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ABSTRACT

We present COIL (Counterfactual Object Interaction Learning), a novel way of
learning skills of object interactions on entity-centric environments. The goal is
to learn primitive behaviors that can control objects and induce their interactions
without external reward or supervision being used. Existing skill discovery meth-
ods are limited to locomotion, simple navigation tasks, or single-object manipula-
tion tasks, mostly not inducing useful behaviors of inducing interaction between
objects. Unlike a monolithic representation usually used in prior skill learning
methods, we propose to use a structured goal representation that can query and
scope which objects to interact with, which can serve a basis for solving more
complex downstream tasks. We design a novel counterfactual intrinsic reward
through an use of either forward model or successor features that can learn an
interaction skill between a pair of objects given as a goal. Through experiments
on continuous control environments such as Magnetic Block and 2.5-D Stacking
Box, we demonstrate that an agent can learn object interaction behaviors (e.g., at-
taching or stacking one block to another) without any external rewards or domain-
specific knowledge.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress at many application domains such
as playing games (Mnih et al., 2013; Vinyals et al., 2019), and robotics control (OpenAl, 2018),
etc. Very often RL agents are trained to specific tasks, with access to task-specific extrinsic rewards.
A major drawback of task-specific training is that a proper reward function needs to be given, de-
signed, and tuned so as to achieve desired behaviors, which can be often time-consuming and limits
scalability in practice. It is important to be able to solve the task with a very sparse reward signal
upon completion/failure of the task, or even without any external task rewards. Unsupervised RL
such as task-agnostic exploration or pre-training of skills, aiming at learning interesting or useful
behaviors without the use of task rewards or offline data, can provide better initialization or useful
macro-actions (skills or options) for building a hierarchical agent to solve more complex and dif-
ficult tasks. Unsupervised learning often enables faster learning and achieves better generalization
performance when multiple tasks are given after the skill acquiral or pre-training phase.

Despite a number of successes in unsupervised skill discovery (Eysenbach et al., 2018; Sharma
et al., 2019; Park et al., 2022) or task-agnostic exploration based on state-entropy maximization or
diversity (Pathak et al., 2017; Burda et al., 2019), relatively only a few attempts have been made on
environments and tasks with multiple objects (e.g. robotics manipulation). In the context of robotics
manipulation or (discrete) entity-centric environments other than locomotion or maze navigation en-
vironments, exploration can be quite challenging because of this nature of multiple entities. One lim-
itation of novelty-seeking exploration methods in the reward-free context is that exploration would
easily converge to a low-hanging fruit behavior where exploration mostly focuses on one particular
entity. For instance, in robotics manipulation environments, diversification or novelty seeking of the
entire state can be easily dominated by that of the embodied agent itself (i.e., proprioceptive states)
or some easy-to-control objects only, as observed and reported in (Zhao et al., 2021; Gu et al., 2021;
Park et al., 2022). More interesting primitive behaviors would be interactions between many objects,
for more realistic and challenging multi-object tasks such as block stacking (Lee et al., 2021; San-
caktar et al., 2022) or furniture assembly (Lee et al., 2019; Ghasemipour et al., 2022). Notably, some
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recent works including (Sancaktar et al., 2022; Cho et al., 2022) present reward-free exploration and
skill learning in multi-object manipulation tasks.

In this work, we focus on learning a set of primitive skills that enable interaction between different
objects in a task-agnostic, unsupervised fashion. Roughly speaking, interaction between two objects
can be described as an action or event that occurs when two objects have a (mutual) effect on each
other. Our work leverages an inductive bias that an interaction between objects learned in a task-
agnostic manner can be a useful event and hence a useful primitive behavior for solving downstream
tasks. Such object-object interactions (as well as agent-object interactions) are usually sparse and
difficult to reach with naive exploration, but at the same time can be useful bottleneck states an
agent would want to explore and visit often to achieve bigger tasks. In the kitchen, for instance,
an interaction between a knife and various ingredients by slicing them with a knife can be one of
the basic steps necessary for cooking; when assembling smaller building blocks to build a complex
object like furniture, car, or electronic device, connecting matching pieces to form a composite body
would be another type of indispensable interaction. As such, it will be important to learn skills or
primitive behaviors that would induce object-object interactions, in the promise that a hierarchical
control that acts upon the interaction skills (Zhang et al., 2021) or chaining of skills in sequence
(Slivinski et al., 2020) should solve complex tasks much faster than flat RL agents.

We study how to learn object interaction skills in a very challenging, online, reward-free setting
while minimizing the use of domain and task-specific knowledge or task-agnostic offline data, which
can be difficult to obtain. More specifically, we learn a goal-conditioned policy where a goal denotes
an interaction of which objects is to be made. We derive a novel intrinsic reward that is computed
by counterfactual reasoning on the dynamics model (forward models and successor features). The
concept of counterfactual reasoning, i.e., “what if...?” — predicting or inferring the outcome if
something had happened differently (Mesnard et al., 2020; Gajcin & Dusparic, 2022) — naturally
aligns with an intuitive interpretation of interaction: interaction is when an object’s future state would
have been different if it were not for the presence of the other object. We show that the intrinsic
reward derived by counterfactual reasoning on object states can efficiently induce the interaction of
objects and endow an RL agent with such interaction skills.

Our contribution can be summarized as follows:

* We study a setting of representing goals in terms of entities and objects to interact with, in the
context of skill-based RL or goal-conditioned RL.

* We present a novel intrinsic reward algorithm COIL (Counterfactual Object Interaction Learning),
which is able to learn a policy that makes the goal objects interact with each other, in a reward-free
unsupervised exploration setting.

* We show that such an entity-centric interaction skill is generalizable to unseen, more object setting.

2 APPROACH
2.1 PRELIMINARIES AND NOTATIONS

Throughout the paper, we consider the task as an MDP M = (S, A, P, R,~), where S is a state
space, A is an action space, P is a transition probability, R is a (extrinsic) task reward function,
and 0 < v < 1is a discount factor. Our goal is task-agnostic, unsupervised skill learning with no
extrinsic rewards. We assume that the state space S can be explicitly factorized as the Cartesian
product (Sobject)N X Sagent Where IV is the number of objects. We also assume the object space
is permutation-invariant, i.e., {01, - ,on} € Sobject 18 @ set. Such a structural representation is
common in robotics control (Keramati et al., 2018; Zhao et al., 2021; Sancaktar et al., 2022) and is a
mild assumption. However, our method is not necessarily limited to state-based control only, as one
can combine with existing entity-centric representation learning methods from pixel observations
(Watters et al., 2017; Greff et al., 2019; Xu et al., 2019; Veerapaneni et al., 2020; Locatello et al.,
2020).

Goal representation. Skills are usually modeled in the form of goal-conditioned policies, 7(als, g)
where g € G represents a goal. Common choices for goal g include full state observation, a hand-
crafted goal with domain knowledge, or latent variables. Our particular choice is a pair of objects,
“target” and “affector”, i.e., g = (o7, 0?) € [N] x [N]. A semantic meaning for this goal repre-
sentation would be that two objects o” and 0o® should have an interaction, such that the affector
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Figure 1: A high-level overview of COIL. Suppose an interaction was made, then a counterfactual
intervention on the affector object 0” (e.g., putting it aside or change the object state randomly)
would have made the future state of the target object o’ different. If no interaction was made, the
target would remain in the same state regardless of the counterfactual intervention. We measure the
discrepancy of the target object with and without the counterfactual intervention, which becomes
the intrinsic reward for interaction.

o? affects the target o’ as a result of the interaction. In our settings, for the sake of simplicity,
we assume the reference to objects o’ 04 are simply categorical indices (or pointers), namely
T,A € [N] = {0,1,--- ,N — 1}, respectively. However, more in general (e.g., for image ob-
servations), the goal representation for target objects can be replaced with a continuous vector to

represent a reference to an arbitrary object in the current state, which we leave as a future work.

2.2 LEARNING INTERACTION SKILLS WITH COUNTERFACTUAL FORWARD MODEL

How can we learn interaction skills for two given objects, and how can we learn a reward function
that would incentivize interactions between two objects? Our goal is to simultaneously learn such a
reward function and agent’s object-object interaction skills in a reward-free setting.

Our main idea is to use a counterfactual reasoning; i.e., predict what would have happened instead,
if other objects involved in an interaction were not there or were in a different state. This form of
inductive bias can provide us with a useful learning signal for interaction learning without relying
on an external task reward.

Given a trajectory of observations as object states, we want to identify whether an interaction be-
tween two objects happened or not. When a (physical) interaction between two objects happened,
these two objects would have affected each other. In other words, the future state of an object would
have been different without a specific configuration of the other object, provided that interaction
happened. On the contrary, when there was no interaction between them the future state of an object
would remain the same or not dramatically different regardless of the other object. A motivating
example is depicted in fig. 1.

We can formalize this idea as follows. Consider a MDP transition observed by an agent, (s¢, at, St.+1)
where s; = {ot ,ot ;- tand sp41 = {of, 1,07, -} (without the loss of generality) for a pair

of objects o’ and 0” given as a goal g. Suppose an interaction between the target and the affector
happened, where the target got affected by the affector in the interaction. Then, if we made an
counterfactual intervention on the affector object 04, i.e., changing the object state of randomly

with 0f' to obtain an intervened state st = {ol',0f*,-- -}, the same action a; applied on 5; would

have resulted in a different next state of, ; of the target object than its actual next state 0fy1. In
other words, the discrepancy between the actual next state o, and the counterfactual next state

otT+1 will be high. On the other hand, when there was no interaction happened between the two in
this transition, we can expect that o7, i1 would remain the same regardless of the intervention oA on

the affector, i.e., it would be that ot .
interaction between the target and the affector.

— ol 1||* can quantize the

However, the counterfactual next state s is not actually observed by an agent. So we can instead
predict the object A’s next state by learning a forward dynamics model:

—

OtTH = fforward(037 01154; Qt, St \ {0?7 024}) (1)
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This gives us a counterfactual interaction reward function: we first compute an intervention o; on

the affector object, and plug it to the forward model to predict the next state otTJrl of the target object.
Intervention of the affector can be implemented in many ways, such as random perturbation of the
state vector by adding Gaussian noises, but an easy yet effective way of in-distribution randomization
is to randomly sample the object vector from the replay buffer.

Finally, we define the counterfactual interaction reward 7corr-Forward (St, @, St4+1) = ||0$_1 - otTJr1 12,
which can be maximized by any underlying RL method (e.g., SAC or DQN) with a simultaneous
learning of the forward model and the RL policy. We call this resulting algorithm COIL (Coun-
terfactual Object Interaction Learning) and specifically this variant of using forward model COIL-
Forward.

2.3 LEARNING INTERACTION SKILLS WITH COUNTERFACTUAL SUCCESSOR FEATURES

In this section, we will present an improvement to COIL-Forward, called COIL-SF. One downside
of the above COIL-Forward is that it assumes the counterfactual intervention would have an imme-
diate, easily distinguishable change in the very next time step. In many realistic environments, the
effect and consequence of interaction is delayed to be discernible enough; the change actually exists
in the true world state but an observer would not be able to recognize the subtle difference until a
few time step has elapsed. Therefore, it is practically very important to take long-term futures into
consideration to correctly evaluate the consequence of a counterfactual intervention.

One natural way to deal with this problem would be to learn a multi-step, recurrent forward dynam-
ics model. However, learning such a forward model can be challenging due to uncertainty and the
quick accumulation of prediction errors Moerland et al. (2020); Lutter et al. (2021). Instead of learn-
ing a multi-step forward model, we propose to use the successor features (SF) framework (Dayan,
1993; Barreto et al., 2016) to incorporate long-term futures that can still derive a reward signal for
interaction learning.

A successor feature U™ (s, a) of a state s with respect to a policy 7 is an expected discounted sum of
the feature of future states to be visited when starting from the state s and the action a, and following
the policy 7 thereafter:

U™ (s,a) =E;

> A B(s)

t=0

sozs,aoza] . 2)

where ®(s,) is called the cumulant, which is the feature of future states to accumulate. Successor
features can be seen as an instance of generalized value functions (GVF) (Sutton et al., 2011) that
predicts the future and summarize what will happen in the future for a state s in some specific form,
which can be easier than directly predicting the next states. Successor features can be learned using
simple TD learning like Q-learning (Dayan, 1993).

To derive a reward function that tells whether an interaction is made or not, let’s consider two objects
T (target) and A (affector) given at hand and the future of 7" when an intervention is made on the
object A. For this, we consider an entity-centric successor feature whose cumulant function is simply
the readout of of the target object in the state representation s:

o0
\Ilglrget(sﬂ a’) = \Pgrget({OTv 0A7 T }7 a’) =Er lz 7t0? S0 = 8,00 = a“| 3)
t=0
for a query state s = {oT,oA, .-+ }. As in COIL-Forward, let’s suppose we make a counter-

factual intervention on B at timestep ¢ to get the intervened object state of from og. Denoting
5={0T,04, -1}, the reward function for interaction can be written as

TCOIL—Successor(S; a, S/) = H\Ijgrge[(& a) — \I]grge[(g’ a) H2 4)

We call this variant of using successor features for learning interactions COIL-SF. When there was
no interaction happened between 1" and A, the entity-centric successor features W7, will be the same
regardless of the intervention, in which case rcor-sp would be 0. Note that, in practice, rewards for
non-interaction transitions might be slightly bigger than 0 due to the epistemic uncertainty of the



Reincarnating Reinforcement Learning (RRL) Workshop, ICLR 2023

model. On the other hand, if the future state of 7" would have changed much due to the intervention
on A, the SF values ¥7.(s,a) and ¥7.(5, a) will be different, in which rcop.sp will evaluate to a
higher scalar value. Appendix C presents an analysis of the learned reward function for different
types of states.

3 RELATED WORK

Our work builds upon three big areas of prior research in reinforcement learning.

Object-Oriented RL Object-oriented RL (Diuk et al., 2008) aims at improving data efficiency and
generalization by leveraging representation of multiple objects and their relations. C-SWM (Kipf
et al., 2019) proposes a GNN-based network to learn the world model of the object-based task
using contrastive learning. Compared to models based on pixel reconstruction, C-SWM provides a
rich representation of objects. CEE-US (Sancaktar et al., 2022) utilizes the epistemic uncertainty
of structured world model (Kipf et al., 2019) as an intrinsic reward and uses it to gather data for
the world model training. The world model is then used for planning to solve downstream tasks.
While they also utilize an inductive bias that object-object interaction is useful, they learn such
information in the world model while we learn it directly in the policy. Also, they consider agent-
object interaction along with object-object interaction while we focus on object-object interaction.

Exploration Cho et al. (2022) proposed a mutual-information (MI) based exploration algorithm to
induce interactions between the agent and an object, which combines the MUSIC objective (Zhao
et al., 2021), i.e., MI between agent and object, and the diversity term similar to DADS (Sharma
et al., 2019) for the object’s future state. Seitzer et al. (2021) used object-centric causal action-
influence as an intrinsic reward. However, interactions between different objects are not consid-
ered; the skills are limited to simple control of a single target object specified by the task. Very
recently, Sancaktar et al. (2022) proposed curiosity-based exploration algorithm CEE-US that can
learn object-object interactions in an unsupervised fashion, with intrinsic reward being the epistemic
uncertainty through ensemble disagreement (Pathak et al., 2019). This work is the closest to our
work, but despite GNN’s ability to generalize to multiple objects during planning, their monolithic
skill representation is limited to be useful for hierarchical learning or planning.

Several papers have proposed exploration methods using successor features (SF). Zhang et al. (2019)
use the difference of SF between consecutive states as an intrinsic reward to efficiently explore
bottleneck states. Machado et al. (2020) propose an inverse of the L1-norm of the SF as a variant of
count-based exploration. Hoang et al. (2021) utilize SF to define the distance function between states
and learn a goal-conditioned policy to drive exploration. However, to the best of our knowledge, SF
has not been used in object-centric environments and has not been combined with counterfactual
reasoning.

Counterfactual Reasoning Buesing et al. (2018) use a structural causal model in POMDP, which
generates counterfactual trajectories for background planning, leading to a better sample efficiency
and smaller bias of the prediction in guided policy search. Sharma & Kroemer (2020) utilize an
inductive bias that, in similar scenes, if similar action has been taken it would give similar results.
They utilize contrastive learning in object-centric tasks to acquire an object relation model, which is
subsequently utilized in real-world precondition learning tasks. Counterfactual Credit Assignment
(Mesnard et al., 2020) utilizes counterfactual reasoning on action to achieve unbiased, low variance
credit assignment. Most approaches do counterfactual inference on the agent’s action, i.e., concerns
what would have happened if the agent made a different decision; our approach differs in the sense
that our counterfactual intervention is made on the object states instead of the agent’s action.

4 EXPERIMENTS

4.1 ENVIRONMENTS

In the experiments, we test our proposed approach on multi-object continuous control environments:
a toy environment (StackingBox) and more challenging environment (Mangetic Blocks).

Stacking Box. Stacking Box is a 2.5-D continuous control environment in which a cursor agent
and multiple box-shaped objects of the same size are randomly spread throughout a fixed arena. The
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Figure 2: Progress of the success rate on the Stacking Box and the Magnetic Blocks environment.
Runs are averaged over 3 random seeds. See Section 4.3 for analyses and interpretation of the result.

agent can move in any direction within the xy plane and can grab an object that overlaps with the
agent. If the agent moves towards an object while holding another object, the object being held and
moved will be placed on top of any other existing object. We assume that the height of each object
is quantized to integer values (such as 0, 1,2, ...). The process of stacking one object onto another
occurs instantly in a single MDP transition.

Magnetic Blocks. Magnetic Blocks is a continuous control environment in which an embodied
cursor agent can interact with square-shaped block objects. The agent has a continuous action space
that includes movement (translation), rotation, and grabbing through control of the joint’s torque.
The agent can move freely within the arena and can grab an adjacent object by slightly lifting up
and moving around the object, or rotating it along with the agent. When the agent moves a held object
close enough to another object such that the two objects become parallel, they will be connected by
magnetic force. If the edges are not parallel, one object will push the other. A distinctive interaction
in this environment is observed when two objects become connected through magnetic forces and
then move together in unison.

4.2 IMPLEMENTATION DETAILS

Taking the factorized state representation into consideration, we use a network with scaled dot-
product attention architecture (Vaswani et al., 2017) to transform object states into desired outputs
(actor, critic, and forward/successor models). The full network architecture is shown in Figure 4. We
note that by sharing the weights for key and value matrices on objects other than target and affector,
the network becomes permutation-invariant over the order of objects other than the goal objects (i.e.,
o” and 0?). COIL alternatingly updates the policy (actor and critic) and the model (forward model
or successor features). For RL algorithm, we use SAC (Haarnoja et al., 2018) although COIL can be
combined with any RL algorithms. More details can be found in the appendix.

4.3 PERFORMANCE OF LEARNING OBJECT INTERACTION SKILLS: QUANTITATIVE RESULTS

We first study how well the proposed approach (COIL) can learn object interaction skills in a reward-
free setting, with a comparison to strong exploration methods. At the beginning of every episode, a
goal g = (T, A) is chosen randomly to specify which objects should interact.
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Figure 3: Progress of the success rate when fine-tuning from a COIL-SF agent pre-trained on the
4 objects (object size 100%) setting in Magnetic Blocks environment. Runs are averaged over 3
random seeds. See Section 4.5 for more analyses.

Baselines. (1) Sparse-GT: A SAC agent trained to maximize the sparse ground-truth interaction
reward, where the per-step reward is 1 if a correct interaction between the affector and the target
is made (e.g., stacking or magnetic connection) or 0 otherwise, which is the same as the success
metric. (2) Forward-Curiosity: this maximizes the prediction error of the forward model for the
target object as an intrinsic reward: |07, ; — frorwara(S¢, a¢, g¢)||?. (3) SID (Zhang et al., 2019): this
maximizes the “successor feature control” reward: ||¥(of,;) — ¥(of)||>. (4) RND (Burda et al.,
2019): this maximizes the prediction error of a randomly initialized network’s feature representation
of the target object’s state as an intrinsic reward: || frandom(0711) — f(0f1)]*.

For object-centric tasks, interactions can lead to significant changes in the object’s state, making
it desirable to employ curiosity-based exploration methods as baselines. RND is a state-of-the-art
exploration method that seeks novel states, and Forward-Curiosity and SID are curiosity-based
exploration techniques that use the Forward Model and Successor Feature, respectively.

Quantitative Results. The success rate of the algorithms is displayed in Figure 2, based on the
evaluation episodes. Successful outcome is defined as the stacking of the target on the affector in
Stacking Box and the connection of the two selected goal blocks in Magnetic Blocks.

Stacking Box. COIL algorithms converge to a success rate of approximately 1.0, while curiosity-
based exploration methods show limitations with upper bounds in their performance. One thing to
note is that COIL-Forward outperforms COIL-SF in Stacking Box with 4 objects. In the Stacking
Box environment, interactions occur instantaneously, enabling the 1-step forward model of COIL-
Forward capture the occurrence of the interaction. This is supported by an analysis of the error of the
dynamics model (see Figure 8). Transitions involving interactions exhibit a significantly higher ratio
of the counterfactual prediction error (i.e., the prediction error when counterfactual intervention is
made) to epistemic uncertainty, compared to transitions without events. On the other hand, Forward-
Curiosity, SID, and RND are limited to manipulating individual objects without learning interaction
stably (see Figure 06).

Magnetic Blocks. COIL-SF is the only algorithm that successfully learns interaction skills between
objects. Despite leveraging domain knowledge regarding the occurrence of interactions, Sparse-
GT fails to learn even the basic task of grabbing an object (see Figure 7). Forward-Curiosity, SID,
and RND can learn how to grab an object but interaction between the objects barely happen. This
suggests that learning to induce interactions between objects in Magnetic Blocks is a challenging
exploration problem, unlike the Stacking Box environment.

We find COIL-Forward is not effective enough to learn interactions in Magnetic Blocks, which
accords with the motivation discussed in 2.3. In this environment, interactions make only a subtle
difference in the object’s state during a single-step transition and can be better discerned only in
longer-term future; we verify this by analyzing the dynamics model errors (see Figure 9). When
interactions occur, the counterfacutal prediction error is not significantly higher than the epistemic
uncertainty in the forward model (in COIL-Forward). However, the counterfactual prediction error
of the successor feature (in COIL-SF), is significantly higher than the epistemic uncertainty despite
the counterfactual intervention, so the interaction reward could lead to learning interactions.

4.4 QUALITATIVE RESULTS

In Stacking Box, a typical interaction behavior that COIL learns is to stack the target on the affector.
Note that a target should be on top of an affector to say interaction happened. If the affector is on top
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of the target, perturbing the affector’s state does not affect the target’s state. An interesting finding
was that the agent repeatedly stacked and unstacked the boxes, resulting in multiple interactions
within a single episode.

In Magnetic Blocks, the interaction behavior is to grab the target and connect it to the affector by
moving and rotating. Note that the agent needs to rotate accurately to connect the blocks, which
makes Magnetic Blocks a hard exploration problem in terms of learning to interact.

We present snapshots of COIL-SF’s typical behaviors in Magnetic Blocks in Figure 5. Various ways
of interaction between the target and the affector after they are connected are observed: (1) the agent
grabs the affector and moving the both blocks, causing the magnetic force to pull the target; (2) the
agent grabs the target and pushes the connected block towards the affector direction until it reaches
the wall, causing the target to be blocked by the affector; and (3) the agent grabs the target and
moving both objects together, which can be seen as some kind of interaction, because attaching
the affector changes the physical properties of the connected blocks, such as the force required to
move them or their resulting velocity. Among the three, COIL-SF tends to learn the second type of
interaction, where the agent grabs the target and pushes it toward the affector until it hits the wall.

4.5 GENERALIZATION TO MORE/UNSEEN OBJECTS

We evaluate the task-agnostic skills learned by COIL-SF, testing whether they can be applied to
environments with more and unseen objects. First, the policy and successor feature networks are
pre-trained on Magnetic Blocks with 4 objects for 10 million steps and perform fine-tuning for 1
million additional steps. For each setup, the performance of COIL-SF fine-tuned from pre-trained
networks is compared to that of COIL-SF trained from scratch for (10+1) million steps, ensuring a
fair comparison. We tested the generalization ability on 4 different setups with varying object sizes
and numbers: (a) 4 objects, 33% object size, (b) 4 objects, 66% object size, (c) 6 objects, 100%
object size, and (d) 6 objects, 66% object size.

Unseen objects: (a), (b) To test the generalization ability of COIL-SF on unseen objects, we varied
the scale (size) of the objects by 33% or 66%. The Figure 3 (a-b) show the performance of COIL-SF
fine-tuned on pre-trained networks. When tested on the 66% scale, COIL-SF gets a high success
rate even without any training. When tested on the 33% scale, the initial performance of COIL-SF is
poor, but the performance improves rapidly within 1 million steps of further training while learning
COIL-SF from the scratch fails.

More and Unseen objects: (c), (d) To test the generalization ability of COIL-SF on a different
number of objects, we conducted experiments with more objects and varying scales (66%, 100%).
The Figure 3 (c-d) show the performance of COIL-SF. Surprisingly COIL-SF fined-tuned on pre-
trained networks performs better even in more and unseen objects settings indicating that skills
learned from COIL-SF can be used as task-agnostic skills.

Overall, the successful learning of task-agnostic skills with COIL-SF has implications for future
research, as these skills could potentially be incorporated into hierarchical reinforcement learning
for more complex tasks.

5 CONCLUSION

In this paper, we introduce COIL (Counterfactual Object Interaction Learning), a novel approach
to learning object-object interaction skills using intrinsic rewards, and the concept of counterfac-
tual dynamics. Our results demonstrate that COIL can effectively learn to interact with objects in
challenging continuous, object-centric environments outperforming all of the baselines including
Sparse-GT, which incorporates task-specific knowledge. We also showed that an entity-centric
interaction skill learned by COIL is generalizable to unseen, more object setting. Given the com-
plexity and diversity of real-world tasks such as furniture assembly or learning to cook, we believe
that unsupervised learning of object-object interactions is crucial, and COIL represents a significant
step towards this goal. Considering that the real world tasks contain multiple modes of interaction
and complex state representation, combining diverse skill learning (Eysenbach et al., 2018; Sharma
et al., 2019; Park et al., 2022) and object-centric representation learning methods (Locatello et al.,
2020) will be an interesting future work.



Reincarnating Reinforcement Learning (RRL) Workshop, ICLR 2023

REFERENCES

André Barreto, Will Dabney, R. Munos, Jonathan J. Hunt, T. Schaul, David Silver, and H. V. Hasselt.
Successor Features for Transfer in Reinforcement Learning. NIPS, 2016. 4

Lars Buesing, T. Weber, Yori Zwols, Sébastien Racaniere, A. Guez, J. Lespiau, and N. Heess.
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search. ICLR, 2018. 5

Yuri Burda, Harrison Edwards, A. Storkey, and Oleg Klimov. Exploration by Random Network
Distillation. /ICLR, 2019. 1,7

Daesol Cho, Jigang Kim, and H. J. Kim. Unsupervised Reinforcement Learning for Transferable
Manipulation Skill Discovery. IEEE Robotics and Automation Letters, 2022. 2, 5

P. Dayan. Improving Generalization for Temporal Difference Learning: The Successor Representa-
tion. Neural Computation, 1993. 4

Carlos Diuk, A. Cohen, and M. Littman. An object-oriented representation for efficient reinforce-
ment learning. ICML, 2008. 5

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and S. Levine. Diversity is All You Need:
Learning Skills without a Reward Function. ICLR, 2018. 1, 8

Jasmina Gajcin and Ivana Dusparic. Counterfactual explanations for reinforcement learning. arXiv
preprint arXiv:2210.11846, 2022. 2

Seyed Kamyar Seyed Ghasemipour, Daniel Freeman, Byron David, Shixiang Shane Gu, Satoshi
Kataoka, and Igor Mordatch. Blocks Assemble! Learning to Assemble with Large-Scale Struc-
tured Reinforcement Learning. arXiv preprint arXiv:2203.13733, 2022. 1

Klaus Greff, Rapha&l Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation

learning with iterative variational inference. In International Conference on Machine Learning,
pp. 2424-2433. PMLR, 2019. 2

S. Gu, Manfred Diaz, Daniel Freeman, Hiroki Furuta, Seyed Kamyar Seyed Ghasemipour, Anton
Raichuk, Byron David, Erik Frey, Erwin Coumans, and Olivier Bachem. Braxlines: Fast and
Interactive Toolkit for RL-driven Behavior Engineering beyond Reward Maximization. ArXiv,
2021. 1

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018. 6, 12

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances in Neural
Information Processing Systems, 34:26963-26975, 2021. 5

Ramtin Keramati, Jay Whang, Patrick Cho, and Emma Brunskill. Strategic object oriented rein-
forcement learning. 2018. 2

Thomas Kipf, Elise van der Pol, and M. Welling. Contrastive Learning of Structured World Models.
ICLR, 2019. 5

Alex X. Lee, Coline Devin, Yuxiang Zhou, T. Lampe, Konstantinos Bousmalis, J. T. Springenberg,
Arunkumar Byravan, A. Abdolmaleki, Nimrod Gileadi, D. Khosid, C. Fantacci, José Enrique
Chen, A. Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Saliceti, Federico Casarini,
Martin A. Riedmiller, R. Hadsell, and F. Nori. Beyond Pick-and-Place: Tackling Robotic Stacking
of Diverse Shapes. ArXiv, 2021. 1

Youngwoon Lee, E. Hu, Zhengyu Yang, A. Yin, and Joseph J. Lim. IKEA Furniture Assembly
Environment for Long-Horizon Complex Manipulation Tasks. /IEEE International Conference on
Robotics and Automation, 2019. 1



Reincarnating Reinforcement Learning (RRL) Workshop, ICLR 2023

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, G. Heigold,
Jakob Uszkoreit, A. Dosovitskiy, and Thomas Kipf. Object-Centric Learning with Slot Attention.
NeurlPS, 2020. 2, 8

M. Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim,
N. Heess, J. Merel, and Yuval Tassa. Learning Dynamics Models for Model Predictive Agents.
ArXiv, 2021. 4

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 5125-5133, 2020. 5

Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyun-
yan, Will Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit as-
signment in model-free reinforcement learning. arXiv preprint arXiv:2011.09464, 2020. 2, 5

Volodymyr Mnih, K. Kavukcuoglu, David Silver, A. Graves, loannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. Playing Atari with Deep Reinforcement Learning. ArXiv, 2013. 1

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Model-based reinforcement learn-
ing: A survey. Found. Trends Mach. Learn., 16:1-118, 2020. 4

OpenAl. Learning Dexterous In-Hand Manipulation. , 2018. 1

Seohong Park, Jongwook Choi, Jackyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained Unsupervised Skill Discovery. ICLR, 2022. 1, 8

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-Driven Exploration
by Self-Supervised Prediction. 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2017. 1

Deepak Pathak, Dhiraj Gandhi, and A. Gupta. Self-Supervised Exploration via Disagreement.
ICML, 2019. 5

Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious Exploration via Structured World
Models Yields Zero-Shot Object Manipulation. arXiv preprint arXiv:2206.11403, 2022. 1,2, 5

Maximilian Seitzer, Bernhard Scholkopf, and Georg Martius. Causal influence detection for improv-
ing efficiency in reinforcement learning. Advances in Neural Information Processing Systems, 34:
22905-22918, 2021. 5

Archit Sharma, S. Gu, S. Levine, Vikash Kumar, and Karol Hausman. Dynamics-Aware Unsuper-
vised Discovery of Skills. ICLR, 2019. 1,5, 8

Mohit Sharma and Oliver Kroemer. Relational Learning for Skill Preconditions. CoRL, 2020. 5

Matthew Slivinski, G. Konidaris, and Lauren Marshall. Robust Deep Skill Chaining. , 2020. 2

R. Sutton, Joseph Modayil, M. Delp, T. Degris, P. Pilarski, Adam White, and Doina Precup. Horde:
a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interac-
tion. Adaptive Agents and Multi-Agent Systems, 2011. 4

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 6

Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,

Joshua Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
learning. In Conference on Robot Learning, pp. 1439-1456. PMLR, 2020. 2

10



Reincarnating Reinforcement Learning (RRL) Workshop, ICLR 2023

Oriol Vinyals, 1. Babuschkin, Wojciech M. Czarnecki, Micha&l Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
M. Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, J. Agapiou, Max Jaderberg, A. Vezh-
nevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, D. Budden, Yury Sulsky, James Molloy,
T. Paine, Caglar Gulcehre, Ziyun Wang, T. Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wiinsch, Katrina McKinney, Oliver Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis,
C. Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 2019. 1

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. Advances in
neural information processing systems, 30, 2017. 2

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenenbaum,
and Jiajun Wu. Unsupervised discovery of parts, structure, and dynamics. arXiv preprint
arXiv:1903.05136, 2019. 2

Jesse Zhang, Haonan Yu, and W. Xu. Hierarchical Reinforcement Learning By Discovering Intrinsic
Options. International Conference on Learning Representations, 2021. 2

Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, and Wolfram Burgard. Sched-
uled intrinsic drive: A hierarchical take on intrinsically motivated exploration. arXiv preprint
arXiv:1903.07400, 2019. 5, 7

Rui Zhao, Yang Gao, P. Abbeel, Volker Tresp, and W. Xu. Mutual Information State Intrinsic
Control. ICLR, 2021. 1,2, 5

11



Reincarnating Reinforcement Learning (RRL) Workshop, ICLR 2023

Appendix

A  DETAILS OF IMPLEMENTATION AND EXPERIMENTS

A.1 STACKING Box

The state of the agent is denoted by its (x,y) coordinates, while each object is represented by
(z,y, 2z, held), where the binary value of held indicates whether the object is in the grasp of the
agent or not. The action space is three-dimensional and includes the variables Az, Ay, and grab.
The range of values for each variable is from -1 to 1, where Az and Ay denote the displacement of
the agent’s movement and grab indicates whether to make a grab. If the value of grab is O or greater,
the agent will grab the object; otherwise, it will release it.

A.2 MAGNETIC BLOCKS

The state of the agent and each object are 9-dimensional vectors: (x,y, 2, cos 8, sin 8, vy, vy, v, w)
where cos # and sin 0 represent a 2D Euler rotation, v is the velocity, and w is the angular velocity
with respect to the joint. The action space is four-dimensional and includes the variables F, F, 7,
and grab. The range of values for each variable is from -1 to 1, where F, and I}, denote the motor
translation torques, 7 the rotation torque, and grab indicates whether to make a grab. If the value
of grab is 0 or greater, the agent will grab the object that overlaps with the agent; otherwise, it will
release it.

A.3 IMPLEMENTATION DETAILS

In Stacking Box and Magnetic Blocks, each episode has a length of 200. The size of the replay
buffer is one million and we start updating the policy after 10000 steps to fill the replay buffer. We
use soft target update with the ratio of 7. For the forward and successor models, we use Scaled Dot
Product Attention Network to get the embedding vector of objects. Then dense layers are used at the
end. For RL algorithm, we use SAC (Haarnoja et al., 2018) though COIL can be combined with any
RL algorithms. We search over the hyper-parameter range in Table 1 for Stacking Box and Table 2
for Magnetic Blocks. The hyper-parameters that give the highest AUC (area under the curve) in the
success rate for each task are chosen as the best hyper-parameters.
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COIL-Forward / Forward Curiosity

Hyperparameters ‘ Sweep range ‘ n=4 ‘ n=6

Actor-Critic network hidden dimensions [64,64], [256,256] [256,256] [256,256]

Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.1 0.1

7 for SAC target update 0.001, 0.01,0.1,0.2,0.3 0.01 0.01/0.001

Forward model hidden dimensions [64,64], [256,256] [256,256] [256,256]

Reward scale 10, 100, 1000 10 10

COIL-SF/ SID

Hyperparameters ‘ Sweep range ‘ n=4 ‘ n=6

Actor-Critic network hidden dimensions [64,64], [256,256] [256,256] [256,256]

Initial temperature 0.001, 0.01,0.1,0.3, 1 0.1 0.1

7 for SAC target update 0.001, 0.01, 0.1,0.2,0.3 | 0.01/0.001 0.001

SF model hidden dimensions [64,64], [256,256] [256,256] [256,256]

SF model target update period 1,5,10 5 5

SF model discount factor - 0.8 0.8

7 for SF target update 0.001, 0.01, 0.1, 0.2, 0.3 | 0.01/0.001 0.001

Reward scale 1, 10, 100 10 10
Sparse GT-SAC / RND

Hyperparameters ‘ Sweep range ‘ n=4 ‘ n=6

Actor-Critic network hidden dimensions [64,64], [256,256] [256,256] [256,256]

Initial temperature 0.001, 0.01,0.1,0.3, 1 0.1 0.1

7 for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 0.001

Reward scale 10, 100, 1000 10/ 100 10/ 100

Table 1: Hyperparameters swept over and the final values used in Stacking Box. n denotes the
number of objects.
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COIL-Forward / Forward Curiosity

Hyperparameters ‘ Sweep range ‘ n=4 n=6

Actor-Critic network hidden dimensions | [64,64,64,64], [256,256] [256,256] [256,256]

Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.01 0.01

7 for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.3 0.1/0.3

Forward model hidden dimensions [64,64,64,64], [256,256] [256,256] [256,256]

Reward scale 10, 100, 1000 10 10

COIL-SF/ SID

Hyperparameters ‘ Sweep range ‘ n=4 n=6

Actor-Critic network hidden dimensions | [64,64,64,64], [256,256] [256,256] [256,256]

Initial temperature 0.001, 0.01,0.1,0.3, 1 0.01 0.3/0.01

7 for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01/0.1 0.01/0.2

SF model hidden dimensions [64,64,64,64], [256,256] | [64,64,64,64] | [64,64,64,64]

SF model target update period 1,5,10 5 5

SF model discount factor - 0.8 0.8

7 for SF target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01/0.1 0.01/0.2

Reward scale 1, 10, 100 10 10
Sparse GT-SAC / RND

Hyperparameters ‘ Sweep range ‘ n=4 n=6

Actor-Critic network hidden dimensions | [64,64,64,64], [256,256] [256,256] [256,256]

Initial temperature 0.001, 0.01,0.1,0.3, 1 0.01 0.01

7 for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.1 0.3

Reward scale 10, 100, 1000 10/ 100 10/ 100

Table 2: Hyperparameters searched over and the final values in Magnetic Blocks. n denotes the

number of objects.
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Figure 4: A network architecture used in the experiments.
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B QUALITATIVE EXAMPLES

-

(a)t=0,r=0.36 b)yt=2,r=024 (c)t=4,r=2.01 (dt=6,r=15.30

(@ t=17,r=1319 () t=29r=22.82 (g)t=134,r=18.68 (h)t=167,r = 17.03

Figure 5: Snapshots of COIL-SF in Magnetic Blocks. In this episode, the target is the object
and the affector is the blue object. (a) Initial state, (b) Agent heads towards the target, (c) Agent
grabs the target, (d) Agent heads towards the affector while holding the target, (e) Agent rotates the
target to align two objects, (f) Agent connects the target and the affector (a successful interaction),
(g-h) Agent pushes the affector to somewhere near the wall. The amount of reward 7coyr-successor the
agent receives is shown in the caption of each episode; we can see that the per-step reward is highest
when a correct interaction (magnetic connection between the objects in the specified goal) is made.

C ANALYSIS OF COIL-SF REWARD

To analyze what reward function COIL-SF has learned, we labeled each state with the following 7
categories on the Magnetic Blocks environment with 4 objects.

* Grab-T: the agent is grabbing the target object.
* Grab-A: the agent is grabbing the affector object.

» Connect-TA: the target and affector objects are correctly connected. Note that when target and
affector objects are connected, highly likely the target object will be affected by the affector object,
i.e., interaction occurs.

* Connect-TA-Only: a subset of Connect-TA states. Note that Connect-TA states include states
where objects other than the target and affector also are connected to the target and affector ob-
jects. However, Connect-TA-Only excludes such states.

* Connect-TX: the target object is connected to a wrong object (X), i.e., anything but the affector
object.

* Connect-AX: the affector object is connected to a wrong object (X), i.e., anything but the target
object.

* No-Event: all other states not included in the above 6 categories.

Table 3 shows an average reward given to states with each label, for a successful instance of COIL-
SF. Among the 7 labels, Connect-TA-Only receives the highest rewards. Connect-TA receives a
slightly lower reward than Connect-TA-Only. Considering that Connect-TX or Connect-AX receive
small rewards, we assume that a small portion of Connect-TA states are the states where objects
other than the target and effector are also connected, and those states have small rewards. Grab-T
and Grab-A receive high rewards compared to No-Event or Connect-TX or Connect-AX. This may
be due to Grab-T having an intersection with Connect-TA-Only, which is a set of states where the
target and the affector objects are connected and the agent is grabbing the target object.
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State Labels | Average Reward | Relative Ratio
No-Event 0.7 0.040
Grab-T 14.21 0.803
Grab-A 10.7 0.604
Connect-TA 17.3 0.977
Connect-TA-Only 17.7 1.0
Connect-TX 0.51 0.029
Connect-AX 1.8 0.101

Table 3: Average COIL-SF reward given to the 7 types of states on the Magnetic Blocks environ-
ment. COIL-SF gives the highest reward to Connect-TA-Only.
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D ADDITIONAL PLOTS

We provide additional plots for further analysis of COIL algorithms. Figure 6 and Figure 7 sup-
port the quantitative result that COIL learns to make interactions while curiosity-based methods are
limited to grabbing the objects.
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No events Grab Affector Grab Target Stack (Interaction)
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(a) Stacking Box: 4 objects.
No events Grab Affector Grab Target Stack (Interaction)
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(b) Stacking Box: 6 objects.
Figure 6: The ratios of the states visited during the episodes for each label in Stacking Box. (1) No
events: States without any grabbing or stacking event, (2) Grab Affector: States in which the agent
grabs the affector, (3) Grab Target: States in which the agent grabs the target, (4) Stack: States in
which the target is stacked on the affector.
No events Grab Affector Grab Target Connect (Interaction)
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(a) Magnetic Blocks: 4 objects.
No events Grab Affector Grab Target Connect (Interaction)
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(b) Magnetic Blocks: 6 objects.

Figure 7: The ratios of the states visited during the episodes for each label in Magnetic Blocks. (1)
No events: States without any grabbing or connecting event, (2) Grab Affector: States in which the
agent grabs the affector, (3) Grab Target: States in which the agent grabs the target, (4) Connect:
States in which the target and the affector are connected.
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No events Grab Affector Grab Target Stack (Interaction)
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(a) COIL-Forward, Stacking Box: 4 objects.
No events Grab Affector Grab Target Stack (Interaction)
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(b) COIL-SF, Stacking Box: 4 objects.
Figure 8: The ratio of counterfactual prediction error to epistemic uncertainty of dynamics models
for each label in COIL, Stacking Box. (1) No events: States without any grabbing or stacking event,
(2) Grab Affector: States in which the agent grabs the affector, (3) Grab Target: States in which the
agent grabs the target, (4) Stack: States in which the target is stacked on the affector. Higher ratio
means that a higher reward rcoy. will be given.
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(a) COIL-Forward, Stacking Box: 4 objects.
No events Grab Affector Grab Target Connect (Interaction)
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(b) COIL-SF, Magnetic Blocks: 4 objects.

Figure 9: The ratio of counterfactual prediction error to epistemic uncertainty of dynamics models
for each label in COIL, Magnetic Blocks. (1) No events: States without any grabbing or connecting
event, (2) Grab Affector: States in which the agent grabs the affector, (3) Grab Target: States in which
the agent grabs the target, (4) Connect: States in which the target and the affector are connected.
Higher ratio means that a higher reward rcop. will be given.

20



