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Abstract

Diagrams convey symbolic information in a visual format rather than a linear stream1

of words, making them especially challenging for AI models to process. While2

recent evaluations suggest that vision-language models (VLMs) perform well on3

diagram-related benchmarks, their reliance on knowledge, reasoning, or modality4

shortcuts raises concerns about whether they genuinely understand and reason5

over diagrams. To address this gap, we introduce CHIMERA, a comprehensive6

benchmark comprising 7,500 high-quality diagrams sourced from Wikipedia; each7

diagram is annotated with its symbolic content represented by semantic triples8

along with multi-level questions designed to assess four fundamental aspects of9

diagram comprehension: entity recognition, relation understanding, knowledge10

grounding, and visual reasoning. We use CHIMERA to measure the presence of11

three types of shortcuts in visual question answering: (1) the visual-memorization12

shortcut, where VLMs rely on memorized visual patterns; (2) the knowledge-13

recall shortcut, where models leverage memorized factual knowledge instead of14

interpreting the diagram; and (3) the Clever-Hans shortcut, where models exploit15

superficial language patterns or priors without true comprehension. We evaluate16

15 open-source VLMs from 7 model families on CHIMERA and find that their17

seemingly strong performance largely stems from shortcut behaviors – visual-18

memorization shortcuts have slight impact, knowledge-recall shortcuts play a19

moderate role, and Clever-Hans shortcuts contribute significantly. These findings20

expose critical limitations in current VLMs and underscore the need for more21

robust evaluation protocols that benchmark genuine comprehension of complex22

visual inputs (e.g., diagrams) rather than question-answer shortcuts.23

1 Introduction24

Visual language enables communication through structured visual elements such as symbols, icons,25

and spatial relationships. Diagrams are a fundamental form of visual language, used in domains26

such as science, education, and engineering to convey complex information compactly and intu-27

itively [Greenspan and Shanker, 2009, Anderson et al., 2011, Zdebik, 2012, Marriott and Meyer,28

2012]. Comprehending diagrams requires a wide range of abilities, from basic visual recognition29

to complex reasoning, making it a particularly challenging task for AI systems [Seo et al., 2014,30

Kembhavi et al., 2016, Lu et al., 2021]. Understanding how vision-language models (VLMs) interpret31

and reason over diagrams is thus both conceptually challenging and practically important: it reveals32

current limitations and guides the design of future multimodal systems [Li, 2023]. While recent33

VLMs have shown impressive results on diagram-related benchmarks [Xue et al., 2024, Liu et al.,34

2024b, Bai et al., 2025, Meta, 2024, Google, 2025, Agrawal et al., 2024, Microsoft, 2025], these35

benchmarks often focus narrowly on performance and lack a structured evaluation of the step-by-step36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Semantic Modality Textual Modality
Maadal has part Left face;
Maadal has part Right face;
Maadal has part Dhungro;
Maadal has part Khare;
Maadal has part Tana;
Maadal has part Juino;
Maadal has part Matheri;
Maadal has part Katauro;
Maadal has part Ujjindo;
Left face has dimension 6.5 inch;
Right face has dimension 5.5 inch;
Maadal has dimension 18 inch. 

Visual Modality Tasks

Entity
Recognition

Which of the following parts is NOT labeled on the diagram of the Maadal?
A. Khare B. Ujindo C. Danda D. Tanaa

Relation
Understanding

What is the relationship between 'Matheri' and 'Tanaa' as shown in the diagram? 
A. They are interchangeable names for the same part.
B. Matheri is a component within Tanaa.
C. Tanaa is a type of material used to make Matheri. 
D. They are adjacent parts of the Maadal's structure.

Knowledge
Grounding

Based on the diagram, what type of musical instrument is the Maadal?
A. A string instrument B. A wind instrument
C. A double-headed drum D. A single-headed drum

Visual
Reasoning

The diagram shows a slight difference in diameter between the left and right 
faces of the Maadal. What is a plausible reason for this difference?

A. It's purely aesthetic, with no impact on sound.
B. It's a manufacturing defect.
C. It might produce slightly different tones on each face.
D. It's to make the instrument easier to hold.

Figure 1: An example from CHIMERA showcasing three modalities (visual, semantic, and textual modality) and
four evaluation tasks: entity recognition, relation understanding, knowledge grounding, and visual reasoning.

reasoning process. More importantly, they do not systematically address shortcut behaviors, such37

as relying on memorized patterns or language priors that can inflate scores without true compre-38

hension [Goyal et al., 2017, Bleeker et al., 2024, Hou et al., 2025]. This highlights the need for a39

benchmark that not only measures accuracy, but also disentangles how models comprehend diagrams,40

from basic recognition to abstract reasoning, while controlling for potential shortcuts.41

Motivated by semiotics, the study of how meaning is conveyed through signs, we represent the42

diagram content using semantic triples, enabling consistent alignment across three modalities: the43

original diagram, i.e., visual modality; visualized triples, i.e., semantic modality; and sentences, i.e.,44

textual modality. Building on Peirce’s theory of semiosis, which models interpretation as linking45

signs to objects through reasoning [Peirce, 1935, Morris, 1938], we frame diagram comprehension as46

a four-stage process: entity recognition, relation understanding, knowledge grounding, and visual47

reasoning. This structured perspective reflects the key cognitive steps required for VLMs to move48

from surface recognition to deeper multimodal understanding.49

We introduce CHIMERA, a fine-grained benchmark designed to evaluate the abilities of VLMs50

to interpret and reason about diagrams with meticulous annotations of both diagram content and51

evaluation questions. We collect images from Wikipedia [Burns et al., 2023], and clean them using52

MetaCLIP [Xu et al., 2024a] where unsuitable images such as photos are filtered out. Then, we use53

VLMs to describe and annotate each diagram with tags of its domain and type, where low-quality54

images are further filtered out. We further use Gemini [Google, 2024] to describe the essential55

content that the diagram conveys and use it to annotate semantic triples, and four levels of questions56

based on the description. We implement consistency checks by running the annotation process57

multiple times and under different settings to filter out diagrams with low-quality annotations. In58

total, CHIMERA comprises 7,500 (with 6,000 training set and 1,500 test set) meticulously annotated59

diagrams, each enriched with a set of semantic triples and four levels of questions targeting entity60

recognition, relation understanding, knowledge grounding, and visual reasoning (see Fig. 1).61

Then, we revisit the shortcut behaviors in visual question answering (VQA) under the diagram62

comprehension scenario, and categorize them into three distinct types. First, models could rely on63

image priors, memorizing visual information from training data and using it directly during inference,64

without genuinely understanding the diagram content [Jayaraman et al., 2024, Li et al., 2024]. We65

refer to this as the visual-memorization shortcut. Second, models could exploit language priors,66

which we further divide into two subtypes. Given that diagrams often convey factual or domain-67

specific knowledge, a model could simply recognize high-level visual patterns and rely on pre-trained68

language knowledge to answer the question without actually understanding the diagram [Hou et al.,69

2025, Zang et al., 2024]. We refer to this as the knowledge-recall shortcut. In addition to that, models70

can also learn to exploit superficial patterns in the language of the questions or answer options,71

arriving at correct answers without using the visual input at all [Goyal et al., 2017, Bleeker et al.,72

2024]. We call this behavior the Clever-Hans shortcut, drawing analogy to the phenomenon where73

models appear to perform well by exploiting spurious cues rather than genuine understanding.74

Using CHIMERA, we evaluate 15 open-source VLMs from 7 model families to analyze their core75

abilities and behavioral patterns in diagram comprehension. We compare model performance on76
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visual modality and semantic modality. Surprisingly, VLMs perform slightly better on visually77

complex real diagrams than on the simpler, cleaner semantic graphs. This counterintuitive result78

suggests that the visual-memorization shortcut exists. Models could exploit memorized visual patterns79

from pretraining, but its impact is slight. The knowledge-recall shortcut is unlikely to affect entity80

recognition, but it is more plausible in the remaining three tasks, which are more knowledge-intensive.81

However, our results show that VLMs perform obviously worse on entity recognition than on the82

other three tasks, despite it being the simplest and most fundamental. This performance gap supports83

that the knowledge-recall shortcut occurs moderately in the latter tasks. Given that entity recognition84

is relatively free from knowledge-based shortcuts, we investigate the Clever-Hans shortcut in this85

task. Specifically, we evaluate VLMs without providing the diagram, using only the question and86

answer options. Surprisingly, some models could even achieve comparable performance as when the87

diagram is present, suggesting that they rely heavily on spurious linguistic patterns in the prompt.88

This provides strong evidence that the Clever-Hans shortcut is significant.89

These findings reveal that the seemingly strong diagram reasoning performance of current VLMs is90

largely driven by shortcut behaviors rather than genuine comprehension. Among the three types of91

shortcuts, the Clever-Hans shortcut is the most severe. Our analysis exposes fundamental limitations92

in current open-source VLMs and underscores the need for more robust evaluation frameworks.93

Achieving human-level visual understanding remains a long and challenging journey.94

2 CHIMERA95

In this section, we first outline the benchmark design, followed by describing the benchmark con-96

struction process in detail and presenting the results of human evaluation.97

2.1 Design Philosophy: Semiotics and Semiosis98

Our data annotation focuses on two key aspects of each diagram: the information content it conveys,99

and the cognitive abilities required to interpret that information.100

Diagram Information: Three Modalities. Semiotics, the study of signs and symbols, examines101

how humans construct and interpret meaning through various forms of representation [Peirce, 1935,102

Morris, 1938, Cullum-Swan and Manning, 1994]. According to Charles Sanders Peirce and Ferdinand103

de Saussure, signs are generally categorized into three types: icons, which represent meaning through104

visual resemblance; symbols, through arbitrary or conventional associations; and indexes, through105

direct or causal links (e.g., smoke signaling fire) [Peirce, 1935, Yakin and Totu, 2014]. This framework106

aligns closely with how diagrams convey meaning and how humans interpret them. Inspired by this,107

we design three modalities in our benchmark that mirror these semiotic types: the visual modality108

(icon) presents the original diagram; the semantic modality (symbol) visualizes structured triples as109

graphs; and the textual modality (symbol) expresses them in natural language.1110

Diagram

Relations Inferences

Entities

Real-World
Concepts

ER

VR

VR

VRKG

RU KG

Figure 2: Diagram comprehen-
sion process inspired by semiosis.

By evaluating how VLMs interpret equivalent content across these111

modalities, we gain insight into their true comprehension ability. If112

a model understands the underlying meaning regardless of format as113

humans do, it should perform consistently across modalities. Thus,114

grounding our design in semiotic theory provides both a cognitively115

motivated structure and a principled way to analyze cross-modal116

reasoning and shortcut behaviors in VLMs.117

Diagram Comprehension: Four Tasks. Semiosis, as also defined118

by Charles Sanders Peirce, refers to the dynamic, triadic process119

through which a sign (e.g., a diagram) represents an object (the120

realistic entity) and produces an interpretant (the meaning or un-121

derstanding in the interpreter’s mind) [Peirce, 1935, Morris, 1938,122

Peirce et al., 1992]. This process is iterative, starting with the recog-123

nition of signs, followed by the interpretation of the relationships between signs, and then the124

grounding of their meaning within broader knowledge, which may lead to further reasoning and new125

insights. Each phase of semiosis is fundamental to fully understanding and reasoning with diagrams.126

1We do not model indexes, as diagrams typically present information explicitly rather than contextually.
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Our benchmark tasks are directly aligned with these phases of semiosis (Fig. 2). Entity Recognition127

corresponds to the first step in semiosis, where the model identifies diagram elements (i.e., entities)128

and associates them with real-world objects. Relation Understanding reflects the second phase,129

requiring the model to interpret the relationships between these entities, understanding how they130

connect within the diagram. Knowledge Grounding involves the model linking its recognized entities131

and relations to external knowledge, grounding the diagram’s information beyond its immediate132

context. Finally, Visual Reasoning mirrors the iterative nature of semiosis, where the model uses133

its grounded understanding to draw inferences and conclusions, completing multiple cycles of134

interpretation and reasoning. This framework ensures that our benchmark evaluates the model’s135

ability to process diagrams in a human-like, comprehensive manner.136

2.2 Benchmark Construction137

We build our benchmark in three stages: diagram cleaning, tagging, and annotation (semantic triples138

and question-answer pairs). An illustration of our construction pipeline is given in Fig. 3.139

Data (100k)

Wiki-Text

Visual
Tag Domain Type

Tag Domain Type

Category List

Data (60k)

Wiki-Text

Visual

Category

Data (7.5k)

Semantic

Visual

Textual

QA

∩

QA

Diagram 
Cleaning

Diagram Tagging

Visual Dependency Check

Wiki-Text Dependency Check

Triple Completeness Check

Diagram
Description

Diagram
Captioning

Triple

Textual

Semantic

Diagram
Annotation

Wiki-Text

Triple

WikiWeb2M

Visual

Wiki-Text

Tag Categorization

Consistency Filtering

Human

Figure 3: Overview of our benchmark construction pipeline. First, starting from the WikiWeb2M dataset, we use
MetaCLIP to remove non-diagram images, resulting in 100k diagrams. Second, we apply Molmo and LLaMA
for tagging, and then derive a fixed category list and filter inconsistent results, yielding 60k diagrams. Third, we
prompt Gemini to caption diagrams and annotate semantic triples and QA pairs. We then apply three rounds of
quality checks, producing a final dataset containing 7.5k high-quality diagrams.

Diagram Cleaning. To build our benchmark, we extract images from WikiWeb2M [Burns et al.,140

2023], a large-scale corpus of English Wikipedia pages. Since many images are irrelevant to diagrams,141

we apply a filtering process using MetaCLIP [Xu et al., 2024a], combining one positive prompt142

and six negative prompts. Only images consistently classified as diagrams are retained, resulting in143

approximately 100k candidate images. Details are provided in App. B.1.144

Diagram Tagging. Diagrams vary widely in type and domain due to their role in knowledge transfer.145

To structure our benchmark, we use VLMs (Molmo and LLaMA) to tag each diagram by its type and146

subject domain (Fig. 3). After aggregating four annotations per image, we group the most common147

tags into 12 categories across two groups: statistical (e.g., bar chart, line graph) and scientific (e.g.,148

biology, physics). Only diagrams with consistent tags are retained, yielding around 60k images. Full149

tagging prompts and category details are provided in App. B.2.150

Diagram Annotation. We posit that the information and knowledge that a diagram conveys can151

be naturally formalized by a knowledge graph, that is, a set of semantic triples [Lassila and Swick,152

1999], where each triple contains a head entity, a relation, and a tail entity. In addition to using153

the diagram as the information carrier (i.e., visual modality), we can also represent the information154

directly by visualizing the semantic triples or transforming it to textual sentences.155

Our benchmark includes two core parts of annotations: semantic triples and question–answer (QA)156

pairs (Fig. 3). To ensure high-quality and consistent annotation, we adopt a two-step pipeline using157

Gemini-2.0-Flash [Google, 2024] as the annotation backbone. In the first step, we prompt the model to158

generate a detailed description of each input diagram. These prompts are tailored to different diagram159

groups and enriched with in-context examples to encourage accurate and specific descriptions. To160
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reduce hallucinations and improve factual grounding, we also provide the associated Wikipedia text161

to the model as the supplementary input.162

In the second step, we use the generated descriptions to extract semantic triples and generate QA163

pairs. To ensure that the resulting annotations are both accurate and visually grounded, we apply a164

three-stage consistency check: (1) we discard examples if questions can be answered without the165

image; (2) we verify that questions remain unanswerable when only Wikipedia text is available;166

and (3) we confirm that the semantic triples alone are sufficient to answer the questions. Only167

diagrams that pass all three checks are retained. After filtering, the final benchmark comprises 6,000168

diagrams for training and 1,500 for testing. All evaluations in this paper are conducted on the test set.169

Additional details, including prompt templates and filtering criteria, are provided in App. B.3.170

2.3 Human Evaluation171

Despite implementing several statistical verification methods to ensure annotation quality, automati-172

cally generated annotations may still lack consistency and accuracy. To further assess the reliability of173

our benchmark, we conduct a round of human evaluation following the automatic annotation process.174

Unlike the earlier verification, which focused on the independence of Wikipedia text, this evaluation175

emphasizes the correctness and reliability of the QA annotations. We evaluate each data point along176

three key dimensions:177

• Visual Dependency: We assess whether each question truly requires the diagram to be answered,178

rather than relying on commonsense or background knowledge. An annotation is labeled as Fully179

Dependent if all questions rely on visual content, and Partially Dependent if at least one question180

can be answered without referring to the diagram.181

• QA Correctness: We evaluate whether the questions are clearly phrased, contextually grounded,182

and whether the provided answers are correct. Each data point is labeled as Perfectly Valid or183

Slightly Flawed, depending on whether any question contains a factual error.184

• Triple Completeness: We verify whether the annotated semantic triples accurately and sufficiently185

capture the key information in the diagram. Data points are labeled as Totally Sufficient if the triples186

are complete and correct, and Marginally Insufficient if an essential triple is missing or inaccurate.187

Score Ratio (%)
Visual Dependency QA Correctness Triple Completeness
Fully Partially Perfectly Slightly Totally Marginally

Dependent Dependent Valid Flawed Sufficient Insufficient

Annotator A 85.3 14.7 92.0 8.0 86.0 14.0
Annotator B 100.0 0.0 99.3 0.7 80.7 19.3
Annotator C 78.7 21.3 87.3 12.7 70.7 29.3
Annotator D 95.3 4.7 96.0 4.0 82.7 17.3

Table 1: Human evaluation results on 300 diagrams across three dimensions: visual dependency, QA correctness,
and triple completeness. Scores reflect the percentage of diagrams rated under each category by four annotators
(A, B, C, D), showing overall strong annotation quality with minor variations in strictness.

We evenly sample 20% of the test set (300 diagrams) across categories and assign them to four expert188

annotators (A, B, C, and D). As shown in Tab. 1, the majority of annotations are consistently rated189

as Fully Dependent, Perfectly Valid, and Totally Sufficient. While minor differences exist among190

annotators in terms of strictness, the overall results confirm that the benchmark annotations are of191

high quality and suitable for reliable evaluation.192

3 Diagram Comprehension Evaluation193

In this section, we first present the overall evaluation results on our benchmark. We then delve deeper194

into a central open question: how do VLMs actually comprehend complex images such as diagrams?195

One hypothesis posits that VLMs achieve genuine understanding, while the alternative suggests that196

their performance is largely driven by shortcut behaviors. To investigate this, we analyze three typical197

shortcut types: visual-memorization shortcut, knowledge-recall shortcut, and Clever-Hans shortcut198

using CHIMERA as a diagnostic tool.199
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3.1 Overall Evaluation200

Experiment Setup. We evaluate 15 models from 7 model families, covering both academic and201

industrial models across a range of parameter scales. We select the Qwen2.5-VL (simplified as Qwen)202

series (3B, 7B, 32B, 72B) [Bai et al., 2025], the LLaMA3.2-Vision-Instruct ((simplified as LLaMA)203

series (11B, 90B) [Meta, 2024], the Gemma3 series (1B, 12B, 27B) [Google, 2025], the LLaVA-1.6204

series (7B, 13B, 34B) [Liu et al., 2024b], as well as three standalone models: Pixtral-12B [Agrawal205

et al., 2024], Phi-4 5.6B [Microsoft, 2025], and BLIP-3 4B [Xue et al., 2024]. More details about the206

model, the evaluation setting (e.g., prompts) can be found in App. C.1.207

Accuracy (%) ER RU KG VR

Visual Modality 74.1 80.5 82.8 82.0
Semantic Modality 70.3 79.2 83.0 80.9
Textual Modality 88.4 90.2 91.8 88.9

Table 2: Average accuracy of 15 VLMs on CHIMERA
across three input modalities and four tasks.

Overall Results. We report average accuracy208

across 15 models in Tab. 2, with detailed re-209

sults provided in App. C.2. Models are evalu-210

ated across three input modalities—visual (orig-211

inal diagram), semantic (visualized triples), and212

textual (sentence-form triples)—and four tasks:213

entity recognition (ER), relation understanding214

(RU), knowledge grounding (KG), and visual rea-215

soning (VR). Overall, VLMs perform best with216

textual inputs across all tasks, while accuracy drops significantly for visual and semantic modalities,217

revealing clear room for improvement in diagram comprehension.218

3.2 Visual-Memorization Shortcut: Do VLMs Answer Using Memorized Visual Patterns?219

With the increasing model capacity, recent studies suggest that VLMs could memorize training data220

(e.g., diagrams) and rely on this memorized content for inference, rather than genuine comprehen-221

sion [Jayaraman et al., 2024, Li et al., 2024]. We refer to this behavior as the visual-memorization222

shortcut, where a model bypasses reasoning by exploiting memorized visual patterns.223
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Figure 4: Average performance across
models and tasks on different modali-
ties. The overall performance on the
visual modality is slightly better than
that on the semantic modality.

Experiment Design. To investigate whether VLMs rely on224

the visual-memorization shortcut for diagram comprehension,225

we leverage the multimodal design of CHIMERA. Each diagram226

in the benchmark is annotated with semantic triples, which are227

visualized as semantic modality inputs, i.e., structured and228

simplified versions of the original diagrams. Compared to real229

diagrams (visual modality), semantic graphs eliminate noise230

and layout ambiguity, offering a clearer path for reasoning.231

If a model is not relying on memorized visual patterns, we232

would expect it to perform worse on real diagrams than on the233

cleaner, more structured semantic modality. In contrast, if the234

visual-memorization shortcut is in use, models might perform235

better on the visual modality, indicating reliance on memorized236

diagram appearances rather than actual visual reasoning. Addi-237

tionally, we treat the textual modality (i.e., sentences generated238

from triples) as an upper-bound reference, since it presents all239

essential information in the most language-friendly form for VLMs.240

Evaluation Results. Fig. 4 reports the average accuracy across all tasks and models. Detailed241

results are in App. C.2. As expected, performance on the textual modality is the highest, confirming242

the language-centric nature of current VLMs. However, a surprising pattern emerges: models perform243

slightly better on the visual modality than on the semantic modality, comparing to the gap between244

textual modality and the visual modality. Despite being more complex and less structured, real245

diagrams yield better performance than their simplified semantic counterparts. This contradicts the246

intuition that structured, noise-free inputs should facilitate better reasoning.247

Takeaways. These results suggest that VLMs do make slight use of the visual-memorization248

shortcut when performing diagram comprehension. While the relative gap is not large, the fact249

that models outperform on real diagrams despite their complexity implies some level of visual250
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memorization. The shortcut effect appears limited but measurable, and it could become more251

pronounced in settings where training and evaluation data overlap.252

3.3 Language Shortcuts253

In addition to relying on visual memorization, VLMs may also exploit shortcuts derived from the254

language prior patterns and knowledge embedded in the language modeling component rather than255

performing genuine multimodal reasoning. We divide such language-based shortcuts into two distinct256

types: (1) The knowledge-recall shortcut, where models retrieve factual or commonsense knowledge257

from pretraining to answer questions, bypassing the diagram. (2) The Clever-Hans shortcut, where258

models rely on superficial linguistic patterns in questions or answer options, independent of any259

grounded understanding. In this section, we analyze these two shortcuts in turn.260

3.3.1 Knowledge-Recall Shortcut: Do VLMs Answer Using Memorized Knowledge?261

A common form of language-based shortcut is the knowledge shortcut, where VLMs draw on memo-262

rized background knowledge or commonsense associations from pretraining instead of interpreting263

the visual content [Hou et al., 2025, Zang et al., 2024].264

Experiment Design. To assess the presence of knowledge shortcuts, we analyze VLM performance265

across the four tasks in CHIMERA: entity recognition (ER), relation understanding (RU), knowledge266

grounding (KG), and visual reasoning (VR). As the most fundamental and prerequisite step in diagram267

comprehension (Fig. 2), The entity recognition task is highly localized and visual, making it unlikely268

to benefit from knowledge-recall shortcuts. In contrast, other three tasks involve deeper reasoning and269

are more likely to draw on factual knowledge stored in the model. Intuitively, if a model engages in270

genuine visual comprehension, we would expect the highest accuracy on entity recognition, followed271

by decreasing performance on the more complex tasks. However, if a model performs worse on the272

recognition but better on other tasks, it suggests a reliance on memorized knowledge rather than true273

visual understanding, an indicator of knowledge-recall shortcuts.274
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(b) Performance of Qwen across four model sizes.

Figure 5: The overall evaluation accuracy for 15 VLMs and the accuracy of four Qwen models on the four tasks.
VLMs perform on entity recognition much worse than that on the other three tasks. For Qwen models, larger
model is more likely to have lager gap between entity recognition and other tasks.

Quantitative Results. As shown in Fig. 5a, VLMs surprisingly perform worst on entity recogni-275

tion, while achieving higher accuracy on relation understanding, knowledge grounding, and visual276

reasoning. This contradicts the intuition that simpler, recognition-level tasks should be easier. The277

pattern suggests that VLMs rely on memorized knowledge to handle semantically richer tasks, rather278

than building understanding through visual parsing. Furthermore, as shown in Fig. 5b, this trend279

holds consistently across the Qwen model family (from 3B to 72B), with larger models often ex-280

hibiting more pronounced gaps. This indicates that larger VLMs are more likely to be susceptible to281

knowledge-recall shortcuts, likely due to their stronger memorization capacity.282

Qualitative Evidence. Fig. 6 illustrates a representative failure case from LLaMA-90B. The model283

incorrectly classifies a scatter plot as a line graph, i.e., failing in basic visual recognition, yet proceeds284

to correctly describe complex trends in the data and even offer projections and possible data sources.285
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Based on the graph's trend, which of the following is a reasonable prediction?
A. Bettendorf's population will significantly decrease in the next decade.
B. Bettendorf's population will remain relatively stable in the next decade.
C. Bettendorf's population will continue to increase in the next decade.
D. It is impossible to predict future population based on this graph.

ER

What type of graph is used to display the 
population of Bettendorf, Iowa over time?

A. Scatter plot B. Bar Chart
C. Pie chart D. Line Graph ✘

Analysis: …... The data points are connected by 
lines, indicating a continuous trend over time …...

K
G

The data points in the graph represent:
A. Estimated population based on modeling
B. Population counts from the U.S. Census Bureau
C. Predictions of future population
D. Average population per household

R
U

What is the general trend of Bettendorf's 
population shown in the diagram?

A. Steady decline
B. Consistent increase
C. No significant change
D. Fluctuation with no clear trend

Figure 6: Model responses for a diagram of the largest evaluated VLM (i.e., LLaMA-90B). The model fails to
recognize the basic, simple elements in the diagram while providing correct answers for more complex questions.

This behavior reinforces the hypothesis that the model bypasses perception and relies instead on286

memorized knowledge patterns to perform diagram comprehension.287

Takeaways. Both quantitative trends and qualitative examples support the conclusion that288

knowledge-recall shortcuts occur moderately in current VLMs. These shortcuts are observed289

across model sizes and tend to be more pronounced in larger models. While they help models answer290

knowledge-intensive questions, this often comes at the expense of genuine visual comprehension.291

3.3.2 Clever-Hans Shortcut: Do VLMs Rely on Superficial Language Patterns?292

Another widely observed form of shortcut in visual question answering is the Clever-Hans shortcut,293

where models exploit superficial patterns in the input text (i.e., the question and answer options),294

rather than relying on visual input [Goyal et al., 2017, Agrawal et al., 2018, Cadène et al., 2019,295

Bleeker et al., 2024]. This shortcut is particularly insidious because the model can appear accurate by296

exploiting linguistic regularities, even when the visual input is missing or irrelevant.297

Experimental Design. To isolate the Clever-Hans shortcut from other language priors (e.g., factual298

knowledge), we focus on the entity recognition task in CHIMERA. Our earlier analysis shows that299

this task is less influenced by the knowledge-recall shortcut, making it an ideal case for probing the300

effects of shallow language pattern exploitation.301

We compare model performance under two conditions: (1) the standard setting with access to the302

original diagram, and (2) a blank-image setting where no visual information is provided. Since each303

question in CHIMERA is multiple-choice with four options, the expected accuracy from random304

guessing is approximately 25%. Any significant improvement above this baseline in the absence of305

visual input suggests the presence of Clever-Hans behavior.306
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Figure 7: Entity recognition accuracy under normal VQA and blank-image settings. Results show that LLaVA
and Qwen models have strong reliance on language-only cues, especially LLaVA models. Besides, larger models
exhibiting slightly less susceptibility to the Clever-Hans shortcut.

Quantitative Results. Fig. 7 presents entity recognition accuracy across VLMs under both settings.307

LLaVA models achieve surprisingly high performance even without access to the diagram, for308

instance, LLaVA-7B reaches over 60% accuracy with a blank image. This strongly indicates that309

these models rely on language-only cues embedded in the question and options. Qwen models exhibit310

similar tendencies, although to a lesser extent. Interestingly, we observe that larger models tend to311

rely less on the Clever-Hans shortcut. For example, Qwen-72B shows a worse performance under the312
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w/ blank-image setting compared to Qwen-3B. This trend suggests that increased model capacity313

may improve multimodal grounding, making models more reliant on actual visual content.314

ER

Which color represents the share of total 
viewing for ITV4 in the provided graph?

A. Yellow-green B. Dark-red
C. Teal D. Purple

Analysis: …... The key to the graph is not 
provided, but we can infer …... ITV4 is 
likely to be represented by a color that is 
distinct from the other channels …… the 
correct answer is: C. Teal. 

Figure 8: Response of LLaMA-90B on
the entity recognition task. Even with-
out a valid diagram input, the model
examines the question and options and
makes an educated guess based on su-
perficial language patterns.

Qualitative Results. Fig. 8 presents a representative example315

from LLaMA-90B on the entity recognition task. When the316

diagram input is removed, the model still generates a confi-317

dent and contextually reasonable answer by relying solely on318

the question phrasing and the content of the answer options.319

Notably, the response lacks any reference to visual content or320

spatial cues, indicating that the model is not engaging in gen-321

uine diagram interpretation. Instead, it is leveraging superficial322

language patterns, a clear instance of the Clever-Hans short-323

cut, highlighting its dependence on linguistic biases rather than324

multimodal understanding.325

Takeaways. Taken together, these results provide strong evi-326

dence that Clever-Hans shortcuts are significant in open-source327

VLMs, particularly among smaller models. Even without valid328

visual input, models achieve non-trivial accuracy by exploiting linguistic biases . While larger models329

show some improvement in resisting this behavior, the shortcut remains a significant barrier to robust330

multimodal reasoning. Addressing it will require improved training signals, more carefully designed331

datasets, and evaluation protocols that explicitly discourage reliance on language-only cues.332

4 Conclusion333

We introduce CHIMERA, a comprehensive benchmark for diagram comprehension in VLMs, with334

structured semantic triples and multi-level tasks. Unlike prior work, it enables fine-grained analysis335

across modalities and diagram comprehension stages. Our evaluation of 15 VLMs reveals that much336

of their success stems from language-based shortcuts, especially Clever-Hans behaviors, rather than337

genuine diagram understanding. These insights highlight key limitations in current open-source338

models and offer guidance for building more robust, interpretable, and multimodal systems.339

Broader Impact340

Structured diagram data holds broad potential for advancing multimodal intelligence across both341

research and applied domains. The semantic annotations in our benchmark, particularly the structured342

triples and multilevel reasoning tasks, can support a variety of downstream applications beyond343

evaluation. For instance, they can enable better text-to-diagram generation, where structured content344

such as sentences or knowledge graphs can be translated into meaningful visualizations for education,345

publishing, or user interfaces. Moreover, the design of our benchmark, particularly its explicit346

separation of reasoning stages and alignment with semiotic principles, can inspire new training347

paradigms, such as the use of synthetic reasoning trajectories or modality-controlled supervision348

to improve multimodal model robustness and interpretability. We anticipate that these ideas will349

generalize to other structured domains, such as scientific visualization, instructional materials, and350

interactive agents grounded in visual knowledge.351

Limitations352

While we offer a comprehensive benchmark for diagram comprehension, several limitations remain.353

First, our dataset is constructed from Wikipedia diagrams, which, while diverse and high-quality, may354

not fully represent diagrams used in other domains such as medicine, engineering, or early education.355

This could limit generalization to domain-specific use cases. Second, although we implement rigorous356

consistency checks and conduct human evaluation on a subset of the data, automatic annotations,357

especially for complex reasoning questions, may still contain subtle noise or bias. Finally, while358

we identify and analyze shortcut behaviors, our diagnostic framework is correlational and does not359

isolate causal mechanisms behind model behavior. Future work could extend this analysis with360

counterfactual interventions, synthetic control diagrams, or fine-grained behavioral probing.361
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A Related Works534

Diagram Question Answering (DQA). Diagram Question Answering (DQA) is a specialized535

subfield of Visual Question Answering (VQA), where the input image is a schematic, symbolic,536

or abstract diagram rather than a natural scene [Hou et al., 2025]. These diagrams commonly537

convey structured, domain-specific knowledge—such as scientific processes, mathematical relations,538

or logical systems—making DQA a valuable testbed for evaluating a model’s ability to perform539

symbolic interpretation and structured visual reasoning.540

Benchmarks on Statistical and Analytical Diagrams. One major category of DQA benchmarks541

focuses on statistical or analytical charts, such as bar graphs, line plots, and scatter plots. These542

tasks require models to extract numerical values, recognize trends, and reason over structured visual543

features. Notable datasets in this area include FigureQA [Kahou et al., 2018], DVQA [Kafle et al.,544

2018], PlotQA [Methani et al., 2020], ChartQA [Masry et al., 2022], MMC [Liu et al., 2024a],545

ChartBench [Xu et al., 2024b], and CharXiv [Wang et al., 2024].546

Benchmarks on Visually Structured Content. Another category evaluates visually structured547

content, particularly infographics and document-like formats. These include images such as posters,548

book covers, webpages, and scientific figures, where layout-aware reasoning is critical. Datasets549

like OCR-VQA [Mishra et al., 2019], DocVQA [Mathew et al., 2021b], InfographicVQA [Mathew550

et al., 2021a], VisualMRC [Tanaka et al., 2021], and VisualWebBench [Liu et al., 2024c] target the551

integration of visual structure and textual information.552

Benchmarks from Educational and Instructional Diagrams. Several DQA benchmarks are de-553

rived from science education and domain-specific instructional content, often sourced from textbooks554

or learning platforms. These diagrams are rich and require external knowledge integration. Key555

datasets in this space include AI2D [Kembhavi et al., 2016], FoodWebs [Krishnamurthy et al., 2016],556

TQA [Kembhavi et al., 2017], VLQA [Sampat et al., 2020], and ScienceQA [Lu et al., 2022].557

Benchmarks on Synthetic and Abstract Diagrams. A final class of benchmarks uses synthetic558

or abstract diagrams to isolate core reasoning skills. These datasets typically involve geometric559

primitives or symbolic representations that are free from real-world biases. NLVR [Suhr et al., 2017]560

and ShapeWorld [Kuhnle and Copestake, 2017] focus on compositional and spatial reasoning, while561

Zhang et al. [2016] and IconQA [Lu et al., 2021] test high-level relational and symbolic inference562

through minimalistic, abstract scenes.563

B Details of Benchmark Construction564

B.1 Diagram Cleaning565

To construct a comprehensive diagram benchmark, we source images from one of the largest open-566

source knowledge bases: Wikipedia. Specifically, we use WikiWeb2M [Burns et al., 2023], a567

large-scale dataset containing over 2 million English Wikipedia webpages with diverse images, rich568

textual content, and structured metadata.569

However, WikiWeb2M includes many non-diagram images such as human portraits, logos, and570

natural scenes. To isolate true diagrammatic content, we design a binary classification pipeline based571

on MetaCLIP [Xu et al., 2024a]. We construct one descriptive prompt to identify diagrams and572

six complementary prompts to exclude non-diagram content. Each image is evaluated across these573

prompts, and only those classified as diagrams in all negative prompt settings are retained. This574

conservative strategy ensures high precision in diagram selection. The full list of prompts used in575

this filtering process is provided in Fig. 9. After filtering, we retain approximately 100,000 diagram576

candidates for further processing.577

B.2 Diagram Tagging578

Since diagrams serve as versatile tools for knowledge transfer, they span a wide variety of types and579

subject domains. To better organize our benchmark and support structured annotation, we use two580

vision-language models (Molmo-7B and LLaMA-3.2-7B) to tag each diagram with both its type and581
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associated knowledge domain (Fig. 9). The full prompt templates used for tagging are available in582

Figs. 10 to 12.583

We repeat the tagging process twice with both models, resulting in four independent annotations per584

image. We then manually analyze the distribution of tags and consolidate the most frequent ones into585

12 categories. These are divided into two groups:586

• Statistical Group: Includes four types of statistical diagrams — Bar Chart, Line Graph, Pie Chart,587

and Map.588

• Scientific Group: Includes eight types of non-statistical diagrams categorized by academic disci-589

plines — Biology, Chemistry, Computer Science, Mathematics, Physics, Astronomy, History, and590

Music.591

To ensure label consistency and reliability, we retain only diagrams with consistent tags across all592

four annotations. This filtering results in a curated set of approximately 60,000 diagrams.593

B.3 Diagram Annotation594

Our benchmark contains two core forms of annotation: semantic triples and question–answer (QA)595

pairs, which together capture both the content of the diagram and the levels of comprehension596

required.597

To ensure annotation quality, we use Gemini-2.0-Flash [Google, 2024] as the primary annotation598

model in a structured two-step process.599

Step 1: Diagram Description. To simplify the downstream annotation and improve quality, we first600

prompt Gemini to generate a detailed description of each diagram. This intermediate step provides a601

structured foundation from which semantic triples and QA pairs are derived. Since triple extraction602

and QA generation emphasize different semantic aspects of a diagram, the description prompts are603

carefully designed to highlight relevant content.604

To reduce hallucination—an inherent issue in large models [Li et al., 2023, Leng et al., 2024]—we605

supplement each image with its corresponding Wikipedia text to provide factual grounding. Moreover,606

we design tailored prompts for different diagram groups (e.g., statistical vs. scientific) and include607

in-context examples to guide the model away from vague or generic outputs. Full prompt details are608

in Figs. 13 to 16.609

Step 2: Semantic Triples and QA Pairs. Using the diagram description, we prompt Gemini610

again to extract semantic triples and generate multiple-choice QA pairs. Detailed prompt designs are611

available in Figs. 17 to 20.612

To ensure the quality of the QA annotations, we implement a three-stage consistency check:613

• Visual Dependency Check (No Image): The model attempts to answer questions without seeing614

the diagram. If it succeeds, the question likely does not depend on the visual content.615

• Wiki-Text Independency Check (No Image + Wiki-Text): The model is shown the Wikipedia616

context but not the image. The question should remain unanswerable.617

• Triple Completeness Check (No Image + Triples): The model is given only textual sentences618

derived from the semantic triples. The question should be answerable in this setting.619

Each setting is evaluated twice with shuffled answer choices to minimize bias. We consider a diagram620

as "succeeded" if the model selects the correct answer in both runs, and as "failed" if it make mistakes621

in either run.622

We discard diagrams:623

• That succeed in the entity recognition task in the first two checks, indicating that the QA annotation624

is not image-dependent.625

• That fail in any of the four tasks (ER, RU, KG, VR) in the third check, indicating that triples are626

incomplete.627
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After applying these filters, we retain a total of 7,500 diagrams, though the category distribution628

remains imbalanced. From this pool, we curate a balanced test set of 1,500 diagrams and a training629

set of 6,000 diagrams. Comprehensive category-wise statistics are presented in Tab. 3. 2630

Category Test Set Training Set

Bar Chart 150 900
Line Graph 150 350
Pie Chart 150 0

Map 150 2000
Biology 150 900

Chemistry 150 1600
Computer Science 150 0

Mathematics 150 150
Physics 150 100
Others 150 0

Table 3: Number of diagrams per category in the test dataset and training dataset.

C Supplementary Results631

C.1 Experiment Setup Details632

C.1.1 Model List633

We evaluate a diverse set of vision-language Models (VLMs) on our benchmark. Our selection634

encompasses both industry-developed models from leading AI companies such as Google, Meta,635

Alibaba, and Microsoft, as well as representative open-source models from the academic community.636

For certain model families, we include multiple variants with different parameter scales to facilitate637

comparative analysis. The following models are evaluated in our benchmark.638

Qwen-2.5-VL [Bai et al., 2025] is a multimodal model series developed by Alibaba, featuring a639

native dynamic-resolution Vision Transformer with window attention, enabling efficient processing640

of high-resolution images and long-form videos. It supports precise object grounding with absolute641

coordinates and demonstrates strong capabilities in document parsing, chart interpretation, and642

temporal event localization. In our experiments, we evaluate four variants of Qwen2.5-VL with 3B,643

7B, 32B, and 72B parameters.644

LLaMA-3.2 [Meta, 2024] is a large-scale foundation model family developed by Meta. It in-645

troduces multimodal capabilities, integrating image, video, and speech understanding via modular646

adapters. For vision, it employs a pretrained image encoder, connected to the language model647

through a cross-attention-based vision adapter. This compositional setup allows the system to process648

image-text pairs without modifying the core language model. In our experiments, we evaluate four649

variants of LLaMA-3 with 11B, and 90B parameters.650

Gemma-3 [Google, 2025] is a multimodal model series developed by Google DeepMind, sup-651

porting vision, long-context reasoning, and multilingual understanding. It adopts a decoder-only652

architecture with grouped-query attention and introduces a local-to-global attention mechanism to653

reduce KV-cache memory overhead during long-context inference. For vision processing, it can654

handle flexible image resolutions. In our experiments, we evaluate three variants of Gemma-3 with655

1B, 12B, and 27B parameters.656

Pixtral [Agrawal et al., 2024] is a multimodal language model developed by Mistral. It features a657

custom vision encoder trained from scratch, capable of ingesting images at their native resolution and658

aspect ratio, and supports flexible tokenization strategies. The model employs RoPE-2D position659

encoding in the vision encoder and uses a decoder-only architecture based on Mistral NeMo. In our660

experiments, we evaluate the 12B variant.661

2Our data license is CC-BY-4.0.
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Phi-4 [Microsoft, 2025] is a multimodal model developed by Microsoft, extending the Phi-4 series662

to support text, vision, and speech/audio modalities. It employs a novel Mixture-of-LoRAs architec-663

ture that integrates modality-specific adapters without modifying the frozen language backbone, thus664

preserving its strong language capabilities. In our experiments, we evaluate the 5.6B variant.665

BLIP-3 (xGen-MM) [Xue et al., 2024] is a multimodal model series developed by Salesforce,666

designed to unify training objectives and scale vision-language understanding through a simplified667

architecture. The framework replaces the Q-Former in previous models with a scalable perceiver668

resampler, enabling efficient any-resolution vision token sampling and supporting interleaved multi-669

modal inputs. In our experiments, we evaluate the 4B variant.670

LLaVA-1.6 [Liu et al., 2024b] is a multimodal model series that enhances visual reasoning,671

OCR, and world knowledge while maintaining a lightweight architecture. It introduces higher672

input resolutions and refined visual instruction tuning, enabling better understanding of complex673

visual scenes. In our experiments, we evaluate three variants of LLaVA-1.6 with 7B, 13B, and 34B674

parameters.675

C.1.2 Prompt Pipeline676

For question answering, we design a three-step, systematic, rule-based evaluation pipeline. In the677

first step, the model is presented with the input multimodal data and a corresponding question, and is678

prompted to analyze and answer the question in a step-by-step manner. In the second step, given the679

full preceding context, the model is instructed to produce a final, conclusive answer in the form of a680

multiple-choice selection (i.e., A, B, C, or D). To address potential limitations in instruction-following681

abilities (especially in smaller models), we introduce a third step that automatically extracts the final682

answer from the model’s generated response in Step 2. This is achieved using a set of robust regular683

expressions and response-processing workflows that identify key phrases, such as numeric values and684

conclusion markers, to ensure accurate answer extraction and matching. An example of the three-step685

pipeline is shown in Fig. 21.686

C.1.3 Human Evaluation Guidelines687

The guideline for the human evaluation of the data annotation quality assessment is given below.688

• Visual Dependency. Evaluate whether answering the questions requires visual reference to the689

diagram. Fully Dependent means all questions rely on visual information (e.g., labels, layout,690

spatial structure). Partially Dependent indicates that at least one question could be answered691

without seeing the diagram, using commonsense or background knowledge.692

• QA Correctness. Assess the overall quality of the four QA pairs. Perfectly Valid means all QA693

pairs are accurate, clear, and grounded in the diagram. Slightly Flawed means at least one QA694

pair contains minor issues such as ambiguity, hallucination, or poor phrasing.695

• Triple Completeness. Examine how well the knowledge triples represent the information in the696

diagram. Totally Sufficient indicates that the triple set is comprehensive, factually correct, and697

well-structured. Marginally Insufficient means at least one triple is missing important details,698

include minor errors, or lack clarity.699

C.1.4 Project Cost700

In our benchmark, most experiments are conducted on NVIDIA GPUs, including RTX 3090 and701

A100, with the specific hardware selected based on model size. For Llama-3.2-90B only, we leverage702

the Together AI inference API to perform evaluation. Additionally, since we only perform inference703

on VLMs, we use torch.bfloat16 precision for all tasks for reducing GPU memory usage.704

We report the computation resources to clean and annotate our benchmark. Besides, we report the705

computing cost for our evaluation. We measure the computation cost by GPU Hours and the financial706

cost for API models in Tab. 4.707

C.2 Detailed Results708
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Task Model Data Type Cost
Diagram Cleaning MetaCLIP 2M H100 200 GPU hours
Diagram Tagging Molmo & LLaMA3.2 100k RTX3090 400 GPU hours

Diagram Annotation Gemini 60k Google API 8,000 USD
Consistency Checking Gemini 60k Google API 12,000 USD

Benchmark Evaluation 14 VLMs 1.5k RTX3090/A100 100 GPU hours
LLaMA-90B TogetherAI API 400 USD

Table 4: The cost of building our benchmark and evaluation on our benchmark.

Model Visual Modality Semantic Modality Textual Modality

ER RU KG VR ER RU KG VR ER RU KG VR

Qwen2.5-3B [Bai et al., 2025] 89.3 90.5 90.3 88.8 88.0 90.7 93.7 89.8 89.4 92.9 91.8 88.7
Qwen2.5-7B [Bai et al., 2025] 91.3 94.1 94.4 91.2 87.3 93.2 95.3 90.7 90.9 93.7 95.1 91.1

Qwen2.5-32B [Bai et al., 2025] 92.7 95.6 95.9 94.1 93.6 95.6 97.4 95.7 95.1 96.7 98.3 96.1
Qwen2.5-72B [Bai et al., 2025] 94.3 95.5 96.1 94.5 91.1 94.9 97.3 95.2 95.5 97.3 98.3 96.1
LLaMA3.2-11B [Meta, 2024] 82.3 66.1 70.6 69.1 75.9 66.2 71.1 67.6 85.8 89.5 90.7 88.9
LLaMA3.2-90B [Meta, 2024] 90.5 92.7 95.3 92.5 81.8 89.9 93.3 90.2 94.4 96.0 97.9 95.3
Gemma3-1B [Google, 2025] 46.7 47.4 54.7 53.9 46.7 46.7 55.7 53.7 67.5 66.9 68.5 65.6

Gemma3-12B [Google, 2025] 41.3 77.2 80.5 84.1 39.1 76.5 80.5 84.7 93.7 94.3 95.7 93.7
Gemma3-27B [Google, 2025] 44.0 80.4 81.9 85.7 45.6 80.7 80.1 85.0 95.7 96.1 96.9 95.9

LLaVA1.6-7B [Liu et al., 2024b] 69.3 53.4 57.7 54.6 68.7 47.3 54.7 48.7 76.1 76.2 79.2 74.4
LLaVA1.6-13B [Liu et al., 2024b] 67.7 76.7 81.3 79.9 64.5 72.5 81.2 75.7 85.1 87.5 90.3 85.9
LLaVA1.6-34B [Liu et al., 2024b] 82.7 84.4 88.3 86.0 73.4 83.4 89.3 86.3 92.5 93.0 94.5 91.9
Pixtral-12B [Agrawal et al., 2024] 87.5 90.0 90.5 90.1 72.1 88.3 91.4 89.9 92.9 94.4 95.6 93.1

Phi4-5.6B [Microsoft, 2025] 90.8 91.9 90.9 89.9 85.4 90.1 90.5 85.3 87.5 92.1 94.6 92.7
BLIP3-4B [Xue et al., 2024] 40.6 72.3 73.7 74.9 40.6 72.3 73.7 74.9 84.0 87.1 89.5 83.6

Table 5: Comparative evaluation of multiple vision-language models across real, synthetic, and textual modalities
on four tasks. The best-performing result is highlighted in bold, and the second-best is underlined. Note that ER,
RU, KG, and VR denote entity recognition, relation understanding, knowledge grounding, and visual reasoning,
respectively.
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C.3 Prompt Examples709

Prompt for Diagram Cleaning

Positive Prompt:

• A visual representation of information or data, explicitly intended for educational
or scientific purposes. This includes flowcharts, circuit diagrams, architectural
blueprints, and graphs, characterized by clear labeling and structured layout for
easy understanding of complex concepts.

Negative Prompts:

• An image of a company or brand logo, designed to be a simple yet distinctive
symbol that represents a company or product. Logos often consist of stylized
letterforms, abstract geometric shapes, or a combination of both, and are designed
to be easily recognizable even at small sizes. They usually feature a limited color
palette and lack detailed textual information.

• An image depicting natural landscapes, including forests, mountains, rivers,
or beaches, characterized by vivid natural colors and organic forms without any
superimposed text or symbols.

• A photograph of one or several human beings, focusing on the face or figure, often
capturing expression, personality, and mood, without any overlay of graphical
information or text.

• Images of old books, pages, or manuscripts, primarily showing textual content
in a historical or literary context, often with visible textures of paper and traditional
fonts.

• A screenshot from a computer or mobile device, typically showing a user interface
with icons, menus, and open applications, which may include web pages, software
programs, or mobile apps.

• An image with minimal visual content, often appearing as a solid color back-
ground with sparse elements like one or two letters or one or two simple shapes.
These images lack detail and complexity, presenting very basic or stark visual
information with no significant features or recognizable patterns.

Figure 9: We perform six rounds of binary classification. In each round, an image is classified as a diagram or
not by comparing its embedding with the embeddings of the two text prompts using MetaCLIP. Only images
consistently classified as positive examples—that is, diagrams—across all rounds are retained.
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Prompt for Tagging (Step 1: Captioning)

System: You are a diagram description assistant. Your task is to provide a detailed
and structured description of the given diagram. Focus on aspects that might help
to tag its domain (e.g., Biology, Chemistry, History) and type (e.g., Bar Chart, Flow
Chart, Map).

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

• Page Title: Prevalence of tobacco use.

• Page Description: Prevalence of tobacco use is reported by the World Health
Organization, which focuses on cigarette smoking due to reported data limitations.
Smoking has therefore been studied more extensively than any other form of
consumption.Smoking is generally five times more prevalent among men than
women; however, the gender gap differs across countries and is smaller in younger
age groups. (text truncated due to space)

• Diagram Description: None.

Instruction: The description must be organized into the following three sections:

• Content: Describe key visual elements, labels, and any prominent features in the
diagram.

• Layout: Explain how the elements are arranged (e.g., hierarchical, circular, linear)
and the overall structure.

• Function: Indicate the likely purpose of the diagram (e.g., explaining a process,
showing relationships, presenting data).

Figure 10: Before predicting tags for the diagrams, we conduct a captioning step. We instruct the VLM to act as
a diagram description assistant and provide it with contextual information from Wikipedia, including the page
title, page description, and diagram description (if available). The model is then prompted to focus on describing
the content, layout, and function of the diagram.
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Prompt for Tagging (Step 2: Open-Ended Prediction)

System: You are a diagram tagging assistant. Your task is to analyze a diagram and
identify its domain and type.

Context: The description of the diagram is provided for your reference:

• Content: The diagram appears to be a line graph depicting trends over time. It
shows data points connected by lines, representing changes in a specific measure
from 1991 to 2007. The graph includes numerical values on the y-axis and years
on the x-axis. There are likely labels for the y-axis and x-axis, as well as a title at
the top of the graph.

• Layout: The layout of the diagram is typical of a line graph. The vertical axis
(y-axis) represents percentages, while the horizontal axis (x-axis) represents years.
The data points are plotted along the x-axis and connected by lines to show the
trend over time. The title is likely positioned at the top of the graph, providing
context for the data being presented.

• Function: The function of this diagram is to visually represent and illustrate trends
in a specific measure over a 16-year period. It allows viewers to quickly understand
how the measured value has changed from 1991 to 2007. The use of a line graph
makes it easy to see patterns, trends, and changes in the data over time, which is
particularly useful for analyzing long-term data sets and identifying any significant
shifts or fluctuations in the measured variable.

Instruction: Now analyze the diagram and provide its domain and type:

• Domain: The domain should be a specific field or area of knowledge. Its examples
include Biology, Chemistry, Physics, Astronomy, History, etc.

• Type: The type should describe the nature of the diagram. Its examples include
Bar Chart, Flow Chart, Table, Map, Logo, etc.

Output Format: Your output must be in the following JSON-like format. Do not
provide any explanations or additional context. Only output the JSON object.
{

“Domain”: “string (must be 1 or 2 words)”,
“Type”: “string (must be 1 or 2 words)”

}

Figure 11: After generating a caption for the diagram, we prompt the VLM again using the annotated content,
layout, and function descriptions, and ask it to predict both a domain tag and a type tag. In this step, we adopt an
open-ended setting, allowing the model to freely generate tags without any predefined options.
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Prompt for Tagging (Step 2: Multiple-Choice Prediction)

System: The same as Figure 11.

Context: The same as Figure 11.

Instruction: Now analyze the diagram and provide its domain and type:

• Domain: The domain should be a specific field or area of knowledge. Choose only
one option from the following list:

– Agriculture
– Astronomy
– Biology
– Chemistry
– Computer Science
– Data Science
– Environmental Science
– Finance
– Geography and Geology
– Health Science
– History

– Mathematics
– Music
– Network Science
– Operations Research
– Physics
– Political Science
– Psychology
– Sports
– Transportation
– Urban Planning

• Type: The type should describe the nature of the diagram. Choose only one option
from the following list:

– Bar Chart
– Chemical Visual
– Concept Diagram
– Floor Plan
– Flow Chart
– Line Graph
– Logo
– Map

– Network Chart
– Pie Chart
– Scatter Plot
– Table
– Technical Diagram
– Timeline
– Tree

Output Format: The same as Figure 11.

Figure 12: After generating open-ended tags, we apply clustering methods to analyze the tag distribution and
identify a set of high-frequency tags, which are then used as options for the multiple-choice tagging setting. In
this setting, we keep the instructions and context unchanged, but instead of allowing free predictions, the VLM
is asked to select tags from the option list.
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Prompt for Statistical Annotation (Step 1: Captioning)

System: You are a scene graph construction assistant. Your task is to generate a
detailed language-based description of a scene graph for a provided diagram.

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

• Page Title: Federal Direct Student Loan Program.

• Page Description: The William D. Ford Federal Direct Loan Program provides
low-interest loans for students and parents to help ... (text truncated due to space)

• Diagram Description: Total number of dollars (in billions) entering default,
2009-2018, data source: CRS.

Instruction:
• Identify key elements such as axes, labels, legends, colors, and numerical values.
• Describe trends, patterns, or outliers in the data, including peaks, or correlations.
• Explain relationships between different variables if applicable.
• Describe geographical features such as colored regions and arrows if applicable.
• Use clear and structured language.

Examples:
• The bar representing Q3 in 2019 is the tallest among all quarters.
• The blue line in the graph shows a steady increase from 2010 to 2018.
• The dark green segment in the pie chart represents 45.9 TWh of diesel consumption.
• The shaded region in the map highlights areas with the highest population density.
• The thick arrow marks the strongest southeastern wind current towards the country.

Figure 13: Similar to the tagging stage, we conduct a captioning step before generating semantic triples in order
to reduce hallucinations. We also provide the model with contextual information from Wikipedia. For statistical
diagrams, we instruct the model to focus on specific features such as numerical values and data trends. To
enhance the quality of output, we manually design five descriptive sentences that serve as in-context examples
during prompting.
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Prompt for Statistical Annotation (Step 2: Annotation)

System: You are an expert information extraction assistant specializing in scene
graph construction. Your task is to analyze a given diagram description and extract
meaningful, structured relationships between key elements.

Context: The description of the diagram is provided for your reference.
1. Key Objects: X-axis: Represents the years from 2009 to 2018. Each year is
labeled along the axis. Y-axis: Represents the total dollars in billions entering default.
The axis is labeled “Dollars in Billions”. Numerical markers are present along the
axis, though precise values are not clearly visible in the image. Bars: Vertical bars
represent the amount of dollars entering default for each year. The height of each
bar corresponds to the dollar amount. Data Labels: Numerical values are displayed
above each bar, indicating the precise amount for each year.
2. Attributes: X-axis: Horizontal, evenly spaced tick marks representing years.
Y-Axes: Vertical, with numerical markers indicating billions of dollars. The scale
appears to range from approximately 0 to 80 billion. Bars: Vertical rectangular bars,
colored blue. The width of each bar is uniform. Data Labels: Black text, positioned
above each bar.
3. Relationships: Each bar is associated with a year on the x-axis and a value on the
y-axis. The height of the bar corresponds directly to the value indicated by the data
label and represents the amount in billions of dollars entering default in that year.
4. Structural or Hierarchical Information: The chart is a simple bar chart.
5. Data Trends: The chart shows a general trend of increasing dollars entering
default from 2009 to a peak, followed by a decrease and then another increase toward
the end of the period (2018). Precise yearly fluctuations are observable but require
more detailed numerical data. There is no clear outlier year that significantly deviates
from the general pattern.

Instruction:
• Identify important relationships between key elements from the description.
• Structure these relationships in the form of triples with three components:

– Source: The primary element (subject) in the relationship.
– Relationship: The type of connection between the source and target.
– Target: The secondary element (object) in the relationship.

• Ensure that:

– Each triple represents a meaningful connection between elements.
– The relationships are concise yet descriptive.
– There are no duplicate, redundant, or meaningless triples.

Output Format: The final output must strictly follow the JSON format below:
{

“1”: {“Source”: “Triple 1”, “Relationship”: “Triple 1”, “Target”: “Triple 1”},
...
“N”: {“Source”: “Triple N”, “Relationship”: “Triple N”, “Target”: “Triple N”}

}

Figure 14: After extracting relevant information from the diagram, we prompt the model to generate a list of
triples, where each triple consists of a source (head entity), a relationship (relation), and a target (tail entity). To
facilitate downstream processing, we instruct the model to produce the output in JSON format.
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Prompt for Scientific Annotation (Step 1: Captioning)

System: You are a scene graph construction assistant. Your task is to generate a
detailed language-based description of a scene graph for a provided diagram.

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

• Page Title: Nanomedicine.
• Page Description: Nanomedicine is the medical application of nanotechnology.

Nanomedicine ranges from the medical applications of nanomaterials and biologi-
cal devices, to nanoelectronic biosensors ... (text truncated due to space)

• Diagram Description: Liposomes are composite structures made of phospholipids
and may contain small amounts of other molecules. Though liposomes can vary in
size from low micrometer range to ... (text truncated due to space)

Instruction:
• Identify key objects, such as text, arrows, nodes, or data points.
• Identify attributes, such as size, color, shape, position, and numerical values.
• Explain how objects interact or relate to one another.
• Describe its overall hierarchy, structure or flow clearly if applicable.
• Use clear and structured language.

Examples:
• The newly discovered moon is connected to its elliptical orbit around Neptune.
• The blue alpha-helices are connected to beta-sheets through loop regions.
• The amine group ( – NH2) is added to the benzene ring at a new position.
• Each yellow triangular face is attached to three metallic rods at its edges.
• The E-flat note is positioned directly below the B-flat note on the staff.

Figure 15: The basic prompt framework for annotating scientific diagrams follows the same structure as that
used for statistical diagrams. However, due to the inherent difference between scientific and statistical diagrams,
we provide tailored instructions that emphasize features like objects, attributes, and structural hierarchy. We also
include in-context examples specific to scientific content.
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Prompt for Scientific Annotation (Step 2: Annotation)

System: You are an expert information extraction assistant specializing in scene
graph construction. Your task is to analyze a given diagram description and extract
meaningful, structured relationships between key elements.

Context: The description of the diagram is provided for your reference.
The diagram depicts a liposome used for drug delivery. The central element is a large,
circular liposome, predominantly brown-orange, representing a lipid bilayer. Inside
the liposome, a light blue aqueous core contains a crystalline structure labeled "Drug
crystallized in aqueous fluid" (white and iridescent) and a purple, coiled structure
labeled "DNA". Several arrows connect labels to parts of the liposome:

• An arrow points from the text "Protective layer against immune destruction" to the
outer edge of the liposome’s lipid bilayer, indicating a protective function.

• Arrows point from the text "Lipid-soluble drug in bilayer" to the lipid bilayer itself,
indicating the location of lipid-soluble drugs within the bilayer.

• Arrows point from the text "Drug crystallized in aqueous fluid" to the crystalline
structure in the aqueous core.

• Arrows point from the text "Lipid bilayer" to the brown-orange lipid bilayer.

Attached to the outer edge of the liposome are several purple, wavy structures labeled
"Homing peptide," suggesting a targeting mechanism. The text "Liposome for Drug
Delivery" is positioned above the liposome, serving as a title. The overall structure
is hierarchical, with the liposome as the central node, and various labels and arrows
acting as connected nodes, describing its components and functions.

Instruction:
• Identify important relationships between key elements from the description.
• Structure these relationships in the form of triples with three components:

– Source: The primary element (subject) in the relationship.
– Relationship: The type of connection between the source and target.
– Target: The secondary element (object) in the relationship.

• Ensure that:

– Each triple represents a meaningful connection between elements.
– The relationships are concise yet descriptive.
– There are no duplicate, redundant, or meaningless triples.

Output Format: The final output must strictly follow the JSON format below:
{

“1”: {“Source”: “Triple 1”, “Relationship”: “Triple 1”, “Target”: “Triple 1”},
...
“N”: {“Source”: “Triple N”, “Relationship”: “Triple N”, “Target”: “Triple N”}

}

Figure 16: Similar to statistical diagrams, we provide the model with previously extracted information and ask it
to generate a list of triples in JSON format.
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Prompt for QA Annotation (Step 1: Captioning)

System: You are a diagram description assistant.

Context: The diagram is sourced from Wikipedia, and here is some background
information. Use the Wikipedia information above only if the diagram alone does not
provide enough clarity or context. Always give priority to the information directly
visible in the diagram for your analysis.

• Page Title: Aqua Traiana.

• Page Description: The Aqua Traiana was a 1st-century Roman aqueduct built by
Emperor Trajan and inaugurated on 24 June 109 AD. It channelled water from
sources around Lake Bracciano, 40 kilometers north-west of Rome, to Rome in
ancient Roman times but had fallen into disuse by the 17th century. (text truncated
due to space)

• Diagram Description: None.

Instruction: Your task is to provide a detailed description of the diagram, addressing
the following four aspects:

• Recognition: Identify and describe the key visual elements present in the diagram.
• Understanding: Explain the relationships and interactions between these elements.
• Grounding: Relate the diagram elements to real-world concepts or entities.
• Reasoning: Interpret the diagram to draw conclusions or infer information beyond

what is explicitly shown.

Output Format: You must output your result in the following JSON-like format:
{

“Recognition”: “string or NA”,
“Understanding”: “string or NA”,
“Grounding”: “string or NA”,
“Reasoning”: “string or NA”

}

Figure 17: Before annotating QA pairs, we prompt the model to caption the diagram. Here we provide relevant
Wikipedia text and the definition of the four tasks to instruct the model to generate descriptions specific for QA
annotation.
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Prompt for QA Annotation (Step 2: Annotation)

System: You are a question-answering annotation assistant. Your task is to analyze a
diagram and annotate question-answering pairs.

Context: The description of the diagram is provided for your reference.

1. Recognition: The diagram is a 3D pie chart showing the distribution of water
sources around a lake on November 28th, 1691. The chart is segmented into six
sections, each representing a different water source and its percentage contribution.
The sections are color-coded for easy identification. The labels for each section
indicate the name of the water source and its corresponding percentage. The largest
section is labeled “Fiora” and occupies 47% of the chart. The other sections are
“Vigna di Venere” (16%), “Mola di Vigarello” (18%), “Bocca di Lupo” (11%), “Other
5 veins” (8%).
2. Understanding: The pie chart illustrates the relative proportions of water sourced
from different locations around the lake on the specified date. Each slice represents a
specific water source, and its size is proportional to its contribution to the total water
supply. The chart visually compares the contributions of each source, highlighting
the dominance of Fiora with 47% of the total water supply.
3. Grounding: The diagram represents the real-world distribution of water sources
around a lake (likely Lake Bracciano based on the Wikipedia context) at a specific
point in time. The named sources (“Fiora”, “Vigna di Venere”, etc.) are likely geo-
graphical locations or specific water channels feeding into the lake. The percentages
represent the proportion of the total water volume coming from each source.
4. Reasoning: The chart shows that Fiora is the most significant water source,
contributing almost half (47%) of the total water. The remaining sources contribute
smaller, but still substantial, portions. This suggests that the water supply relied
heavily on Fiora, while other sources played supporting roles. The data could be used
to understand the hydrological characteristics of the area and the historical reliance
on different water sources. The date (28th Nov 1691) implies this is a snapshot of a
specific time and conditions, and the distribution might vary across seasons or years.

Figure 18: After captioning, we provide the model with the extracted information corresponding to the four
tasks.
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Prompt for QA Annotation (Step 2: Annotation) (Continued)

Instruction: Create four multiple-choice questions based on the diagram, each
focusing on one of the four aspects:

• Recognition: Test the identification of elements in the diagram.
• Understanding: Assess comprehension of the relationships or processes depicted.
• Grounding: Evaluate the ability to connect elements to real-world knowledge.
• Reasoning: Challenge inference or prediction based on the diagram.

For each question:

• Provide a clear question statement.
• Offer exactly four options labeled A, B, C, and D.
• Indicate the correct answer, which must be only one among A, B, C, or D.

Output Format: You must output your result in the following JSON-like format:
{

“Recognition”: {
“Question”: “string”,
“Options”: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

},
“Understanding”: {

“Question”: “string”,
“Options”: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

},
“Grounding”: {

“Question”: “string”,
“Options”: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

},
“Reasoning”: {

“Question”: “string”,
“Options”: { “A”: “string”, “B”: “string”, “C”: “string”, “D”: “string” },
“Answer”: “A/B/C/D”

}
}

Figure 19: Using the descriptive information, we instruct the model to generate one multiple-choice question for
each of the four tasks. Each question is designed to include exactly four answer options with a single correct
answer.
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QA Annotation Example

Recognition: What percentage of water sources around the lake on November 28th,
1691, came from Bocca di Lupo?
A) 11%
B) 8%
C) 16%
D) 18%
Answer: A

Understanding: What does the size of each segment in the pie chart represent?
A) The geographical location of the water source.
B) The depth of the water source.
C) The volume of water contributed by each source relative to the total.
D) The water temperature of each source.
Answer: C

Grounding: Considering the context of the chart, which of the following is MOST
likely a real-world interpretation of Fiora, Vigna di Venere, and Mola di Vigarello?
A) Types of water purification methods used in 1691.
B) Names of individuals who managed the water supply.
C) Geographical locations or water channels supplying the lake.
D) Measurements of water flow rates.
Answer: C

Reasoning: Based on the data, which of the following conclusions is MOST sup-
ported?
A) The water supply was evenly distributed among all sources.
B) Fiora was the primary source of water for the lake.
C) The "Other 5 veins" contributed the least amount of water, rendering them in-

significant.
D) Vigna di Venere was the most important water source besides Fiora.
Answer: B

Figure 20: Here we illustrate an example of the annotated results, including questions, options, and correct
answers.
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Pipeline for Benchmark Evaluation

Step 1: Analysis
Prompt:
You are a Visual Question Answering expert. Based on the image, analyze and answer
the following question:
What color represents countries with 10,000-14,999 first-generation immigrants in
2009?

A) Dark Red.
B) Red.
C) Light Orange.
D) Light Peach.

Output:
Okay, I’ve analyzed the image. Based on the legend provided, countries with 10,000-
14,999 first-generation immigrants in Norway in 2009 are represented by **B. Red**.
Let me know if you have another question about the image!

Step 2: Conclusion
Prompt:
Based on the context above, give your final choice. Do not provide any explanations.
Output:
The final choice is B.

Step 3: Choice
Input: The final choice is B.
Output: B

Figure 21: This figure illustrates the pipeline used for benchmark evaluation. First, the model is prompted to
analyze the input data and the question. Next, it is asked to produce a final conclusion based on its analysis.
Finally, a response-processing step is applied to extract the answer from the conclusion text.
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NeurIPS Paper Checklist710

1. Claims711

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s712

contributions and scope?713

Answer: [Yes]714

Justification:715

Guidelines:716

• The answer NA means that the abstract and introduction do not include the claims made in the717

paper.718

• The abstract and/or introduction should clearly state the claims made, including the contributions719

made in the paper and important assumptions and limitations. A No or NA answer to this720

question will not be perceived well by the reviewers.721

• The claims made should match theoretical and experimental results, and reflect how much the722

results can be expected to generalize to other settings.723

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not724

attained by the paper.725

2. Limitations726

Question: Does the paper discuss the limitations of the work performed by the authors?727

Answer: [Yes]728

Justification:729

Guidelines:730

• The answer NA means that the paper has no limitation while the answer No means that the731

paper has limitations, but those are not discussed in the paper.732

• The authors are encouraged to create a separate "Limitations" section in their paper.733

• The paper should point out any strong assumptions and how robust the results are to violations of734

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,735

asymptotic approximations only holding locally). The authors should reflect on how these736

assumptions might be violated in practice and what the implications would be.737

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested738

on a few datasets or with a few runs. In general, empirical results often depend on implicit739

assumptions, which should be articulated.740

• The authors should reflect on the factors that influence the performance of the approach. For741

example, a facial recognition algorithm may perform poorly when image resolution is low or742

images are taken in low lighting. Or a speech-to-text system might not be used reliably to743

provide closed captions for online lectures because it fails to handle technical jargon.744

• The authors should discuss the computational efficiency of the proposed algorithms and how745

they scale with dataset size.746

• If applicable, the authors should discuss possible limitations of their approach to address747

problems of privacy and fairness.748

• While the authors might fear that complete honesty about limitations might be used by reviewers749

as grounds for rejection, a worse outcome might be that reviewers discover limitations that750

aren’t acknowledged in the paper. The authors should use their best judgment and recognize751

that individual actions in favor of transparency play an important role in developing norms that752

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize753

honesty concerning limitations.754

3. Theory assumptions and proofs755

Question: For each theoretical result, does the paper provide the full set of assumptions and a756

complete (and correct) proof?757

Answer: [NA]758

Justification:759

Guidelines:760
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• The answer NA means that the paper does not include theoretical results.761

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.762

• All assumptions should be clearly stated or referenced in the statement of any theorems.763

• The proofs can either appear in the main paper or the supplemental material, but if they appear764

in the supplemental material, the authors are encouraged to provide a short proof sketch to765

provide intuition.766

• Inversely, any informal proof provided in the core of the paper should be complemented by767

formal proofs provided in appendix or supplemental material.768

• Theorems and Lemmas that the proof relies upon should be properly referenced.769

4. Experimental result reproducibility770

Question: Does the paper fully disclose all the information needed to reproduce the main experi-771

mental results of the paper to the extent that it affects the main claims and/or conclusions of the772

paper (regardless of whether the code and data are provided or not)?773

Answer: [Yes]774

Justification:775

Guidelines:776

• The answer NA means that the paper does not include experiments.777

• If the paper includes experiments, a No answer to this question will not be perceived well by the778

reviewers: Making the paper reproducible is important, regardless of whether the code and data779

are provided or not.780

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make781

their results reproducible or verifiable.782

• Depending on the contribution, reproducibility can be accomplished in various ways. For783

example, if the contribution is a novel architecture, describing the architecture fully might784

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary785

to either make it possible for others to replicate the model with the same dataset, or provide786

access to the model. In general. releasing code and data is often one good way to accomplish787

this, but reproducibility can also be provided via detailed instructions for how to replicate the788

results, access to a hosted model (e.g., in the case of a large language model), releasing of a789

model checkpoint, or other means that are appropriate to the research performed.790

• While NeurIPS does not require releasing code, the conference does require all submissions791

to provide some reasonable avenue for reproducibility, which may depend on the nature of the792

contribution. For example793

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to794

reproduce that algorithm.795

(b) If the contribution is primarily a new model architecture, the paper should describe the796

architecture clearly and fully.797

(c) If the contribution is a new model (e.g., a large language model), then there should either798

be a way to access this model for reproducing the results or a way to reproduce the model799

(e.g., with an open-source dataset or instructions for how to construct the dataset).800

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are801

welcome to describe the particular way they provide for reproducibility. In the case of802

closed-source models, it may be that access to the model is limited in some way (e.g.,803

to registered users), but it should be possible for other researchers to have some path to804

reproducing or verifying the results.805

5. Open access to data and code806

Question: Does the paper provide open access to the data and code, with sufficient instructions to807

faithfully reproduce the main experimental results, as described in supplemental material?808

Answer: [Yes]809

Justification:810

Guidelines:811

• The answer NA means that paper does not include experiments requiring code.812
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/813

guides/CodeSubmissionPolicy) for more details.814

• While we encourage the release of code and data, we understand that this might not be possible,815

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless816

this is central to the contribution (e.g., for a new open-source benchmark).817

• The instructions should contain the exact command and environment needed to run to reproduce818

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/819

guides/CodeSubmissionPolicy) for more details.820

• The authors should provide instructions on data access and preparation, including how to access821

the raw data, preprocessed data, intermediate data, and generated data, etc.822

• The authors should provide scripts to reproduce all experimental results for the new proposed823

method and baselines. If only a subset of experiments are reproducible, they should state which824

ones are omitted from the script and why.825

• At submission time, to preserve anonymity, the authors should release anonymized versions (if826

applicable).827

• Providing as much information as possible in supplemental material (appended to the paper) is828

recommended, but including URLs to data and code is permitted.829

6. Experimental setting/details830

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,831

how they were chosen, type of optimizer, etc.) necessary to understand the results?832

Answer: [Yes]833

Justification:834

Guidelines:835

• The answer NA means that the paper does not include experiments.836

• The experimental setting should be presented in the core of the paper to a level of detail that is837

necessary to appreciate the results and make sense of them.838

• The full details can be provided either with the code, in appendix, or as supplemental material.839

7. Experiment statistical significance840

Question: Does the paper report error bars suitably and correctly defined or other appropriate841

information about the statistical significance of the experiments?842

Answer: [Yes]843

Justification: Our evaluation is done on our benchmark, which contains sufficient number of test844

examples. Thus, the average accuracy could precisely indicate the performance without the need845

of other statistical significance.846

Guidelines:847

• The answer NA means that the paper does not include experiments.848

• The authors should answer "Yes" if the results are accompanied by error bars, confidence849

intervals, or statistical significance tests, at least for the experiments that support the main claims850

of the paper.851

• The factors of variability that the error bars are capturing should be clearly stated (for example,852

train/test split, initialization, random drawing of some parameter, or overall run with given853

experimental conditions).854

• The method for calculating the error bars should be explained (closed form formula, call to a855

library function, bootstrap, etc.)856

• The assumptions made should be given (e.g., Normally distributed errors).857

• It should be clear whether the error bar is the standard deviation or the standard error of the858

mean.859

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably860

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of861

errors is not verified.862

• For asymmetric distributions, the authors should be careful not to show in tables or figures863

symmetric error bars that would yield results that are out of range (e.g. negative error rates).864
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• If error bars are reported in tables or plots, The authors should explain in the text how they were865

calculated and reference the corresponding figures or tables in the text.866

8. Experiments compute resources867

Question: For each experiment, does the paper provide sufficient information on the computer868

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-869

ments?870

Answer: [Yes]871

Justification:872

Guidelines:873

• The answer NA means that the paper does not include experiments.874

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud875

provider, including relevant memory and storage.876

• The paper should provide the amount of compute required for each of the individual experimental877

runs as well as estimate the total compute.878

• The paper should disclose whether the full research project required more compute than the879

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it880

into the paper).881

9. Code of ethics882

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS883

Code of Ethics https://neurips.cc/public/EthicsGuidelines?884

Answer: [Yes]885

Justification:886

Guidelines:887

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.888

• If the authors answer No, they should explain the special circumstances that require a deviation889

from the Code of Ethics.890

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due891

to laws or regulations in their jurisdiction).892

10. Broader impacts893

Question: Does the paper discuss both potential positive societal impacts and negative societal894

impacts of the work performed?895

Answer: [Yes]896

Justification:897

Guidelines:898

• The answer NA means that there is no societal impact of the work performed.899

• If the authors answer NA or No, they should explain why their work has no societal impact or900

why the paper does not address societal impact.901

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,902

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-903

ment of technologies that could make decisions that unfairly impact specific groups), privacy904

considerations, and security considerations.905

• The conference expects that many papers will be foundational research and not tied to par-906

ticular applications, let alone deployments. However, if there is a direct path to any negative907

applications, the authors should point it out. For example, it is legitimate to point out that908

an improvement in the quality of generative models could be used to generate deepfakes for909

disinformation. On the other hand, it is not needed to point out that a generic algorithm for910

optimizing neural networks could enable people to train models that generate Deepfakes faster.911

• The authors should consider possible harms that could arise when the technology is being used912

as intended and functioning correctly, harms that could arise when the technology is being used913

as intended but gives incorrect results, and harms following from (intentional or unintentional)914

misuse of the technology.915
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies916

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for917

monitoring misuse, mechanisms to monitor how a system learns from feedback over time,918

improving the efficiency and accessibility of ML).919

11. Safeguards920

Question: Does the paper describe safeguards that have been put in place for responsible release of921

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,922

or scraped datasets)?923

Answer: [NA]924

Justification:925

Guidelines:926

• The answer NA means that the paper poses no such risks.927

• Released models that have a high risk for misuse or dual-use should be released with necessary928

safeguards to allow for controlled use of the model, for example by requiring that users adhere929

to usage guidelines or restrictions to access the model or implementing safety filters.930

• Datasets that have been scraped from the Internet could pose safety risks. The authors should931

describe how they avoided releasing unsafe images.932

• We recognize that providing effective safeguards is challenging, and many papers do not require933

this, but we encourage authors to take this into account and make a best faith effort.934

12. Licenses for existing assets935

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the936

paper, properly credited and are the license and terms of use explicitly mentioned and properly937

respected?938

Answer: [Yes]939

Justification:940

Guidelines:941

• The answer NA means that the paper does not use existing assets.942

• The authors should cite the original paper that produced the code package or dataset.943

• The authors should state which version of the asset is used and, if possible, include a URL.944

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.945

• For scraped data from a particular source (e.g., website), the copyright and terms of service of946

that source should be provided.947

• If assets are released, the license, copyright information, and terms of use in the package should948

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for949

some datasets. Their licensing guide can help determine the license of a dataset.950

• For existing datasets that are re-packaged, both the original license and the license of the derived951

asset (if it has changed) should be provided.952

• If this information is not available online, the authors are encouraged to reach out to the asset’s953

creators.954

13. New assets955

Question: Are new assets introduced in the paper well documented and is the documentation956

provided alongside the assets?957

Answer: [NA]958

Justification:959

Guidelines:960

• The answer NA means that the paper does not release new assets.961

• Researchers should communicate the details of the dataset/code/model as part of their sub-962

missions via structured templates. This includes details about training, license, limitations,963

etc.964

• The paper should discuss whether and how consent was obtained from people whose asset is965

used.966
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• At submission time, remember to anonymize your assets (if applicable). You can either create967

an anonymized URL or include an anonymized zip file.968

14. Crowdsourcing and research with human subjects969

Question: For crowdsourcing experiments and research with human subjects, does the paper970

include the full text of instructions given to participants and screenshots, if applicable, as well as971

details about compensation (if any)?972

Answer: [Yes]973

Justification:974

Guidelines:975

• The answer NA means that the paper does not involve crowdsourcing nor research with human976

subjects.977

• Including this information in the supplemental material is fine, but if the main contribution of978

the paper involves human subjects, then as much detail as possible should be included in the979

main paper.980

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other981

labor should be paid at least the minimum wage in the country of the data collector.982

15. Institutional review board (IRB) approvals or equivalent for research with human subjects983

Question: Does the paper describe potential risks incurred by study participants, whether such984

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals985

(or an equivalent approval/review based on the requirements of your country or institution) were986

obtained?987

Answer: [NA]988

Justification:989

Guidelines:990

• The answer NA means that the paper does not involve crowdsourcing nor research with human991

subjects.992

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be993

required for any human subjects research. If you obtained IRB approval, you should clearly994

state this in the paper.995

• We recognize that the procedures for this may vary significantly between institutions and996

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for997

their institution.998

• For initial submissions, do not include any information that would break anonymity (if applica-999

ble), such as the institution conducting the review.1000

16. Declaration of LLM usage1001

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-1002

standard component of the core methods in this research? Note that if the LLM is used only for1003

writing, editing, or formatting purposes and does not impact the core methodology, scientific1004

rigorousness, or originality of the research, declaration is not required.1005

Answer: [NA]1006

Justification:1007

Guidelines:1008

• The answer NA means that the core method development in this research does not involve LLMs1009

as any important, original, or non-standard components.1010

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what1011

should or should not be described.1012
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