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Abstract

Diagrams convey symbolic information in a visual format rather than a linear stream
of words, making them especially challenging for AI models to process. While
recent evaluations suggest that vision-language models (VLMs) perform well on
diagram-related benchmarks, their reliance on knowledge, reasoning, or modality
shortcuts raises concerns about whether they genuinely understand and reason
over diagrams. To address this gap, we introduce CHIMERA, a comprehensive
benchmark comprising 7,500 high-quality diagrams sourced from Wikipedia; each
diagram is annotated with its symbolic content represented by semantic triples
along with multi-level questions designed to assess four fundamental aspects of
diagram comprehension: entity recognition, relation understanding, knowledge
grounding, and visual reasoning. We use CHIMERA to measure the presence of
three types of shortcuts in visual question answering: (1) the visual-memorization
shortcut, where VLMs rely on memorized visual patterns; (2) the knowledge-
recall shortcut, where models leverage memorized factual knowledge instead of
interpreting the diagram; and (3) the Clever-Hans shortcut, where models exploit
superficial language patterns or priors without true comprehension. We evaluate
15 open-source VLMs from 7 model families on CHIMERA and find that their
seemingly strong performance largely stems from shortcut behaviors — visual-
memorization shortcuts have slight impact, knowledge-recall shortcuts play a
moderate role, and Clever-Hans shortcuts contribute significantly. These findings
expose critical limitations in current VLMs and underscore the need for more
robust evaluation protocols that benchmark genuine comprehension of complex
visual inputs (e.g., diagrams) rather than question-answer shortcuts.

1 Introduction

Visual language enables communication through structured visual elements such as symbols, icons,
and spatial relationships. Diagrams are a fundamental form of visual language, used in domains
such as science, education, and engineering to convey complex information compactly and intu-
itively [Greenspan and Shanker, 2009, |Anderson et al., 2011} |[Zdebikl 2012, Marriott and Meyer,
2012]]. Comprehending diagrams requires a wide range of abilities, from basic visual recognition
to complex reasoning, making it a particularly challenging task for Al systems [Seo et al., 2014}
Kembhavi et al.| 2016, [Lu et al.; 2021]]. Understanding how vision-language models (VLMs) interpret
and reason over diagrams is thus both conceptually challenging and practically important: it reveals
current limitations and guides the design of future multimodal systems [L1i, [2023]]. While recent
VLMs have shown impressive results on diagram-related benchmarks [Xue et al.| 2024, |[Liu et al.,
2024b), |Bai et al., [2025| Metal 2024, \Google| 2025 |Agrawal et al., 2024, Microsoft, 2025], these
benchmarks often focus narrowly on performance and lack a structured evaluation of the step-by-step
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Visual Modality Tasks

— [\J/‘Ifadalw ) Entity Which of the following parts is NOT labeled on the diagram of the Maadal?
Recognition A. Khare B. Ujindo C. Danda D. Tanaa

What is the relationship between 'Matheri' and 'Tanaa' as shown in the diagram?
A. They are interchangeable names for the same part.
B. Matheri is a component within Tanaa.
C. Tanaa is a type of material used to make Matheri.
D. They are adjacent parts of the Maadal's structure.

Relation
Understanding

Semantic Modality Textual Modality m Based on the diagram, what type of musical instrument is the Maadal?
T maaga: :as par: ;Efmafce; Groundir: A. A string instrument B. A wind instrument
laadal has par ace; .
- Maadal has Sart Dfungro; g C. A double-headed drum D. A single-headed drum
Maadal h: t Khare; N N N — -
Moadal has E::”a,?;;e The diagram shows a slight difference in diameter between the left and right
Maadal has part Juino; faces of the Maadal. What is a plausible reason for this difference?
Maadal has part Matheri; . )
Maadal has part Katauro; Visual A. It's purely aesthetic, with no impact on sound.
Maadal has part Ujjindo; Reasoning B. It's a manufacturing defect
Left face has dimension 6.5 inch; ich lightly diff hf
Right face has dimension 5.5 inch; C. It might produce slightly different tones on each face.
Maadal has dimension 18 inch. D. It's to make the instrument easier to hold.

Figure 1: An example from CHIMERA showcasing three modalities (visual, semantic, and textual modality) and
four evaluation tasks: entity recognition, relation understanding, knowledge grounding, and visual reasoning.

reasoning process. More importantly, they do not systematically address shortcut behaviors, such
as relying on memorized patterns or language priors that can inflate scores without true compre-
hension [Goyal et al., 2017, Bleeker et al., 2024} [Hou et al., |2025]]. This highlights the need for a
benchmark that not only measures accuracy, but also disentangles how models comprehend diagrams,
from basic recognition to abstract reasoning, while controlling for potential shortcuts.

Motivated by semiotics, the study of how meaning is conveyed through signs, we represent the
diagram content using semantic triples, enabling consistent alignment across three modalities: the
original diagram, i.e., visual modality; visualized triples, i.e., semantic modality; and sentences, i.e.,
textual modality. Building on Peirce’s theory of semiosis, which models interpretation as linking
signs to objects through reasoning [[Peirce, |1935| Morris| [1938]], we frame diagram comprehension as
a four-stage process: entity recognition, relation understanding, knowledge grounding, and visual
reasoning. This structured perspective reflects the key cognitive steps required for VLMs to move
from surface recognition to deeper multimodal understanding.

We introduce CHIMERA, a fine-grained benchmark designed to evaluate the abilities of VLMs
to interpret and reason about diagrams with meticulous annotations of both diagram content and
evaluation questions. We collect images from Wikipedia [Burns et al.| |2023|], and clean them using
MetaCLIP [Xu et al., 2024a]] where unsuitable images such as photos are filtered out. Then, we use
VLMs to describe and annotate each diagram with tags of its domain and type, where low-quality
images are further filtered out. We further use Gemini [[Google, [2024]] to describe the essential
content that the diagram conveys and use it to annotate semantic triples, and four levels of questions
based on the description. We implement consistency checks by running the annotation process
multiple times and under different settings to filter out diagrams with low-quality annotations. In
total, CHIMERA comprises 7,500 (with 6,000 training set and 1,500 test set) meticulously annotated
diagrams, each enriched with a set of semantic triples and four levels of questions targeting entity
recognition, relation understanding, knowledge grounding, and visual reasoning (see Fig.[I)).

Then, we revisit the shortcut behaviors in visual question answering (VQA) under the diagram
comprehension scenario, and categorize them into three distinct types. First, models could rely on
image priors, memorizing visual information from training data and using it directly during inference,
without genuinely understanding the diagram content [Jayaraman et al., 2024, |L1 et al.| |2024]. We
refer to this as the visual-memorization shortcut. Second, models could exploit language priors,
which we further divide into two subtypes. Given that diagrams often convey factual or domain-
specific knowledge, a model could simply recognize high-level visual patterns and rely on pre-trained
language knowledge to answer the question without actually understanding the diagram [[Hou et al.,
2025, [Zang et al.| [2024]]. We refer to this as the knowledge-recall shortcut. In addition to that, models
can also learn to exploit superficial patterns in the language of the questions or answer options,
arriving at correct answers without using the visual input at all [Goyal et al.,|2017, |Bleeker et al.
2024]]. We call this behavior the Clever-Hans shortcut, drawing analogy to the phenomenon where
models appear to perform well by exploiting spurious cues rather than genuine understanding.

Using CHIMERA, we evaluate 15 open-source VLMs from 7 model families to analyze their core
abilities and behavioral patterns in diagram comprehension. We compare model performance on
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visual modality and semantic modality. Surprisingly, VLMs perform slightly better on visually
complex real diagrams than on the simpler, cleaner semantic graphs. This counterintuitive result
suggests that the visual-memorization shortcut exists. Models could exploit memorized visual patterns
from pretraining, but its impact is slight. The knowledge-recall shortcut is unlikely to affect entity
recognition, but it is more plausible in the remaining three tasks, which are more knowledge-intensive.
However, our results show that VLMs perform obviously worse on entity recognition than on the
other three tasks, despite it being the simplest and most fundamental. This performance gap supports
that the knowledge-recall shortcut occurs moderately in the latter tasks. Given that entity recognition
is relatively free from knowledge-based shortcuts, we investigate the Clever-Hans shortcut in this
task. Specifically, we evaluate VLMs without providing the diagram, using only the question and
answer options. Surprisingly, some models could even achieve comparable performance as when the
diagram is present, suggesting that they rely heavily on spurious linguistic patterns in the prompt.
This provides strong evidence that the Clever-Hans shortcut is significant.

These findings reveal that the seemingly strong diagram reasoning performance of current VLMs is
largely driven by shortcut behaviors rather than genuine comprehension. Among the three types of
shortcuts, the Clever-Hans shortcut is the most severe. Our analysis exposes fundamental limitations
in current open-source VLMs and underscores the need for more robust evaluation frameworks.
Achieving human-level visual understanding remains a long and challenging journey.

2 CHIMERA

In this section, we first outline the benchmark design, followed by describing the benchmark con-
struction process in detail and presenting the results of human evaluation.

2.1 Design Philosophy: Semiotics and Semiosis

Our data annotation focuses on two key aspects of each diagram: the information content it conveys,
and the cognitive abilities required to interpret that information.

Diagram Information: Three Modalities. Semiotics, the study of signs and symbols, examines
how humans construct and interpret meaning through various forms of representation [Peircel 1935,
Morris, 1938 |Cullum-Swan and Manning, [1994]]. According to Charles Sanders Peirce and Ferdinand
de Saussure, signs are generally categorized into three types: icons, which represent meaning through
visual resemblance; symbols, through arbitrary or conventional associations; and indexes, through
direct or causal links (e.g., smoke signaling fire) [Peirce,|1935}|Yakin and Totul [2014]]. This framework
aligns closely with how diagrams convey meaning and how humans interpret them. Inspired by this,
we design three modalities in our benchmark that mirror these semiotic types: the visual modality
(icon) presents the original diagram; the semantic modality (symbol) visualizes structured triples as
graphs; and the textual modality (symbol) expresses them in natural language

By evaluating how VLMs interpret equivalent content across these
modalities, we gain insight into their true comprehension ability. If
a model understands the underlying meaning regardless of format as
humans do, it should perform consistently across modalities. Thus,
grounding our design in semiotic theory provides both a cognitively
motivated structure and a principled way to analyze cross-modal
reasoning and shortcut behaviors in VLMs.

Entities
RU

......................

Diagram Comprehension: Four Tasks. Semiosis, as also defined
by Charles Sanders Peirce, refers to the dynamic, triadic process
through which a sign (e.g., a diagram) represents an object (the
realistic entity) and produces an interpretant (the meaning or un- Figure 2: Diagram comprehen-
derstanding in the interpreter’s mind) [Peircel, [1933] [Morris|, [T938] S1on process inspired by semiosis.
Peirce et al.l [1992]. This process is iterative, starting with the recog-

nition of signs, followed by the interpretation of the relationships between signs, and then the
grounding of their meaning within broader knowledge, which may lead to further reasoning and new
insights. Each phase of semiosis is fundamental to fully understanding and reasoning with diagrams.

Real-World
Concepts

'We do not model indexes, as diagrams typically present information explicitly rather than contextually.
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Our benchmark tasks are directly aligned with these phases of semiosis (Fig.[2). Entity Recognition
corresponds to the first step in semiosis, where the model identifies diagram elements (i.e., entities)
and associates them with real-world objects. Relation Understanding reflects the second phase,
requiring the model to interpret the relationships between these entities, understanding how they
connect within the diagram. Knowledge Grounding involves the model linking its recognized entities
and relations to external knowledge, grounding the diagram’s information beyond its immediate
context. Finally, Visual Reasoning mirrors the iterative nature of semiosis, where the model uses
its grounded understanding to draw inferences and conclusions, completing multiple cycles of
interpretation and reasoning. This framework ensures that our benchmark evaluates the model’s
ability to process diagrams in a human-like, comprehensive manner.

2.2 Benchmark Construction

We build our benchmark in three stages: diagram cleaning, tagging, and annotation (semantic triples
and question-answer pairs). An illustration of our construction pipeline is given in Fig.[3

Diagram Category List

Tag Categorization

1 Diagram Tagging

B || = (i i)

Cleaning

09 MetaClip

WikiWeb2M

Data (100k)

Diagram Diagram Visual Dependency Check
i Captioning Annotation

Ta :
8 Consistency Filtering =

—

pata (GOk)
Description Wiki-Text | Wiki-Text Dependency Check
.
Gemini >

Wiki-Text

[ Semantic ]Q—[ Triplej

!
-Textual

Triple Completeness Check

Figure 3: Overview of our benchmark construction pipeline. First, starting from the WikiWeb2M dataset, we use
MetaCLIP to remove non-diagram images, resulting in 100k diagrams. Second, we apply Molmo and LLaMA
for tagging, and then derive a fixed category list and filter inconsistent results, yielding 60k diagrams. Third, we
prompt Gemini to caption diagrams and annotate semantic triples and QA pairs. We then apply three rounds of
quality checks, producing a final dataset containing 7.5k high-quality diagrams.

Diagram Cleaning. To build our benchmark, we extract images from WikiWeb2M [Burns et al.,
2023|], a large-scale corpus of English Wikipedia pages. Since many images are irrelevant to diagrams,
we apply a filtering process using MetaCLIP [Xu et al., [2024a]], combining one positive prompt
and six negative prompts. Only images consistently classified as diagrams are retained, resulting in
approximately 100k candidate images. Details are provided in App.[B.1}

Diagram Tagging. Diagrams vary widely in type and domain due to their role in knowledge transfer.
To structure our benchmark, we use VLMs (Molmo and LLaMA) to tag each diagram by its type and
subject domain (Fig.[3)). After aggregating four annotations per image, we group the most common
tags into 12 categories across two groups: statistical (e.g., bar chart, line graph) and scientific (e.g.,
biology, physics). Only diagrams with consistent tags are retained, yielding around 60k images. Full
tagging prompts and category details are provided in App.[B.2]

Diagram Annotation. We posit that the information and knowledge that a diagram conveys can
be naturally formalized by a knowledge graph, that is, a set of semantic triples [Lassila and Swickl,
1999], where each triple contains a head entity, a relation, and a tail entity. In addition to using
the diagram as the information carrier (i.e., visual modality), we can also represent the information
directly by visualizing the semantic triples or transforming it to textual sentences.

Our benchmark includes two core parts of annotations: semantic triples and question—answer (QA)
pairs (Fig. [3). To ensure high-quality and consistent annotation, we adopt a two-step pipeline using
Gemini-2.0-Flash [Google, 2024] as the annotation backbone. In the first step, we prompt the model to
generate a detailed description of each input diagram. These prompts are tailored to different diagram
groups and enriched with in-context examples to encourage accurate and specific descriptions. To
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reduce hallucinations and improve factual grounding, we also provide the associated Wikipedia text
to the model as the supplementary input.

In the second step, we use the generated descriptions to extract semantic triples and generate QA
pairs. To ensure that the resulting annotations are both accurate and visually grounded, we apply a
three-stage consistency check: (1) we discard examples if questions can be answered without the
image; (2) we verify that questions remain unanswerable when only Wikipedia text is available;
and (3) we confirm that the semantic triples alone are sufficient to answer the questions. Only
diagrams that pass all three checks are retained. After filtering, the final benchmark comprises 6,000
diagrams for training and 1,500 for testing. All evaluations in this paper are conducted on the test set.
Additional details, including prompt templates and filtering criteria, are provided in App.[B.3]

2.3 Human Evaluation

Despite implementing several statistical verification methods to ensure annotation quality, automati-
cally generated annotations may still lack consistency and accuracy. To further assess the reliability of
our benchmark, we conduct a round of human evaluation following the automatic annotation process.
Unlike the earlier verification, which focused on the independence of Wikipedia text, this evaluation
emphasizes the correctness and reliability of the QA annotations. We evaluate each data point along
three key dimensions:

* Visual Dependency: We assess whether each question truly requires the diagram to be answered,
rather than relying on commonsense or background knowledge. An annotation is labeled as Fully
Dependent if all questions rely on visual content, and Partially Dependent if at least one question
can be answered without referring to the diagram.

* QA Correctness: We evaluate whether the questions are clearly phrased, contextually grounded,
and whether the provided answers are correct. Each data point is labeled as Perfectly Valid or
Slightly Flawed, depending on whether any question contains a factual error.

* Triple Completeness: We verify whether the annotated semantic triples accurately and sufficiently
capture the key information in the diagram. Data points are labeled as Totally Sufficient if the triples
are complete and correct, and Marginally Insufficient if an essential triple is missing or inaccurate.

Visual Dependency QA Correctness Triple Completeness
Score Ratio (%) Fully Partially Perfectly ~ Slightly Totally Marginally
Dependent  Dependent Valid Flawed | Sufficient Insufficient
Annotator A 85.3 14.7 92.0 8.0 86.0 14.0
Annotator B 100.0 0.0 99.3 0.7 80.7 19.3
Annotator C 78.7 21.3 87.3 12.7 70.7 29.3
Annotator D 95.3 4.7 96.0 4.0 82.7 17.3

Table 1: Human evaluation results on 300 diagrams across three dimensions: visual dependency, QA correctness,
and triple completeness. Scores reflect the percentage of diagrams rated under each category by four annotators
(A, B, C, D), showing overall strong annotation quality with minor variations in strictness.

We evenly sample 20% of the test set (300 diagrams) across categories and assign them to four expert
annotators (A, B, C, and D). As shown in Tab. E], the majority of annotations are consistently rated
as Fully Dependent, Perfectly Valid, and Totally Sufficient. While minor differences exist among
annotators in terms of strictness, the overall results confirm that the benchmark annotations are of
high quality and suitable for reliable evaluation.

3 Diagram Comprehension Evaluation

In this section, we first present the overall evaluation results on our benchmark. We then delve deeper
into a central open question: how do VLMs actually comprehend complex images such as diagrams?
One hypothesis posits that VLMs achieve genuine understanding, while the alternative suggests that
their performance is largely driven by shortcut behaviors. To investigate this, we analyze three typical
shortcut types: visual-memorization shortcut, knowledge-recall shortcut, and Clever-Hans shortcut
using CHIMERA as a diagnostic tool.
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3.1 Overall Evaluation

Experiment Setup. We evaluate 15 models from 7 model families, covering both academic and
industrial models across a range of parameter scales. We select the Qwen2.5-VL (simplified as Qwen)
series (3B, 7B, 32B, 72B) [Bai et al.} 2025]], the LLaMA3.2-Vision-Instruct ((simplified as LLaMA)
series (11B, 90B) [Metal 2024], the Gemma3 series (1B, 12B, 27B) [|Google, [2025]], the LLaVA-1.6
series (7B, 13B, 34B) [Liu et al.| 2024b], as well as three standalone models: Pixtral-12B [Agrawal
et al.,|2024], Phi-4 5.6B [Microsoft, [2025]], and BLIP-3 4B [Xue et al.,[2024]. More details about the
model, the evaluation setting (e.g., prompts) can be found in App.[C.1]

Overall Results. We report average accuracy
across 15 models in Tab. 2] with detailed re-
sults provided in App. [C.2] Models are evalu- Accuracy (%) | ER  RU KG VR
ated across three input modalities—visual (orig- Visual Modality 74.1 80.5 828 82.0
inal diagram), semantic (visualized triples), and  Semantic Modality | 70.3 79.2 83.0 80.9
textual (sentence-form triples)—and four tasks: Textual Modality | 88.4 902 91.8 88.9
entity recognition (ER), relation understanding
(RU), knowledge grounding (KG), and visual rea- Table 2: Average accuracy of 15 VLMs on CHIMERA
soning (VR). Overall, VLMs perform best with across three input modalities and four tasks.

textual inputs across all tasks, while accuracy drops significantly for visual and semantic modalities,
revealing clear room for improvement in diagram comprehension.

3.2 Visual-Memorization Shortcut: Do VLMs Answer Using Memorized Visual Patterns?

With the increasing model capacity, recent studies suggest that VLMs could memorize training data
(e.g., diagrams) and rely on this memorized content for inference, rather than genuine comprehen-
sion [Jayaraman et al.,[2024] [Li et al., [2024]]. We refer to this behavior as the visual-memorization
shortcut, where a model bypasses reasoning by exploiting memorized visual patterns.

Experiment Design. To investigate whether VLMs rely on
the visual-memorization shortcut for diagram comprehension,

we leverage the multimodal design of CHIMERA. Each diagram & 90
in the benchmark is annotated with semantic triples, which are 2
visualized as semantic modality inputs, i.e., structured and g
simplified versions of the original diagrams. Compared to real 3 85
diagrams (visual modality), semantic graphs eliminate noise f
and layout ambiguity, offering a clearer path for reasoning. s

. . . . e 80
If a model is not relying on memorized visual patterns, we &

would expect it to perform worse on real diagrams than on the Visual - Semantic - Textual

cleaner, more structured semantic modality. In contrast, if the  Fjgure 4: Average performance across
visual-memorization shortcut is in use, models might perform models and tasks on different modali-
better on the visual modality, indicating reliance on memorized ties. The overall performance on the
diagram appearances rather than actual visual reasoning. Addi- visual modality is slightly better than
tionally, we treat the textual modality (i.e., sentences generated that on the semantic modality.

from triples) as an upper-bound reference, since it presents all

essential information in the most language-friendly form for VLMs.

Evaluation Results. Fig. |4| reports the average accuracy across all tasks and models. Detailed
results are in App.[C.2] As expected, performance on the textual modality is the highest, confirming
the language-centric nature of current VLMs. However, a surprising pattern emerges: models perform
slightly better on the visual modality than on the semantic modality, comparing to the gap between
textual modality and the visual modality. Despite being more complex and less structured, real
diagrams yield better performance than their simplified semantic counterparts. This contradicts the
intuition that structured, noise-free inputs should facilitate better reasoning.

Takeaways. These results suggest that VLMs do make slight use of the visual-memorization
shortcut when performing diagram comprehension. While the relative gap is not large, the fact
that models outperform on real diagrams despite their complexity implies some level of visual
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memorization. The shortcut effect appears limited but measurable, and it could become more
pronounced in settings where training and evaluation data overlap.

3.3 Language Shortcuts

In addition to relying on visual memorization, VLMs may also exploit shortcuts derived from the
language prior patterns and knowledge embedded in the language modeling component rather than
performing genuine multimodal reasoning. We divide such language-based shortcuts into two distinct
types: (1) The knowledge-recall shortcut, where models retrieve factual or commonsense knowledge
from pretraining to answer questions, bypassing the diagram. (2) The Clever-Hans shortcut, where
models rely on superficial linguistic patterns in questions or answer options, independent of any
grounded understanding. In this section, we analyze these two shortcuts in turn.

3.3.1 Knowledge-Recall Shortcut: Do VLMs Answer Using Memorized Knowledge?

A common form of language-based shortcut is the knowledge shortcut, where VLMs draw on memo-
rized background knowledge or commonsense associations from pretraining instead of interpreting
the visual content [Hou et al., [2025| [Zang et al., 2024].

Experiment Design. To assess the presence of knowledge shortcuts, we analyze VLM performance
across the four tasks in CHIMERA: entity recognition (ER), relation understanding (RU), knowledge
grounding (KG), and visual reasoning (VR). As the most fundamental and prerequisite step in diagram
comprehension (Fig.2)), The entity recognition task is highly localized and visual, making it unlikely
to benefit from knowledge-recall shortcuts. In contrast, other three tasks involve deeper reasoning and
are more likely to draw on factual knowledge stored in the model. Intuitively, if a model engages in
genuine visual comprehension, we would expect the highest accuracy on entity recognition, followed
by decreasing performance on the more complex tasks. However, if a model performs worse on the
recognition but better on other tasks, it suggests a reliance on memorized knowledge rather than true
visual understanding, an indicator of knowledge-recall shortcuts.

B moverall —@— ER —— RU —@— KG VR ‘

|

8 96 |- -
g S
> 80 T % a
g %
3 £ 92| N
2 75 3 5

< 90 —

70 ! ! ! !
ER RU KG VR 2B 7B 32B 72B
(a) Average performance across all models. (b) Performance of Qwen across four model sizes.

Figure 5: The overall evaluation accuracy for 15 VLMs and the accuracy of four Qwen models on the four tasks.
VLMs perform on entity recognition much worse than that on the other three tasks. For Qwen models, larger
model is more likely to have lager gap between entity recognition and other tasks.

Quantitative Results. As shown in Fig.[5a] VLMs surprisingly perform worst on entity recogni-
tion, while achieving higher accuracy on relation understanding, knowledge grounding, and visual
reasoning. This contradicts the intuition that simpler, recognition-level tasks should be easier. The
pattern suggests that VLMs rely on memorized knowledge to handle semantically richer tasks, rather
than building understanding through visual parsing. Furthermore, as shown in Fig. [5b] this trend
holds consistently across the Qwen model family (from 3B to 72B), with larger models often ex-
hibiting more pronounced gaps. This indicates that larger VLMs are more likely to be susceptible to
knowledge-recall shortcuts, likely due to their stronger memorization capacity.

Qualitative Evidence. Fig.[f]illustrates a representative failure case from LLaMA-90B. The model
incorrectly classifies a scatter plot as a line graph, i.e., failing in basic visual recognition, yet proceeds
to correctly describe complex trends in the data and even offer projections and possible data sources.
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> Eopuletion of Bettandod, lown T What type of graph is used to display the What is the general trend of Bettendorf's

E population of Bettendorf, lowa over time? population shown in the diagram?

S o A. Scatter plot . >

rEn W C. Pie chart i X =

= Analysis: ...... The data po nected by . nge

> lines, indicating a continuous trend over time ...... D. Fluctuation with no clear trend

The data points in the graph represent: Based on the graph's trend, which of the following is a reasonable prediction?

A. Estimated population based on modeling A. Bettendorf's population will significantly decrease in the next decade.

¢ 'B. Population counts from the U.S. Census Bureau v °>‘ B. Bettendorf's population will remain relatively stable in the next decade.
C. Predictions of future population 1 C. Bettendorf's population will continue to increase in the next decade. J
D. Average population per household D. It is impossible to predict future population based on this graph.

Figure 6: Model responses for a diagram of the largest evaluated VLM (i.e., LLaMA-90B). The model fails to
recognize the basic, simple elements in the diagram while providing correct answers for more complex questions.

This behavior reinforces the hypothesis that the model bypasses perception and relies instead on
memorized knowledge patterns to perform diagram comprehension.

Takeaways. Both quantitative trends and qualitative examples support the conclusion that
knowledge-recall shortcuts occur moderately in current VLMs. These shortcuts are observed
across model sizes and tend to be more pronounced in larger models. While they help models answer
knowledge-intensive questions, this often comes at the expense of genuine visual comprehension.

3.3.2 Clever-Hans Shortcut: Do VLMs Rely on Superficial Language Patterns?

Another widely observed form of shortcut in visual question answering is the Clever-Hans shortcut,
where models exploit superficial patterns in the input text (i.e., the question and answer options),
rather than relying on visual input [Goyal et all, 2017} [Agrawal et al., 2018| [Cadéne et al., [2019]
Bleeker et all,[2024]. This shortcut is particularly insidious because the model can appear accurate by
exploiting linguistic regularities, even when the visual input is missing or irrelevant.

Experimental Design. To isolate the Clever-Hans shortcut from other language priors (e.g., factual
knowledge), we focus on the entity recognition task in CHIMERA. Our earlier analysis shows that
this task is less influenced by the knowledge-recall shortcut, making it an ideal case for probing the
effects of shallow language pattern exploitation.

We compare model performance under two conditions: (1) the standard setting with access to the
original diagram, and (2) a blank-image setting where no visual information is provided. Since each
question in CHIMERA is multiple-choice with four options, the expected accuracy from random
guessing is approximately 25%. Any significant improvement above this baseline in the absence of
visual input suggests the presence of Clever-Hans behavior.

Gemini (w/ Blank-Image) ‘ ’ B B w/ Blank-Image ll M w/ Diagram

Random

100 : | | | — | T | | |

TRl

Overall Qwen-3B Qwen-7B Qwen-32B Qwen-72B  LLaVA-7B LLaVA-13B LLaVA-34B

ER Accuracy (%)

Figure 7: Entity recognition accuracy under normal VQA and blank-image settings. Results show that LLaVA
and Qwen models have strong reliance on language-only cues, especially LLaVA models. Besides, larger models
exhibiting slightly less susceptibility to the Clever-Hans shortcut.

Quantitative Results. Fig.[7]presents entity recognition accuracy across VLMs under both settings.
LLaVA models achieve surprisingly high performance even without access to the diagram, for
instance, LLaVA-7B reaches over 60% accuracy with a blank image. This strongly indicates that
these models rely on language-only cues embedded in the question and options. Qwen models exhibit
similar tendencies, although to a lesser extent. Interestingly, we observe that larger models tend to
rely less on the Clever-Hans shortcut. For example, Qwen-72B shows a worse performance under the
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w/ blank-image setting compared to Qwen-3B. This trend suggests that increased model capacity
may improve multimodal grounding, making models more reliant on actual visual content.

Qualitative Results. Fig.[§|presents a representative example

fr‘om LLgMA—?OB on the entity recognition task. When the Which color represents the share of total
diagram input is removed, the model still generates a confi- viewing for ITV4 in the provided graph?
dent and contextually reasonable answer by relying solely on A. Yellow-green  B. Dark-red

H . . iC. | D. Purple
the question phrasing and the content of the answer Options. | o |\ he key to the graph is not
Notably, the response lacks any reference to visual content or provided, but we can infer ..... ITV4 s
spatial cues, indicating that the model is not engaging in gen- likely to be represented by a color that is

distinct from the other channels ...... the
correct answer is: C. Teal.

uine diagram interpretation. Instead, it is leveraging superficial
language patterns, a clear instance of the Clever-Hans short-
cut, highlighting its dependence on linguistic biases rather than Figure 8: Response of LLaMA-90B on
multimodal understanding. the entity recognition task. Even with-
out a valid diagram input, the model
examines the question and options and
makes an educated guess based on su-
perficial language patterns.

Takeaways. Taken together, these results provide strong evi-
dence that Clever-Hans shortcuts are significant in open-source
VLMs, particularly among smaller models. Even without valid
visual input, models achieve non-trivial accuracy by exploiting linguistic biases . While larger models
show some improvement in resisting this behavior, the shortcut remains a significant barrier to robust
multimodal reasoning. Addressing it will require improved training signals, more carefully designed
datasets, and evaluation protocols that explicitly discourage reliance on language-only cues.

4 Conclusion

We introduce CHIMERA, a comprehensive benchmark for diagram comprehension in VLMs, with
structured semantic triples and multi-level tasks. Unlike prior work, it enables fine-grained analysis
across modalities and diagram comprehension stages. Our evaluation of 15 VLMs reveals that much
of their success stems from language-based shortcuts, especially Clever-Hans behaviors, rather than
genuine diagram understanding. These insights highlight key limitations in current open-source
models and offer guidance for building more robust, interpretable, and multimodal systems.

Broader Impact

Structured diagram data holds broad potential for advancing multimodal intelligence across both
research and applied domains. The semantic annotations in our benchmark, particularly the structured
triples and multilevel reasoning tasks, can support a variety of downstream applications beyond
evaluation. For instance, they can enable better text-to-diagram generation, where structured content
such as sentences or knowledge graphs can be translated into meaningful visualizations for education,
publishing, or user interfaces. Moreover, the design of our benchmark, particularly its explicit
separation of reasoning stages and alignment with semiotic principles, can inspire new training
paradigms, such as the use of synthetic reasoning trajectories or modality-controlled supervision
to improve multimodal model robustness and interpretability. We anticipate that these ideas will
generalize to other structured domains, such as scientific visualization, instructional materials, and
interactive agents grounded in visual knowledge.

Limitations

While we offer a comprehensive benchmark for diagram comprehension, several limitations remain.
First, our dataset is constructed from Wikipedia diagrams, which, while diverse and high-quality, may
not fully represent diagrams used in other domains such as medicine, engineering, or early education.
This could limit generalization to domain-specific use cases. Second, although we implement rigorous
consistency checks and conduct human evaluation on a subset of the data, automatic annotations,
especially for complex reasoning questions, may still contain subtle noise or bias. Finally, while
we identify and analyze shortcut behaviors, our diagnostic framework is correlational and does not
isolate causal mechanisms behind model behavior. Future work could extend this analysis with
counterfactual interventions, synthetic control diagrams, or fine-grained behavioral probing.
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A Related Works

Diagram Question Answering (DQA). Diagram Question Answering (DQA) is a specialized
subfield of Visual Question Answering (VQA), where the input image is a schematic, symbolic,
or abstract diagram rather than a natural scene [Hou et al.l 2025]]. These diagrams commonly
convey structured, domain-specific knowledge—such as scientific processes, mathematical relations,
or logical systems—making DQA a valuable testbed for evaluating a model’s ability to perform
symbolic interpretation and structured visual reasoning.

Benchmarks on Statistical and Analytical Diagrams. One major category of DQA benchmarks
focuses on statistical or analytical charts, such as bar graphs, line plots, and scatter plots. These
tasks require models to extract numerical values, recognize trends, and reason over structured visual
features. Notable datasets in this area include FigureQA [Kahou et al.,[2018]], DVQA [Kafle et al.,
2018, PlotQA [Methani et al 2020], ChartQA [Masry et al., 2022], MMC [Liu et al.| [2024al],
ChartBench [Xu et al.| 2024b]], and CharXiv [Wang et al., 2024]).

Benchmarks on Visually Structured Content. Another category evaluates visually structured
content, particularly infographics and document-like formats. These include images such as posters,
book covers, webpages, and scientific figures, where layout-aware reasoning is critical. Datasets
like OCR-VQA [Mishra et al., 2019], DocVQA [Mathew et al., [2021bf], InfographicVQA [Mathew
et al.,[2021a], VisuaMRC [Tanaka et al.,[2021]], and VisualWebBench [Liu et al.,2024c] target the
integration of visual structure and textual information.

Benchmarks from Educational and Instructional Diagrams. Several DQA benchmarks are de-
rived from science education and domain-specific instructional content, often sourced from textbooks
or learning platforms. These diagrams are rich and require external knowledge integration. Key
datasets in this space include AI2D [Kembbhavi et al.|[2016], FoodWebs [Krishnamurthy et al.| [2016],
TQA [Kembhavi et al., 2017], VLQA [Sampat et al., 2020], and ScienceQA [Lu et al.} 2022].

Benchmarks on Synthetic and Abstract Diagrams. A final class of benchmarks uses synthetic
or abstract diagrams to isolate core reasoning skills. These datasets typically involve geometric
primitives or symbolic representations that are free from real-world biases. NLVR [Suhr et al., 2017]]
and ShapeWorld [Kuhnle and Copestake, [2017]] focus on compositional and spatial reasoning, while
Zhang et al.|[2016] and IconQA [Lu et al,|2021] test high-level relational and symbolic inference
through minimalistic, abstract scenes.

B Details of Benchmark Construction

B.1 Diagram Cleaning

To construct a comprehensive diagram benchmark, we source images from one of the largest open-
source knowledge bases: Wikipedia. Specifically, we use WikiWeb2M [Burns et al., 2023]], a
large-scale dataset containing over 2 million English Wikipedia webpages with diverse images, rich
textual content, and structured metadata.

However, WikiWeb2M includes many non-diagram images such as human portraits, logos, and
natural scenes. To isolate true diagrammatic content, we design a binary classification pipeline based
on MetaCLIP [Xu et al., 2024a]. We construct one descriptive prompt to identify diagrams and
six complementary prompts to exclude non-diagram content. Each image is evaluated across these
prompts, and only those classified as diagrams in all negative prompt settings are retained. This
conservative strategy ensures high precision in diagram selection. The full list of prompts used in
this filtering process is provided in Fig.[9] After filtering, we retain approximately 100,000 diagram
candidates for further processing.

B.2 Diagram Tagging

Since diagrams serve as versatile tools for knowledge transfer, they span a wide variety of types and
subject domains. To better organize our benchmark and support structured annotation, we use two
vision-language models (Molmo-7B and LLaMA-3.2-7B) to tag each diagram with both its type and
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associated knowledge domain (Fig.[9). The full prompt templates used for tagging are available in
Figs.[T0]to
We repeat the tagging process twice with both models, resulting in four independent annotations per

image. We then manually analyze the distribution of tags and consolidate the most frequent ones into
12 categories. These are divided into two groups:

* Statistical Group: Includes four types of statistical diagrams — Bar Chart, Line Graph, Pie Chart,
and Map.

* Scientific Group: Includes eight types of non-statistical diagrams categorized by academic disci-
plines — Biology, Chemistry, Computer Science, Mathematics, Physics, Astronomy, History, and
Music.

To ensure label consistency and reliability, we retain only diagrams with consistent tags across all
four annotations. This filtering results in a curated set of approximately 60,000 diagrams.

B.3 Diagram Annotation

Our benchmark contains two core forms of annotation: semantic triples and question—answer (QA)
pairs, which together capture both the content of the diagram and the levels of comprehension
required.

To ensure annotation quality, we use Gemini-2.0-Flash [[Googlel [2024] as the primary annotation
model in a structured two-step process.

Step 1: Diagram Description. To simplify the downstream annotation and improve quality, we first
prompt Gemini to generate a detailed description of each diagram. This intermediate step provides a
structured foundation from which semantic triples and QA pairs are derived. Since triple extraction
and QA generation emphasize different semantic aspects of a diagram, the description prompts are
carefully designed to highlight relevant content.

To reduce hallucination—an inherent issue in large models [Li et al.,2023| |Leng et al., 2024]—we
supplement each image with its corresponding Wikipedia text to provide factual grounding. Moreover,
we design tailored prompts for different diagram groups (e.g., statistical vs. scientific) and include
in-context examples to guide the model away from vague or generic outputs. Full prompt details are

in Figs. [[3]to[16]

Step 2: Semantic Triples and QA Pairs. Using the diagram description, we prompt Gemini
again to extract semantic triples and generate multiple-choice QA pairs. Detailed prompt designs are

available in Figs.[T17]to

To ensure the quality of the QA annotations, we implement a three-stage consistency check:

* Visual Dependency Check (No Image): The model attempts to answer questions without seeing
the diagram. If it succeeds, the question likely does not depend on the visual content.

* Wiki-Text Independency Check (No Image + Wiki-Text): The model is shown the Wikipedia
context but not the image. The question should remain unanswerable.

* Triple Completeness Check (No Image + Triples): The model is given only textual sentences
derived from the semantic triples. The question should be answerable in this setting.

Each setting is evaluated twice with shuffled answer choices to minimize bias. We consider a diagram
as "succeeded" if the model selects the correct answer in both runs, and as "failed" if it make mistakes
in either run.

We discard diagrams:
 That succeed in the entity recognition task in the first two checks, indicating that the QA annotation
is not image-dependent.

* That fail in any of the four tasks (ER, RU, KG, VR) in the third check, indicating that triples are
incomplete.
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After applying these filters, we retain a total of 7,500 diagrams, though the category distribution
remains imbalanced. From this pool, we curate a balanced test set of 1,500 diagrams and a training
set of 6,000 diagrams. Comprehensive category-wise statistics are presented in Tab. E]

Category | Test Set | Training Set
Bar Chart 150 900
Line Graph 150 350
Pie Chart 150 0
Map 150 2000
Biology 150 900
Chemistry 150 1600
Computer Science 150 0
Mathematics 150 150
Physics 150 100
Others 150 0

Table 3: Number of diagrams per category in the test dataset and training dataset.

C Supplementary Results

C.1 Experiment Setup Details
C.1.1 Model List

We evaluate a diverse set of vision-language Models (VLMs) on our benchmark. Our selection
encompasses both industry-developed models from leading Al companies such as Google, Meta,
Alibaba, and Microsoft, as well as representative open-source models from the academic community.
For certain model families, we include multiple variants with different parameter scales to facilitate
comparative analysis. The following models are evaluated in our benchmark.

Qwen-2.5-VL  [Bai et al.,|2025]] is a multimodal model series developed by Alibaba, featuring a
native dynamic-resolution Vision Transformer with window attention, enabling efficient processing
of high-resolution images and long-form videos. It supports precise object grounding with absolute
coordinates and demonstrates strong capabilities in document parsing, chart interpretation, and
temporal event localization. In our experiments, we evaluate four variants of Qwen2.5-VL with 3B,
7B, 32B, and 72B parameters.

LLaMA-3.2 [Meta, 2024] is a large-scale foundation model family developed by Meta. It in-
troduces multimodal capabilities, integrating image, video, and speech understanding via modular
adapters. For vision, it employs a pretrained image encoder, connected to the language model
through a cross-attention-based vision adapter. This compositional setup allows the system to process
image-text pairs without modifying the core language model. In our experiments, we evaluate four
variants of LLaMA-3 with 11B, and 90B parameters.

Gemma-3 [Google, [2025]] is a multimodal model series developed by Google DeepMind, sup-
porting vision, long-context reasoning, and multilingual understanding. It adopts a decoder-only
architecture with grouped-query attention and introduces a local-to-global attention mechanism to
reduce KV-cache memory overhead during long-context inference. For vision processing, it can
handle flexible image resolutions. In our experiments, we evaluate three variants of Gemma-3 with
1B, 12B, and 27B parameters.

Pixtral [Agrawal et al.,|2024] is a multimodal language model developed by Mistral. It features a
custom vision encoder trained from scratch, capable of ingesting images at their native resolution and
aspect ratio, and supports flexible tokenization strategies. The model employs RoPE-2D position
encoding in the vision encoder and uses a decoder-only architecture based on Mistral NeMo. In our
experiments, we evaluate the 12B variant.

2Qur data license is CC-BY-4.0.
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Phi-4  [Microsoft, 2025] is a multimodal model developed by Microsoft, extending the Phi-4 series
to support text, vision, and speech/audio modalities. It employs a novel Mixture-of-LoRAs architec-
ture that integrates modality-specific adapters without modifying the frozen language backbone, thus
preserving its strong language capabilities. In our experiments, we evaluate the 5.6B variant.

BLIP-3 (xGen-MM) [Xue et al.,[2024] is a multimodal model series developed by Salesforce,
designed to unify training objectives and scale vision-language understanding through a simplified
architecture. The framework replaces the Q-Former in previous models with a scalable perceiver
resampler, enabling efficient any-resolution vision token sampling and supporting interleaved multi-
modal inputs. In our experiments, we evaluate the 4B variant.

LLaVA-1.6 [Liu et al. [2024b] is a multimodal model series that enhances visual reasoning,
OCR, and world knowledge while maintaining a lightweight architecture. It introduces higher
input resolutions and refined visual instruction tuning, enabling better understanding of complex
visual scenes. In our experiments, we evaluate three variants of LLaVA-1.6 with 7B, 13B, and 34B
parameters.

C.1.2 Prompt Pipeline

For question answering, we design a three-step, systematic, rule-based evaluation pipeline. In the
first step, the model is presented with the input multimodal data and a corresponding question, and is
prompted to analyze and answer the question in a step-by-step manner. In the second step, given the
full preceding context, the model is instructed to produce a final, conclusive answer in the form of a
multiple-choice selection (i.e., A, B, C, or D). To address potential limitations in instruction-following
abilities (especially in smaller models), we introduce a third step that automatically extracts the final
answer from the model’s generated response in Step 2. This is achieved using a set of robust regular
expressions and response-processing workflows that identify key phrases, such as numeric values and
conclusion markers, to ensure accurate answer extraction and matching. An example of the three-step
pipeline is shown in Fig.

C.1.3 Human Evaluation Guidelines

The guideline for the human evaluation of the data annotation quality assessment is given below.

* Visual Dependency. Evaluate whether answering the questions requires visual reference to the
diagram. Fully Dependent means all questions rely on visual information (e.g., labels, layout,
spatial structure). Partially Dependent indicates that at least one question could be answered
without seeing the diagram, using commonsense or background knowledge.

* QA Correctness. Assess the overall quality of the four QA pairs. Perfectly Valid means all QA
pairs are accurate, clear, and grounded in the diagram. Slightly Flawed means at least one QA
pair contains minor issues such as ambiguity, hallucination, or poor phrasing.

* Triple Completeness. Examine how well the knowledge triples represent the information in the
diagram. Totally Sufficient indicates that the triple set is comprehensive, factually correct, and
well-structured. Marginally Insufficient means at least one triple is missing important details,
include minor errors, or lack clarity.

C.1.4 Project Cost

In our benchmark, most experiments are conducted on NVIDIA GPUs, including RTX 3090 and
A100, with the specific hardware selected based on model size. For Llama-3.2-90B only, we leverage
the Together Al inference API to perform evaluation. Additionally, since we only perform inference
on VLMs, we use torch.bfloat16 precision for all tasks for reducing GPU memory usage.

We report the computation resources to clean and annotate our benchmark. Besides, we report the
computing cost for our evaluation. We measure the computation cost by GPU Hours and the financial
cost for API models in Tab. 4l

C.2 Detailed Results
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Task \ Model | Data | Type \ Cost

Diagram Cleaning MetaCLIP 2M H100 200 GPU hours
Diagram Tagging Molmo & LLaMA3.2 | 100k RTX3090 400 GPU hours
Diagram Annotation Gemini 60k Google API 8,000 USD
Consistency Checking Gemini 60k Google API 12,000 USD
Benchmark Evaluation 14 VLMs 15k RTX3090/A100 | 100 GPU hours
LLaMA-90B ) TogetherAl API 400 USD

Table 4: The cost of building our benchmark and evaluation on our benchmark.

Model |  Visual Modality | Semantic Modality |  Textual Modality
‘ ER RU KG VR ‘ ER RU KG VR ‘ ER RU KG VR
Qwen2.5-3B [Bai et al., |2025] 89.3 90.5 90.3 88.8|88.0 90.7 93.7 89.8(89.4 929 91.8 88.7
Qwen?2.5-7B [Bai et al., [2025]) 91.3 941 944 91.2|87.3 932 953 90.71909 93.7 95.1 91.1
Qwen2.5-32B [Bai et al.|[2025] |92.7 95.6 959 94.1 93.6 95.6 974 95.7|95.1 96.7 98.3 96.1
Qwen2.5-72B [Bai etal, 2025] |94.3 955 96.1 94.5|91.1 949 973 952|955 97.3 983 96.1
LLaMA3.2-11B [Meta, |2024]| 82.3 66.1 70.6 69.1 759 662 71.1 67.6|858 89.5 90.7 88.9
LLaMA3.2-90B [Meta, [2024] 90.5 92.7 953 92.5|81.8 89.9 933 90.2 944 96.0 97.9 95.3
Gemma3-1B [|Google, 2025]] 46.7 474 547 539 (46.7 46.7 557 53.7|67.5 66.9 68.5 65.6
Gemma3-12B [Google, [2025] 41.3 772 80.5 84.1(39.1 76.5 80.5 84.7|93.7 94.3 95.7 93.7
Gemma3-27B [Googlel 2025] 44.0 804 81.9 85.7[45.6 80.7 80.1 85.0|95.7 96.1 969 959
LLaVAL1.6-7B [Liu et al.,2024b]] | 69.3 53.4 57.7 54.6|68.7 473 547 48.7]76.1 762 79.2 744
LLaVAL1.6-13B [Liu et al.,[2024b]] | 67.7 76.7 81.3 79.9|64.5 725 81.2 75.7|85.1 87.5 90.3 859
LLaVA1.6-34B [Liu et al.,[2024b]] | 82.7 84.4 88.3 86.0 |73.4 83.4 89.3 86.3|92.5 93.0 945 919
Pixtral-12B [|Agrawal et al.||[2024] | 87.5 90.0 90.5 90.1 | 72.1 88.3 91.4 89.9 929 944 95.6 93.1
Phi4-5.6B [Microsoft, [2025|] 90.8 91.9 909 899|854 90.1 90.5 85.3|87.5 92.1 94.6 92.7
BLIP3-4B [Xue et al., 2024 40.6 723 73.7 749 (40.6 723 737 749|84.0 87.1 89.5 83.6

Table 5: Comparative evaluation of multiple vision-language models across real, synthetic, and textual modalities
on four tasks. The best-performing result is highlighted in bold, and the second-best is underlined. Note that ER,
RU, KG, and VR denote entity recognition, relation understanding, knowledge grounding, and visual reasoning,

respectively.
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709 C.3 Prompt Examples

Prompt for Diagram Cleaning

Positive Prompt:

* A visual representation of information or data, explicitly intended for educational
or scientific purposes. This includes flowcharts, circuit diagrams, architectural
blueprints, and graphs, characterized by clear labeling and structured layout for
easy understanding of complex concepts.

Negative Prompts:

* An image of a company or brand logo, designed to be a simple yet distinctive
symbol that represents a company or product. Logos often consist of stylized
letterforms, abstract geometric shapes, or a combination of both, and are designed
to be easily recognizable even at small sizes. They usually feature a limited color
palette and lack detailed textual information.

* An image depicting natural landscapes, including forests, mountains, rivers,
or beaches, characterized by vivid natural colors and organic forms without any
superimposed text or symbols.

* A photograph of one or several human beings, focusing on the face or figure, often
capturing expression, personality, and mood, without any overlay of graphical
information or text.

» Images of old books, pages, or manuscripts, primarily showing textual content
in a historical or literary context, often with visible textures of paper and traditional
fonts.

* A screenshot from a computer or mobile device, typically showing a user interface
with icons, menus, and open applications, which may include web pages, software
programs, or mobile apps.

* An image with minimal visual content, often appearing as a solid color back-
ground with sparse elements like one or two letters or one or two simple shapes.
These images lack detail and complexity, presenting very basic or stark visual
information with no significant features or recognizable patterns.

Figure 9: We perform six rounds of binary classification. In each round, an image is classified as a diagram or
not by comparing its embedding with the embeddings of the two text prompts using MetaCLIP. Only images
consistently classified as positive examples—that is, diagrams—across all rounds are retained.
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Prompt for Tagging (Step 1: Captioning)

Percentage of High School Students Who Reported
Current Cigarette Use,* 1991 — 2007

1991 1993 1995 1997 1999 2001 2003 2005 2007

urveys, 1991 — 2007

System: You are a diagram description assistant. Your task is to provide a detailed
and structured description of the given diagram. Focus on aspects that might help
to tag its domain (e.g., Biology, Chemistry, History) and type (e.g., Bar Chart, Flow
Chart, Map).

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

» Page Title: Prevalence of tobacco use.

* Page Description: Prevalence of tobacco use is reported by the World Health
Organization, which focuses on cigarette smoking due to reported data limitations.
Smoking has therefore been studied more extensively than any other form of
consumption.Smoking is generally five times more prevalent among men than
women; however, the gender gap differs across countries and is smaller in younger
age groups. (text truncated due to space)

* Diagram Description: None.

Instruction: The description must be organized into the following three sections:

* Content: Describe key visual elements, labels, and any prominent features in the
diagram.

* Layout: Explain how the elements are arranged (e.g., hierarchical, circular, linear)
and the overall structure.

* Function: Indicate the likely purpose of the diagram (e.g., explaining a process,
showing relationships, presenting data).

Figure 10: Before predicting tags for the diagrams, we conduct a captioning step. We instruct the VLM to act as
a diagram description assistant and provide it with contextual information from Wikipedia, including the page
title, page description, and diagram description (if available). The model is then prompted to focus on describing
the content, layout, and function of the diagram.
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Prompt for Tagging (Step 2: Open-Ended Prediction)

System: You are a diagram tagging assistant. Your task is to analyze a diagram and
identify its domain and type.

Context: The description of the diagram is provided for your reference:

* Content: The diagram appears to be a line graph depicting trends over time. It
shows data points connected by lines, representing changes in a specific measure
from 1991 to 2007. The graph includes numerical values on the y-axis and years
on the x-axis. There are likely labels for the y-axis and x-axis, as well as a title at
the top of the graph.

* Layout: The layout of the diagram is typical of a line graph. The vertical axis
(y-axis) represents percentages, while the horizontal axis (x-axis) represents years.
The data points are plotted along the x-axis and connected by lines to show the
trend over time. The title is likely positioned at the top of the graph, providing
context for the data being presented.

* Function: The function of this diagram is to visually represent and illustrate trends
in a specific measure over a 16-year period. It allows viewers to quickly understand
how the measured value has changed from 1991 to 2007. The use of a line graph
makes it easy to see patterns, trends, and changes in the data over time, which is
particularly useful for analyzing long-term data sets and identifying any significant
shifts or fluctuations in the measured variable.

Instruction: Now analyze the diagram and provide its domain and type:

* Domain: The domain should be a specific field or area of knowledge. Its examples
include Biology, Chemistry, Physics, Astronomy, History, etc.

* Type: The type should describe the nature of the diagram. Its examples include
Bar Chart, Flow Chart, Table, Map, Logo, etc.

Output Format: Your output must be in the following JSON-like format. Do not
provide any explanations or additional context. Only output the JSON object.
{

“Domain”: “string (must be 1 or 2 words)”,

99, <

“Type”: “string (must be 1 or 2 words)”

}

Figure 11: After generating a caption for the diagram, we prompt the VLM again using the annotated content,
layout, and function descriptions, and ask it to predict both a domain tag and a type tag. In this step, we adopt an
open-ended setting, allowing the model to freely generate tags without any predefined options.
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Prompt for Tagging (Step 2: Multiple-Choice Prediction)

System: The same as Figure[TT]

Context: The same as Figure [T}

Instruction: Now analyze the diagram and provide its domain and type:

* Domain: The domain should be a specific field or area of knowledge. Choose only
one option from the following list:

— Agriculture — Mathematics
— Astronomy — Music
- Biology — Network Science
= Chemistry — Operations Research
— Computer Science 3
. — Physics

— Data Science . .

: g — Political Science
— Environmental Science
SRS — Psychology
— Geography and Geology - Sports
— Health Science — Transportation
— History — Urban Planning

* Type: The type should describe the nature of the diagram. Choose only one option
from the following list:

— Bar Chart — Network Chart

— Chemical Visual — Pie Chart

— Concept Diagram — Scatter Plot

— Floor Plan — Table

— Flow Chart . .

_ Line Graph — Technical Diagram
- Logo — Timeline

- Map — Tree

Output Format: The same as Figure [TT]

Figure 12: After generating open-ended tags, we apply clustering methods to analyze the tag distribution and
identify a set of high-frequency tags, which are then used as options for the multiple-choice tagging setting. In
this setting, we keep the instructions and context unchanged, but instead of allowing free predictions, the VLM
is asked to select tags from the option list.
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Prompt for Statistical Annotation (Step 1: Captioning)

Total Dollar Amount Entering Default

6.
55
50 mal
45

¥ n2
35
S0 ma3
25 mod
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15
10
05
00

2015 2016 2017 2018 2019 2020

Dollars (Billions)

Year

System: You are a scene graph construction assistant. Your task is to generate a
detailed language-based description of a scene graph for a provided diagram.

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

* Page Title: Federal Direct Student Loan Program.

» Page Description: The William D. Ford Federal Direct Loan Program provides
low-interest loans for students and parents to help ... (text truncated due to space)

* Diagram Description: Total number of dollars (in billions) entering default,
2009-2018, data source: CRS.

Instruction:

* Identify key elements such as axes, labels, legends, colors, and numerical values.
 Describe trends, patterns, or outliers in the data, including peaks, or correlations.
 Explain relationships between different variables if applicable.

» Describe geographical features such as colored regions and arrows if applicable.

* Use clear and structured language.

Examples:

* The bar representing Q3 in 2019 is the tallest among all quarters.

* The blue line in the graph shows a steady increase from 2010 to 2018.

» The dark green segment in the pie chart represents 45.9 TWh of diesel consumption.
* The shaded region in the map highlights areas with the highest population density.
* The thick arrow marks the strongest southeastern wind current towards the country.

Figure 13: Similar to the tagging stage, we conduct a captioning step before generating semantic triples in order
to reduce hallucinations. We also provide the model with contextual information from Wikipedia. For statistical
diagrams, we instruct the model to focus on specific features such as numerical values and data trends. To
enhance the quality of output, we manually design five descriptive sentences that serve as in-context examples
during prompting.
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Prompt for Statistical Annotation (Step 2: Annotation)

System: You are an expert information extraction assistant specializing in scene
graph construction. Your task is to analyze a given diagram description and extract
meaningful, structured relationships between key elements.

Context: The description of the diagram is provided for your reference.

1. Key Objects: X-axis: Represents the years from 2009 to 2018. Each year is
labeled along the axis. Y-axis: Represents the total dollars in billions entering default.
The axis is labeled “Dollars in Billions”. Numerical markers are present along the
axis, though precise values are not clearly visible in the image. Bars: Vertical bars
represent the amount of dollars entering default for each year. The height of each
bar corresponds to the dollar amount. Data Labels: Numerical values are displayed
above each bar, indicating the precise amount for each year.

2. Attributes: X-axis: Horizontal, evenly spaced tick marks representing years.
Y-Axes: Vertical, with numerical markers indicating billions of dollars. The scale
appears to range from approximately O to 80 billion. Bars: Vertical rectangular bars,
colored blue. The width of each bar is uniform. Data Labels: Black text, positioned
above each bar.

3. Relationships: Each bar is associated with a year on the x-axis and a value on the
y-axis. The height of the bar corresponds directly to the value indicated by the data
label and represents the amount in billions of dollars entering default in that year.

4. Structural or Hierarchical Information: The chart is a simple bar chart.

5. Data Trends: The chart shows a general trend of increasing dollars entering
default from 2009 to a peak, followed by a decrease and then another increase toward
the end of the period (2018). Precise yearly fluctuations are observable but require
more detailed numerical data. There is no clear outlier year that significantly deviates
from the general pattern.

Instruction:
* Identify important relationships between key elements from the description.
* Structure these relationships in the form of triples with three components:

— Source: The primary element (subject) in the relationship.
— Relationship: The type of connection between the source and target.
— Target: The secondary element (object) in the relationship.

¢ Ensure that:

— Each triple represents a meaningful connection between elements.
— The relationships are concise yet descriptive.
— There are no duplicate, redundant, or meaningless triples.

Output Format: The final output must strictly follow the JSON format below:
“17”: {“Source”: “Triple 17, “Relationship”: “Triple 17, “Target”: “Triple 1"},

“N”: {“Source”: “Triple N”, “Relationship”: “Triple N, “Target”: “Triple N’}
}

Figure 14: After extracting relevant information from the diagram, we prompt the model to generate a list of
triples, where each triple consists of a source (head entity), a relationship (relation), and a target (tail entity). To
facilitate downstream processing, we instruct the model to produce the output in JSON format.
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Prompt for Scientific Annotation (Step 1: Captioning)

Liposome for Drug Delivery

Protective layer against
immune destruction

Homing
peptide

Drug crystallized
in aqueous fluid —

Lipid-soluble
drug in bilayer

Lipid
bilayer

System: You are a scene graph construction assistant. Your task is to generate a
detailed language-based description of a scene graph for a provided diagram.

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

* Page Title: Nanomedicine.

* Page Description: Nanomedicine is the medical application of nanotechnology.
Nanomedicine ranges from the medical applications of nanomaterials and biologi-
cal devices, to nanoelectronic biosensors ... (text truncated due to space)

» Diagram Description: Liposomes are composite structures made of phospholipids
and may contain small amounts of other molecules. Though liposomes can vary in
size from low micrometer range to ... (text truncated due to space)

Instruction:

* Identify key objects, such as text, arrows, nodes, or data points.

* Identify attributes, such as size, color, shape, position, and numerical values.
» Explain how objects interact or relate to one another.

* Describe its overall hierarchy, structure or flow clearly if applicable.

 Use clear and structured language.

Examples:

* The newly discovered moon is connected to its elliptical orbit around Neptune.
* The blue alpha-helices are connected to beta-sheets through loop regions.

* The amine group (—NH>) is added to the benzene ring at a new position.

* Each yellow triangular face is attached to three metallic rods at its edges.

» The E-flat note is positioned directly below the B-flat note on the staff.

Figure 15: The basic prompt framework for annotating scientific diagrams follows the same structure as that
used for statistical diagrams. However, due to the inherent difference between scientific and statistical diagrams,
we provide tailored instructions that emphasize features like objects, attributes, and structural hierarchy. We also
include in-context examples specific to scientific content.
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Prompt for Scientific Annotation (Step 2: Annotation)

System: You are an expert information extraction assistant specializing in scene
graph construction. Your task is to analyze a given diagram description and extract
meaningful, structured relationships between key elements.

Context: The description of the diagram is provided for your reference.

The diagram depicts a liposome used for drug delivery. The central element is a large,
circular liposome, predominantly brown-orange, representing a lipid bilayer. Inside
the liposome, a light blue aqueous core contains a crystalline structure labeled "Drug
crystallized in aqueous fluid" (white and iridescent) and a purple, coiled structure
labeled "DNA". Several arrows connect labels to parts of the liposome:

* An arrow points from the text "Protective layer against immune destruction” to the
outer edge of the liposome’s lipid bilayer, indicating a protective function.

* Arrows point from the text "Lipid-soluble drug in bilayer" to the lipid bilayer itself,
indicating the location of lipid-soluble drugs within the bilayer.

* Arrows point from the text "Drug crystallized in aqueous fluid" to the crystalline
structure in the aqueous core.

* Arrows point from the text "Lipid bilayer" to the brown-orange lipid bilayer.

Attached to the outer edge of the liposome are several purple, wavy structures labeled
"Homing peptide," suggesting a targeting mechanism. The text "Liposome for Drug
Delivery" is positioned above the liposome, serving as a title. The overall structure
is hierarchical, with the liposome as the central node, and various labels and arrows
acting as connected nodes, describing its components and functions.

Instruction:
* Identify important relationships between key elements from the description.
* Structure these relationships in the form of triples with three components:

— Source: The primary element (subject) in the relationship.

— Relationship: The type of connection between the source and target.
— Target: The secondary element (object) in the relationship.

* Ensure that:
— Each triple represents a meaningful connection between elements.

— The relationships are concise yet descriptive.
— There are no duplicate, redundant, or meaningless triples.

Output Format: The final output must strictly follow the JSON format below:

{
“17”: {“Source”: “Triple 17, “Relationship”: “Triple 17, “Target”: “Triple 1"},

“N”: {“Source”: “Triple N”, “Relationship”: “Triple N, “Target”: “Triple N}
}

Figure 16: Similar to statistical diagrams, we provide the model with previously extracted information and ask it
to generate a list of triples in JSON format.
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Prompt for QA Annotation (Step 1: Captioning)

Water sources around the lake 28th Nov 1691

Other 5 veins

Bocea di Lups

System: You are a diagram description assistant.

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

* Page Title: Aqua Traiana.

» Page Description: The Aqua Traiana was a 1st-century Roman aqueduct built by
Emperor Trajan and inaugurated on 24 June 109 AD. It channelled water from
sources around Lake Bracciano, 40 kilometers north-west of Rome, to Rome in
ancient Roman times but had fallen into disuse by the 17th century. (text truncated
due to space)

e Diagram Description: None.

Instruction: Your task is to provide a detailed description of the diagram, addressing
the following four aspects:

* Recognition: Identify and describe the key visual elements present in the diagram.
* Understanding: Explain the relationships and interactions between these elements.
* Grounding: Relate the diagram elements to real-world concepts or entities.

* Reasoning: Interpret the diagram to draw conclusions or infer information beyond
what is explicitly shown.

Output Format: You must output your result in the following JSON-like format:

{
“Recognition”: “string or NA”,
“Understanding”: “string or NA”,
“Grounding”: “string or NA”,
“Reasoning”: “string or NA”

}

Figure 17: Before annotating QA pairs, we prompt the model to caption the diagram. Here we provide relevant
Wikipedia text and the definition of the four tasks to instruct the model to generate descriptions specific for QA
annotation.
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Prompt for QA Annotation (Step 2: Annotation)

System: You are a question-answering annotation assistant. Your task is to analyze a
diagram and annotate question-answering pairs.

Context: The description of the diagram is provided for your reference.

1. Recognition: The diagram is a 3D pie chart showing the distribution of water
sources around a lake on November 28th, 1691. The chart is segmented into six
sections, each representing a different water source and its percentage contribution.
The sections are color-coded for easy identification. The labels for each section
indicate the name of the water source and its corresponding percentage. The largest
section is labeled “Fiora” and occupies 47% of the chart. The other sections are
“Vigna di Venere” (16%), “Mola di Vigarello” (18%), “Bocca di Lupo” (11%), “Other
5 veins” (8%).

2. Understanding: The pie chart illustrates the relative proportions of water sourced
from different locations around the lake on the specified date. Each slice represents a
specific water source, and its size is proportional to its contribution to the total water
supply. The chart visually compares the contributions of each source, highlighting
the dominance of Fiora with 47% of the total water supply.

3. Grounding: The diagram represents the real-world distribution of water sources
around a lake (likely Lake Bracciano based on the Wikipedia context) at a specific
point in time. The named sources (“Fiora”, “Vigna di Venere”, etc.) are likely geo-
graphical locations or specific water channels feeding into the lake. The percentages
represent the proportion of the total water volume coming from each source.

4. Reasoning: The chart shows that Fiora is the most significant water source,
contributing almost half (47%) of the total water. The remaining sources contribute
smaller, but still substantial, portions. This suggests that the water supply relied
heavily on Fiora, while other sources played supporting roles. The data could be used
to understand the hydrological characteristics of the area and the historical reliance
on different water sources. The date (28th Nov 1691) implies this is a snapshot of a
specific time and conditions, and the distribution might vary across seasons or years.

Figure 18: After captioning, we provide the model with the extracted information corresponding to the four
tasks.
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Prompt for QA Annotation (Step 2: Annotation) (Continued)

Instruction: Create four multiple-choice questions based on the diagram, each
focusing on one of the four aspects:

* Recognition: Test the identification of elements in the diagram.
* Understanding: Assess comprehension of the relationships or processes depicted.
* Grounding: Evaluate the ability to connect elements to real-world knowledge.
* Reasoning: Challenge inference or prediction based on the diagram.
For each question:
* Provide a clear question statement.
 Offer exactly four options labeled A, B, C, and D.
* Indicate the correct answer, which must be only one among A, B, C, or D.

Output Format: You must output your result in the following JSON-like format:
{

“Recognition”: {
“Question”: “string”,
“Options™: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

),

“Understanding”: {
“Question”: “string”,
“Options™: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

1,

“Grounding”: {
“Question”: “string”,
“Options”: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

},

“Reasoning”: {
“Question”: “string”,
“Options™: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

Figure 19: Using the descriptive information, we instruct the model to generate one multiple-choice question for
each of the four tasks. Each question is designed to include exactly four answer options with a single correct
answer.
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QA Annotation Example

Recognition: What percentage of water sources around the lake on November 28th,
1691, came from Bocca di Lupo?

A) 11%

B) 8%

C) 16%

D) 18%

Answer: A

Understanding: What does the size of each segment in the pie chart represent?
A) The geographical location of the water source.

B) The depth of the water source.

C) The volume of water contributed by each source relative to the total.

D) The water temperature of each source.

Answer: C

Grounding: Considering the context of the chart, which of the following is MOST
likely a real-world interpretation of Fiora, Vigna di Venere, and Mola di Vigarello?
A) Types of water purification methods used in 1691.

B) Names of individuals who managed the water supply.

C) Geographical locations or water channels supplying the lake.

D) Measurements of water flow rates.

Answer: C

Reasoning: Based on the data, which of the following conclusions is MOST sup-

ported?

A) The water supply was evenly distributed among all sources.

B) Fiora was the primary source of water for the lake.

C) The "Other 5 veins" contributed the least amount of water, rendering them in-
significant.

D) Vigna di Venere was the most important water source besides Fiora.

Answer: B

Figure 20: Here we illustrate an example of the annotated results, including questions, options, and correct
answers.
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Pipeline for Benchmark Evaluation

. 15.000 +
10,000 - 14,999

5,000 - 9,999
1,000 - 4,999 First generation immigrant population without a

Norwegian background in Norway in 2009

Step 1: Analysis

Prompt:

You are a Visual Question Answering expert. Based on the image, analyze and answer
the following question:

What color represents countries with 10,000-14,999 first-generation immigrants in
2009?

A) Dark Red.
B) Red.

C) Light Orange.
D) Light Peach.

Output:

Okay, I've analyzed the image. Based on the legend provided, countries with 10,000-
14,999 first-generation immigrants in Norway in 2009 are represented by **B. Red**.
Let me know if you have another question about the image!

Step 2: Conclusion

Prompt:

Based on the context above, give your final choice. Do not provide any explanations.
Output:

The final choice is B.

Step 3: Choice
Input: The final choice is B.
QOutput: B

Figure 21: This figure illustrates the pipeline used for benchmark evaluation. First, the model is prompted to
analyze the input data and the question. Next, it is asked to produce a final conclusion based on its analysis.
Finally, a response-processing step is applied to extract the answer from the conclusion text.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification:

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA|
Justification:

Guidelines:
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The answer NA means that the paper does not include theoretical results.
All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification:

Guidelines:

The answer NA means that paper does not include experiments requiring code.
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Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLS to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our evaluation is done on our benchmark, which contains sufficient number of test
examples. Thus, the average accuracy could precisely indicate the performance without the need
of other statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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10.

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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11.

12.

» If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode. com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.
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15.

» At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [Yes]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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