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Abstract

Measuring the generalization capacity of Deep Generative Models (DGMs) is
difficult because of the curse of dimensionality. Evaluation metrics for DGMs such
as Inception Score, Fréchet Inception Distance, Precision-Recall, and Neural Net
Divergence try to estimate the distance between the generated distribution and the
target distribution using a polynomial number of samples. These metrics are the
target of researchers when designing new models. Despite the claims, it is still
unclear how well can they measure the generalization capacity of a generative
model. In this paper, we investigate the capacity of these metrics in measuring the
generalization capacity. We introduce a framework for comparing the robustness
of evaluation metrics. We show that better scores in these metrics do not imply
better generalization. They can be fooled easily by a generator that memorizes a
small subset of the training set. We propose a fix to the NND metric to make it
more robust to noise in the generated data. Toward building a robust metric for
generalization, we propose to apply the Minimum Description Length principle to
the problem of evaluating DGMs. We develop an efficient method for estimating
the complexity of Generative Latent Variable Models (GLVMs). Experimental
results show that our metric can effectively detect training set memorization and
distinguish GLVMs of different generalization capacities.

1 Introduction

Deep Generative Models [e.g. 7, 8, 10, 18, 32] use deep neural networks to model the target distribu-
tions. Evaluating DGMs is hard because (1) the distributions of interest are often high dimensional,
(2) the likelihood functions are not always available or easily computable. A common way to evaluate
a DGM is to measure how close the generated distribution pg is to the target distribution pr. Because
the sample complexity of traditional metrics such as KL divergence or Wasserstein distance is expo-
nential in the dimensionality of the distribution, they cannot be used for real world distributions. New
evaluation metrics with polynomial sample complexity such as Fréchet Inception Distance (FID)
[14], Inception Score (IS) [27], and Precision-Recall [20, 26, 28] are commonly used and are the
target of many researchers when designing new models. The reduced sample complexity comes at
the cost of reduced discriminative power. These metrics cannot tell the difference between a model
that memorizes the training data and a model that generalizes. Gulrajani et al. [13] applied the Neural
Net Divergence (NND) [2] to the problem and claimed that NND can measure the generalizability of
generative models (GMs).

In this paper, we investigate the capacity of the above metrics in measuring the generalization
capacity of DGMs. We perform worst-case analyses for these metrics and found that all of them
cannot measure generalization, i.e. better scores in these metrics do not imply better generalization
capacities. A generator that memorizes a small subset of the training data can achieve (near) optimal
scores in these metrics. Our results suggest that using samples alone is not enough to estimate the
generalization capacities of DGMs.
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We propose a fix to the NND to make it robust to noise in the generated data. Our fixed NND can be
used to estimate the generalization capacity of GMs.

Notations

pr: the unknown target (real) distribution in Rdx . pg: the model generated (fake) distribution in
Rdx . pz: the latent distribution in Rdz . z ∼ pz: a latent variable. x ∈ Rdx : a data point. G(·;θ):
a generative model with parameter θ ∈ Rdθ . Dr = {x1, ...,xk | xi ∼ pr}: a set of samples from
pr. Dg = {x1, ...,xl | xi ∼ pg}: a set of samples from pg. Dtrain = {x1, ...,xn | xi ∼ pr}:
the training set, |Dtrain| = poly(dx). Dtest = {x1, ...,xm | xi ∼ pr, xi /∈ Dtrain}: the test set,
|Dtest| = poly(dx). p̂D: the uniform distribution over D.

2 Background and Related Work

2.1 Divergence based evaluation metrics

A generative model G is trained on Dtrain to produce pg that hopefully approximates pr. The quality
ofG is defined by the distance/divergence between pr and pg . Let f be a distance/divergence function.
Because f(pr, pg) is intractable for most distributions of interest, we approximate it with f(p̂r, p̂g)
where Dr,Dg polynomial sized datasets.

Inception Score (IS) [27] is defined as: IS (pg) = exp (KL (p(y|x)||p(y))) where x ∼ pg, p(y) =
Ex∼pg [p(y|x)]. p(y|x) is computed by feeding a generated datapoint through a pretrained classifier,
e.g. the Inception net [29]. IS is maximized when H (y|x) = 0 and H(y) = lnC where C is the
number of classes. Barratt and Sharma [4] showed that IS (p̂g) ≤ C. To make our writing consistent,
we convert all of the metrics in this paper to (pseudo) divergences. A lower divergence should imply
that pg is closer to pr. We define the following pseudo divergence:

fis (pg) = C − exp (KL (p(y|x)||p(y))) (1)
This is a pseudo divergence because (1) it only contains 1 distribution, pg, the other distribution is
implicitly the dataset on which the classifier was trained, (2) fis (pg) = 0 does not imply that the two
distributions are the same (more on this in Sec. 3). A fundamental flaw of IS is that a smaller fis (pg)
implies that p(y) is closer to the uniform distribution, not that p(y) is closer to the true distribution
over the labels. Fortunately (or unfortunately), the distribution over the labels in Imagenet dataset
[6] is uniform. This makes IS a popular and somewhat abused tool for evaluating image generation
models.

Fréchet Inception Distance (FID): Heusel et al. [14] approximate pr, pg with N (µr,Σr) and
N (µg,Σg), respectively, and then compute the Fréchet distance between the 2 Gaussians:

ffid (pr, pg) = ‖µr − µg‖22 + Tr
(

Σr + Σg − 2 (ΣrΣg)
1
2

)
(2)

Because FID compares only the first 2 moments of pr and pg, ffid (pr, pg) = 0 does not guarantee
that the 2 distributions are the same.

Neural Net Divergence (NND) [2, 13] uses neural nets to compute the divergence between pr and
pg

fnnd (pr, pg) = sup
fθ∈F

(
Ex∼pr [fθ(x)]− Ex∼pg [fθ(x)]

)
(3)

where fθ : Rdx → R is usually a neural network with finite capacity. fθ is trained to maximize the
difference in Eqn. 3. Arora et al. [2] showed that NND can detect the lack of diversity in generated
data and Gulrajani et al. [13] it used to estimate the generalizability of GMs. We show in Sec. 3
that the diversity in generated data can easily be faked by adding white noise to the data. This fake
diversity is present in real world models such as GANs and VAEs. We propose a fix to NND that
removes the effect of fake diversity while retaining the discriminative power of NND.

2.2 Precision-Recall based evaluation metrics

The above metrics use scalars to measure both the quality and diversity of generated samples. The
following metrics are designed to separate quality from diversity.
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Figure 1: k-nn PR on a 2-dimensional dataset. (a) real data (blue crosses) and fake data (red dots).
(b), (c) real and fake manifolds approximated with 3-nearest neighbors. Although the real and the
fake data are very different, the precision and recall of the fake data are 1 and 1.

k-means based Precision-Recall (k-means PR) [26] applies k-means algorithm to Dr ∪ Dg , builds
2 histograms to approximate pr and pg , and computes the difference between these histograms. The
results are 2 F-scores, Fβ and F1/β . For β > 1, Fβ can be interpreted as the recall (diversity) and
F1/β can be interpreted as the precision (quality) of the generated data (see Algo. 1 in Appx. C). We
define the following pseudo divergences: fp-kmeans = 1− F1/β , fr-kmeans = 1− Fβ .

k-nn based Precision-Recall (k-nn PR) [20] computes the precision and recall by comparing the
reconstructed real manifold and the reconstructed fake manifold (see Algo. 2 in Appx. D and Fig.
1). Kynkäänniemi et al. [20] claimed that k-nn PR has better discriminative power than k-means PR
and demonstrated that on several datasets. However, we show in Sec. 3 that k-nn PR has the worst
worst-case performance and in practice it cannot differentiate a good model from a very bad model.
We define the following pseudo divergences: fp-knn = 1− P , fr-knn = 1−R.

Similar to IS and FID, k-means PR and k-nn PR assign (near) perfect scores to a generative model
that produce the entire training set.

2.3 Other evaluation metrics

Metrics for class-conditional models: Esteban et al. [9] proposed the "Train on Synthetic Test on
Real" (TSTR) approach to evaluate class-conditional GANs. The metric is expensive to compute as it
requires training a classifier on a labeled synthetic dataset. Shmelkov et al. [28] extended the idea to
a Precision-Recall like metric for class-conditional GANs. Because these metrics are applicable only
to class-conditional GMs, we do not consider the metric in our paper.

Topological/Geometrical approaches: Horak et al. [15], Khrulkov and Oseledets [17] applied
geometrical and topological tools to measure the difference between the fake manifold and the real
manifold. These metrics are not designed for measuring generalizability and are note considered in
this paper. Karras et al. [16] used the pairwise perceptual distance - the pairwise distance between
feature vectors on the feature manifold - to measure the smoothness of the feature manifold. The
intuition is that if the perceptual distance is small then the manifold is smoother and the GM might
learn better representations and have better generalizability. We show in Appx. E that the pairwise
distance does not well reflect the smoothness of the manifold and it is minimized when total mode
collapse occurs. Therefore, pairwise perceptual distance is not a good metric for GMs.

Non-parametric approaches: Arora et al. [3] used the birthday paradox and human evaluation to
estimate the number of distinct modes that a GM can generate. The method cannot be automated and
has high variance and bias because humans are involved in the loop. Meehan et al. [21] proposed a
three sample test for data copying in GMs. The metric can detect data copying but cannot measure
the generalizability of a model or the quality of the generated samples.

2.4 A generative model with poor generalization capacity

When mode collapse (training set memorization) [10] happens, the generative model generates
slightly different versions of the memorized datapoints. We approximate this kind of behavior with
the following generative procedure:

Given a dataset D ⊆ Dtrain, a constant ε ∈ R, a new datapoint is generated by

1. Draw a datapoint x ∈ D at random
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2. Draw a noise vector u ∼ pu, where pu is the noise distribution.

3. Output the noisy datapoint: x̃ = x+ εu

In our experiments, pu = U(−1, 1) (see Fig. 5 in Appx. F for samples from MNIST dataset). We
tried replacing U(−1, 1) with N (0, I) and found no difference in performance. This generator,
denoted as GD,ε has no real generalization capacity and the number of essentially different modes in
pGD,ε is |D|. For ε > 0, this generator can be approximated by a neural net with finite capacity.

3 Evaluating evaluation metrics

Given a training set Dtrain ∼ pr, we train a generative model G on Dtrain and get a distribution pg .
We would like to estimate the distance/divergence between pr and pg using a divergence/distance
function f . Because computing f(pr, pg) is intractable, we estimate f(pr, pg) using f(Dtest,Dg)
where Dtest ∼ pr and Dg ∼ pg. If Dtest = Dtrain then G can achieve the perfect score by
memorizing the entire Dtrain. To reduce the effect of training set memorization, we require that
Dtest ∩ Dtrain = ∅. We want a divergence f that is robust against training set memorization.
Specifically, we want f to satisfy:

EDtest∼pr, |Dtest|=m [f(Dtest,D)] > EDtest∼pr, |Dtest|=m [f(Dtest,Dtrain)]

for all D ⊂ Dtrain, |D| < |Dtrain| (4)

We show in the next subsections that Inception Score, Precision-Recall, and Neural Net Divergence
are not robust against training set memorization.

3.1 Worst-case analyses of evaluation metrics

Let D∗ be the smallest subset of Dtrain that satisfy EDtest∼pr, |Dtest|=m [f(Dtest,D)] ≤
EDtest∼pr, |Dtest|=m [f(Dtest,Dtrain)]. The divergence f cannot distinguish a model that produces
only D∗ and a model that produce Dtrain. By memorizing only D∗, a generator can fool f that it can
produce a larger dataset. The smaller |D∗| is, the more vulnerable f is to training set memorization.
We construct D∗ for the metrics mentioned above and discuss the relationship between D∗ and the
performance of a metrics in practice. Because NND is the only metric that is designed to be robust
against training set memorization, it is the focus of this section. We defer the details for other metrics
to the appendix.

Inception Score
D∗is = {x1, ...,xC | xi ∈ Ci} (5)

where Ci ⊂ Dtrain is the i-th class of the training set. Details in Appx. A.

k-means Precision-Recall

D∗kmeans = {x1, ...,xk | xi ∈ Ci} (6)

where Ci is the i-th cluster of the k-means clustering algorithm. Details in Appx. C.

k-nn Precision-Recall

D∗knn = {x1, x2 | x1,x2 ∈ Dtrain and ‖x1 − x2‖ ≥ ‖xi − xj‖ ∀xi,xj ∈ Dtrain} (7)

Details in Appx. D.

Neural Net Divergence is computed by training a finite capacity neural net fθ to maximize the
objective in Eqn. 3. Because the value of NND is dependent of the network and the training procedure,
there is no fixed D∗nnd. However, given a network, we can still estimate D∗nnd through experiments.

First, we investigate the effect of noise on NND. In our experiment, the dataset is the MNIST dataset,
fθ is a MLP with 3 hidden layers and 512 neurons in each layer. Details about the architecture and
hyper parameters are in Appx. B. We use the generator described in Sec. 2.4 to generate noisy
versions of datapoints in D, a random subset of Dtrain (see Fig. 5 in Appx. F for noisy images
generated by the generator). The number of essentially different datapoints that the generator can
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generate is |D|. We vary |D| from 1000 to 60000 and ε from 0 to 1. The noisy samples are generated
continuously throughout the training process as recommended in [13]. As we can see in Fig. 5, for
ε = 0.1 and ε = 0.5 the noisy images are very clear and easily recognizable. For ε = 1, the images
are much more noisy but still recognizable. At the first glance, one might think that adding noise
to clean data will increase the NND because it worsen the quality of the data. The result in Fig.
2(a) shows the opposite. As we can see from the figure, when ε and |D| increase, fnnd decreases.
Increasing ε results in a bigger decrease in fnnd than increasing |D|. For ε = 1, a noisy random
subset of size 1000 outperforms a noiseless set of size 60000 by a large margin. The network also
cannot distinguish noisy sets of size 10000 and 60000 and gives them the same score (the red solid
line in Fig 2(a)). We conclude that |D∗nnd| ≤ 1000 for this specific network architecture.1

On the positive side, we note that when ε = 0, the NND decreases as |D| increases. If we can remove
the fake diversity caused by noise, then NND can be used to estimate the diversity of generated data.
We note that the NND is plateauing as |D| reaches 60000. If we continue to increase |D| to much
larger numbers, the network will assign about the same NND to these datasets. This behavior is
expected as the network has a finite capacity (polynomial in dx). In order to use NND to test for
generalization, we need to use a network that can distinguish datasets of size at least |Dtrain|.
The above experiment shows that diversity can be faked by adding random noise to the data. We can
reduce the effect of noise by generating a noisy data set Dg of a fixed (and polynomial) size and train
fθ on Dg and Dtest. We use GD,ε to generate a dataset Dg of 60000 noisy datapoints. The result is
shown in Fig. 2(b). In contrast to the previous experiment, the NND increases with the level of noise.
This behavior is expected as a larger ε results in worse images, making the task of separating Dg
from Dtest easier. By fixing the size of Dg , we can effectively remove the fake diversity.

The outputs of GMs usually contain noise. For autoregressive models and energy based models, the
noise comes from the randomness in the sampling process. For generative latent variable models
like GANs, VAEs, and normalizing flows, the noise comes from the input distribution. A Generative
Latent Variable Model (GLVM) can memorize a subset of the training data, add the input noise to the
memorized datapoints, and fool fnnd that it has learn to perfectly reproduce the target distribution.
Our next experiment investigate this phenomenon in real world models. We use GANs as our example.
We select a random subset D from Dtrain, use that for training a GAN and use the resulting model to
generate fake data. For each model, we compute 2 NND scores following original procedure and our
new procedure described in the previous paragraph. Fig. 2(c) shows the changes in NND of models
over 500 epochs. As expected, the NND of ‘Fix’ models is higher than that of ‘Inf’ models. However,
the difference between ‘Fix’ models and ‘Inf’ models is small, suggesting that the level of noise in
the outputs of GAN is much lower than that in our experiment in Fig. 2(a).

3.2 Comparing evaluation metrics

We measure the performance of evaluation metrics on GANs trained on MNIST to see how their worst
case performance correlate the their real world performance. The result is shown in Fig. 3(a) - 3(c).2
We trained 5 variants of GAN on the MNIST dataset. The variants are GAN with 0GP regularizer
[31] (GAN0GP), GAN with R1 regularizer [22] (GANR1), WGAN with gradient penalty [1, 12]
(WGAN1GP), WGAN with 0GP [31], and WGAN1GP with our new constant speed regularizer
(WGAN1GP const) (introduced in Appx. E). Thanh-Tung et al. [31] showed in their paper that 0GP
improves the generalization capacity of the discriminator and that in turn, improves the generalization
capacity of the generator. They also claimed that 1GP [12] does not help improving generalization.
We verify their claims with our fixed NND metric.

The result for NND is shown in Fig. 3(c). WGAN0GP consistently has lower NND than WGAN1GP.
That confirms the claims by Thanh-Tung et al. [31]. We also find that GAN0GP also more stable than
GANR1 as GANR1 can suddenly collapse during training. Fig. 3(c) shows that GANR1 suffers from
overfitting after epoch 400 and its NND starts to increase. GAN0GP’s NND decreases as the training
progresses. Our constant speed does a very good job at improving the generalization capacity of
WGAN1GP. WGAN1GP const has almost the same NND as WGAN0GP while producing smoother
interpolation (see Fig. 3(e), 3(f)).

1We note that our experiments with pu = N (0, I) produces the same results.
2IS and FID are not included because computing them requires the Inception model. Gulrajani et al. [13]

empirically showed that IS and FID are not robust against training set memorization. We refer readers to their
experimental results.
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Figure 2: The effect of noise on NND. (a): noisy samples were generated continuously throughout
training. (b): a fixed number of noisy samples were used in training. (c): continuously generated fake
data (labeled ‘Inf + training set size’) v.s. fixed size fake data (labeled ‘Fix + training set size’).

k-means PR does not do a good job at distinguishing models with different generalization capacities.
Fig. 3(a) shows that all models achieve almost perfect precision (i.e. F1/β) after 400 epochs. In
contrast to NND, k-means PR assigns the highest precision and recall to GANR1. This result is
expected as Thanh-Tung and Tran [30] and Thanh-Tung et al. [31] suggested that R1 regularizer may
encourage the generator to memorize the training set. The other GANs with better generalization
capacity will produce more datapoints that are further away from the training and test sets. The far
datapoints result in lower recall as we see in Fig. 3(a).

k-nn PR does a much better job at distinguishing different models (Fig. 3(b)). The result seems to
justify the claim of its author [20]. However, in Fig. 3(d) shows that k-nn PR assigns very high recall
to a very bad GAN. An illustration of this phenomenon is given in Fig. 1. k-nn works fine for good
models that distribute the fake data evenly across the real manifold but it is vulnerable to bad models
that generate many outliers.

Discussion: This experiment shows that the robustness of evaluation metrics on real world datasets
is directly correlated to the size of their minimal dataset D∗. k-nn PR has the smallest |D∗| and is the
most vulnerable to outliers in the data. k-means PR has |D∗kmeans| = k and different datapoints in
D∗kmeans must lie in different clusters. To fool k-means PR, a generator must produce fake datapoints
belonging to different clusters. That is nontrivial for real world generative models. NND (both the
original and our updated version) has the biggest D∗nnd and is the most robust. Our updated NND can
be used to estimate the generalization capacity of GMs.

4 Future direction

The Minimum Description Length (MDL) principle is a framework for comparing the generalization
capacities of different models. The main challenge in apply MDL to deep models is that it is very
hard to measure the complexity of a neural network. In Appx. E, we present some initial experiments
of our new algorithm for estimating the complexity of Generative Latent Variable Models.

5 Conclusion

In this paper, we investigate the ability to measure generalization of different evaluation metrics.
We show that all of the existing metrics can be fooled by training set memorization. We study the
worst-case performance of common metrics and show that their worst-case performance is related to
their robustness on real world scenarios. We identify the weakness of NND and propose a fix to the
problem. Our experiments show that the fixed NND metric is robust to noise in the input and can be
used to estimate the generalization capacities of generative models.
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Figure 3: We trained 2 sets of GANs with 2 different learning rate. We deliberately chose a large learn-
ing rate for the second group to make it collapse. (a) - (c) results of k-means PR, k-nn PR, and NND
of models trained with lr1 = 2 × 10−4. (c) Because fnnd (p̂train, p̂g) and fnnd (p̂test, p̂g) always
show the same trend, we show only fnnd (p̂test, p̂g). We show fnnd (p̂train, p̂g) for WGAN0GP
as a representative. (d) top: k-nn PR of GAN0GP trained with lr2 = 10−3, bottom: generated
samples from a GAN with recall equal 1. (e), (f) interpolation result of WGAN1GP-const and
WGAN1GP at epoch 1000. Despite the lower NND, WGAN0GP produces similar interpolation
result as WGAN1GP.
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A Inception Score

We assume that the Inception model is a perfect classifier, i.e. given a real datapoint x the conditional
distribution p(y|x) is

p(y = i|x) =

{
1 if i is the correct label of x
0 otherwise

(8)

We have H(y|x) = 0. We select C real datapoints from C classes in the training set so H(y) = lnC.
The Inception score for the dataset in Eqn. 5 is C.

B Neural Net Divergence

The configuration for the experiment in Fig. 2(a) and 2(b) is given in Table 1.

The GANs in Fig. 2(c) and 3 also use 3 hidden layer MLPs with the same number of hidden neurons.
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C k-means Precision-Recall

Algorithm 1 k-means PR
1: Inputs: Dr, Dg , hyper parameter β
2: Outputs: Fβ , F1/β

3: C ← kmeans(Dr ∪ Dg)
4: histg[i]← # fake datapoints in cluster Ci

|Dg|

5: histr[i]← # real datapoints in cluster Ci
|Dr|

6: curve = pr_curve(histr, histg)
7: Fβ = f_score(curve, β)
8: F1/β = f_score(curve, 1/β)
9: return Fβ , F1/β

We describe the procedure for constructing D∗kmeans. Without loss of generality, we assume that
|Dtest| = |Dg|, and the k-means algorithm always finds the optimal clustering. k-means PR applies
k-means clustering algorithm on Dtest ∪ Dg to get k clusters. Let Ci be the i-th cluster, Ci,test be the
set of test datapoints in this cluster. From the algorithm above, we see the the perfect precision and
recall are achieved when histg = histr. To make histg[i] = histr[i], the generator G needs to

1. memorize a training datapoint x s.t. x is closest to the center of cluster Ci.
2. duplicate the datapoint |Ci,test| times

The number of distinct datapoints that G has to memorize is k, the number of clusters.

D k-nn Precision-Recall

Algorithm 2 k-nn PR
1: Inputs: Dr, Dg
2: Outputs: Precision P , Recall R
3: Mg ← ∅ // build the fake manifold
4: for each datapoint xi ∈ Dg do
5: xj ← the k-th nearest neighbor of xi
6: Si ← sphere(c = xi, r = ‖xi − xj‖)
7: Mg ←Mg ∪ Si
8: end for
9: build the real manifold Mr

10: P ← # fake datapoints inMr

|Dg|

11: R← # real datapoints inMg

|Dr|
12: return P, R

The idea for constructing D∗knn is illustrated in Fig. 1. We select x1,x2 ∈ Dtrain s.t. ‖x1 − x2‖ ≥
‖xi − xj‖ ∀ xi,xj ∈ Dtrain. Because x1,x2 are in Dtrain, they lie on the real manifold. Thus, the
precision is 1. Because ‖x1 − x2‖ ≥ ‖xi − xj‖ ∀ xi,xj ∈ Dtrain, all of the training datapoints
are in the two spheres centered at x1 and x2. If Dtrain is large enough then we can assume that
all of the test datapoints lies in the manifold reconstructed using Dtrain. Therefore, all of the test
datapoints are highly likely to lie in the two spheres centered at x1,x2 and the recall is 1.

E An MDL inspired Generalization Metric

E.1 Motivation

E.1.1 Preliminaries
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Figure 4: (a) a GM that memorizes the training set. (b) a GM that produces constant speed interpola-
tion.

Path length and speed: A path from z0 to z1 is a continuous function z(t) : [0, 1] → Rdz that
satisfies z(0) = z0, z(1) = z1. The Frobenius norm of the Jacobian ∂z

∂t is the speed of the path
at time t. The path has constant speed if

∥∥∂z
∂t

∥∥
F

= const. A GLVM is a continuous function
G : Rdz → Rdx . G maps a path from z0 to z1 to a path from x0 = G(z0) to x1 = G(z1). The length
of the path from x0 to x1 is

`(x0,x1) =

∫ 1

0

∥∥∥∥∂x∂t
∥∥∥∥
F

dt =

∫ 1

0

∥∥∥∥∂x∂z ∂z∂t
∥∥∥∥
F

dt (9)

Minimum Description Length principle [5, 19, 23, 24, 25] (see [11] for a comprehensive tutorial)
is a formalization of Occam’s razor principle. Refined MDL [5] defines the stochastic complexity of
a dataset D given a parametric model (a set of parametric hypotheses)H as

SCOMP(D|H) = LEN(D|Ĥ) + COMP(H) (10)
where LEN(D|H) = − log p(D|H) is the description length of D given a point hypothesis H ∈ H,
Ĥ ∈ H is the point hypothesis that maximizes the probability of D, COMP(H) is the parametric
complexity ofH. The model with the smallest SCOMP(D|H) is the best model, i.e. the model with
the best generalization capacity. LetHL be the set of L-Lipschitz functions, then the bigger L is, the
more ‘essentially different’ functions HL contains (cf. Sec. 2.6.2 in [11]). L and COMP(HL) are
positively correlated. In the following, we use L in place of the parametric complexity ofHL.

E.1.2 Detecting memorization and estimating complexity

A metric for generalization must be able to detect memorization. We study the behavior of DGLVMs
when they memorize training data. Fig. 4(a) illustrates the situation where a DGLVM G1 tries to
memorize a training set D (shown by two red dots). For any latent code z (blue stars), G1 tries to
make x = G(z) (blue dots) as close as possible to a training datapoint. Because generated datapoints
are concentrated in 2 clusters, when we interpolate from z0 to z1 at constant speed

∥∥∂z
∂t

∥∥
F

, the speed∥∥∂x
∂t

∥∥
F

blows up in the middle of the path (top pane in Fig. 4(a)). Fig. 4(b) shows another DGLVM
G2 that produces constant speed path from x0 to x1. Although the maximum speed in Fig. 4(a) is
much higher than that in Fig. 4(b), the paths in the two figures have the same length. The maximum
speed is a better feature for detecting memorization than the path length (see Fig. 6).

From Eqn. 9, we see that if
∥∥∂z
∂t

∥∥
F

= const, then the maximum speed smax(x0,x1) =

maxt∈[0,1]
(∥∥∂x

∂t

∥∥
F

)
is proportional to the Lipschitz constant of G on the path. The parametric

complexity of G can be defined as the expectation of smax over the latent space
COMP(G) = Ezi,zj∼pz [smax(G(zi),G(zj))] (11)

We use the average of smax instead of the absolute maximum speed because 1) the absolute max
speed has too high variance, making it an uninformative quantity, and 2) the average tracks the cost
of describing the generated manifold more closely than the absolute maximum speed.

E.2 Definition

Because − log(D|H) is not easily computable in some DGLVMs like GANs, we use the divergence
between p̂r and p̂g in place of the description length of the training data given the DGLVM. The
divergence can be computed using one of the methods in Sec. 2.1.
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Definition 1 Let Dtrain be a set of i.i.d. samples from a distribution pr. The ’generalization metric’
for a DGLVM G trained on Dtrain is defined as:

fgen(G) = αf(Dtrain,Dg) + COMP(G) (12)

where f(Dtrain,Dg) is the divergence between the training data and generated data, COMP(G) is
the parametric complexity in Eqn 11, and α > 0 is a scalar that controls the relative importance
between the divergence and the complexity.

If G memorizes Dtrain, then f(Dtrain,Dg) goes to 0 but COMP(G) blows up. If COMP(G) goes
to 0, then generated samples are concentrated in a small region, making f(Dtrain,Dg) goes up
(assuming that f is a divergence that is good at detecting the lack of diversity, e.g. our updated NND).
Therefore, our metric cannot be fooled by training set memorization. In general, fgen cannot be 0
because the two terms cannot be 0 at the same time. α can be removed if we are comparing models
with the same divergence.

E.3 A constant speed regularizer for GANs

A DGLVM that produces constant speed paths in the space of generated data is desirable because 1)
it is less likely to memorize the training set, 2) it does not make sudden jumps from one memorized
datapoint to another, thus produces smoother interpolation. We propose the following constant speed
regularizer for the generator G in GANs:

Lconst
G = LG + λEzi,zj∼pz

[
Et∈[0,1]

[(∥∥∥∥∂G(z(t))

∂t

∥∥∥∥− s̄)2
]]

(13)

where LG is the original loss function of G, s̄ is the average speed on the path from G(zi) to G(zj),

and the interpolation method is a constant speed interpolation method, i.e.
∥∥∂z
∂t

∥∥ = const. The
regularizer forces the variance of the speed to 0, making the speed constant. As noted by other authors
(e.g. [16]), for natural image data like Imagenet, it might be better to apply the regularizer to the
feature space. In the experiments below, we apply the regularizer directly to the data space because
the dataset is simple.

F Experiments
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Figure 5: Noisy images generated by our procedure with pu = U(−1, 1).
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Figure 6: Experimental result for the computational complexity.
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