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ABSTRACT

Optimal Transport (OT) recently has gained remarkable success in machine learn-
ing. These methods based on the Gromov-Wasserstein (GW) distance have proven
highly effective in capturing complex data topologies and underlying structures.
More specifically, Gromov-Wasserstein Learning (GWL) has recently introduced
a framework for graph partitioning by minimizing the GW distance. Various im-
proved versions stemming from this framework have showcased state-of-the-art
performance on clustering tasks. Building upon GW barycenter, we introduce a
novel approach that significantly enhances other GW-based models flexibility by
relaxing the target distribution (cluster size) in GWL and using a wide class of
positive semi-definite matrices. We then develop an efficient algorithm to solve the
resulting non-convex problem by utilizing regularization and the successive upper-
bound minimization techniques. The proposed method exhibits the capacity to
identify improved partition results within an enriched searching space, as validated
by our developed theoretical framework and numerical experiments. Furthermore,
we bridge the proposed model with the well-known clustering methods including
Non-negative Matrix Factorization, Min-Cut, Max-Dicut and other GW-based mod-
els. This connection provides a new solution to these classical clustering problems
from the perspective of OT. Real data experiments illustrate our method outper-
forms state-of-the-art graph partitioning methods on both directed and undirected
graphs.

1 INTRODUCTION

The Gromov-Wasserstein (GW) distance (Sturm, 2006; Mémoli, 2011), as an extension of classical
optimal transport distance (Monge, 1781; Kantorovich, 1965), is based on the concept of Gromov-
Hausdorff distance (Edwards, 1975), which measures the distance between different metric spaces. It
is particularly useful for analyzing and comparing complex structures such as graphs (Peyré & Cuturi,
2019), where the classical Euclidean distance does not apply. In the case of graphs, the Gromov-
Wasserstein distance measures the dissimilarity/similarity by minimizing the cost of mapping node
pairs from one graph to node pairs in another graph. The distance preserving method between pairs of
data points has been widely used in manifold learning such as tSNE (Van der Maaten & Hinton, 2008)
for dimensionality reduction and this characteristic theoretically underpins the applications of GW
distance in the analysis of structural data, such as object matching (Mémoli, 2011; Mémoli & Sapiro,
2004), analysis in biological and social networks. Despite the computationally demanding nature of
GW distance based approaches, cutting-edge progress in machine learning and optimization methods
is paving the way to surmount these obstacles (Peyré et al., 2016; Xu et al., 2019b). Consequently,
GW distance is emerging as an increasingly crucial instrument for scrutinizing intricate structures
spanning various domains.

GW for graph partitioning In this paper, our primary focus is on investigating the utilization of
the GW distance in graph partitioning (graph-based clustering). Firstly, we consider a disconnected
graph G1 consisting of K isolated and self-connected super-nodes as an ideal partitioned graph.
Subsequently, we leverage the GW distance to measure the dissimilarity between the data graph
G0(D0, p0) and the disconnected graph G1(D1, p1), where pi is the node distribution and Di is the
node distance matrix for i = 0, 1. The induced optimal transport plan yields a soft mapping between
nodes, facilitating the establishment of a K−way partition for G0. Building upon this concept,
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Xu et al. (2019a) introduced the Scalable Gromov-Wasserstein Learning (GWL) framework for
graph partitioning, primarily relying on the graph’s adjacency matrix. However, a pertinent question
remains open: What is the optimal choice for matrix D0 in this context? Notably, Chowdhury &
Needham (2021) has shown that substituting the adjacency matrix with the heat kernel (SpecGWL)
can lead to improved numerical results, all while preserving theoretical guarantees. However, both
GWL and SpecGWL necessitate the prior estimation of the target distribution (cluster size) p1 for
the partitioned graph G1. This requirement presents a significant challenge, as obtaining an accurate
estimate can be exceedingly difficult. A recent breakthrough introduced in the form of Semi-Relaxed
Gromov-Wasserstein graph partitioning (srGW) (Vincent-Cuaz et al., 2022) addresses this challenge
by introducing a relaxation of this variable, resulting in improved performance in the context of
clustering problems.

Despite recent strides in the field, applications of GW in graph modeling still grapple with substantial
limitations. Firstly, these methods are constrained by variables like p1 and D1, restricting their
adaptability and broader applicability. Secondly, the complex optimization problems they entail,
often characterized by non-convex quadratic programs, pose challenges to efficiency. Finally, despite
the great numerical performance, the absence of formal convergence guarantees has left questions
about their reliability unanswered.

Contributions We enhance model flexibility by relaxing the constraints of p1 and D1, offering
a GW-based clustering framework with increased degrees of freedom, akin to a special Gromov-
Wasserstein barycenter problem. Moreover, all current GW-based models can be seen as degenerate
versions of our approach. The resulting optimization problem can be efficiently addressed within the
alternating direction descent framework, employing successive upper-bound minimization (SUM)
techniques and the incorporation of two novel regularization terms. The proposed algorithm the-
oretically guarantees finite convergence towards a transport mapping. We also demonstrate the
state-of-the-art results of our algorithm in graph partitioning, underscoring its practical utility. Ad-
ditionally, we establish significant connections between our algorithm and established classical
clustering methods, including Non-negative Matrix Factorization (NMF), Min-Cut in undirected
graphs, and Max-DiCut in directed graphs, opening a gate for new solutions to these classical models.

2 GRAPH PARITIONING BASED ON GW

Gromov-Wasserstein discrepancy A dataset equipped with a graph structure with n vertices can
be represented as G(D,µ), where [D]ij ∈ Rn×n is a metric matrix characterizing the relationship
between vertices, and µ ∈ △n = {µ ∈ Rn+|

∑n
i=1 µi = 1} is a discrete probability distribution

that characterizes the importance of the vertices. Given two graphs G(D,µ) and G
′
(D

′
, ν) with

(D,µ) ∈ RN1×N1 ×△N1
, (D

′
, ν) ∈ RN2×N2 ×△N2

, the GW distance is defined as:

GW (G,G
′
) = min

π∈Π(µ,ν)
ED,D′ (π), (1)

where

ED,D′ (π)
def.
=
∑
i,i′

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′ ,

Π(µ, ν)
def.
= {π : π ∈ RN1×N2

+ , π1N2
= µ, π⊤1N1

= ν}.
Here 1N is a N × 1 all-ones vector. And the concept of GW can be generalized to a pseudo-metric
by incorporating any square matrix D (Chowdhury & Mémoli, 2019) . GW distance measures the
"cost" of transforming one graph into another while preserving its inherent topological structure
by considering pairwise distances between elements, and the induced transport plan π∗ provides a
tangible representation of the relationships between their nodes, making it a powerful tool for graph
analysis and graph matching.

Gromov-Wasserstein Learning In recent times, the GWL framework, (Xu et al., 2019a) has
proven to be a valuable approach for tackling graph partitioning challenges. In a more specific
context, when dealing with a data graph G(D,µ) consisting of N nodes and a disconnected graph
G

′
(D

′
, ν) with a K nodes where N >> K, we can view each node in G

′
as a representative of a
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distinct cluster, and the transport plan induced by GW discrepancy naturally provides indications
of the probabilities of each node in association with each cluster (soft clustering), and its maximum
posteriori actually implies a K−way partition (hard clustering) of graph G.

The core of the GWL framework (Xu et al., 2019a) is the representation of the data graph G using an
adjacency matrix D = Adj and the characterization of µ through a function of node degree (neighbor
density). Subsequently, an estimated distribution ν̂ and estimated structure matrix D̂′ = diag(ν̂) is
derived by aggregating the weighted and resampled node distributions of µ. The primary objective
of K−way graph partitioning on a data graph comprising N nodes is to optimize the Gromov-
Wasserstein discrepancy problem with a predefined D̂′ and ν̂. This optimization problem is formally
expressed as:

π = arg min
π∈Π(µ,ν̂)

E
Adj,D̂′ (π). (2)

Heat kernels Bai & Hancock (2004) demonstrated that heat kernels may provide a more effective
representation of the global structure of graphs in comparison with the adjacency matrix. For
instance, in some cases, two graphs may have different edge connectivities but similar heat kernel
structures, indicating that they have similar global properties despite their local differences. In
contrast, adjacency-based matchings is based on only local information and may miss such global
structures. The heat kernel can be computed by

H = e−tL = Φe−tΛΦ⊤, (3)

and the problem is formally expressed as:

π = arg min
π∈Π(µ,ν̂)

E
H,D̂′ (π). (4)

where L is the graph Laplacian, and Λ,Φ are its eigenvalues and corresponding eigenvectors matrix.
This can be understood from the perspective of heat equation, whose evolution operator is exactly (3).
The heat kernel provides insights into how information or energy propagates and diffuses throughout
the graph. Moreover, when t → 0, we have D ≈ I − tL, the kernel’s properties are dictated by
the local connectivity structure or topology of the graph. On the other hand, when t → ∞, larger
eigenvalues decay rapidly, resulting in D ≈ e−tλsϕsϕ

⊤
s , where λs is the smallest nonzero eigenvalue

and ϕs is the corresponding eigenvector, namely Fiedler vector (Fiedler, 1973). Consequently,
the global structure of the graph governs the kernel’s behavior over long periods of time. Indeed,
replacing the adjacency matrix with the heat kernel in GWL framework (SpecGWL) has been shown
to achieve better results in graph partitioning (Chowdhury & Needham, 2021).

semi-relaxed Gromov-Wasserstein A significant constraint inherent to both GWL and SpecGWL
lies in their reliance on certain presuppositions. Specifically, they often require the introduction of a
predetermined partitioned structure D̂′ and a pre-established partitioned distribution ν̂. In the absence
of prior knowledge pertaining to the accurate clustering of data (which fundamentally constitutes our
initial challenge), providing a precise a priori estimation becomes an intricate undertaking. Existing
estimation methods may be suboptimal across diverse scenarios, and can not accurately capture the
true underlying structures within the graph. So Vincent-Cuaz et al. (2022) proposed semi-relaxed
Gromov-Wasserstein (srGW) by relaxing the mass constraint on ν of GW discrepancy, and set
D

′
= IK , then the problem is formally expressed as:

π = arg min
π∈RN×K

+ ,π1K=µ
ED,IK (π). (5)

3 ENHANCED GRAPH PARTITIONING METHOD BASED ON
GROMOV-WASSERSTEIN BARYCENTER

3.1 A NEW GRAPH PARTITIONING MODEL

Motivations In the realm of GW-based methods, certain limitations have been encountered, ranging
from inherent model constraints to the absence of theoretical guarantees regarding algorithm conver-
gence. Additionally, during our empirical investigations, we observed several intriguing phenomena.
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Typically, we would generate a soft clustering represented by π and then proceed to convert it into
hard clustering assignments Γ by utilizing the coordinates of each row’s maximum. what piqued
our interest was a noteworthy revelation: the truncated hard clustering consistently exhibited smaller
GW distances than the soft clustering, i.e., ED,D′ (Γ) < ED,D′ (π). This phenomenon sparked our
curiosity and led us to contemplate the pursuit of hard clustering directly, a direction more closely
aligned with the fundamental objective of clustering problems (more motivations in Appendix A).
Figure 1 illustrates the GW distance obtained using SpecGWL with a heat kernel matrix for varying
values of the hyperparameter t for Wikipedia dataset.
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Figure 1: The GW distances obtained using SpecGWL with a heat kernel matrix for varying values of
the hyperparameter t for Wikipedia dataset. dgw = ED,D′ (π) represents the distance induced by the
soft clustering π. idxgw = ED,D′ (Γ) signifies the GW distance induced after applying thresholding
to π for hard clustering Γ.

Monge’s type Gromov-Wasserstein barycenter In the context of the K−way graph partitioning
on a data graph G(D,µ) with N nodes, we naturally aspire to discover a mapping Γ ∈ RN×K

+ from
G(D,µ) to the ideal partitioned graph G

′
(D

′
, ν), while minimizing the GW (G,G

′
). It’s worth

noting that for this mapping Γ, the i-th row contains solely one non-zero element, which equals µi. If
this element belongs to the j-th column, it signifies that the i-th node has been allocated to the j-th
column. Consequently, the problem is reformulated as:

min
D′∈Diag+

min
Γ1K=µ,∥Γ∥0=N

ED,D′ (Γ), (6)

where Diag+ represents the set of positive semidefinite diagonal matrix and ∥ ·∥0 denotes the 0 norm,
representing the number of non-zero elements, and induced optimal mapping Γ can also be denoted
as MGW (G,G

′
). It is worth noting that in this context, the entire structure G

′
(D

′
, ν) is not pre-

estimated; instead, it is treated as an optimization variable. Specifically, following common practice,
the target structure D

′
is often assumed to be a diagonal matrix (with non-negative diagonal elements,

ensuring it is positive semi-definite), and the target distribution ν = πT1N can be directly calculated.
We can also reformulate this problem as a special case of Monge’s type Gromov-Wasserstein
barycenter problem:

G
′
= arg min

G′ (D′ ,ν),D′∈Diag+
MGW (G,G

′
). (7)

Kantorovich’s relaxation Equation (6) involves the derivation of a hard clustering result by
solving an intractable combinatorial optimization problem. Given its exceedingly high computational
intricacy, it becomes imperative to initially embark on a process of relaxation to derive a continuous
optimization problem. We can follow the approach used in OT and transform the Monge’s type
Gromov-Wasserstein problem into the continuous Kantorovich’s type Gromov-Wasserstein problem,
where we called Enhanced Gromov-Wasserstein Barycenter (EGWB):

D
′
, π = arg min

D′∈Diag+,π1K=µ
ED,D′ (π). (8)

We will only consider local minimizer of this problem at the extremal points of Π(µ, ·) = {π ∈
RN×K

+ , π1K = µ}, which precisely constitutes the feasible sets of the mapping Γ. Furthermore, in
the discrete case, any distribution can be transformed into a uniform distribution through splitting
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of mass, and we can prove that problem (8) achieves its global minimum precisely at the extremal
points under some conditions (see Appendix A), therefore we will consider the case where µ follows
a uniform distribution in the following sections.

3.2 OPTIMIZATION AND ALGORITHM

We can employ alternating minimization to solve (8), in details, starting with an initial guess π(0),
then we compute the sequence:

D
′
(0), π(1), D

′
(1), π(2), D

′
(2), · · · , D

′
(t), π(t+ 1), · · · (9)

Updating D
′

with fixed π The subproblem can be reformulated as:

D
′
(t) = argmin

D′

∑
j,j′

(D
′

jj′
2∑
i,i′

πijπi′ j′ − 2D
′

jj′

∑
i,i′

πijDii′πi′ j′ ),

which can be decoupled into independent subproblems with respect to D
′

jj′
, and each problem is a

quadratic convex function, we can efficiently obtain the minimum by

D
′

jj(t) =

{ ∑
i,i

′ πijDii
′ π

i
′
j∑

i,i
′ πijπi

′
j

=
π⊤
:,jDπ:,j

ν2
j

, for νj > 0

−c, otherwise
(10)

where π:,j is the j−th column vector of π, νj is the probability of j cluster and c is a large constant.

Updating π with fixed D
′

This subproblem usually is a non-convex optimization problem (see
Appendix A) with respect to π ∈ Π(1N

N , ·), so discovering a global minimum remains an unattainable
pursuit. Note that the original problem (6) concerns hard clustering, thus our aspiration lies in
identifying local minimizer on the extremal points, which is given by 1

N IndN×K with IndN×K

representing the set of all rectangular permutation matrices (Cao et al., 2022). In summary, we want
to find

π(t+ 1) = arg min
π∈ 1

N IndN×K
ED,D′ (π), (11)

where D
′
= D

′
(t). For such a class of problems, methods like Conditional Gradient (CG) algorithm

(Jaggi, 2013) can be employed for solving. Benefitting from the inherent peculiarity of the problem
structure, it is guaranteed to converge to extremal points eventually (Lacoste-Julien, 2016). However,
numerically, it falls short in comparison to methods that incorporate entropy regularization (Vincent-
Cuaz et al., 2022). On the other hand, we can observe the fact that adding a constant −λ 1

N =

−λ⟨π, π⟩ to (18) does not affect the optimizer for any λ and π ∈ 1
N IndN×K , where ⟨·, ·⟩ is

Frobenius inner product. Thus, we can solve the corresponding continuous Kantorovich’s type
problem:

π(t+ 1) = arg min
π∈Π(

1N
N ,·)

f(π) = arg min
π∈Π(

1N
N ,·)

(ED,D′ (π)− λ⟨π, π⟩), (12)

with some certain λ ≥ 0. Additionally, inspired by the technique of entropy regularization, we can
solve (12) by generating a sequence {πτ,ε} that successively minimizing the approximate upper
bound function of f :

πτ+1,ε = arg min
π∈Π(

1N
N ,·)

u(π, πτ,ε)

= arg min
π∈Π(

1N
N ,·)

f(πτ,ε) + ⟨∇f(πτ,ε), π − πτ,ε⟩+ εDKL(π∥πτ,ε).

This process can be regarded as proximal gradient method, and be reformulated as an Eulerian
discrete Wasserstein Barycenter problem (Peyré & Cuturi, 2019) with an entropy regularizer:

πτ+1,ε = arg min
π∈Π(

1N
N ,·)

⟨∇f(πτ,ε)− εln(πτ,ε)︸ ︷︷ ︸
C′

, π⟩+ ε⟨π, ln(π)⟩. (13)
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By the first-order optimality condition and constraints, it can be directly obtained using the one-step
Sinkhorn projection (detailed in Appendix A), as shown in Algorithm 1. It’s pertinent to note that at
each iteration, the computation of the gradient entails a complexity of O(N2K +K2N), while a
single Sinkhorn projection carries a complexity of O(NK).

Algorithm 1: EGWB-π

Input: Similarity matrix in data space: D, previous D
′
,ε,λ

Output: πnew.

1 Initialize π0;
2 while not converged do
3 Evaluate Cost matrix C

′
= ∇f(πτ,ε)− εln(πτ,ε);

4 Evaluate Kernel K = exp(−C
′

ε );
5 Calculate transport plan πτ+1,ε =

Ki,j

N
∑k

j=1Kij
;

6 end
7 πnew = πτ,ε.

By introducing a strongly concave regularization term that −⟨π, π⟩ renders the objective function
"more" concave, and subsequently employing a convex regularization term εDKL(π∥πτ,ε) to provide
a lower bound for the coefficient λ associated with the concave regularization term, our algorithm 1
eventually converges to the extremal points.

Theorem 1 (Convergence for Algorithm 1) If λ ≥ N × max(D
′
)2 − εN

4 , every limiting point
generated by the sequence {πτ,ε} is a stationary point of Problem (12).

It is straightforward to observe the monotone decrease of the objective function during the alternating
minimization process. As the objective function has a lower bound, we can infer the convergence.

Theorem 2 (Monotone decrease of the objective function) The sequences {D′
(t)} and {π(t)} in

process (9) satisfies:

ED,D′ (t)(π(t+ 1)) ≤ ED,D′ (t)(π(t)) ≤ ED,D′ (t−1)(π(t)) ∀t.

Theorem 3 (Convergence for process (9)) If λ > N×max(D′
)2− εN

4 , then the cumulative error∑
τ ∥πτ,ε − πτ+1,ε∥2F is bounded by |ED,D′ (t)(π(t + 1)) − ED,D′ (t)(π(t))| in Algorithm 1. Then

for sufficiently large t, {πτ,0} is a constant sequence, inferring the convergence of π(t).

In general, we can not prove the global convergence for ε > 0. However, in our numerical experiments
we found that a small enough ε always leads to the convergence of {π(t)}.

Highlights Our proposed algorithms 1 and process (9) combine the strengths of conditional gradient
method and entropy regularization. By introducing a concave regularization term, we maintain the GW
distance value at the extremal points while increasing its value in the interior of the joint probability
space Π(µ, ·). This design ensures that our algorithm converges to extremal points, effectively
forming a hard clustering result. Furthermore, we incorporate a KL divergence regularization term to
prevent premature convergence to a poor local minima, thus have better numerical performance than
CG. Additionally, convergence properties of our new algorithms are theoretically guaranteed.

3.3 CONNECTIONS WITH OTHER METHODS

GW-based methods In the context of our EGWB framework, when either D
′
, ν, or both are fixed,

our method simplifies to other GW-based approaches like GWL, SpecGWL, and srGW (detailed in
Appendix B).

• By fixing ν = ν̂ and specifying D
′
= diag(ν̂), with λ assigned the constant value of 0, the

proposed π subproblem 12 can be regarded as equivalent to either GWL or SpecGWL,
contingent on our choice between the adjacency matrix or the heat kernel matrix for D.

• By fixing D
′
= IK , with λ assigned the constant value of 0, the proposed π subproblem

can be regarded as equivalent to srGW. Particularly, the objective function is equivalent to a
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vanilla Min-Cut function plus an exclusive lasso (Zhou et al., 2010) regularization term with
a coefficient of 1

2 . This results in each cluster containing an equal number of data points. As
we further optimize the regularization term coefficient, it evolves into a balanced Min-Cut
problem (Chen et al., 2017) .

Other benchmark methods Our model can also be reformulated into other clustering models, and
we introduce a novel relaxation technique from OT viewpoint to optimize it within the probability
space for π (detailed in Appendix B).

• The objective function of EGWB is equivalent to enhanced balanced Min-Cut (Chen et al.,
2020). In particular, if we substitute the optimal D

′
obtained in the previous step (10) into

the π subproblem, we can get

π∗ = argmin
π

K∑
l=1

−
(π⊤

:,lDπ:,l)
2

|Vl|2
, (14)

which has a similar objective as the classical normalized cut problem (Shi & Malik, 2000).
Our proposed EGWB involves maximizing the same within-cluster similarities, but utilize
different normalization terms, which can also enhance the model’s robustness when dealing
with isolated nodes.

• After a straightforward derivation, the objective function (6) can also be reformulated as
Weighted symmetric NMF form (Ding et al., 2005):

D
′
, T = arg min

D′ ,T
∥D − TD

′
T⊤∥2F .

• When considering the partition of a directed graph, we can define the flow ratio (Laenen &
Sun, 2020) by setting D

′
as an upper triangular matrix with only the sub-diagonal elements

being non-zero, and the objective function of EGWB is equivalent to a Max-Dicut problem:

π∗ = argmax
π

K∑
i=1

cut (Vi, Vi+1)
2

|Vi||Vi+1|
. (15)

4 EXPERIMENTS

We perform several numerical experiments using both synthetic and real-world datasets to demonstrate
the superior performance of our algorithm.

4.1 SYNTHETIC DATA

We first construct four blobs, each containing 100, 200, 300, and 400 points, with varying standard
deviations (0.55, 1.0, 1.5, and 2.0), illustrated in Figure 2a. We then apply the k-nearest neighbors
(k-NN) method with k = 200 to construct the Gaussian kernel adjacency matrix for GWL and
use t = 100 to construct the heat kernel matrix for SpecGWL. We consider two different prior
cluster size: estimated values ν̂ = (0.25, 0.25, 0.25, 0.25) from Xu et al. (2019a) and the true values
νtrue = (0.1, 0.2, 0.3, 0.4). The results are displayed in Figure 2. We see that SpecGWL outperforms
GWL by utilizing the heat kernel instead of the adjacency matrix. On the other hand, the choice of
prior estimates ν̂ significantly impacts clustering results for both GWL and SpecGWL, with better
estimates yielding improved outcomes. Notably, even with the true values νtrue, neither GWL nor
SpecGWL achieve correct clustering results, while EGWB provides accurate results without prior
information (detailed in Appendix B).

4.2 REAL DATA

We proceed to assess the efficacy of EGWB in comparison to other GW-based techniques such
as GWL, SpecGWL, srGW, as well as several baseline methods including Infomap (Rosvall &
Bergstrom, 2008), FluidC (Parés et al., 2018), and Newman Fast Algorithm (Newman, 2006).
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(a) true (b) GWL with ν̂ (c) GWL with νtrue

(d) SpecGWL with ν̂ (e) SpecGWL with νtrue (f) EGWB

Figure 2: Clustering results. From left to right, 4 blobs with standard deviation 0.55, 1.0, 1.5, and 2.0,
there are 100, 200, 300, and 400 points respectively. Different colors represent different clusters.
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Figure 3: Comparison of AMI results between SpecGWL, srGW, and EGWB indicates that EGWB
performs the best. This aligns with our theoretical analysis, where SpecGWL and srGW are degenerate
models of SpecGWL.

Datasets Here, we utilized four classic real-life datasets as used in Chowdhury & Needham (2021).
The first dataset is Wikipedia hyperlink network (Leskovec & Krevl, 2014), where the digraph has
1998 nodes and 2700 edges, with 15 categories. The second dataset is derived from a network of
Amazon products (Leskovec & Krevl, 2014) with 1501 nodes and 4626 edges, with 12 categories. The
third dataset originates from a European research institution. It comprises 1005 nodes, representing
the 42 departments and their members, and 25571 edges. The final is Village dataset representing a
social network which captures the 8423 interactions (edges) among 1991 residents of 12 villages in
rural India (Banerjee et al., 2013). We also generate a noisy version of each graph by adding up to
10% randomly generated additional edges.

Experimental settings We constructed the heat kernel matrix using the normalized graph Laplacian
for undirected graphs and Chung’s normalized Laplacian for directed graphs. Furthermore, all
hyperparameters, such as the heat kernel time t and entropy regularization coefficient ϵ, can be tuned
using maximum modularity. Additionally, with respect to our newly introduced parameter λ, when λ
becomes exceedingly large, the concave regularization term dominates the objective function, causing
f(π) to become a concave function. Consequently, Algorithm 1 rapidly converges to extremal
points but highly dependent on initial conditions. To mitigate this issue, we employed a widely-used
mathematical technique known as a continuation scheme. In this scheme, we gradually increased
the value of λ from a small value to a larger one. Intuitively, in the initial stages of the algorithm
when λ is small (close to 0), it resembles classical entropy regularization methods, searching for
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Table 1: Comparison of AMI across a variety of datasets

Wikipedia EU-email Amazon Village
noisy raw noisy raw noisy raw noisy raw

EGWB (ours) 0.526 0.570 0.511 0.565 0.587 0.780 0.833 0.923
GWL 0.332 0.438 0.357 0.411 0.346 0.414 0.509 0.688

SpecGWL 0.473 0.510 0.443 0.493 0.441 0.605 0.747 0.822
srGW 0.505 0.572 0.466 0.534 0.532 0.700 0.711 0.865
Fluid 0.347 NA 0.450 NA 0.182 NA 0.486 NA

Newman 0.341 0.382 0.231 0.312 0.668 0.772 0.721 0.880
InfoMap 0.329 0.377 0.350 0.447 0.518 0.942 0.162 0.882

more directions within the feasible set. As λ increases, our algorithm eventually converges to an
extremal point. The detailed sensitivity analyses for all parameters are provided in Appendix B.

Results and discussion We employ five different metrics, Their performance exhibits striking
similarities. In this context, we employ Adjusted Mutual Information (AMI) as a representative
metric to assess the quality of our clustering results, as illustrated in Table 1 and Table 2. Additional
results are provided in Appendix B. Specifically, Figure 3 illustrates the results of SpecGWL, srGW,
and EGWB concerning different heat kernel times t. It can be observed that EGWB consistently
outperforms other GW-based methods, thereby confirming the theoretical analysis that EGWB can be
reduced to other GW-based approaches. It is worth noting that on the Wikipedia dataset, srGW and
EGWB demonstrate similar performance. This can be attributed to the fact that Wikipedia’s data is
equally partitioned, and the exclusive lasso term in srGW facilitates rapid convergence to a perfect
clustering result. In comparison to other baseline methods: FluidC is notably limited as it is not
applicable to disconnected graphs; EGWB’s performance is on par with Infomap on networks with
high density such as the Amazon and Village datasets, and even surpasses Infomap on both sparse
networks like the Wikipedia dataset and extremely dense networks like the Eu-email dataset; unlike
the Newman Fast Algorithm which is exclusively suitable for unweighted graphs, EGWB can handle
weighted graphs. However, for a fair comparison, we present results only for unweighted graphs,
where Newman and EGWB exhibit similar performance. Furthermore, we want to stress that all
GW-based methods demonstrate greater robustness compared to the other methods, as their results
remain largely unchanged even after introducing noise.

Table 2: Comparison of AMI across a variety of digraph datasets

Wikipedia EU-email
noisy raw noisy raw

EGWB (ours) 0.486 0.516 0.500 0.585
GWL 0.165 0.201 0.341 0.422

SpecGWL 0.336 0.399 0.385 0.452
srGW 0.494 0.525 0. 537 0.563

InfoMap 0.356 0.376 0.455 0.584

5 CONCLUSION AND FUTURE WORK

In conclusion, we have introduced a novel graph partitioning method based on the Monge’s type
Gromov-Wasserstein barycenter. This approach enhances the flexibility of existing GW-based
models by relaxing both the target structure and distribution constraints. We have also devised
an efficient algorithm to tackle the ensuing complex optimization problem, which incorporates
two regularization terms and utilizes the SUM technique, with theoretical guarantees ensuring its
convergence. Furthermore, we have demonstrated that under certain parameter settings, the proposed
model reduces to existing GW-based methods. This has been confirmed by our numerical experiments
conducted on synthetic and real datasets, consistently showcasing EGWB as the superior choice
among GW-based methods. Moreover, our work has established a meaningful bridge between
our proposed model and classical clustering techniques such as Non-negative Matrix Factorization,

9
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Min-Cut, and Max-Dicut. This connection offers fresh perspectives on addressing classic clustering
problems from an Optimal Transport standpoint. In the future, we plan to explore the incorporation
of both edge and node information in our graph-based clustering models, as inspired by recent studies
such as FusedGW (Vayer et al., 2020) and other relevant works (Neyshabur et al., 2013; Vijayan et al.,
2015; Sun et al., 2015). Furthermore, we are eager to apply our model and algorithm to a broader
range of intriguing tasks, such as the clustering of graph datasets and graph completion.
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A APPENDIX

A.1 MATHEMATICAL PRELIMINARIES AND DISCUSSIONS

Non-convexity of GW discrepancy For any fixed graphs G(D,µ) and G
′
(D

′
, ν), we can reformu-

late the GW-discrepancy as following:

GW2(G,G
′
) = min

π∈Π(µ,ν)

∑
i,i′

∑
j,j′

(
Di,i′ −D

′

j,j′

)2
πijπi′ j′

= min
π∈Π(µ,ν)

∑
i,i′

D2
i,i′

∑
j

πij
∑
j′

πi′ j′ +
∑
j,j′

(D
′

j,j′
)2
∑
i

πij
∑
i′

πi′ j′

−2
∑
i,i′

∑
j,j′

πijDi,i′πi′ j′D
′

j,j′

= min
π∈Π(µ,ν)

∑
i,i′

D2
i,i′
µiµi′ +

∑
j,j′

(D
′

j,j′
)2νjνj′

−2
∑

j,i,i′ ,j′

πTjiDi,i′πi′ j′D
′

j′ ,j

⇐⇒ min
π∈Π(µ,ν)

− Tr(πTDπD
′
).

If D and D
′

are posite semidefinite, then we can find U and V such that D = UTU , D
′
= V TV ,

then −Tr(πTDπD′
) = −∥UπV T ∥2F is concave, the minimum can be attained at the extremal point

of Π(µ, ν). In our EGWB model, the ν is not fixed and its objective function can be reformulated as:

L(π) = min
π∈Π(µ,·)

∑
i,i′

∑
j,j′

(D
′

j,j′
)2πijπi′ j′ − 2

∑
i,i′

∑
j,j′

πTjiDi,i′πi′ j′D
′

j,j′

= min
π∈Π(µ,·)

Tr(πT11Tπ
(
D

′
⊙D

′
)
)− 2Tr(πTDπD

′
),

and we have

dL

dπ
=
dTr(πT11Tπ

(
D

′ ⊙D
′
)
)− 2Tr(πTDπD

′
)

dπ

= 211Tπ
(
D

′
⊙D

′
)
− 4DπD

′

dL2

d2π
= 2

(
D

′
⊙D

′
)⊗(

11T
)
− 4D

′ ⊗
D,

where the Hessian matrix is not positive semidefinite in general, thus making the π subproblem
non-convex.

Assumption of uniform distribution. For a discrete probability distribution
∑N
i=1 µiδxi

, we can
always decompose it into the form of uniform distribution. In fact, since the discrete probability
distribution is the sum of some Dirac measures, we can always use the split mass method to find the
smallest unit measure , for example, 1

3δ−1 +
2
3δ1 can be divided into 1

3δ−1 +
1
3δ1 +

1
3δ1. We will

show this split will keep the GW distance unchanged.

In fact, assuming that the index set of data points is represented as I = I1
⋃
I2, where I1 = {i0}

denotes the index of point xi0 that require a mass split. We can split the point xi0 into a set of
identical points {xi}i∈I′1 with equal weights µi(i ∈ I

′

1). They satisfy
∑
i∈I′1

µi = µi0 . Then for each

transport plan π, the corresponding row πi0· can be divided into
∑
i∈I1′

π̃i·. Consequently, after the split,

we obtain a new index set I
′
= I

′

1

⋃
I2. Moreover, for the new point clouds, we define

D̃ii′ =

 Di0i0 for i, i
′ ∈ I

′

1,

Di0i
′ for i ∈ I1, i

′ ∈ I2,
Dii′ for i ∈ I2.
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then for each π̃, we have

ED̃,D′ (π̃) =
∑

i∈I′1,i
′∈I′1

∑
j,j′

(
D̃ii′ −D

′

jj′

)2
π̃ij π̃i′ j′ + 2

∑
i∈I′1,i

′∈I2

∑
j,j′

(
D̃ii′ −D

′

jj′

)2
π̃ij π̃i′ j′

+
∑

i∈I2,i′∈I2

∑
j,j′

(
D̃ii′ −D

′

jj′

)2
π̃ij π̃i′ j′

=
∑
j,j′

(
Di0i0 −D

′

jj′

)2∑
i∈I′1

π̃ij
∑
i′∈I′1

π̃i′ j′ + 2
∑
i′∈I2

∑
j,j′

(
Di0i

′ −D
′

jj′

)2∑
i∈I′1

π̃ijπi′ j′

+
∑

i∈I2,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′

=
∑

i∈I1,i′∈I1

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′ + 2

∑
i∈I1,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′

+
∑

i∈I2,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′

=ED,D′ (π)

Therefore, without loss of generality, we always assume uniform distribution µ = 1N∗1
N .

One common condition for extremal points When we consider the case where µ follows a uniform
distribution and assume D

′ ∈ SK+ is a positive semidefinite matrix, then the objective function is

D
′
, π = arg min

D′∈Diag,π∈Π(
1N
N ,·)

ED,D′ (π), (16)

where Π(1N

N , ·) represents one side constraint π1K = 1N

N . Noted that the π subproblem is a
non-convex optimization problem with respect to π ∈ Π(1N

N , ·), but we can reformulated it as

min
π∈Π(

1N
N ,·)

ED,D′ (π) = min
ν

ED,D′ (πν), (17)

where πν is the minimizer of ED,D′ (π) over Π(1N

N , ν) for any fixed ν. Since D and D
′

are positive
semidefinite, then ∃U, V such that D = U⊤U , D

′
= V ⊤V , then we have

πν = arg min
π∈Π(

1N
N ,ν)

−∥UπV ⊤∥2F ,

where −∥UπV ⊤∥2F is a concave function, and the minimum π∗
ν can be obtained at an extremal

point of Π(1N

N , ν). In the case Nν ∈ NK , all extremal points form a set denoted by Aν , where Aν
contains matrices having exactly one 1

N in each row and a column sum of ν. Then (17) is equivalent
to minimizing ED,D′ (π) over

⋃
ν
Aν , which is given by 1

N IndN×K with IndN×K being the set of all

rectangular permutation matrices Cao et al. (2022). In summary,

π = arg min
π∈ 1

N IndN×K
ED,D′ (π). (18)

Alternative condition for extremal points Here we proposed another condition

maxD
′
≤ 2min

i
Dii (19)

to replace the conditionNν ∈ NK , under which ED,D′(π) can also attain its minimum at the extremal
points of Π(µ, ·). Let’s assume the contrary, which means there exists a minimizing transport plan π,
which is not an extremal point of Π(µ, ·). Specifically, there exists i0 such that

πi0· = µi0 [θ1 θ2 · · · θK ],
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where
K∑
s=1

θs = 1 and 0 ≤ θs < 1. Furthermore, we define I1 = {i0} and I2 = I \ I1, where

I = {1, 2, · · · , N} is the full index set. Then, we can define {π̂(s)}Ks=1 such that

π̂(s)ij =

{
µi0 for i ∈ I1, j = s,
0 for i ∈ I1, j ̸= s,
πij for i ∈ I2.

Hence, the i0-th row of π̂(s) corresponds to an extremal point, and π can be expressed as a linear
combination of π̂(s), specifically, π =

∑K
s=1 θsπ̂(s). Next, we aim to show that ED,D′(π) ≥∑K

s=1 θsED,D′(π̂(s)). If this condition is satisfied, then there exists an s0 such that ED,D′(π̂(s0)) ≤
ED,D′(π). We can continue this procedure for other rows of π which do not locate at the extremal
points. Eventually we can obtain a transport plan π̃ locating at an extremal point of Π(µ, ·) with
ED,D′(π̃) ≤ ED,D′(π), which leads to the contradiction. To prove ED,D′(π) ≥

∑K
s=1 θsED,D′(π̂(s)),

it is straightforward to find that,

ED,D′ (π)−
K∑
s=1

θsED,D′ (π̂(s))

=
∑

i∈I1,i′∈I1

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′ −

K∑
s=1

θs
∑

i∈I1,i′∈I1

∑
j,j′

(
Dii′ −D

′

jj′

)2
π̂(s)ij π̂(s)i′ j′︸ ︷︷ ︸

I

+ 2
∑

i∈I1,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′ −

K∑
s=1

2θs
∑

i∈I1,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
π̂(s)ij π̂(s)i′ j′︸ ︷︷ ︸

II

+
∑

i∈I2,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
πijπi′ j′ −

K∑
s=1

θs
∑

i∈I2,i′∈I2

∑
j,j′

(
Dii′ −D

′

jj′

)2
π̂(s)ij π̂(s)i′ j′︸ ︷︷ ︸

III

,

where

I =
∑
j,j′

(
Di0i0 −D

′

jj′

)2
πi0jπi0j′ −

K∑
s=1

θs
∑
j,j′

(
Di0i0 −D

′

jj′

)2
π̂(s)i0j π̂(s)i0j′

=(Di0i0)
2
∑
j,j′

πi0jπi0j′ +
∑
j,j′

D
′

jj′

(
D

′

jj′
− 2Di0i0

)
πi0jπi0j′

−
K∑
s=1

θs (Di0i0)
2
∑
j,j′

π̂(s)i0j π̂(s)i0j′ −
K∑
s=1

θs
∑
j,j′

D
′

jj′

(
D

′

jj′
− 2Di0i0

)
π̂(s)i0j π̂(s)i0j′

=
∑
j

D
′

jj

(
D

′

jj − 2Di0i0

)
µ2
i0θ

2
j −

K∑
s=1

θs
∑
j=s

D
′

jj

(
D

′

jj − 2Di0i0

)
µ2
i0

=
∑
j

µ2
i0D

′

jjθj(θj − 1)
(
D

′

jj − 2Di0i0

)
.

If (19) is satisfied, then I ≥ 0 since θj < 1. Additionally, it is straightforward to obtain II = III = 0.
Thus, we can conclude that ED,D′ (π)−

∑K
s=1 θsED,D′ (π̂(s)) ≥ 0.

Condition (19) can be satisfied when 2min
i
Dii ≥ max

i
Dii. In fact, from (10), we have

D
′

jj = D
′

jj(t) =

∑
i,i′ π(t− 1)ijDii′π(t− 1)i′ j∑
i,i′ π(t− 1)ijπ(t− 1)i′ j

≤ max(D),

in which max(D) must be achieved at the diagonal element for positive semidefinite matrix.
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Tensor formulation In numerical experiments, it is common to introduce a 4-way tensor:

L(D,D
′
)i,j,i′,j′

def.
=
(
Dii′ −D

′

jj′

)2
,

then we have

L(D,D
′
)⊗ π

def.
=

∑
i′,j′

L(D,D
′
)i,j,i′,j′πi′ j′


i,j

,

where ⊗ denotes the tensor-matrix multiplication. Subsequently, we can express the objective
function in the the GW distance as follows,

ED,D′ (π) = ⟨L(D,D
′
)⊗ π, π⟩,

where ⟨·, ·⟩ denotes Frobenius product. And we can directly derive the derivative:
∇ED,D′ (π)

∇π
= 2L(D,D

′
)⊗ π.

Numerical solver We will solve (12) by generating a sequence {πτ,ε} that successively minimizing
the approximate upper bound function of f :

πτ+1,ε = arg min
π∈Π(

1N
N ,·)

u(π, πτ,ε)

= arg min
π∈Π(

1N
N ,·)

f(πτ,ε) + ⟨∇f(πτ,ε), π − πτ,ε⟩+ εDKL(π∥πτ,ε)

= arg min
π∈Π(

1N
N ,·)

⟨∇f(πτ,ε), π⟩+ εDKL(π∥πτ,ε)

= arg min
π∈Π(

1N
N ,·)

⟨∇f(πτ,ε), π⟩+ ε(⟨π, ln(π)⟩ − ⟨π, ln(πτ,ε)⟩)

= arg min
π∈Π(

1N
N ,·)

⟨∇f(πτ,ε)− εln(πτ,ε), π⟩+ ε⟨π, ln(π)⟩,

by defining C
′
= ∇f(πτ,ε)− εln(πτ,ε), it is equivalent to solve

πτ+1,ε = arg min
π∈Π(

1N
N ,·)

⟨C
′
, π⟩+ ε⟨π, ln(π)⟩.

This sub-problem can be reformulated as an Eulerian discrete Wasserstein Barycenter problem with
an entropy regularizer, Introducing the dual variable ψ ∈ RN , the Lagarangian function is

L(π, ψ) = ⟨C
′
, π⟩+ ε⟨π, ln(π)⟩ −

〈
ψ, π1k∗1 −

1N∗1

N

〉
,

take first order gradient and we get
∂L(π, ψ)

∂πi,j
= C

′

i,j + ε log (πi,j)− ψi = 0,

⇒πi,j = eψi/εe−C
′
i,j/ε = uiKi,j .

Besides, based on the constrain that:
k∑
j=1

πτ+1,ε
ij = ui

k∑
j=1

Kij =
1

N
,

we can get

ui =
1

N
∑k
j=1Kij

,

πτ+1,ε
i,j =

Ki,j

N
∑k
j=1Kij

.

It is evident that this is a linear programming problem, and as ε approaches 0 the πτ+1,ε

solves an unconstrained strictly convex problem, which converges to π⋆ at a reasonable linear
rateCominetti & Martín (1994), where π⋆ is the solution to the original Wasserstein barycenter prob-
lem min

π∈Π(
1N
N ,·)⟨C

′
, π⟩ and is attained at an extremal point. In summary, the proposed learning

algorithm is presented in Algorithm 1.
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A.2 PROOFS OF THEOREMS

First we give two lemmas that will be used in the proofs.

Lemma 1 If λ ≥ N max(D
′
)2 − εN

4 , then we have

u(π, πτ,ε) ≥ f(π),∀π, πτ,ε ∈ Π(
1N
N
, ·),

u(πτ,ε, πτ,ε) = f(πτ,ε),∀πτ,ε ∈ Π(
1N
N
, ·).

This implies that the approximate function u(π, πτ,ε) is a tight upper bound of the original function
f(π).
Proof Obviously u(π, πτ,ε) is continuously differentiable and u(πτ,ε, πτ,ε) = f(πτ,ε),∀πτ,ε ∈
Π(1N

N , ·) , and we have

u(π, πτ,ε)− f(π)

=u(π, πτ,ε)− (ED,D′ (π)− λ⟨π, π⟩)
=ED,D′ (πτ,ε)− λ⟨πτ,ε, πτ,ε⟩+ ⟨∇ED,D′ (πτ,ε)− 2λπτ,ε, π − πτ,ε⟩
− ED,D′ (π) + λ⟨π, π⟩+ εDKL(π∥πτ,ε)

=⟨L(D,D
′
)⊗ πτ,ε, πτ,ε⟩+ ⟨2L(D,D

′
)⊗ πτ,ε, π − πτ,ε⟩ − ⟨L(D,D

′
)⊗ π, π⟩

− λ⟨πτ,ε, πτ,ε⟩ − ⟨2λπτ,ε, π − πτ,ε⟩+ λ⟨π, π⟩+ εDKL(π∥πτ,ε)

=−⟨L(D,D
′
)⊗ (πτ,ε − π), (πτ,ε − π)⟩︸ ︷︷ ︸

I

+λ⟨πτ,ε − π, πτ,ε − π⟩︸ ︷︷ ︸
II

+ εDKL(π∥πτ,ε)︸ ︷︷ ︸
III

.

We firstly introduce T = πτ,ε − π, and it satisfies
∑K
j=1 Tij = 0, for ∀i. We can rewrite III as

DKL(π∥πτ,ε) =
∑
ij

πij ln(
πij
πτ,εij

) = −2
∑
ij

πij ln(

√
πτ,εij
πij

).

Using −ln(x) ≤ 1− x and
∑
ij πij =

∑
ij π

τ,ε
ij = 1, we have

DKL(π∥πτ,ε) ≥ 2
∑
ij

πij(1−

√
πτ,εij
πij

) =
∑
ij

(2πij − 2
√
πτ,εij πij)

=
∑
ij

(πij + πτ,εij − 2
√
πτ,εij πij) =

∑
ij

(
√
πij −

√
πτ,εij )2

=
∑
ij

(
πij − πτ,εij

√
πij +

√
πτ,εij

)2 ≥
∑
ij

(
πij − πτ,εij

max(
√
πij +

√
πτ,εij )

)2.

Since πij ≤ 1
N for ∀π ∈ Π(1N

N , ·), we have (
√
πij +

√
πτ,εij ) ≤ 2

√
1
N , and

III ≥ ε
∑
ij

(
πij − πτ,εij

2
√

1
N

)2 =
εN

4
⟨T, T ⟩. (20)

Therefore,

u(π, πτ,ε)− f(π) ≥ I + II +
εN

4
⟨T, T ⟩. (21)

Notice that the negative I is the GW distance ED,D′ (T ). Direct calculations lead to

I = −
∑
j

(D
′

jj)
2(
∑
i

Tij)
2 + 2∥UTV ⊤∥2F ≥ −

∑
j

D̂′(
∑
i

Tij)
2, (22)
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where we have introduced D̂′ = max(D
′

jj)
2. Then by the Rearrangement Inequality

An =
(a1 + a2 + ...+ an)

n
≤
√
a21 + a22 + ...+ a2n

n
= Qn,

−(a1 + a2 + ...+ an)
2 ≥ −n ∗ (a21 + a22 + ...+ a2n),

we can get

−
∑
j

D̂′(
∑
i

Tij)
2 ≥ −

∑
j

D̂′N
∑
i

T 2
ij = −ND̂′⟨T, T ⟩. (23)

Combining Equations(21) , (22), and (23), we can obtain:

u(π, πτ,ε)− f(π) ≥ (λ−N
ˆ

D′ +
εN

4
)⟨T, T ⟩, (24)

which leads to the conclusion that u(π, πτ,ε)− f(π) ≥ 0 if λ ≥ ND̂′ − εN
4 .

Lemma 2 If λ ≥ N ×max(D
′
)2 − εN

4 , then we have

u′(π, πτ,ε; d)|π=πτ,ε = f ′(π; d), ∀d with π + d ∈ Π(
1N
N
, ·).

This guarantees that the first order behavior of u(π, πτ,ε) is the same as f(π) locally (note that the
directional derivative u′(π, πτ,ε; d) is only with respect to the variable π).

Proof Assume to the contrary that there exist a transport plan πτ,ε ∈ Π(1N

N , ·) and a direction d
such that

u′(π, πτ,ε; d)|π=πτ,ε ̸= f ′(πτ,ε; d).

Noticing that πτ,ε may be at the boundary of Π(1N

N , ·) such that πτ,ε − αd does not belong to
Π(1N

N , ·) for ∀α > 0, we can introduce π̄ = πτ,ε + αd for some α > 0. Due to the fact that f(π)
and u(π, πτ,ε) are continuously differentiable, π̄ must belong to the interior of Π(1N

N , ·) and satisfy

u′(π, π̄; d)|π=π̄ ̸= f ′(π̄; d).

However, Lemma 1 implies that

u′(π, π̄; d)|π=π̄ = lim
λ↓0

u(π̄ + λd, π̄)− u(π̄, π̄)

λ

≥ lim
λ↓0

f(π̄ + λd)− f(π̄)

λ
= f ′(π̄; d),

u′(π, π̄; d)|π=π̄ = lim
λ↓0

u(π̄, π̄)− u(π̄ − λd, π̄)

λ

≤ lim
λ↓0

f(π̄)− f(π̄ − λd)

λ
= f ′(π̄; d),

which implies that u′(π, π̄; d)|π=π̄ = f ′(π̄; d), leading to the contradiction.

Proof of Theorem 1 Firstly, by Lemma 1 and πτ+1,ε = arg min
π∈Π(

1N
N ,·)

u(π, πτ,ε), we have

f
(
πτ+1,ε

)
≤ u

(
πτ+1,ε, πτ,ε

)
≤ u (πτ,ε, πτ,ε) = f (πτ,ε) , ∀τ = 0, 1, 2, . . . (25)

So the sequence of the objective function values are non-increasing, i.e.

f
(
π0,ε

)
≥ f

(
π1,ε

)
≥ f

(
π2,ε

)
≥ . . .

Assuming that there exists a subsequence {πrj ,ε} converging to a limit point π(t + 1), then for
∀π ∈ Π(1N

N , ·), we have

u (πrj+1,ε, πrj+1,ε) = f (πrj+1,ε) ≤ f
(
πrj+1,ε

)
≤ u

(
πrj+1,ε, πrj ,ε

)
≤ u (π, πrj ,ε) .
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Letting j → ∞, we obtain

u(π(t+ 1), π(t+ 1)) ≤ u(π, π(t+ 1)), ∀π ∈ Π(
1N
N
, ·),

which implies

u′(π, π(t+ 1); d)|π=π(t+1) ≥ 0, ∀d s.t. π(t+ 1) + d ∈ Π(
1N
N
, ·).

This together with Lemma 2 implies that π(t+ 1) is a stationary point of f(π).

Proof of Theorem 3 According to the Theorem 1, at the t-th outer loop:
π0,ε = π(t),

πτ+1,ε = arg min
π∈Π(

1N
N ,·)

u(π, πτ,ε), τ = 0, 1, 2, . . .

lim
τ→∞

πτ,ε = π(t+ 1).

Based on the monotonicity of the objective function (25) and Lemma 1, we can conclude that
f(π(t))− f(π(t+ 1))

=

∞∑
τ=0

f(πτ,ε)− f(πτ+1,ε)

≥
∞∑
τ=0

u(πτ+1,ε, πτ,ε)− f(πτ+1,ε)

≥
∞∑
τ=0

(λ−ND̂
′
+
εN

4
)∥πτ,ε − πτ+1,ε∥2F ,

where the last inequality is a consequence of Equation (24). Since f(·) attains minimum at the
extremal point, we have that ⟨π(t), π(t)⟩ = ⟨π(t+ 1), π(t+ 1)⟩ = 1

N is a constant, which implies
f(π(t)) = ED,D′ (t)(π(t))− λ

N , f(π(t+1)) = ED,D′ (t)(π(t+1))− λ
N , and

∑
τ ∥πτ,ε− πτ+1,ε∥2F

is bounded by a positive multiple of ∥ED,D′ (t)(π(t+ 1))− ED,D′ (t)(π(t))∥F .

Moreover, by the monotonicity and lower boundedness of the objective function f , limt→∞ f(π(t))−
f(π(t+ 1)) = 0, then for sufficiently large t, we can infer that

∞∑
τ=0

∥πτ,ε − πτ+1,ε∥2F <
1

N2
.

When ε = 0, πτ,0 belongs to 1
N IndN×K for ∀τ . This implies {πτ,0} must be a constant sequence

and π(t) = π(t + 1). When ε > 0, for sufficiently large t and the linear convergence of sinkhorn
algorithm, we have

∥π(t)− π(t+ 1)∥2F ≤2{∥π(t)− πT,ε∥2F + ∥πT,ε − π(t+ 1)∥2F }

≤2{T
T−1∑
τ=0

∥πτ,ε − πτ+1,ε∥2F + ∥πT,ε − π(t+ 1)∥2F }

<
1

N2
.

This also implies π(t) = π(t+ 1).

B MORE EXPERIMENTAL RESULTS

B.1 DEGENERATED MODEL

When µ is a uniform distribution, optimizing the mapping Γ is equivalent to finding the optimal
T = NΓ ∈ IndN∗K , where IndN∗K is the set of indicator matrix (rectangular permuation matrix),
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so TijTi′ j = 1 ⇐⇒ xi, xi′ ∈ Vj and
∑
i,i′ TijTi′ j = |Vj |2. By removing the constant term, the

objective function in GW discrepancy can be reformulated as:

ED,D′ (T ) =
∑
i,i′

∑
j,j′

(
Di,i′ −D

′

j,j′

)2
TijTi′ j′

=
∑
i,i′

∑
j,j′

D
′

j,j′
2
TijTi′ j′ − 2

∑
i,i′

∑
j,j′

TijDi,i′Ti′ j′D
′

j,j′

=
∑
j

D
′

j,j

2∑
i,i′

TijTi′ j − 2
∑
i,i′

∑
j,j′

TijDi,i′Ti′ j′D
′

j,j′

= −2Tr(T⊤DTD
′
) + Tr(D

′2
T⊤11⊤T ).

So the barycenter problem (6) can be rewritten as

min
D′∈Diag+

min
T∈IndN∗K

−2Tr(T⊤DTD
′
) + Tr(D

′2
T⊤11⊤T ). (26)

We will show the connections between EGWB and other methods in following sections.

GWL and SpecGWL Clearly, if we fix ν and set D
′
= diag(ν), while also setting λ = 0, our

model degenerates into GWL or SpecGWL (depending on whether we choose the adjacency matrix
or the heat kernel matrix for D).

srGW If we fixed D
′
= IK , problem (8) then reduces to the scenario of Semi-relaxed Gromov-

Wasserstein graph partitioning (Vincent-Cuaz et al., 2022). Indeed, the objective function (26)
becomes

min
T∈IndN∗K

−2Tr(T⊤DT ) + Tr(T⊤11⊤T ), (27)

if D is the adjacency matrix, the first term in Equation (30) is exactly the original Min-Cut problem.
The second term is exactly the exclusive lasso Zhou et al. (2010) defined as follow,

∥T∥e =
K∑
j=1

(
N∑
i=1

∥Tij∥

)2

= Tr(T⊤11⊤T ),

it consists of l1-norm for within-group sparsity and l2-norm for between-group non-sparseness.
Intuitively speaking, exclusive lasso makes variables in the same group compete with each other in
each group. According to the Cauchy inequality, we have

K∑
j=1

(
N∑
i=1

∥Tij∥

)2

≥

(∑K
j=1

∑N
i=1 ∥Tij∥

)2
K

=
N2

K
,

which arrives at its minimum if and only if |Vj | =
∑N
i=1 Tij =

N
K ,∀j = 1, · · · ,K, which means

each cluster has the same number of data points. Adding this regularization can also avoid the
situation that a certain class contains only a few points to a certain extent. It is noted that srGW can
be viewed as a continuous optimization problem for this via the Kantorovich relaxation of (27).

Balanced Min-Cut Taking a step further, if we posit the form of D′ = sIK , where s is a variable,
it becomes balanced Min-Cut problem(Chen et al., 2017):

min
s

min
T∈IndN∗K

−2sTr(T⊤DT ) + s2Tr(T⊤11⊤T ). (28)

We can find the optimal value by alternate optimization.

(1) Obviously, when T is fixed, the objective function in Equation (28) is a convex quadratic function
about s, so we have

s∗ =
Tr(T⊤DT )

Tr(T⊤11⊤T )
, (29)
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the scalar s is learned to balance the partition across all clusters.

(2) When s is fixed, it is equivalent to solve

min
T∈IndN∗K

−2Tr(T⊤DT ) + sTr(T⊤11⊤T ), (30)

Upon obtaining the optimal solution, substituting s∗ from Equation (29) into Equation (28) yields:

min
s

min
T∈IndN∗K

s∗ ∗ (−Tr(T⊤DT )),

where s exhibits inverse proportionality with ∥T∥e. The second term corresponds to the objective
function of classical Min-Cut and is less than zero. Thus, we aim to find the maximum possible
value of s, which corresponds to minimizing the magnitude of ∥T∥e. Therefore, the entire model can
perform dual tasks of minimizing the graph cut and promoting balance across all clusters.

NMF form of Balanced Min-Cut Clearly for any indicator matrix T we have Tr
(
TT⊤TT⊤) =∑K

j=1

(∑N
i=1 Tij

)2
, and we know Tr

(
TT⊤TT⊤) = Tr

(
T⊤11⊤T

)
= ∥T∥e, so the objective

function in Equation (28) can be reformulated as a NMF problem:

min
s

min
T∈IndN∗K

−2sTr(T⊤DT ) + s2Tr(T⊤11⊤T )

=min
s

min
T∈IndN∗K

−2sTr(T⊤DT ) + s2Tr
(
TT⊤TT⊤)

⇐⇒ min
s

min
T∈IndN∗K

Tr(DD⊤)− 2sTr(T⊤DT ) + s2Tr
(
TT⊤TT⊤)

=min
s

min
T∈IndN∗K

∥D − sTT⊤∥2F .

Enhanced balanced Min-Cut (EBMC) It’s worth noting that data with a perfect cluster structure
(where each class has an equal number of data points) is uncommon in real-life scenarios. The
assumption in srGW and balanced Min-Cut that the diagonal elements of D

′
are equal is insufficient

for distinguishing dissimilarities among different clusters. Therefore, our algorithm treats D
′

as
variables for optimization, and the objective function (26) of EGWB is equivalent to enhanced
balanced Min-Cut (Chen et al., 2020):

max
D′∈Diag+,T∈IndN∗K

K∑
l=1

T⊤
:,l(2D

′

llD − (D
′

ll)
211⊤)T:,l. (31)

In particular, when we substitute the optimalD
′

obtained in the previous step (10) into the subproblem
for π, we can obtain:

π∗ = argmin
π

K∑
l=1

−
(π⊤

:,lDπ:,l)
2

|Vl|2
. (32)

Recall that the classical normalized cut problem can be formulated as:

min
T

K∑
l=1

T⊤
:,lLWT:,l

T⊤
:,lDWT:,l

⇐⇒ min
T

K∑
l=1

−
T⊤
:,lWT:,l

T⊤
:,lDWT:,l

,

where W is the adjacency matrix, and LW and DW are the corresponding graph laplacian and degree
matrices. Here, the term T⊤

:,lDWT:,l is included to improve the robustness of the model when dealing
with isolated nodes (Shi & Malik, 2000). It can be observed that (32) has a similar objective of
maximizing the within-cluster similarities, but utilize different normalization terms.

Weighted symmetric NMF form of EBMC Clearly for any indicator matrix T we have TijTij′ =
δjj′ , and

Tr(TD
′
T⊤TD

′
T⊤) =

∑
i,t,k,l,m,n

TikD
′

klTtlTtmD
′

mnTin

=
∑

i,t,k=n,l=m

TikTtlD
′

klD
′

kl =
∑
j,j′

∑
i,i′

D
′

j,j′
2
TijTi′ j′ ,
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so Equation (26) can be reformulated as

min
D′

min
T∈IndN∗K

∑
i,i′

∑
j,j′

D
′

j,j′
2
TijTi′ j′ − 2

∑
i,i′

∑
j,j′

TijDi,i′Ti′ j′D
′

j,j′

⇐⇒ min
D′

min
T∈IndN∗K

Tr(TD
′
T⊤TD

′
T⊤)− 2Tr(T⊤D TD

′
)

⇐⇒ min
D′

min
T∈IndN∗K

∥D − TD
′
T⊤∥2F ,

which is kind of like weighted symmetric NMF D ≈ TD
′
T⊤. We can employ the Lagrangian

function to obtain the stationary equation and the KKT complementarity slackness condition at the
stationary point,

L(T,D
′
, ϕ, ψ) = ∥D − TD

′
T⊤∥2F − ϕT − ψD

′
,

∂L

∂T
= −4DTD

′
+ 4TD

′
T⊤TD

′
− ϕ,

∂L

∂D′ = 2T⊤DT + 2T⊤TD
′
T⊤T − ψ,

∂L

∂T ∗ =
∂L

∂T ∗ ∗ T ∗ = 0 =
∂L

∂(D′)∗
∗ (D

′
)∗ =

∂L

∂(D′)∗
,

ϕ∗ ∗ T ∗ = 0 = ψ∗ ∗ (D
′
)∗,

subsequently, we can employ methods such as gradient descent to find the fixed point (D
′
)∗ and T ∗.

Max-Dicut When considering the partition of a directed graph, such as the oil trade between
countries, we are more concerned with the relationships between different clusters. In this case, the
Max-Dicut algorithm is commonly used (Goemans & Williamson, 1995). Correspondingly, we only
need to utilize the upper triangular matrix D

′
with a main diagonal of zeros to represent the graph

G
′
, rather than a diagonal matrix for disconnected graph. It should be noted that the cut between two

clusters can still be defined as
cut (Vi, Vj) = π⊤

:,iDπ:,j .

Similarly, substituting the optimal D
′

obtained in the previous step (10) into the subproblem for π
yields

π∗ = argmax
π

K∑
i=1

K∑
j=i+1

cut (Vi, Vj)
2

|Vi||Vj |
(33)

= argmax
π

K∑
i=1

K∑
j=i+1

cut (Vi, Vj)

|Vi|+ |Vj |︸ ︷︷ ︸
I

×
(
cut (Vi, Vj)

|Vi|
+

cut (Vi, Vj)

|Vj |

)
︸ ︷︷ ︸

II

. (34)

where I and II can be regarded as a variant of the average cut. Furthermore, if the data exhibits
an obvious flow structure, inspired by the work in (Laenen & Sun, 2020), we can define the flow
ratio by setting D

′
as an upper triangular matrix with only the sub-diagonal elements being non-zero.

This is because even though most of the other terms are small, their sum can still dominate the entire
objective function. Therefore, we can consider the following max flow ratio problem:

π∗ = argmax
π

K∑
i=1

cut (Vi, Vi+1)
2

|Vi||Vi+1|
. (35)

Relaxation of these models For such a discrete optimization problem (26) in the indicator matrix
space, we can solve it using a new relaxation techniques. For example, in the context of NMF theory,
we can retain nonnegativity and relax orthogonality to obtain π = arg min

πij≥0
∥D − πD

′
π⊤∥2F in the

form of weighted symmetric NMF. Alternatively, in the framework of spectral clustering theory, we
can relax the nonnegativity and retain the orthogonality, resulting in a generalized eigenvector problem.
Hereby, from the perspective of OT and using the connections above, we can use Kantorovich’s
relaxation to solve these problems in the probability space for π.
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B.2 MORE EXPERIMENTAL RESULTS

B.2.1 SYNTHETIC DATA

We first demonstrate the advantages of our algorithm over GWL and SpecGWL using simple synthetic
datasets.

Datasets and methods We first consider the implementation of the datasets.make_blobs function
in the Scikit− learn library to construct four blobs, each containing 100, 200, 300, and 400 points
respectively. The standard deviation of the clusters is set to 0.55, making it a simple toy dataset that
can be perfectly separated using K-means or spectral clustering, see Figure 4a. Then we change
standard deviation of the clusters to 0.55, 1.0, 1.5, and 2.0, respectively, as shown in Figure 2a.

Experimental settings We use k = 200 to construct the Gaussian kernel adjacency matrix and
its corresponding graph Laplacian matrix and use t = 100 to construct the heat kernel matrix in
SpecGWL. Recall a pre-estimated cluster size ν̂ is needed in the framework of GWL and SpecGWL.
Here we employ two different estimates: ν̂ ≈ (0.25, 0.25, 0.25, 0.25) given in (Xu et al., 2019a) and
the truth νtrue = (0.1, 0.2, 0.3, 0.4). The results are listed in Figure 4 and Figure 2.

(a) true (b) GWL with ν̂ (c) GWL with νtrue

(d) SpecGWL with ν̂ (e) SpecGWL with νtrue (f) EGWB

Figure 4: Clustering results. From left to right, 4 blobs with same standard deviation 0.55, there are
100, 200, 300, and 400 points respectively. Different colors represent different clusters.

Results and discussion Note that by using heat kernel instead of adjacency matrix, SpecGWL
performs better than GWL. The quality of the estimated hyperparameter ν̂ directly affects the
clustering results of GWL and SpecGWL algorithms. The more accurate the estimation of ν̂, the
better the clustering outcomes. Even when using the truth νtrue, neither GWL nor SpecGWL can
obtain correct clustering results (see Figure 2c and Figure 2e), while EGWB can lead to correct
results without any prior information (see Figure 4f and Figure 2f).

B.2.2 REAL DATA

When dealing with real-life data, we employed the algorithms greedy_modularity_communities
and asyn_fluidc from the networkx.algorithms.community library, as well as the Infomap
algorithm from the infomap library, for graph partitioning methods Newman Fast Algorithm, FluidC,
and Infomap, respectively. We utilized the default parameters for these algorithms. When applying
GWL and SpecGWL, we used standard projected gradient descent and hand-tuned the required
hyperparameters topt and ε. We employed four common clustering evaluation metrics to assess the
effectiveness of our algorithm: Adjusted Rand Index (ARI) (Yeung & Ruzzo, 2001), V-measure
(Rosenberg & Hirschberg, 2007), Fowlkes-Mallows Index (FMI) (Fowlkes & Mallows, 1983), and
Adjusted Mutual Information (AMI) (Vinh et al., 2009). In order to maintain consistency with other
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GW-based methods, for AMI, we utilized both ’arithmetic’ and ’max’ averaging methods, denoted as
AMI and AMImax respectively. The results are presented in Tables 3, 4, 5, 1 and 6

Table 3: Comparison of ARI across a variety of datasets

Wikipedia EU-email Amazon Village
noisy raw noisy raw noisy raw noisy raw

EGWB (ours) 0.397 0.436 0.502 0.522 0.317 0.663 0.886 0.904
GWL 0.160 0.217 0.229 0.194 0.154 0.186 0.374 0.530

SpecGWL 0.267 0.298 0.262 0.302 0.172 0.525 0.660 0.744
srGW 0.401 0.441 0.433 0.501 0.286 0.548 0.691 0.782
Fluid 0.243 NA 0.198 NA 0.355 NA 0.372 NA

Newman 0.487 0.556 0.154 0.172 0.371 0.458 0.701 0.829
InfoMap 0.448 0.445 0.163 0.315 0.241 0.897 0.131 0.829

Table 4: Comparison of V −measure across a variety of datasets

Wikipedia EU-email Amazon Village
noisy raw noisy raw noisy raw noisy raw

EGWB (ours) 0.553 0.627 0.642 0.687 0.735 0.824 0.883 0.921
GWL 0.361 0.489 0.507 0.532 0.340 0.381 0.522 0.698

SpecGWL 0.488 0.571 0.502 0.625 0.532 0.733 0.745 0.832
srGW 0.597 0.643 0.585 0.643 0.610 0.755 0.823 0.872
Fluid 0.322 NA 0.490 NA 0.203 NA 0.510 NA

Newman 0.610 0.669 0.353 0.478 0.680 0.780 0.727 0.840
InfoMap 0.580 0.662 0.511 0.650 0.527 0.944 0.215 0.840

Table 5: Comparison of FMI across a variety of datasets

Wikipedia EU-email Amazon Village
noisy raw noisy raw noisy raw noisy raw

EGWB (ours) 0.433 0.475 0.503 0.548 0 .635 0.713 0.830 0.913
GWL 0.262 0.320 0.267 0.231 0.247 0.277 0.430 0.573

SpecGWL 0.403 0.399 0.324 0.344 0.403 0.589 0.735 0.768
srGW 0.453 0.456 0.501 0.528 0.563 0.610 0.802 0.822
Fluid 0.443 NA 0.198 NA 0.435 NA 0.677 NA

Newman 0.528 0.633 0.221 0.289 0.452 0.569 0.715 0.846
InfoMap 0.487 0.481 0.290 0.377 0.383 0.911 0.215 0.846

When employing our EGWB algorithm, we use a linear combination of the results from GWL,
SpecGWL, and the joint distribution as initial values. A detailed analysis is provided in the next
section. Both of them utilized the heat kernel generated in SpecGWL as the distance matrixD. For the

hyperparameter λ, we apply a continuation scheme λ = max(
(
t
λa

)λb

, 1)×
(
N ×max(D′)2 − εN

4

)
,

where t is the number of iteration, the hyperparameters λa = 20 and λb = 5 are set based on large
experiments. The remaining performance metrics are displayed in Tables 3, 4, 5 and 6.

B.3 SENSITIVITY ANALYSIS OF ALGORITHM PARAMETERS

In this section, we conduct a sensitivity analysis of our algorithm by varying its parameters and
observing the impact on performance. We utilize the Indian village dataset as a representative example,
and similar results are observed across all datasets. The key algorithmic parameters investigated are
as follows:

B.3.1 INITIAL TRANSPORT PLAN π0

Initialization method Typically, clustering algorithms based on Gromov-Wasserstein distance
initiate with the joint distribution of source distribution ps and target distribution pt as the algorithm’s
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Table 6: Comparison of AMImax across a variety of datasets

Wikipedia EU-email Amazon Village
noisy raw noisy raw noisy raw noisy raw

EGWB (ours) 0.534 0.564 0.595 0.601 0.744 0.767 0.886 0.922
GWL 0.315 0.436 0.358 0.412 0.306 0.343 0.510 0.516

SpecGWL 0.388 0.507 0.412 0.493 0.501 0.675 0.733 0.821
srGW 0.556 0.576 0.560 0.557 0.533 0.696 0.802 0.850
Fluid 0.289 NA 0.395 NA 0.205 NA 0.435 NA

Newman 0.341 0.382 0.231 0.312 0.668 0.772 0.721 0.880
InfoMap 0.329 0.377 0.350 0.374 0.518 0.942 0.162 0.880

initial value, denoted as π0 = ps × pTt . However, in our algorithm, we will calculate pt using π,
rendering pt an unknown variable. We may assume pt to be a uniform distribution. Alternatively, we
can employ the outcomes of GWL and SpecGWL, denoted as πGWL and πSpecGWL respectively, as
prior expert knowledge. We construct

π̂0 = w ∗ πGWL + (1− w) ∗ πSpecGWL,

from which we compute p̂t. Finally, we set

π0 = ρ ∗ π̂0 + (1− ρ) ∗ (ps × p̂Tt )

as the initial value for the process (9).

Table 7: Different setup for initial π0

w ρ
π01 1 0
π02 1 0.5
π03 0 0
π04 0 0.5
π05 0.5 0
π06 0.5 0.5

Construction Subsequently, we have devised six distinct initial guesses for the transport plan π0,
and their comprehensive configurations are outlined in Table 7. These configurations correspond to
various combinations of GWL and SpecGWL, along with the inclusion of the joint distribution.

Following this, we conducted experiments under the scenario where D = Heat[t] and µ is uniformly
distributed. Figure 5 displays the variations in five different metrics for these six different initial
values. We set t to have 100 evenly spaced points in the interval [1, 60]. This analysis reveals a
consistent trend across all evaluation metrics.

Henceforth, our focus will be directed towards the individual analysis of a single specific evaluation
metric.

Ablation study of w By computing the ARI of EGWB under the conditions of ρ = 0.5 and ρ = 0,
the results depicted in Figure 6 reveal that as long as the initial distribution incorporates the results
from SpecGWL, the final convergence outcomes tend to be better. Therefore, in the subsequent
experiments, we adopt w = 0.5, which encompasses information from both prior expert insights,
rendering the algorithm more robust.

Ablation study of ρ By computing the ARI of EGWB under the conditions of w = 0, 0.5 or 1, the
results depicted in Figure 7 , which highlights that incorporating the joint distribution into the initial
guess (i.e., ρ = 0.5) yields superior results. Additionally, Figure 7a demonstrates the robustness of
our algorithm to variations in the heat kernel parameter t when the initial values are fixed. Figure 7b
suggests that using SpecGWL as an initial guess offers little improvement in AMI, possibly due to
prematurely entering a stable state. Lastly, Figure 7c indicates that employing π06 as an initial guess
results in the most favorable outcomes.
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(c) π0 = π03
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(d) π0 = π04
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(e) π0 = π05
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(f) π0 = π06

Figure 5: similar potential
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(a) ARI of EGWB for different π0 without joint
distribution
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Figure 6: In typical scenarios, having a value of w > 0 serves as a preferable initial guess. This is
because it incorporates information from SpecGWL, which tends to lead to a better local minimum
compared to GWL alone.

We commence our experimentation by varying ρ and observing the outcomes for a fixed t (thus fixed
D = Heat[t]), as depicted in Figure 8. It becomes evident that our algorithm exhibits robustness
concerning different values of ρ. Notably, when ρ ∈ (0, 1), the results remain relatively consistent.
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Figure 7: For fixed values of all other hyperparameters, the variation in EGWB concerning different
initializations of the transport plan is shown. It’s observed that including the joint distribution in the
initializations leads to better results. This improvement might be attributed to the fact that the results
of GWL and SpecGWL are close to certain local minima, and including the joint distribution allows
exploration of more directions.
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(Here, we employed D = Heat[t], with w = 0.5 as a hyperparameter; similar conclusions arise with
alternative settings.) Therefore, our subsequent experiments will focus exclusively on ρ = 0.5 or 1.
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Figure 8: The performance of EGWB with different initializations of the transport plan varies, with
better results observed when including the joint distribution. Additionally, it’s noticeable that similar
performance is achieved when ρ is within the range of (0,1). Therefore, we can default to using
ρ = 0.5 as it yields consistent results.

B.3.2 SOURCE COST MATRIX D

When we directly use the adjacency matrix as the data graph’s structural matrix in EGWB, the overall
trend aligns with using the heat kernel. However, the overall performance is not as good as when
using the heat kernel, as shown in Figure 9, which is consistent with the findings of SpecGWL.
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cost_s = Adj

Figure 9: For using π06 as the initial transport plan and considering both the adjacency matrix and the
heat kernel as the graph’s structural matrix, EGWB’s ARI comparison indicates that the heat kernel
performs better than the adjacency matrix.

B.3.3 TARGET COST MATRIX Ct

If we fix Ct to be the identity matrix, then it essentially becomes srGW, as it also relaxes the
constraints on the target distribution µ. This relaxation tends to yield better results compared to
SpecGWL. However, srGW effectively introduces an exclusive lasso term, leading to clustering
results where each class has an equal number of data points. Therefore, its performance is not as
good as EGWB, as shown in Figure 10
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Figure 10: Comparison of AMI results between SpecGWL, srGW, and EGWB indicates that EGWB
performs the best, while SpecGWL performs the worst. This aligns with our theoretical analysis,
where SpecGWL and srGW are degenerate models of SpecGWL.

B.3.4 PROPOSED HYPERPARAMETER λ

When λ is exceedingly large, the concave regularization term dominates the objective function,
rendering f(π) a concave function. Consequently, Algorithm 1 rapidly converges to the extremal
points, but this behavior heavily depends on the initial conditions. This is not the desired outcome.
To address this issue, we employ a commonly used mathematical technique known as a continuation
scheme, λ = min( outtλa

λb , 1) ∗ (λ + x), where x is a very small number to make sure the greater
condition in Theorem 2 (can be set equal to 0 in experiments). In this scheme, we gradually increase
the value of λ from a small one to a large value that satisfies convergence conditions. Intuitively,
in the initial stages of the algorithm when λ is small (close to 0), it is akin to employing classical
entropy regularization methods, searching for more directions within the feasible set. As λ increases,
our algorithm eventually converges to an extremal point.

Inspired by enhanced balanced Min-Cut, we set λa in the range of 10 to 20 and λb in the range of
1 to 5. Figure 11 illustrates several possible combinations and the corresponding EGWB model’s
variation with respect to t. It appears that (λa, λb) = (20, 5) is a particularly promising combination.
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Figure 11: The different settings of (λa, λb) effects on the EGWB.
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B.3.5 PRIOR NODE DISTRIBUTION ps

Based on research into power-law transformations of data point distributions in GWL, we provide the
following settings: µs = ds∑

ds
, where ds = (deg(s) + a)b, we set a = 0 by default and b ∈ [0, 1].

Among these settings, when b equals 0, it corresponds to a uniform distribution, and when b equals 1,
it is equivalent to using the degree to represent the node sizes. Figures 12 and 13 show the choice of
b has little to no impact on our algorithm, which further validates our mass splitting technique.
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Figure 12: The different settings of b effects on the EGWB in Indian dataset. when b equals 0, it
corresponds to a uniform distribution, and when b equals 1, it is equivalent to using the degree to
represent the node sizes. Using power law transformations can reduce the GW distance.
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Figure 13: The different settings of b effects on the EGWB in Wikipedia dataset. when b equals 0, it
corresponds to a uniform distribution, and when b equals 1, it is equivalent to using the degree to
represent the node sizes. Using power law transformations can reduce the GW distance.
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