2020) (with errors fixed) can be found at:

https://colab.research.google.com/drive/
1268LVyy9BOt4OjxkHSqqm9l56t2jl6Fl?usp=sharing.

1. Background

1.1. Adversarial Examples

An adversarial example for an accurate machine learning model/classifier f is an input
that is indistinguishable from a “natural” one (measured in some metric—typically an ℓp
ball), yet it is being misclassified by f . Adversarial examples in deep learning systems
were first observed in Szegedy et al. (2014). Since then many approaches in generating
such examples have been proposed - called adversarial attacks (Carlini and Wagner, 2017b;
Chen et al., 2017; Goodfellow et al., 2015; Papernot et al., 2017; Kurakin et al., 2017), and
subsequently methods for shielding models against them—called defenses (Goodfellow et al.,
2015; Madry et al., 2018; Papernot et al., 2016). Many such defenses have been later found
to be broken—either by carefully implementing already known attacks or by adapting to the
defense (Carlini and Wagner, 2017b; Carlini et al., 2019b; Tramèr et al., 2020).

Formally, in the context of image recognition for the ℓ∞ distance, the process of generating
an adversarial example x̃ = x+η for a classifier f and a natural input x involves the solution
of the following optimization problem:

η = argmax∥η∥∞≤ϵ L(f(x+ η), y), (1.1)

for some ϵ > 0 that quantifies the dissimilarity between the two examples. There is some
flexibility in the choice of the loss function L, but typically it is chosen to be the cross-
entropy loss. In general, this is a non-convex problem and one can resort to first-order
methods (Goodfellow et al., 2015):

x̃ = x+ ϵ · sign (∇xL(f(x), y)) , (1.2)

or iterative versions for solving it (Kurakin et al., 2017; Madry et al., 2018). The former
method is called Fast Gradient Sign Method (fgsm) and the latter Projected Gradient
Descent (pgd; standard 10, 20 or 40 iterates are denoted by pgd10, pgd20, pgd40). When
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a classifier is stochastic, the adversarial defense community argues that the attack should
target the loss of the expected prediction (Expectation over Transformation; Athalye et al.
(2018a,b)):

x̃ = x+ ϵ · sign (∇xL(Ef(x), y)) , (1.3)

where the expectation is over the randomness at prediction time. Note that some works use an
expectation of gradients instead (e.g., Gao et al. (2022)). In the common case of convex loss
functions, this is a weaker attack, however. One common pitfall when evaluating robustness
with gradient-based attacks is what has been called obfuscated gradients (Athalye et al.,
2018a), when the gradients become too uninformative (or zero) to solve the optimization in
Equation (1.1). A suite of alternative adaptive attack benchmarks (AutoAttack) has been
developed to allow for standardized robustness evaluation (Carlini et al., 2019a; Croce and
Hein, 2020; Croce et al., 2021)

1.2. Bayesian Neural Networks

Consider a neural network f(· ;Θ), defined in terms of stochastic parameters Θ ∈ RP . For
an observation model pY|X,Θ and a prior distribution over parameters pΘ, Bayesian inference
provides a mathematical formalism for finding the posterior distribution over parameters
given the observed data, pΘ|D (MacKay, 1992; Neal, 1996). However, since neural networks
are non-linear in their parameters, exact inference over the stochastic network parameters is
analytically intractable.

Full-batch Hamiltonian Monte Carlo (hmc) is a Markov Chain Monte Carlo method
that produces asymptotically exact samples from the posterior distribution (Neal, 2010) and
is commonly referred to as the “gold standard” for inference in Bayesian neural networks
(bnn). However, hmc does not scale to large neural networks and is in practice limited to
models with only a few 100,000 parameters (Izmailov et al., 2021).

Variational inference is an approximate method that seeks to avoid the intractability of
exact inference and the limitations of hmc by framing posterior inference as a variational
optimization problem (see Appendix 1.4). Unlike hmc, variational inference is not guaranteed
to converge to the exact posterior. Various approximate inference methods have been
developed based on the variational problem above. These methods make different assumptions
about the variational family QΘ and therefore result in different posterior approximations.
Two particularly simple methods are Monte Carlo Dropout (mcd; Gal and Ghahramani
(2016)) and Parameter-Space Variational Inference under a mean-field assumption (psvi;
also referred to as Bayes-by-Backprop; Blundell et al. (2015); Graves (2011)). These methods
enable stochastic (i.e., mini-batch-based) variational inference and can be scaled to large
neural networks (Hoffman et al., 2013). More recent work on Function-Space Variational
Inference in bnns (fsvi; Rudner et al. (2022)) frames variational inference as optimization
over induced functions and has been demonstrated to result in state-of-the-art predictive
uncertainty estimates on benchmarking tasks such as MNIST, FashionMNIST, and CIFAR-
10.
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1.3. Gaussian Processes

Gaussian processes (gps; Rasmussen and Williams (2006)) are a non-parametric alternative
to bnns. They correspond to infinitely-wide stochastic neural networks (Neal, 1996) and
allow for exact posterior inference in small-data regression tasks but require approximate
inference methods to be applied to classification tasks and to datasets with more than a
few ten thousand data points (Snelson and Ghahramani, 2006; Hensman et al., 2013, 2014).
While recent work has enabled exact posterior inference for gps in larger datasets using
approximate matrix inversion methods (Wang et al., 2019), classification, and especially
prediction tasks with high-dimensional input data such as images, require parametric feature
extractors and approximate methods, for which there are no guarantees that the approximate
posterior distribution faithfully represents the exact posterior, and underperform neural
networks and bnns.

1.4. Variational Inference

Under this approach, we can obtain a bnn defined in terms of a variational distribution over
parameters qΘ by solving the maximization problem

min
qΘ∈QΘ

DKL(qΘ ∥ pθ|D) ⇐⇒ max
qΘ∈QΘ

F(qΘ),

where F(qΘ) is the variational objective

F(qΘ)=̇EqΘ [log pY|X,Θ(yD |xD,θ; f)]−DKL(qΘ ∥ pΘ),

and QΘ is a variational family of distributions (Wainwright and Jordan, 2008).

Unlike hmc, variational inference is not guaranteed to converge to the exact posterior,
unless the variational objective is convex in the variational parameters and the exact posterior
is a member of the variational family.

1.5. Uncertainty in Bayesian Neural Networks

To reason about the predictive uncertainty of Bayesian neural networks in classification
settings, we decompose the total uncertainty of a predictive distribution into its constituent
parts: The aleatoric uncertainty of a model’s predictive distribution is the uncertainty
inherent in the data (according to the model), and a model’s epistemic uncertainty (or model
uncertainty) denotes its uncertainty based on constraints on the model (e.g., the number
of parameters, inductive biases, optimization routines, etc.). Mathematically, we can then
express predictive uncertainty as

H(EqΘ [pY|X,Θ(y | x,θ; f)])︸ ︷︷ ︸
Total Uncertainty

= EqΘ [H(pY|X,Θ(y | x,θ; f))]︸ ︷︷ ︸
Expected Data Uncertainty

+ I(Y;Θ)︸ ︷︷ ︸
Model Uncertainty

,
(1.4)

where H(·) is the entropy functional and I(Y;Θ) is the mutual information (Shannon and
Weaver, 1949; Cover and Thomas, 1991; Depeweg et al., 2018).

17



Feng Rudner Tsilivis Kempe

1.6. Selective Prediction

Selective prediction modifies the standard prediction pipeline by introducing a rejection
class, ⊥, via a gating mechanism defined by a selection function s : X → R that determines
whether a prediction should be made for a given input point x ∈ X (El-Yaniv and Wiener,
2010). For a rejection threshold τ , the prediction model is then given by

(p(y | ·,θ; f), s)(x) =

{
p(y |x,θ; f) s ≤ τ

⊥ otherwise.
(1.5)

A variety of methods have been proposed to find a selection function s (Rabanser et al.,
2022). Bayesian neural networks offer an automatic mechanism for doing so, since their
posterior predictive distributions do not only reflect the level of noise in the data distribution
via the model’s aleatoric uncertainty—which can also be captured by deterministic neural
networks—but also the level of uncertainty due to the model itself, for example, due to limited
accesses training data or an inflexible model class, via the model’s epistemic uncertainty.
As such, the total uncertainty of a bnn’s posterior predictive distribution reflects both
uncertainty that can be derived from the training data and uncertainty about a model’s
limitations. The selective prediction model is then

(p(y | ·,θ; f),H(EqΘ [p(y | ·,θ; f)]))(x) =

{
p(y |x,θ; f) H(EqΘ [p(y | x,θ; f)]) ≤ τ

⊥ otherwise,
(1.6)

that is, a point x ∈ X will be placed into the rejection class if the model’s predictive
uncertainty is above a certain threshold. To evaluate the predictive performance of a
prediction model (p(y | ·,θ; f), s)(x), we compute the predictive performance of the classifier
p(y |x,θ; f) over a range of thresholds τ . Successful selective prediction models obtain high
cumulative accuracy over many thresholds.

2. Prior Work

Here, we aim to survey and classify existing work on inherent adversarial robustness of bnn
pipelines (with additional more tangential works in Appendix 3). Note that the focus of our
work is to investigate claims made in prior works that Bayesian inference in neural networks
results in inherently robust models. Thus, we relegate a description of works on attempts to
incorporate adversarial training into bnns Liu et al. (2018); Doan et al. (2022) to Appendix 3
but note here that these works add modifications that move us outside the realm of Bayesian
inference. Therefore, we call for future work on a principled and conceptual approach to
defending Bayesian inference pipelines.

To align this survey with our own results, we first outline prior work on adversarial
example (AE) detection with bnns, before proceeding to robustness of classification with
bnns. Note that while AE detection seems an easier task than robust classification, recent
work (Tramer, 2022) shows that there is a reduction from detection to classification (albeit a
computationally inefficient one), which means that claims of a high-confidence AE detector
should receive equal scrutiny as robust classification claims would. In particular, after nearly
a decade of work by an ever-growing community, only robustness results achieved with
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adversarial training (Madry et al., 2018) have stood the test of time and constitute today’s
benchmark (Croce et al., 2021) to establish empirical robustness against community-standard
perturbation strength. Note that there is an interesting body of work on achieving certifiable
adversarial robustness, but the robustness guarantees they achieve apply only for much
smaller perturbation strengths.

Adversarial Example Detection with BNNs. A first set of early works has
investigated model confidence on adversarial samples by looking at Bayesian uncertainty
estimates using the intuition that adversarial examples lie off the true data manifold. Feinman
et al. (2017) give a first scheme using uncertainty estimates in dropout neural networks,
claiming AE detection, which is subsequently broken in Carlini and Wagner (2017a) (who,
incidentally break most AE detection schemes of their time). Rawat et al. (2017) analyze
four Bayesian methods and claim good AE detection using various uncertainty estimates,
but analyze only weak fgsm attacks on MNIST1. Smith and Gal (2018) claim to provide
empirical evidence that epistemic uncertainty of mcd could help detect stronger adversarial
attacks (fgsm and BIM, a variant of pgd) on a more sophisticated cats-and-dogs dataset
(refuted in Section 2). Bekasov and Murray (2018) evaluate AE detection ability of MCMC
and psvi, but do so only in a simplified synthetic data setting. The first to demonstrate
adversarial vulnerability of Bayesian AE detection (though not for bnns) are Grosse et al.
(2018), who attack both accuracy and uncertainty of the Gaussian Process classifier. Several
works leave the bnn-inference framework and thus are not our focus: by way of example
Deng et al. (2021) design a Bayesian tack-on module for AE detection and Li et al. (2021)
add Gaussian noise to all parameters in deterministic networks to generate distributions on
each hidden representation for AE detection. To the best of our knowledge, our work is the
first to demonstrate adversarial vulnerability of modern Bayesian inference methods that
enjoy inference guarantees (while examining and refuting previous claims of robustness of
bnns).

Robustness of BNNs. Several recent works have hypothesized that bnn posteriors enjoy
enhanced robustness to adversarial attacks, compared to their deterministic counterparts.
Carbone et al. (2020); Bortolussi et al. (2022), guided by (correct) theoretical considerations
of vanishing gradients on the data manifold in the infinite data limit for bnns, claim to
observe robustness to gradient-based attacks like fgsm and pgd for hmc and psvi using a
simple CNN and a fully-connected network (reevaluated and refuted in Section 2)2. Uchendu
et al. (2021) examine the robustness of VGG and DenseNet with Variational Inference
and claim marginal improvement over their deterministic counterparts. Pang et al. (2021)
evaluate Bayesian VGG networks for two inference methods (standard Bayes-by-Backprop
and Flipout), claiming evidence for surprising adversarial robustness3. Cardelli et al. (2019),
De Palma et al. (2021), Grosse et al. (2021), and Patane et al. (2022) study the adversarial
robustness of gps. None of these works benchmark recent Bayesian inference methods like

1. It is widely accepted that many proposed adversarial defenses fail to generalize from MNIST (Carlini and
Wagner, 2017a).

2. We do not contest the theoretical analysis in the infinite limit, but observe that it does not seem to
support the empirical phenomenon.

3. Both Uchendu et al. (2021) and Pang et al. (2021) have no code released to assess these claims. Pang
et al. (2021) also distinguishes between “variational inference” and “Bayes-by-Backprop” although Bayes-
by-Backprop is a variational inference method. We adversarially break Bayes-by-Backprop (i.e., psvi) in
Section 3.
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fsvi, which are state-of-the-art for prediction and semantic shift detection. Zhang et al.
(2021) propose a regularization that could improve adversarial robustness. Our evaluation
both in their and in the standard attack parameter setting shows no significant robustness
gain with their regularization (see Section 2). The first in the literature to give negative
evidence for robustness of bnns is Blaas (2021), comparing a bnn trained with hmc to
a deterministic network on MNIST and FashionMNIST but observing no difference in
robustness.

Robustness of OOD Detection. To the best of our knowledge, there is no prior work
examining the adversarial robustness of Bayesian OOD pipelines. Appendix 3 surveys some
related work.

3. Additional Prior Work

Here we summarize prior work that, while not directly relevant to our results, provides
interesting conplementary analyses.

Investigating the BNN prior. Blaas and Roberts (2021) ask how the prior could affect
adversarial robustness for bnns. For psvi on a three-layer fully-connected network, they
observe a trade-off between accuracy and robustness (reminiscent of the accuracy-robustness
trade-off for deterministic nns (Zhang et al., 2019)): small priors yield a small Lipschitz
constant and thus better robustness but cannot fit the data; for large priors the opposite is
true.

Robustness of Semantic Shift Detection. The profound advantage of a Bayesian
neural network is that it can provide both aleatoric and epistemic uncertainty estimations
because of the probabilistic representation of the model. In particular, a large body of
work leverages this to create Bayesian pipelines for semantic shift detection. To the best
of our knowledge, there is no work prior to ours examining Bayesian OOD pipelines for
their robustness against adversarial attacks and our work is the first to do so. There is prior
work on robustness of semantic shift detection with deterministic models which we briefly
survey here: Sehwag et al. (2019) attack the semantic shift detection of deterministic models
with calibration and temperature scaling. Kopetzki et al. (2021) attack both accuracy and
semantic shift detection for Dirichlet-based models. Zeng et al. (2022) attack out-domain
uncertainty estimation for deep ensembles and uncertainty estimation using radial basis
function kernels and gps. All these works break the semantic shift detection capabilities of
the models.

In a different though related work, Galil and El-Yaniv (2021) attack in-distribution data
to increase the uncertainty of correctly classified images and decrease the uncertainty of
incorrectly classified images, thus targeting selective accuracy in an in-distribution setting
for deterministic networks as well as mcd. Note that their attack requires knowledge of the
ground truth for the instances it attacks, which might be difficult to attain.

Adversarial training and BNNs. Some works have used Bayesian methods to improve
robustness of deterministic models. For instance, Ye and Zhu (2018) introduce uncertainty
over the generation of adversarial examples to improve adversarial training.

Liu et al. (2018) propose to create robust models with a version of AT for bnns guided
by the intuition that randomness in the model parameters could enhance AT optimization
against adversarial attacks. However, Zimmermann (2019) refutes these claims by observing
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that robustness significantly diminishes when using expected gradients to attack. Moreover, it
is unclear whether the observed remaining robustness claims solely come from the adversarial
training components in the algorithm. Uchendu et al. (2021) directly combine adversarial
training with bnn by training on iteratively generated adversarial examples, and observe
small improvements in robustness. Doan et al. (2022) make the interesting observation that
direct AT of bnns as in Liu et al. (2018) might lead to mode collapse of the posterior and
propose a new “information gain” objective for more principled AT of bnns.

We also argue that Liu et al. (2018) and Doan et al. (2022) depart from the standard
Bayesian inference framework. The foundation of variational inference is the following
equivalence:

min
qΘ∈QΘ

DKL(qΘ||pθ|D) ⇐⇒ max
qΘ∈QΘ

F(qΘ),

where

F(qΘ) = EqΘ [log pY |X,Θ(YD|xD, θ; f)]−DKL(qΘ||pΘ),

given a variational family of distributions QΘ. In Liu et al. (2018) and Doan et al. (2022),
the data xD in log pY |X,Θ(YD|xD, θ; f) is replaced by the adversarial examples generated on
the fly and an additional regularization term is introduced. Since the training data is being
modified, the equivalence above is not given anymore and the solution to the variational
optimization problem under the modified data does not approximate the exact posterior in
the original model, moving us outside the realm of standard Bayesian inference. Therefore,
we call for future work on a principled and conceptual approach to defending Bayesian
inference pipelines.

An interesting work deals with certifiable robustness Wicker et al. (2021). It also modifies
the standard variational objective to adversarially train a BNN, thus cleverly optimizing a
posterior with improved robustness. However, as before, this approach departs from the
scope of Bayesian inference, since changing the variational objective in this way biases
the objective and will not lead to the best approximation to the posterior within the
variational family. In other words, the approach in Wicker et al. (2021) may superficially
look like approximate Bayesian inference but is not. Moreover, we point out that their
code also applies the incorrect double softmax and expected gradient computations to
generate the attack. These errors lead to a robust accuracy for HMC on FMNIST with
ϵ = 0.1 of 40%, which is significantly higher than the robust accuracy we would observe after
fixing these errors (around 6%). This further emphasizes the importance of re-evaluating
previous robustness evaluations in published works and for heeding the recommendations
for robustness evaluations put forth in our work.

4. Threat Models and Evaluation

Threat model and principled generation of adversarial perturbations with fgsm,
pgd and pgd+. We consider a full white-box attack: The adversary has knowledge of
the entire model and its parameters, and can obtain samples from its posterior, which is
the white-box model considered in most prior work (Carbone et al., 2020; Bortolussi et al.,
2022; Zhang et al., 2021). We apply fgsm and pgd with 40 iterations to attack expected
accuracy (to break robustness in Section 3.1) or uncertainty (see Equation (1.4)) (to fool
OOD detectors in Appendix 5) as per Equation (1.3). To devise a stronger attack on AE
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detectors, we also create a combined attack, pgd+: the idea is to produce adversarial
examples that both fool the classifier (to drive accuracy to zero) and have low uncertainty
(lower than the clean samples), resulting in poor predictive accuracy, worsening for higher
rejection rates. To this end, pgd+ first attacks bnn accuracy in the first 40 iterates (using
the bnn prediction as its label) and, from this starting point, computes another 40 iterates
to attack uncertainty within the allowed ϵ-ball around the original point. pgd+ does not
need the ground truth to attack uncertainty (unlike the uncertainty attack in Galil and
El-Yaniv (2021)). We settle on pgd+ after observing empirically that it is stronger than
pgd80 targeting accuracy or targeting a linear combination of accuracy and uncertainty,
as its two stages are specifically designed to fool AE detectors. Throughout, we use 10
samples from the posterior for each iteration of the attack (see Equation (1.3)). We find it
unnecessary to increase the attack sample size for our attacks and hence adopt this number
for computational efficiency. We only apply gradient-based attacks; since these are sufficient
for breaking all bnns, we do not need to implement AutoAttack (Croce and Hein, 2020).
We showcase ℓ∞ attacks with standard attack parameters: ϵ = 0.3 for MNIST, ϵ = 0.1 for
FashionMNIST, ϵ = 8/255 for CIFAR-10. We only consider total uncertainty in our attack
and for selective prediction, as we found no evidence of an advantage in using epistemic
uncertainty.

Metrics: We report accuracy from posterior mean prediction with 100 samples. Our
notion of robustness for bnns is the natural one that aligns with deployment of bnns: Robust
accuracy is given by the fraction of correctly classified adversarial samples when predicting
the class with the largest posterior mean prediction probability. As summary statistics for
the selective prediction curves we use average selective accuracy (ASA), that is, the area
under the selective accuracy curve computed with rejection rates from 0% to 99% in integer
increments; and average negative log-likelihood (ANLL), for which we average NLL of all
non-rejected samples for the same rejection grid (see Appendix 8).

5. Robustness of Semantic Shift Detection

Semantic shift detection is a common application of bnns, where they outperform state-of-
the-art deterministic uncertainty quantification methods for nns (Band et al., 2021; Rudner
et al., 2022; Tran et al., 2022; van Amersfoort et al., 2020). Building on this body of work,
we argue that attacking Bayesian neural networks should not be constrained to attacking
predictive accuracy, since a key application of Bayesian neural networks is to enable effective
semantic shift and OOD detection. As such, it is important to inquire whether it is possible
to not just attack the BNN’s accuracy but also their uncertainty estimates.

Setting: Our OOD semantic shift datasets for MNIST, FashionMNIST and CIFAR-10 are
FashionMNIST, MNIST, and SVHN, respectively, each of them giving zero accuracy. The
test set contains half in-distribution (ID) and half OOD samples, hence selective accuracy
curves start at 50% accuracy. We attack only the OOD samples with fgsm and pgd,
targeting the uncertainty. Since this is already sufficient to reject most ID samples, we do
not also attack the ID samples, though we could conceivably do so.

Results: Complete ASA results are given in Table 4 and selective accuracy curves are
shown in Figures 4 (for MNIST, using a CNN) (and 8, 5, 6, 7 in Appendix 8 for the other
datasets and architectures). Our results resemble what we have seen for AE detection. The
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Figure 4: OOD detection statistics for hmc, mcd, psvi and fsvi for MNIST with a CNN. Higher
curves correspond to better OOD detection. The adversarial attacks are able to signifi-
cantly deteriorate OOD detection in all settings and for all methods.

pgd attack nearly completely fools the detector to reject all ID samples, reaching close to
0% accuracy for 50% rejection rate and indeed most methods give ASA close to the lower
bound of 12.5%, with only hmc showing higher ASA. Still, even for hmc ASA is below 50%,
meaning it performs worse than random rejection. As before, fgsm attacks are too weak to
turn the direction of the selective accuracy curve.

6. Details of Evaluation of Prior Work

Here we provide further details complementing Section 2.
Attacking AE detection in Smith and Gal (2018): In addition to implementing

the intended pgd 10 attack on the bnns, we additionally provide evaluations for two stronger
attacks, pgd (=pgd 40) and Transferpgd +. We use the same l∞ perturbation as in their
results, 10/255. pgd directly attacks the bnn accuracy for 40 iterations with the gradient
of the loss of the expectation, as discussed in Appendix 1.1. At each iteration we use 10
samples from the posterior. Figure 2 shows that pgd 10, and more so pgd already fool the
AE detector leading it to reject more clean samples than adversarial samples, as witnessed
by the decreasing selective accuracy curve. However, when tracking gradients for pgd 40
we find some degree of gradient diminishing. Therefore, we design a stronger attack called
Transferpgd +. As its name indicates, it is a two phase attack that consists of a transfer
attack that warm-starts a subsequent pgd +. That is, we attack the deterministic non-
dropout version of the bnn first (by turning off dropout when computing the loss), and then
perform 40 iterations of pgd on the uncertainty estimation of the network starting from the
transferred adversarial examples generated in the first phase, again with 10 posterior samples

Table 4: Average selective accuracy for semantic shift detection with bnns.

CNN ResNet-18
Clean Noisy fgsm pgd Clean Noisy fgsm pgd

MNIST

hmc 83.92±0.02 83.65±0.11 61.02±1.54 47.16±2.05 - - - -
mcd 83.88±0.10 83.84±0.17 55.22±0.04 20.01±0.96 82.43±0.94 78.26±4.03 56.62±7.42 16.49±0.45

psvi 83.92±0.01 83.83±0.04 48.21±2.37 18.03±0.54 81.67±2.27 77.98±5.62 53.58±4.10 16.37±0.66

fsvi 84.10±0.01 84.17±0.03 60.00±11.80 15.45±0.01 80.35±5.48 79.16±7.27 71.81±13.25 15.54±0.49

FMNIST

hmc 77.57±0.22 79.04±0.13 61.90±0.54 45.14±1.54 - - - -
mcd 77.14±0.61 78.26±0.54 40.52±3.42 21.40±0.77 80.32±0.12 81.70±0.08 73.28±0.91 15.39±0.02

psvi 75.26±0.40 76.66±0.39 46.54±2.23 16.81±0.17 80.54±0.23 81.62±0.03 77.65±1.36 15.21±0.01

fsvi 76.75±0.55 79.97±0.27 28.94±2.66 15.15±0.03 81.67±0.08 81.87±0.04 80.00±0.37 15.21±0.00

CIFAR-10
mcd - - - - 77.51±0.42 78.18±0.26 75.31±1.01 15.31±0.00

psvi - - - - 77.51±0.42 78.18±0.26 75.31±1.01 15.31±0.00

fsvi - - - - 80.54±0.17 80.72±0.08 78.15±0.54 15.24±0.01
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per iteration. We use the label predicted by the bnn to avoid label leakage. Transferpgd +
can break the accuracy of the bnn to 2% and fools the AE detector successfully.

Code issues: After investigating the code privided by Smith and Gal (2018), we find
two mutually reinforcing problems. First, they evaluate the clean, adversarial, and noisy
data separately but do not set batch-normalization layers to evaluation mode. As a result,
it is possible that the detector may use batch statistics among the different sample groups
to distinguish them. Secondly, when creating the noisy data, re-centered images with
initial values in [0, 255] are mistakenly clipped to [0, 1], making all noisy data points very
similar to each other (since most information is clipped to either 0 or 1), and leading to
very small epistemic uncertainty for noisy images. This leads the bnn to accept the noisy
images and reject the clean and adversarial ones, resulting in misleading, overly optimistic
ROC curves (this effect was further amplified once we fixed the batch-normalization issue).
Moreover, care needs to be applied when using standard packages, developed for vanilla nns,
to bnns. Deterministic models tend to operate on logits and the softmax and cross-entropy
calculations are combined, and therefore standard attack packages apply a softmax function
on these pre-loss outputs. bnns, on the other hand, average the probability predictions from
posterior samples after the softmax function, and hence directly produce probabilities. A
direct application of standard attack packages to bnns would apply the softmax function to
class probabilities (a “double softmax problem”), thereby making the class probabilities more
uniform and weakening the attack strength. We find this problem in the implementation
provided by (Smith and Gal, 2018).

Note that Smith and Gal (2018) show the ROC curve and provide AUROC values, while
we have chosen to show slective accuracy curves throughout our work. AUROC and ASA are
incomparable, so we do not show a comparison of these metrics here. Both curves quantify
the performance of the AE detector and our findings (see Figure 2) show failure to detect
AE.

Attacking Robustness in Carbone et al. (2020) and Bortolussi et al. (2022):
As we discuss in Section 2, the bnns trained in this evaluation tend to have large values
before the softmax layer, resulting in gradient vanishing. Therefore, we renormalize the
logits by 100 to fix numerical issues when attacking the trained model. We evaluate these
adversarial examples on the unnormalized network. With the double softmax corrected, one
could use standard pgd on the loss of the expectation as in Equation (1.3) to break the
accuracy to nearly 0% on MNIST with perturbation radius ϵ = 0.3.

Attacking Robustness via Regularization in Zhang et al. (2021): We use the
publicly available code to train a Bayesian MLP on MNIST and then use the evaluation code
to assess its adversarial robustness for different values of perturbation budget ϵ. Table 5
summarizes the results. We note that once we fix the “double-softmax” problem (by replacing
torch.nn.CrossEntropyLoss with torch.nn.NLLLoss in the source code of the attack),
the model essentially becomes non-robust for the standard value of ϵ = 0.3 (the loss effect is
more pronounced with an fgsm attack). In Table 5, using their code, we have reevaluated
the results in Zhang et al. (2021) in their setting (with the double-softmax) and after fixing
it, for ϵ = 0.16, where their work claimed the largest benefit of regularization, and the more
standard ϵ = 0.3.
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Table 5: A revised evaluation of the robustness of the robust bnn of Zhang et al. (2021) in
their setting, and with the double softmax problem fixed. Mean accuracy (± one
standard deviation) of a Bayesian MLP trained on MNIST against fgsm and pgd
generated data on MNIST.

Radius Method fgsm pgd 10

ϵ = 0.16
Original setting 41.23 ±0.32 6.38 ±0.05

Reevaluated 10.04 ±0.05 7.58 ±0.11

ϵ = 0.3
Original setting 22.30 ±0.11 0.64 ±0.02

Reevaluated 0.23 ±0.02 0.04 ±0.00

7. Recommendations for Evaluating Robustness of bnn Pipelines

Having examined (see Section 2) the three robustness claims, we draw several conclusions
about pitfalls and failure modes and list recommendations to avoid them when attacking
Bayesian pipelines, similar (and sometimes overlapping) with earlier recommendations in
the context of non-Bayesian methods (Athalye et al., 2018a; Carlini and Wagner, 2017a).

1. When considering randomness, use the strongest attack appropriate for the model, all
other things being equal. In the case of stochastic models, attack the loss of the average
(Equation (1.3)), rather than the average loss (at least for convex losses).

2. Beware of double softmax. All prior works examined in this paper provide implementations
that apply the softmax function twice. Nearly all bnns output the probability prediction,
and it is necessary to remove the softmax function from the loss to effectively apply
standard attack implementations.

3. Fix all normalization layers but enable all stochastic network components (such as
dropout) at test time.

4. Monitor gradient values throughout the attack to avoid numerical issues. The gradients
when attacking accuracy should never be vanishing to zero.

5. Increase the radius to check whether the model can be broken. If so, examine for
obfuscated gradients (Athalye et al., 2018a). If the model remains robust, attempt to
attack a deterministic network using the parameters from the posterior or several fixed
samples.

6. If pgd attacks fail, consider using refined attack benchmarks like AutoAttack (Croce
and Hein, 2020).

7. Design attacks appropriate for the model pipeline. Consider how to break the model
based on its design, such as targeting both accuracy and uncertainty estimation (like the
pgd+ attack we introduce in Section 3). Adaptiving attacks to the model quantities can
provide more confidence in robustness results.
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8. Additional Figures and Tables for Results Section

Table 6 shows the average negative log likelihood (ANLL) for AE detection on Section 3.2.
The NLL is an evaluation metric of interest, since it reflects the degree of confidence in a
prediction and penalizes underconfident correct predictions as well as overconfidenyt wrong
predictions. For classification models, the NLL is given by the cross-entropy loss between
the one-hot labels and the predicted class probabilities.

Table 6: Detecting Adversarial Examples with bnns- Average Negative Log-Likelihood

Clean Noisy fgsm pgd pgd +

MNIST

CNN

hmc 0.20±0.00 0.10±0.04 1.51±0.15 4.06±0.23 4.45±0.51

mcd 0.00 ±0.00 0.00 ±0.00 1.70 ±0.04 10.42 ±0.17 10.03 ±0.24

psvi 0.00±0.00 0.00±0.00 2.48±0.12 8.75±0.29 10.84±0.12

fsvi 0.02 ±0.00 0.08 ±0.03 0.42 ±0.09 7.48 ±0.36 10.34 ±0.22

ResNet-18
mcd 0.00 ±0.00 2.34 ±0.37 1.60 ±0.11 10.60 ±0.09 11.56 ±0.02

psvi 0.00 ±0.00 1.09 ±0.17 1.53 ±0.17 11.11 ±0.05 11.58 ±0.65

fsvi 0.04±0.05 0.59±0.53 0.84±0.37 9.12±0.66 10.29±0.75

FMNIST

CNN
mcd 0.05 ±0.00 0.05 ±0.00 2.77 ±0.07 9.34 ±0.11 9.78 ±0.07

psvi 0.05 ±0.00 0.05 ±0.00 4.15 ±0.30 9.23 ±0.07 10.08 ±0.06

fsvi 0.08 ±0.00 0.12 ±0.01 1.83 ±0.12 8.75 ±0.28 9.73 ±0.25

ResNet-18
mcd 0.06 ±0.00 0.09 ±0.00 3.58 ±0.27 11.01 ±0.06 11.06 ±0.03

psvi 0.10 ±0.01 0.15 ±0.01 1.63 ±0.71 9.84 ±0.82 10.01 ±0.72

fsvi 0.08 ±0.01 0.12 ±0.01 1.69 ±0.19 10.65 ±0.03 10.86 ±0.06

CIFAR10 ResNet-18
mcd 0.04 ±0.00 0.04 ±0.00 2.67 ±0.03 10.64 ±0.07 11.08 ±0.03

psvi 0.04 ±0.01 0.05 ±0.01 1.61 ±0.35 10.18 ±1.38 10.44 ±1.08

fsvi 0.06 ±0.01 0.06 ±0.01 1.08 ±0.03 10.18 ±0.09 10.62 ±0.07

In addition to the selective prediction curves shown in Sections 3.2 and 5, we also gen-
erate the full sets for each dataset-method-architecture setting. The results are shown
in Figure 5 for MNIST+ResNet-18, Figure 6 for FashionMNIST+CNN, Figure 7 for
FashionMNIST+ResNet-18 and Figure 8 for CIFAR-10+ResNet-18.
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Figure 5: AE and semantic shift detection statistics for mcd, psvi, and fsvi on FashionM-
NIST with a ResNet-18 architecture
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Figure 6: AE and semantic shift detection statistics for hmc, mcd, psvi, and fsvi on
FashionMNIST with a CNN architecture
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Figure 7: AE and semantic shift detection statistics for mcd, psvi, and fsvi on FashionM-
NIST with a ResNet-18 architecture
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Figure 8: AE and semantic shift detection statistics for mcd, psvi, and fsvi on CIFAR-10
with a ResNet-18 architecture.
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9. Experimental Details

Here, we provide a detailed description of our experimental setup in Section 3.
Architectures For CNN models, we use a four-layer CNN for all the experiments.

The architecture for CNN is shown in Table 7. We use the standard ResNet-18 from He
et al. (2016). For mcd, we add dropout after every activation function for both CNN and
ResNet-18.

Hyperparameters We implement hmc using the Hamiltorch package from (Cobb and
Jalaian, 2021) and apply it to MNIST with a CNN model due to the lack of scalability. To
optimize GPU memory usage, we use 10,000 training and 5,000 validation samples from the
MNIST dataset. We deploy 100 samples burnin and generate another 100 samples from the
posterior. For each sample, we train the model for 20 steps with 0.001 as the step size. Such
configuration already yields a hmc bnn with around 96% accuracy on the test set. The
hyperparameters for fsvi, psvi, and mcd are shown in Table 8, Table 9, and Table 10.

Table 7: The Architecture of the four-layer CNN

nn.Conv(out features=32, kernel size=(3, 3))

ReLU()

max pool(window shape=(2, 2), strides=(2, 2), padding=’’VALID’’)

nn.Conv(out features=64, kernel size=(3, 3))

ReLU()

max pool(window shape=(2, 2), strides=(2, 2), padding=’’VALID’’)

reshape to flatten

nn.fc(out features=256

ReLU()

nn.fc(out features=num classes)
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Table 8: Hyperparameters for fsvi
CIFAR10+ResNet-18 FMNIST+ResNet-18 FMNIST+CNN MNIST+ResNet-18 MNIST+CNN

Prior Var 100,000 100,000 1,000,000 100,000 1,000,000
Prior Mean 0 0 0 0 0
Epochs 200 30 200 10 200

Batch Size 128 128 128 128 128
Context Batch Size 128 128 16 128 16

Learning Rate 0.005 0.005 0.05 0.005 0.05
Momentum 0.9 0.9 0.9 0.9 0.9

Weight Decay 0 0 0 0 0
Alpha 0.05 0.05 0.05 0.05 0.05

Reg Scale 1 1 1 1 1

Table 9: Hyperparameters for psvi
CIFAR10+ResNet-18 FMNIST+ResNet-18 FMNIST+CNN MNIST+ResNet-18 MNIST+CNN

Prior Var 1 1 1 1 1
Prior Mean 0 0 0 0 0
Epochs 200 50 200 10 200

Batch Size 128 128 128 128 128
Learning Rate 0.005 0.005 0.05 0.005 0.05
Momentum 0.9 0.9 0.9 0.9 0.9

Weight Decay 0 0 0 0 0
Alpha 0.05 0.05 0.05 0.05 0.05

Reg Scale 1 1 1 1 1

Table 10: Hyperparameters for mcd
CIFAR10+ResNet-18 FMNIST+ResNet-18 FMNIST+CNN MNIST+ResNet-18 MNIST+CNN

Prior Precision 0.0005 0.0005 0.0001 0.0005 0.0001
Dropout Rate 0.1 0.1 0.1 0.1 0.1

Epochs 200 30 200 10 200
Batch Size 128 128 128 128 128

Learning Rate 0.005 0.005 0.05 0.005 0.05
Momentum 0.9 0.9 0.9 0.9 0.9

Weight Decay 0 0 0 0 0
Alpha 0.05 0.05 0.05 0.05 0.05

Reg Scale 1 1 1 1 1
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10. Varying the Strength of the Adversarial Attacks

Uncertainty estimates with bnns perform correctly for clean and noisy samples, yet fail
under adversarial attacks with standard perturbation strength. It would thus be interesting
to explore, when varying the strength of the attack, at which point uncertainty estimates
cannot be trusted. To investigate this, we apply the pgd attack with varying radius to
understand the landscape of uncertainty estimates, for fsvi on CIFAR-10 with ResNet-18.
As shown in the left plot of Figure 9, using total uncertainty for selective prediction is better
than random rejection up to about a radius of 1/255. Beyond this radius, the uncertainty
estimates are completely deceived by the attacks. The right plot compares the performance
of the various inference methods, mcd, psvi, and fsvi, in the same setting. mcd achieves the
best Average Selective Accuracy (ASA) among the three methods, declining most gracefully
with increased attack strength.

Figure 9: Left: Robust accuracy, Average Selective Accuracy (ASA) and the accuracy for
Random Selection for varying pgd strength for fsvi on CIFAR10 with ResNet-18.
We observe that for small radius up to ≈ 1

255 ASA exceeds Random Selection
Accuracy, allowing for some AE detection. Right: ASA for fsvi, psvi and mcd
on CIFAR10 with ResNet-18. AE detection capability of mcd declines most
gracefully with increasing attack strength.

11. Limitations

While we took careful steps to make the study presented in this paper exhaustive and to
include a wide range of representative method and datasets, as with any empirical study, it
is possible that some of our findings may not carry over to other datasets, neural network
architectures, and bnn approximate inference methods.
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