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ABSTRACT

Zeolites are crystalline porous materials that have been widely utilized in petro-
chemical industries as well as sustainable chemistry areas. Synthesis of zeolites
often requires small molecules termed Organic Structure Directing Agents (OS-
DAs), which are critical in forming the porous structure. Molecule generation
models can aid the design of OSDAs, but they are limited by single functionality
and lack of interactivity. Meanwhile, large language models (LLMs) such as GPT-
4, as general-purpose artificial intelligence systems, excel in instruction compre-
hension, logical reasoning, and interactive communication. However, LLMs lack
in-depth chemistry knowledge and first-principle computation capabilities, result-
ing in uncontrollable outcomes even after fine-tuning. In this paper, we propose
OSDA Agent, an interactive OSDA design framework that leverages LLMs as the
brain, coupled with computational chemistry tools. The OSDA Agent consists
of three main components: the Actor, responsible for generating potential OSDA
structures; the Evaluator, which assesses and scores the generated OSDAs using
computational chemistry tools; and the Self-reflector, which produces reflective
summaries based on the Evaluator’s feedback to refine the Actor’s subsequent
outputs. Experiments on representative zeolite frameworks show the generation-
evaluation-reflection-refinement workflow can perform de novo design of OSDAs
with superior generation quality than the pure LLM model, generating candidates
consistent with experimentally validated OSDAs and optimizing known OSDAs.
The code and model will be publicly available.

1 INTRODUCTION

Zeolites, a class of microporous silicate-based materials, have been widely used as highly efficient
catalysts and adsorbents, in petrochemical industries and sustainable chemistry processes (Davis,
2002). The unique properties of zeolites stem from their porous frameworks and the synthesis of
zeolites often requires the use of small molecules named Organic Structure Directing Agents (OS-
DAs) (Moliner et al., 2013). OSDAs act as templates influencing the size, shape, and connectivity
of the pores of zeolites. The design of effective OSDAs is crucial for tailoring the properties of
the target zeolite, but this process has traditionally been guided by empirical knowledge and labor-
intensive trial-and-error methods.

Recent advances in artificial intelligence have significantly impacted the design of OSDAs. Var-
ious heuristic algorithms, such as genetic algorithms (Pophale et al., 2013) and ant colony algo-
rithms (Muraoka et al., 2020), have been employed to explore the vast chemical space of potential
OSDAs, identifying promising candidates. Machine learning has also made significant strides in
this area (Chong et al., 2020; Xie et al., 2019; Manuel Serra et al., 2007; Moliner et al., 2019). With
the development of large-scale zeolite synthesis datasets (Pan et al., 2024; Muraoka et al., 2019;
Jensen et al., 2021), neural networks trained on these extensive datasets can predict the suitability of
OSDAs for specific zeolite structures. These networks effectively learn from established synthesis
recipes and experimental results, enabling the design of OSDA molecules (Jensen et al., 2021; Xu
et al., 2023). Although these methods enable OSDA predictions, their inability to accept feedback
from human experts limits the interactability of the model.
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Large language models (LLMs), such as GPT-4 developed by OpenAI (OpenAI, 2023), are capable
of processing and generating human-like text and performing complex reasoning based on extensive
datasets. These models have demonstrated remarkable proficiency in various natural language pro-
cessing tasks, including text generation, translation, and summarization (Raffel et al., 2020; Brown,
2020; Devlin, 2018). OSDA molecular design based on LLM can provide a more natural and seam-
less user experience that goes beyond traditional machine learning methods, with more aspects of the
model accepting suggestions from chemical experts, leading to better generation (Ito et al., 2024b;a).
While LLMs can process vast amounts of data and generate novel molecular structures, they often
lack the domain-specific reasoning and ability to effectively integrate complex experimental con-
straints or optimization criteria (Burtsev et al., 2023).

In this paper, we introduce the OSDA Agent, an innovative interactive framework for the design of
OSDAs that harnesses the capabilities of large language models as the core intelligence, comple-
mented by advanced computational chemistry tools. The OSDA Agent comprises three key com-
ponents: the Actor, tasked with generating a diverse array of potential OSDA structures based on
predefined criteria, utilizing the generative capabilities of LLMs to explore vast chemical space and
synthesize novel molecular architectures; the Evaluator, which critically assesses and scores these
OSDAs using a suite of computational chemistry tools (Landrum, 2013; Coley et al., 2018), employ-
ing various metrics to determine the feasibility and effectiveness of each proposed structure; and the
Self-reflector, which plays a pivotal role in the iterative design process by producing comprehensive
reflective summaries (Shinn et al., 2024) based on the Evaluator’s feedback, guiding the Actor in
refining its outputs to enhance the quality of subsequent designs. Through the integration of these
components, the OSDA Agent not only streamlines the design process but also fosters a continuous
learning environment, enabling the system to adapt and improve over time, representing a signifi-
cant advancement in the automated design of OSDAs and facilitating a more efficient and effective
approach to zeolite synthesis. In summary, our contributions are threefold:

• We introduce the OSDA Agent, an innovative interactive framework that integrates LLMs
with computational chemistry tools for the de novo design of OSDAs given target zeolites.

• To cope with the problem of uncontrollable results generated by LLMs, we introduced a re-
flection mechanism that consists of a novel binding-energy prediction module and chemical
traditional tools.

• Our experimental results demonstrate that the OSDA Agent significantly improves the qual-
ity of OSDA candidates compared to traditional methods, yielding structures that align with
experimentally validated OSDAs and effectively optimizing known OSDAs.

2 RELATED WORK

Designing OSDAs for Zeolites. The interaction between OSDAs and zeolites can be captured
through atomistic simulations, such as density functional theory (DFT) and molecular dynamics
simulations, though these methods require substantial computational resources (Schwalbe-Koda &
Gómez-Bombarelli, 2021a). Jensen et al. (Jensen et al., 2021) utilized data-driven approaches to
explore relationships between OSDAs, qualitative gel chemistry, and zeolite structures. Daeyaert et
al. (Daeyaert et al., 2019) and Xu et al. (Xu et al., 2023) applied machine learning to train neural
networks for designing OSDAs tailored to specific zeolite structures. Recent studies by Ito et al.
(Ito et al., 2024b;a) investigated the use of LLMs in designing novel OSDA molecules, highlighting
their potential for advancing molecular innovation. In contrast to previous approaches, our method
combines the knowledge embedded in LLMs with chemical tools to improve design outcomes.

LLM Agents for Science. Large language model (LLM) agents are now widely used across vari-
ous scientific disciplines (Chiang et al., 2024; Huang et al., 2024; Skarlinski et al., 2024; Ma et al.,
2024; Ghafarollahi & Buehler, 2024; Lála et al., 2023; Boiko et al., 2023; Darvish et al., 2024).
ChemCrow (M. Bran et al., 2024) developed an LLM agent integrated with specialized tools for
literature retrieval, molecular modification, and reaction execution, enabling the autonomous execu-
tion of chemical synthesis. Several studies (Buehler, 2024; Sprueill et al., 2024; Ansari & Moosavi,
2023; Kang & Kim, 2024) have explored the application of LLM agents in the field of materials
science. Furthermore, MedAgents (Tang et al., 2023) and DRUGAGENT (Inoue et al., 2024) have
explored the applications of LLM Agents in the fields of medicine and drug discovery. In this work,
we investigate the application of an LLM Agent for OSDA molecule design.
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Text-based de novo Molecule Generation. In recent decades, AI-driven methods have become
central to advancing molecule discovery (Hu et al., 2023). Text-based de novo molecule genera-
tion utilizes natural language processing techniques alongside chemical information to design novel
molecular structures. Text2Mol (Edwards et al., 2021), constructs paired datasets of molecules and
textual descriptions to learn a shared semantic embedding space for improved retrieval. MolT5 (Ed-
wards et al., 2022) and BioT5 (Pei et al., 2023), built on the T5 (Raffel et al., 2020) architecture,
are pre-trained on large corpora of text and molecular strings, enhancing their ability to generate
molecules from textual input. MoMu (Su et al., 2022) uses contrastive learning to bridge molecular
graphs and related text data. TGM-DLM (Gong et al., 2024) explores diffusion models for molecu-
lar generation. Moreover, FrontierX (Sakhinana & Runkana, 2023) and MolReGPT (Li et al., 2024)
utilize the capabilities of large language models, presenting new paradigms for molecular genera-
tion. However, traditional text-to-molecule methods struggle to perform well when faced with the
complexity of designing OSDA molecules. In this work, we address this challenge by utilizing the
comprehensive capabilities of the LLM Agent.

3 PRELIMINARIES AND DATA DESCRIPTION

3.1 DATA

We utilized the Zeolite Organic Structure Directing Agent Database (OSDB) (Schwalbe-Koda et al.,
2021) that includes 112,400 OSDA-Zeolite pairs which comprises 549 OSDA molecules and 209
distinct zeolite frameworks extracted from the literature. The database provides the corresponding
binding energy for each OSDA-Zeolite pair along with the OSDA-Zeolite complex structure data
saved in CIF files. In addition, for each OSDA molecule, we calculated its synthetic complexity
score (SCScore) (Coley et al., 2018).

Furthermore, we employed the Jensen dataset (Jensen et al., 2021) extracted from the entire body of
zeolite literature, spanning over 140 journals from more than 15 publishers between 1966 and 2020.
It includes 5,663 synthesis routes extracted from 1,384 articles, encompassing OSDA molecules,
qualitative synthesis gel compositions, and the resulting zeolite phases. The dataset provides details
on 758 distinct OSDA molecules and 205 zeolite phases, from which we extracted OSDA molecules
as real-world examples of existing OSDAs

3.2 THE STRUCTURE OF OSDA-ZEOLITE COMPLEX.

The OSDA-Zeolite complex is a variation of crystal structure that still adheres to the geometric
constraints of crystals. Thus, we represent it as a crystal graph. In the unit cell U = (X,P ),
X = [x1, x2, · · · , xn−1, xn]

T ∈ Rn×1, where n represents the number of atoms, and xi ∈ R1

represents the type of atom i in the unit cell. P = [p1, p2, · · · , pn−1, pn]
T ∈ Rn×3 is the atomic

position matrix, where pi ∈ R3 represents the Cartesian coordinates of atom i in the unit cell in
three-dimensional space. To further encode the periodic pattern, additional lattice vectors L =
[l1, l2, l3]

T ∈ R3×3 are used to describe how the unit cell repeats in three directions. Thus, in 3D
space, we represent the OSDA-Zeolite complex as (X,P,L), see Figure 11 in Appendix E.

3.3 BINDING ENERGY

The affinity of an OSDA-Zeolite pair can be quantitatively reflected via the binding energy. A
smaller binding energy value indicates that the OSDA is more compatible with the zeolite. The
calculation formula of binding energy is:

Eb = Ezeo-osda − Ezeo − Eosda (1)

where Eb represents the binding energy, Ezeo-osda is the stabilization energy of the OSDA-Zeolite
complex, Ezeo is the stabilization energy of the zeolite, and Eosda is the stabilization energy of the
OSDA (Schwalbe-Koda & Gómez-Bombarelli, 2021a).
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4 METHODOLOGIES

4.1 OSDA AGENT FRAMEWORK

In developing the OSDA Agent framework, we followed the methodology described in (Shinn et al.,
2024). Our framework integrates three interconnected models: the Actor, the Evaluator, and the
Self-reflection model. The Actor is responsible for creating OSDAs by employing advanced al-
gorithms that guide molecular assembly into desired configurations. The Evaluator assesses the
OSDA molecules generated by the Actor, utilizing various chemical tools for evaluation. The Self-
reflection model leverages feedback from the Evaluator to refine the synthesis processes within the
Actor, continuously improving the efficacy of the organic structure-directing agents. This cohesive
approach provides a robust framework for developing and optimizing structure-directing strategies
in molecular assembly. The overall framework architecture is illustrated in Figure 1 (a).

More specifically, the Actor in this work assumes the role of a zeolite expert. The Actor is based
on a LLM that generates SMILES sequences for OSDA molecules in response to specified prompts
and requirements. In this context, we utilize In-Context Learning (Yoo et al., 2021) and Chain
of Thought (Wei et al., 2022) techniques to guide the Actor’s performance. The specific prompt
strategies we employ are detailed in Section 4.2. Additionally, we incorporate a memory component,
which provides supplementary context to enhance the Actor’s capabilities.

The Evaluator component of the OSDA Agent framework plays a critical role in assessing the quality
of the OSDA molecules generated by the Actor. It takes the candidate SMILES sequences produced
by the Actor as input and employs a range of chemical tools for evaluation. The chemical tools
we use consist of a series of small models and predefined rules. First, RDKit is utilized to verify
that the generated SMILES expressions adhere to chemical validity. Then, the Evaluator provides a
comprehensive assessment by scoring the potential OSDA molecules based on their binding energy
and SCScore (Coley et al., 2018). This approach ensures that the generated OSDA molecules meet
the required specifications and are synthetically feasible, as detailed in Section 4.3.

Although LLMs exhibit powerful intelligence, they occasionally make reasoning errors (Madaan
et al., 2024). To mitigate such errors, we implemented a self-reflection module. Based on a LLM,
this module provides valuable feedback for future iterations through verbal self-reflection. It gen-
erates detailed and specific feedback based on the assessments from the Evaluator, the current gen-
erated results, and the memory of the agent. In subsequent trials, the agent leverages its past ex-
periences to optimize the generation of OSDA molecules. This iterative process of trial and error,
self-reflection, and persistent memory enables the agent to rapidly enhance its decision-making abil-
ities across various environments by effectively utilizing feedback signals.

4.2 STRUCTURE DESIGN WITH COT STRATAGY

To address the limitations of LLMs in handling complex reasoning tasks, we adopted a few-shot
Chain of Thought (few-shot CoT) approach. By designing specialized prompt strategies, we aim to
foster a more continuous and incremental reasoning process within the model, enabling it to more
effectively generate valid OSDA molecules.

The few-shot CoT prompt combines In-Context Learning (ICL) (Brown, 2020) with the Chain of
Thought (CoT) (Wei et al., 2022) technique. By introducing a continuous, step-by-step reasoning
process through the prompt ”Let’s think step by step,” we effectively guide the model in solving
complex tasks. CoT enables the model to break down tasks into their constituent parts, leading to
clearer and more logical solutions (Wei et al., 2022). As a few-shot prompt, we also provide the
LLM with an example to help it better understand and respond to the required format and content.

In crafting the prompts for the generative large language model, we also employed role-play in-
structions, assigning the model the role of an expert in zeolite OSDAs. Additionally, we extracted
several well-performing OSDA molecules from the OSDB database to serve as context. The com-
plete prompt can be found in Figure 7 and Figure 8 in Appendix D.

4
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Figure 1: OSDA Agent Framework. (a) The OSDA Agent pipeline, integrating three models: Actor,
Evaluator, and Self-reflector, responsible for generating molecules, performing chemical evalua-
tions, and providing optimization feedback. (b) The Evaluator uses three chemical tools to assess
molecules based on chemical principles, synthetic feasibility, and binding energy. (c) Example of
OSDA Agent in action.

4.3 EVALUATION WITH CHEMICAL TOOLS

The LLM Agent leverages its powerful natural language processing capabilities to intelligently gen-
erate molecular structures. However, due to the intricate chemical constraints and reasoning require-
ments, the output generated by the LLM alone may not fully meet the precision required in chem-
istry. Therefore, we introduced a series of chemical tools to ensure that the generated molecules
adhere to chemical rules and possess synthetic feasibility. This combination provides us with a
robust and flexible framework for exploring and optimizing new OSDA molecules.

We incorporated three key chemical tools to help the agent improve the chemical validity and ac-
curacy of the generated OSDA molecules. These tools include the RDKit (Landrum, 2013) toolkit,
SCScore (Coley et al., 2018), and the binding energy estimation model. In the following sections,
we will provide a detailed introduction to each of these tools.

We also developed a memory component that stores the evaluation results from the chemical tools
for the generated molecules. These stored evaluations are utilized by the Reflection Mechanism to
inform and improve subsequent iterations.

4.3.1 RDKIT TOOLKIT

The LLMs occasionally generate OSDA molecules that do not meet the required standards, including
violations of chemical rules and OSDA-specific empirical guidelines. To address this issue, we used
the RDKit (Landrum, 2013) toolkit to evaluate and filter the generated molecules. The specific
empirical criteria, similar to those outlined in (Ito et al., 2024b), are listed in Table 2 in Appendix C.

4.3.2 SYNTHETIC COMPLEXITY SCORE

The synthetic accessibility of OSDAs is a crucial factor in assessing their quality. In our work, we
employed SCScore to assess synthetic complexity. SCScore is a scoring method based on reaction
database learning, where a neural network model is trained on a large dataset of 12 million reactions
from the Reaxys database to predict the number of reaction steps required to synthesize the target
molecule (Coley et al., 2018; Lawson et al., 2014). The model establishes a nonlinear metric by
comparing the synthetic complexities of reactants and products, effectively capturing the increasing
complexity across multi-step synthesis routes. The SCScore ranges from 1 to 5, with lower values
indicating that a molecule is easier to synthesize.

5
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Figure 2: Details of the binding energy estimation model. (a) Process: We provide ⟨OSDA, Zeolite⟩
pairs to the VOID tool, which generates docking poses, predicts the energy for each, and selects the
lowest as the estimated binding energy. (b) Neural network architecture: The input consists of three
types of information relevant to determining the binding energy: OSDA, Zeolite, and Complex. We
use different architectures to extract information from each and then integrate them to predict the
binding energy.

4.3.3 BINDING ENERGY ESTIMATION MODEL

Since each OSDA Agent design involves evaluating the quality of the OSDA design multiple
times using binding energy, traditional atomic simulation methods for calculating binding en-
ergy often require computing the energy of dozens to hundreds of complexes, which is time-
consuming (Schwalbe-Koda & Gómez-Bombarelli, 2021a). To address this issue, we proposed a
deep learning-based method to estimate the energy of these complexes, significantly reducing the
time required for binding energy calculations, as shown in Figure 2 (b).

Our inspiration stems from the calculation formula for the OSDA-Zeolite binding energy. In Equa-
tion equation 1, the binding energy is related to the complex energy, the zeolite structural energy, and
the molecular energy. We follow this principle in our approach. The inputs to our method include
molecular SMILES, zeolite structure diagrams, and complex structure diagrams. The zeolite struc-
ture diagrams are obtained by parsing CIF files, following the same method as in the previous sec-
tions. We obtain the complex’s CIF files using the Void tool (Schwalbe-Koda & Gómez-Bombarelli,
2021b) and parse them to extract the complex structure diagrams.

We utilize a pre-trained SMILES-BERT (Wang et al., 2019) model to extract molecular features,
while the complex and zeolite structure diagrams are processed using CGCNN (Xie & Grossman,
2018) networks to extract complex and structural features. Then, these features (molecular, struc-
tural, and complex) are concatenated, followed by feature fusion using a transformer, and finally, a
fully connected neural network is used to predict the complex energy. Our model is trained on data
from the OSDB database. The effectiveness of each module is shown in Table 3 in Appendix E.

Throughout the entire process, candidate OSDA molecular SMILES are generated using Actor, and
the 3D conformations of the molecules are optimized using the MMFF94 (Halgren, 1996) method.
Possible binding poses between the 3D molecular conformations and zeolite structures are generated
using the Void tool. We predict the energy for each pose and use the lowest energy as the estimated
binding energy, as illustrated in Figure 2 (a).

4.4 REFLECTION MECHANISMS

The Reflection Mechanism reads the evaluations of the OSDA molecules generated by the Actor,
stored in the memory component. Using a specially designed reflection prompt, the Self-reflection

6
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LLM provides constructive feedback on the Actor’s output. This process repeats for a set number of
iterations, guiding the Actor to improve the quality and success rate of the generated molecules.

The reflection prompt utilizes a few-shot prompting technique, providing the Self-reflection LLM
with several examples of constructive feedback. We instruct the Self-reflection LLM to critique and
offer suggestions on the generated results based on the evaluations from the chemical tools. The
feedback can focus on several aspects, including the chemical validity of the generated molecules,
their synthetic feasibility, and the estimated binding energy with the given zeolite structure. The
goal is to produce OSDA molecules that are both effective and easy to synthesize. The complete
prompt and examples can be found in Figure 9 and Figure 10 in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

In our OSDA Agent framework, the Actor utilizes the GPT-4 model, while the Self-reflection is
based on the GPT-4o model. The examples used in the few-shot CoT prompts are sourced from
the OSDB database. We built our framework using Langchain, and the RDKit version employed is
2023.9.1. In the experiments, the literature OSDAs were obtained from the Jensen dataset (Jensen
et al., 2021). Baseline methods include state-of-the-art text-based de novo molecule generation
approaches, such as BioT5 (Pei et al., 2023), MolT5 (Edwards et al., 2022).

The binding energy estimation model was trained on OSDB data. The model was trained for 15
epochs using the Adam optimizer, with a 1e-5 learning rate and batch size of 32. It was implemented
in Python v3.10.4 with the PyTorch v1.12 framework and trained on an NVIDIA A6000 GPU. To
ensure the independence of the training and test sets, the dataset was split based on SMILES, follow-
ing an 8:1:1 ratio. This split ensured that the OSDA molecules in the training set were completely
distinct from those in the test set. The details and results can be found in Appendix E.

5.2 RESULTS OF OSDA MOLECULE DESIGN

To validate the effectiveness of our approach, we selected two representative zeolites for testing:
the small-pore zeolite LTA (Breck et al., 1956) with a cage-like structure and the large-pore one-
dimensional zeolite AFI (Wilson et al., 1982). We applied our method to design OSDA molecules
tailored for these two zeolite structures. In this section, we focus on presenting the results and anal-
ysis of our method in designing OSDAs for the cage-like small-pore zeolite LTA and the large-pore
one-dimensional zeolite AFI. Additionally, we extended our method to test other zeolites, including
LEV (Barrer & Kerr, 1959), AEI (Simmen et al., 1991), AFX (McGuire et al., 1995), ITE (Camblor
et al., 1997) and MOR (Simoncic & Armbruster, 2004), with the results provided in Appendix I.

Figure 3: Examples of OSDAs for two representative zeolites, large-pore zeolite AFI and small-
pore zeolite LTA, generated using the OSDA Agent. The Eb is measured in kJ/mol Si. Additionally,
consultations with experts in zeolite chemistry suggested that the generated molecules have the
potential to function as OSDAs.

7
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5.2.1 SUGGESTED OSDA CANDIDATES

Figure 3 presents several OSDAs predicted by our OSDA Agent using a de novo molecular de-
sign workflow. Compared to previous work (Ito et al., 2024b;a), our method incorporates synthetic
feasibility into the model, resulting in OSDA candidates that not only match known OSDAs but
also exhibit a high degree of synthesizability. Additionally, consultations with experts in zeolite
chemistry affirmed that the generated molecules exhibit significant potential to function as OSDAs.

5.2.2 DIMENSIONALITY REDUCTION ANALYSIS

An essential capability for any molecular generation model is to capture the molecular distribution
and generate diverse and realistic molecules. Such capabilities are paramount when constructing
virtual libraries to advance computer-aided drug discovery endeavors (van Hilten et al., 2019). To
evaluate the performance of our model in generating OSDAs, we performed a comparative analysis
against previously reported OSDAs using Principal Component Analysis (PCA) based on Weighted
Holistic Invariant Molecular (WHIM) (Todeschini & Gramatica, 1997) descriptors (detailed in Ap-
pendix C).

Figure 4: Principal Component Analysis (PCA) of WHIM vector representation for OSDA
molecules used in AFI and LTA zeolites. PCA 1, 2, and 3 represent the first three principal axes.
Red points show OSDAs generated by the OSDA Agent, blue points represent AFI/LTA OSDAs
from the literature, and gray points represent all OSDAs extracted from the literature.

The dataset used for this analysis includes all OSDAs from the literature (shown in gray), OSDAs
generated by our model (shown in red), and OSDAs previously reported in the Jensen dataset (shown
in blue). WHIM descriptors, which capture molecular geometry based on principal components
derived from molecular field methods, were calculated for both datasets. These descriptors were
then standardized and processed via PCA to visualize and assess the overlap between the OSDAs
generated by our model and those previously reported in the reduced-dimensionality space.
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Consistent with previous work(Jensen et al., 2021; Xu et al., 2023), we used PCA to reduce the
WHIM descriptors to three dimensions. The explained variance of the principal components con-
firms that PCA 1, PCA 2, and PCA 3 capture the majority of the variance in the data (Figure 6 in
Appendix C). We conducted tests on AFI and LTA zeolites, with the PCA results shown in Figures 4,
displaying data points projected onto the first three principal components. The left plot (PCA 1 vs.
PCA 2) illustrates the distribution of all OSDAs from the OSDB database (in gray), OSDAs gener-
ated by our model (in red), and previously reported in the literature OSDAs (in blue). The right plot
(PCA 1 vs. PCA 3) offers a complementary view of the data distribution.

This visualization demonstrates a notable overlap between the generated OSDAs and the reported
OSDAs, which indicates that our model has successfully generated molecules that closely align with
known, experimentally validated OSDAs. Furthermore, the red points suggest that our model is also
capable of generating novel OSDAs that explore new regions of the molecular descriptor space,
highlighting the generative model’s potential for de novo OSDA design.

5.2.3 PERFORMANCE COMPARISON

To evaluate the effectiveness of our OSDA Agent framework, we compared the results of our ap-
proach with two text-based de novo molecule generation methods, MolT5 and BioT5, as well as the
results generated by the pure GPT-4 model without the additional enhancements provided by our
integrated method. To ensure a fair comparison, we supplied the GPT-4 model with the same OSDB
data used for prompts in the OSDA Agent. We generated approximately 100 OSDA molecules for
both AFI and LTA zeolites using the OSDA Agent and GPT-4, while MolT5 and BioT5 produced
around 500 OSDA molecules each for both AFI and LTA zeolites.

In this study, we employed seven well-established metrics (detailed in Appendix C) to assess the
capability of our approach to generate OSDA molecules that align with real-world distributions
and empirical rules. The first metric is Validity, which evaluates whether the generated molecules
comply with the empirical rules for OSDAs, as shown in Table 2 of Appendix C. Next, we utilized
four commonly used text-to-molecule metrics BLEU (Papineni et al., 2002), Morgan, MACCS, and
RDK to measure the similarity between the generated OSDA molecules and those reported in the
literature. Finally, we applied the Energy Distance (ED) (Székely & Rizzo, 2013) and Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) to assess the distributional similarity between
the generated OSDAs and the ones reported in the literature.

As shown in Table 1, traditional text-to-molecule methods like MolT5 (Edwards et al., 2022) and
BioT5 (Pei et al., 2023) struggle to generate molecules that comply with OSDA rules, largely due
to their lack of specialized knowledge in zeolite OSDAs. The molecules they generate significantly
differ from those reported in the literature. While large language models such as GPT-4 possess the
relevant knowledge to produce more plausible OSDA molecules, they lack the guidance of special-
ized chemical tools. As a result, GPT-4 generated OSDA molecules exhibit significant shortcomings
in terms of accuracy and diversity. Specifically, more than 50% of the OSDAs generated by the pure
GPT-4 model do not meet OSDA requirements. Although certain similarity metrics (e.g., Morgan)
show relatively high scores, the generated molecules exhibit significant differences in their overall
distribution compared to the OSDAs reported in the literature. This issue is clearly illustrated in
Figures 14 in Appendix F, where the distributions of molecular volume, molecular weight, and as-
phericity are visualized. Notably, the molecular volume and weight of the purely GPT-4 generated
molecules deviate substantially from those of the OSDAs found in the literature.

Our OSDA Agent integrates the GPT-4 model with targeted prompt strategies, chemical validation
tools, and a reflection mechanism, consistently producing OSDAs with higher chemical relevance
and synthesizability. The inclusion of the SCScore model and RDKit for chemical rule validation
allows our framework to filter out unfeasible molecules early in the process. Additionally, the re-
flection mechanism iteratively refines the generated OSDAs, enhancing their alignment with known
experimental data and synthesis routes. This capability enables the OSDA Agent to accurately gen-
erate molecules that conform to OSDA rules and exhibit greater similarity to those found in the
literature. As shown in Table 1, our OSDA Agent outperforms other methods across the majority
of similarity metrics. In terms of distribution, the OSDA molecules generated by the OSDA Agent
exhibit lower KL divergence and Energy distance (ED) values. Therefore, we conclude that the OS-
DAs generated by the OSDA Agent are more representative of those found in real-world scenarios.
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Table 1: The performance of the OSDA Agent in the de novo design of OSDAs.The best scores are
in bold, and the second-best scores are underlined.

Type Method Validity↑ BLEU ↑ Morgan↑ MACCS↑ RDK↑ ED↓ KL Divergence ↓

AFI

MolT5 (Edwards et al., 2022) 0.000 0.204 0.157 0.556 0.384 266.4 7.753
BioT5 (Pei et al., 2023) 0.008 0.193 0.147 0.384 0.162 120.7 3.128

GPT-4 0.440 0.554 0.332 0.750 0.591 4.061 0.653
OSDA Agent 1.000 0.577 0.308 0.781 0.608 2.567 0.588

LTA

MolT5 (Edwards et al., 2022) 0.000 0.266 0.151 0.520 0.297 189.4 2.985
BioT5 (Pei et al., 2023) 0.005 0.228 0.130 0.431 0.337 73.43 1.093

GPT-4 0.471 0.382 0.213 0.677 0.360 12.80 0.976
OSDA Agent 1.000 0.499 0.229 0.737 0.412 2.084 0.744

5.3 RESULTS OF OPTIMIZING EXISTING OSDA MOLECULES

Figure 5: During the molecular optimization
process, the SCScore and Binding Energy of
the OSDA molecules varied with the number
of reflection iterations.

In the previous sections, we have demonstrated the
capability of our OSDA Agent in molecular design,
and we hope that our approach can also be effec-
tive in optimizing existing OSDA molecules. To
demonstrate the capability of our approach in refin-
ing complex and challenging synthesized molecules,
we applied the model to several OSDAs previously
reported in the literature. These molecules, selected
from the OSDB database, were chosen specifically
for their complexity and synthesis difficulty. The
goal was to enhance synthetic feasibility while main-
taining low binding energies.

We tested the ability of our OSDA Agent to op-
timize existing OSDA molecules for AFI zeolites.
We selected ten OSDA molecules from the OSDB
database with relatively high SCScore, averaging
around 3.45. Using our approach, we modified the
prompt to “Can you start with this molecule and optimize this OSDA molecule...?” and set the
reflection steps to 4 for each molecule. To ensure the reliability of the results, we repeated the
optimization process five times for each of the molecules.

We calculated the average SCScore and binding energy across the five experiments, as shown in
Figure 5. The results indicate that the average SCScore decreased from 3.45 to 2.46, suggesting a
lower synthesis difficulty. The optimized binding energy averaged -6.71 kcal/mol, which remains
within the reasonable range (-3.38 kcal/mol to -9.00 kcal/mol) based on the Jensen dataset. Ad-
ditionally, the optimized molecules maintained structural similarity to the originals, preserving the
functional properties necessary for zeolite templating. Detailed optimization results can be found in
Appendix F, Figure 16.

The results indicate that our OSDA Agent successfully generated optimized versions of these
molecules, reducing the SCScore and thereby lowering the synthesis difficulty, while preserving
the functional characteristics necessary for zeolite templating. This demonstrates that the OSDA
Agent has the potential not only to design new molecules but also to improve existing ones.

6 CONCLUSION

In this work, we introduced the OSDA Agent, which effectively designs and optimizes OSDAs
through iterative refinement with targeted prompts. Applied to small and large pore zeolites, in-
cluding LTA and AFI, the OSDA Agent generated chemically valid and structurally compatible
molecules. Comparisons with literature-reported OSDAs revealed competitive, and in some cases
superior, designs. These results highlight the OSDA Agent’s potential for molecular design and op-
timization. Future work will focus on expanding the applicability of our methods to a broader range
of scientific fields and further integrating experimental constraints into the optimization process.
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Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on distances.
Journal of statistical planning and inference, 143(8):1249–1272, 2013.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun Zhao, Xingyao Zhang, Arman Cohan, and Mark
Gerstein. Medagents: Large language models as collaborators for zero-shot medical reasoning.
arXiv preprint arXiv:2311.10537, 2023.

R Todeschini and Paola Gramatica. The whim theory: new 3d molecular descriptors for qsar in
environmental modelling. SAR and QSAR in Environmental Research, 7(1-4):89–115, 1997.

Niek van Hilten, Florent Chevillard, and Peter Kolb. Virtual compound libraries in computer-assisted
drug discovery. Journal of chemical information and modeling, 59(2):644–651, 2019.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th
ACM international conference on bioinformatics, computational biology and health informatics,
pp. 429–436, 2019.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Stephen T Wilson, Brent M Lok, Celeste A Messina, Thomas R Cannan, and Edith M Flanigen.
Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids.
Journal of the American Chemical Society, 104(4):1146–1147, 1982.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

14

https://openreview.net/forum?id=3tJDnEszco
https://openreview.net/forum?id=3tJDnEszco


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yunchao Xie, Chen Zhang, Xiangquan Hu, Chi Zhang, Steven P Kelley, Jerry L Atwood, and Jian
Lin. Machine learning assisted synthesis of metal–organic nanocapsules. Journal of the American
Chemical Society, 142(3):1475–1481, 2019.

Liukou Xu, Xin Peng, Zhenhao Xi, Zhiqing Yuan, and Weimin Zhong. Predicting organic struc-
tures directing agents for zeolites with conditional deep learning generative model. Chemical
Engineering Science, 282:119188, 2023.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyeong Park. Gpt3mix:
Leveraging large-scale language models for text augmentation. arXiv preprint arXiv:2104.08826,
2021.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A LINK TO DATASETS AND MODELS

Jensen dataset: https://github.com/olivettigroup/OSDA_Generator

OSDB database: https://zeodb.mit.edu/index

Pre-trained SMILES-BERT: https://huggingface.co/unikei/bert-base-smiles

GPT-4: https://openai.com/chatgpt/

VOID: https://github.com/learningmatter-mit/VOID

Mistral-Nemo-Instruct-2407:https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

Llama-3.1-70B-Instruct:https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct

B SUPPLEMENTING THE BACKGROUND AND MOTIVATION

The Importance of OSDA in Zeolite Synthesis
In zeolite synthesis, Organic Structure-Directing Agents (OSDAs) are essential in determining the
final framework structure and morphology of the material. Zeolites are microporous materials with a
wide range of applications in catalysis, adsorption, and ion exchange. The specific properties of ze-
olites, such as pore size and shape, depend on their crystalline structure, which is directly influenced
by the presence of OSDAs. These organic molecules act as templates during the synthesis process,
guiding the formation of the zeolite framework and ensuring the desired structural arrangement.

OSDAs not only direct the crystallization of zeolite but also contribute to the stability of the result-
ing material. In some cases, OSDAs function as charge-balancing agents, helping to maintain the
integrity of the aluminosilicate framework during synthesis. Without the appropriate OSDA, zeolite
formation may either fail to occur or result in amorphous materials with poorly defined structures.
Therefore, the choice of OSDA is critical in controlling the final zeolite structure, affecting both the
framework topology and the material’s performance.

Why do the design of OSDAs currently present significant challenges?
OSDA plays a crucial role in determining the topology of zeolites, especially in the formation of
their porous structures. Traditional methods mainly rely on two approaches: first, using empirical
experience and experimentation to search for feasible OSDA molecules within a molecular library;
and second, employing computational simulations of zeolite-OSDA interactions (such as Density
Functional Theory, DFT) to assist in OSDA design. Both experience-based and simulation-based
traditional methods are highly time-consuming and resource-intensive. In particular, the vast chem-
ical space of OSDA (small molecules) presents significant challenges in discovering new OSDA
candidates using conventional methods.

Moreover, due to the difficulty in finding new OSDA molecules, the existing pool of OSDA candi-
dates is very limited. For example, the Jensen dataset, which collects data from papers published
between 1966 and 2020, contains only 758 different OSDA molecules. Traditional machine learn-
ing generation methods typically require large datasets, but the small number of OSDA molecules
makes it challenging to train effective generative models. Several traditional generative model ap-
proaches(Jensen et al., 2021; Xu et al., 2023) are typically trained using synthetic routes. This means
that when designing OSDAs, information related to the synthetic pathway, such as gel chemistry,
must be provided. Moreover, the limited number of different OSDA molecules in the dataset nega-
tively impacts the model’s ability to search effectively within the chemical space. Currently, Large
Language Models (LLMs) have broad knowledge across related fields, and we aim to leverage the
domain expertise of LLMs to overcome the data scarcity issue.

Why is an iterative, feedback-based approach employed in this context?
Due to the phenomenon of ”hallucination” in large language models (LLMs), especially when per-
forming complex tasks like molecular design, it is necessary to introduce additional chemical knowl-
edge to help the LLMs accomplish the task more effectively. Through an interactive, feedback-
driven approach, we professionally evaluate the molecules designed by the LLM, including factors
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such as OSDA empirical rules, molecular synthesis difficulty, safety, etc., and provide feedback to
the LLM. This process is similar to how chemists validate through experiments and make improve-
ments based on the experimental results.

C EXPERIMENTAL DETAILS AND METRICS

We outline the metrics employed to evaluate the performance of the generative models in our exper-
iments, encompassing:

Validity. The proportion of generated molecules that follow the empirical rules for OSDAs can be
expressed as:

V =
Nvalid

Ntotal
,

where Nvalid is the number of valid molecules and Ntotal is the total number of generated molecules
(see Table 2).

BLEU. To assess the difference between the generated molecules and OSDAs reported in the liter-
ature, the evaluation is conducted by calculating the average BLEU score B between the SMILES
representations of the generated molecules and those of the closest OSDAs documented in the liter-
ature:

B =
1

N

N∑
i=1

BLEU(Sgen,i, SOSDA,i∗),

where N is the number of generated molecules, Sgen,i is the SMILES representation of the i-th
generated molecule, and SOSDA,i∗ = SOSDA,j∗ with

j∗ = argmax
j

BLEU(Sgen,i, SOSDA,j),

where j iterates over all OSDAs, ensuring SOSDA,i∗ is the SMILES representation of the OSDA most
similar to the i-th generated molecule.

Morgan. Morgan fingerprints, which generate feature vectors by calculating the local atomic envi-
ronments in molecules, are used here to measure the difference between the generated molecules and
the OSDAs reported in the literature. Specifically, this is done by calculating the similarity SMorgan

between each generated molecule and its closest OSDA documented in the literature, followed by
averaging these scores:

SMorgan =
1

N

N∑
i=1

sim(Fgen,i, FOSDA,i∗),

where N is the number of generated molecules, Fgen,i is the Morgan fingerprint of the i-th generated
molecule, and FOSDA,i∗ = FOSDA,j∗ with

j∗ = argmax
j

sim(Fgen,i, FOSDA,j),

where j iterates over all OSDAs, ensuring FOSDA,i∗ is the Morgan fingerprint of the OSDA most
similar to the i-th generated molecule.

MACCS. MACCS fingerprints generate a fixed-length bit vector based on a predefined set of struc-
tural subgraphs or chemical features, with each bit representing the presence or absence of a specific
chemical feature. Here, we use MACCS fingerprints to evaluate the difference between the gener-
ated molecules and the OSDAs reported in the literature. Specifically, this is done by calculating the
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average similarity SMACCS between the MACCS fingerprints of the generated molecules and those
of the closest OSDAs documented in the literature:

SMACCS =
1

N

N∑
i=1

sim(Fgen,i, FOSDA,i∗),

where N is the number of generated molecules, Fgen,i is the MACCS fingerprint of the i-th generated
molecule, and FOSDA,i∗ is defined as:

FOSDA,i∗ = argmax
j

sim(Fgen,i, FOSDA,j),

with j iterating over all OSDAs, ensuring FOSDA,i∗ is the MACCS fingerprint of the OSDA most
similar to the i-th generated molecule.

RDK. RDK fingerprints generate feature bit vectors by traversing the bond paths in a molecule.
Here, we use RDK fingerprints to evaluate the difference between the generated molecules and the
OSDAs reported in the literature. Specifically, this is done by calculating the average similarity
SRDK between the RDK fingerprints of the generated molecules and those of the closest OSDAs
documented in the literature:

SRDK =
1

N

N∑
i=1

sim(Fgen,i, FOSDA,i∗),

where N is the number of generated molecules, Fgen,i is the RDK fingerprint of the i-th generated
molecule, and FOSDA,i∗ is defined as:

FOSDA,i∗ = argmax
j

sim(Fgen,i, FOSDA,j),

with j iterating over all OSDAs, ensuring FOSDA,i∗ is the RDK fingerprint of the OSDA most similar
to the i-th generated molecule.

WHIM.WHIM descriptors are a class of molecular descriptors used to characterize the three-
dimensional structure of molecules by considering global properties such as molecular geometry,
mass distribution, polarity, and electron density. Here, we use WHIM descriptors to calculate the dif-
ference between the distribution of the generated molecules and the distribution of OSDAs reported
in the literature.WHIM descriptors capture information about a molecule’s three-dimensional con-
formation, including its size, shape, symmetry, and atomic distribution. Due to molecular flexibility,
different conformations can result in significantly different WHIM representations. For example, a
long linear molecule can either stretch out or fold, leading to two distinct 3D representations. To
address this challenge, we calculated the average conformation WHIM descriptors using the geome-
tries obtained from RDKit (Landrum, 2013). This approach allows us to capture the diverse 3D
characteristics of each molecule across its various conformations.

Energy Distance(ED). Energy Distance is a statistical measure used to quantify the difference be-
tween two probability distributions. It is based on the concept of energy statistics and captures the
distance between distributions in terms of expected Euclidean distances between samples. Energy
Distance is symmetric and particularly sensitive to both location and shape differences between dis-
tributions. In this study, we compute the Energy Distance between the distribution of the generated
molecules and the distribution of OSDAs reported in the literature, using the WHIM descriptors.
The formula for Energy Distance is given by:

ED(X,Y ) = 2 · E[d(X,Y )]− E[d(X,X ′)]− E[d(Y, Y ′)],

where X and Y represent independent samples from the generated molecules and OSDA distribu-
tions, respectively. Here, d(X,Y ) denotes the Euclidean distance between samples, and E denotes
the expectation. The Energy Distance captures both the mean differences between the distributions
and their internal variability, making it a robust measure for comparing the overall structure of the
molecular distributions.
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KL-divergence. Kullback-Leibler (KL) divergence is an asymmetric measure used to quantify the
difference between two probability distributions. It measures the information loss or gain when
one distribution is compared to another. Here, we use the WHIM descriptors of the molecules,
after dimensionality reduction via PCA, to calculate the difference between the distribution of the
generated molecules and the distribution of OSDAs reported in the literature. The formula for KL-
divergence is:

DKL(P∥Q) =

∫
P (x) log

P (x)

Q(x)
dx,

where P (x) is the probability density function of the generated molecules’ distribution, and Q(x)
is the probability density function of the OSDAs’ distribution. The KL-divergence quantifies the
amount of information lost when Q is used to approximate P , with a larger value indicating greater
divergence between the two distributions.

Figure 6: Scree plot of PCA on WHIM descriptors.

Table 2: Screening criteria

Property Criteria
Number of rotatable bonds Less than 5
Size of rings without bridge bonds Smaller than 9-membered rings
Size of smallest rings Larger than 4-membered rings
Distortion of N-rings Must not contain triple bonds in N-rings
C to N ratio More than 4 and less than 20
Presence of NH+ and NH3

+ group Must not be contained

Presence of unfavorable atoms and bonds
Must not contain these atoms and bonds
(O, Si, P, P, S, B, F, – O – C – O – , – C –– O,
and N – N)

D USING THE FEW-SHOT COT (CHAIN OF THOUGHT) PROMPT
ENGINEERING METHOD FOR OSDA MOLECULE DESIGN CASES

In this section, we present the complete prompt that we used.
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Figure 7: Chain of Thought prompts in OSDA design.

Figure 8: Details of the few-shot CoT (Chain of Thought) prompts. The data in the Relevant Context
section comes from the OSDB database.
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Figure 9: Details of the reflection prompts. The data in the Relevant Context section comes from
the OSDB database.

Figure 10: Example of the reflection.

E BINDING ENERGY ESTIMATION MODEL DETAILS

This section covers the details and results of the Binding Energy Estimation Model, including our
ablation study on the model.

The OSDA-Zeolite complexes in the real world are quite complex, as OSDAs may adopt multiple
conformations when interacting with zeolites, resulting in complexes that do not exhibit the strict
periodicity of typical crystals. However, both the complexes from the OSDB database and those
generated from voids are stored as CIF files and treated as unit cells, as illustrated in Figure 11.
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Therefore, we continue to use crystal structures and periodic graph neural networks (CGCNN) for
modeling in this context.

Figure 11: Dock illustration. (a) An AFI zeolite. (b) The combined complex with the ‘CCN(CC)CC’
OSDA.

Table 3: Binding energy prediction error (MAE) on the OSDB database.

Model Binding Energy (kJ/mol Si) (MAE ↓)
full model 0.384
Remove Zeolite encoder 0.402
Remove Smiles encoder 0.411
Only Complex encoder 0.469

Figure 12: The results of the Binding Energy Estimation model on the test set.
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Figure 13: Model loss trends.

F SUPPLEMENTARY EXPERIMENTAL RESULTS

This section primarily provides supplementary results from the experiments.

Figure 14: The distribution of molecular volume, molecular weight, and asphericity is compared
between the OSDAs reported in the literature and those generated by the OSDA Agent in conjunction
with GPT-4.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 15: The distribution of molecular volume, molecular weight, and asphericity is compared
between the OSDAs reported in the literature and those generated by the OSDA Agent in conjunction
with GPT-4, BioT5, MolT5.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 16: The optimization results of OSDA molecules are presented, with the OSDA molecules
from the OSDB database on the left and the molecules optimized by the OSDA Agent on the right.

G ABLATION STUDY

In this section, we perform an ablation study on the proposed components, focusing on the reflection
mechanism and the individual components within the Evaluator. To minimize randomness as much
as possible, we use 15 identical sets of prompts to design OSDA molecules for AFI zeolite, repeating
the process three times.The results obtained are as follows:

Table 4: Performance metrics for the ablation study of different methods.

Method Validity ↑ BLEU ↑ Morgan↑ MACCS ↑ RDK ↑ ED ↓ KL Divergence ↓ Avg Rank
OSDA Agent 1.000 0.601 0.368 0.816 0.623 0.934 0.825 1.28
w/o reflection mechanism 0.702 0.581 0.331 0.782 0.553 1.359 0.973 4.75
w/o RDKit 0.770 0.593 0.355 0.751 0.566 1.233 0.830 3.42
w/o SCSore 1.000 0.570 0.371 0.802 0.614 1.256 1.001 2.85
w/o blending energy 1.000 0.627 0.356 0.787 0.619 1.275 0.972 2.42
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Here, we observe that removing the reflection mechanism or any individual component within the
Evaluator leads to worse results.

H EVALUATION OF ALTERNATIVE LLM COMPONENTS

In this section, we explore the use of alternative large language models (LLMs) and compare their
performance. Specifically, we tested two popular open-source LLMs, Mistral (Jiang et al., 2023)
and LLaMA 3.1(Dubey et al., 2024), and observed that our method also resulted in substantial
improvements in their ability to design OSDAs:

Table 5: Performance metrics for different methods.

Method BLEU ↑ Morgan ↑ MACCS ↑ RDK ↑ ED ↓ KL Divergence ↓
OSDA Agent 0.601 0.368 0.816 0.624 0.934 0.825
OSDA Agent* 0.571 0.317 0.772 0.601 0.964 1.091

llama 0.522 0.301 0.628 0.416 1.693 1.073
OSDA Agent(llama) 0.551 0.315 0.754 0.565 0.901 0.693
Mistral 0.338 0.177 0.411 0.224 2.692 1.192
OSDA Agent(Mistral) 0.512 0.306 0.740 0.541 0.825 0.661

The OSDA Agent is our default model. The OSDA Agent* replaces the actor with GPT-4o while
the OSDA Agent (Llama) is fully built on Llama, the OSDA Agent (Mistra) is fully built on Mistra.
Our experimental results show that, regardless of the model used, our OSDA Agent significantly
enhances the overall design results. However, currently, its performance is still slightly inferior to
GPT-4, which remains the most effective model for this specific task.

I EXAMPLES OF OSDAS FOR AFI, AEI, LEV, AFX, MOR, LTA AND ITE
ZEOLITES GENERATED USING THE OSDA AGENT

We used the OSDA Agent to generate OSDA molecules for seven types of zeolites, including AFI,
AEI, LEV, AFX, MOR, LTA, and ITE. After consulting experts in materials and chemistry, they
confirmed that the generated molecules have potential as OSDAs.

Table 6: Overview of the zeolites utilized.

Framework Type Crystal system Length a (Å) Length b (Å) Length c (Å) Angle α (°) Angle β (°) Angle γ (°) pore size (Å)

LTA Cubic 11.92 11.92 11.92 90 90 90 4.21
AFI Hexagonal 13.83 13.83 8.58 90 90 120 7.42
ITE Orthorhombic 20.75 9.80 20.01 90 90 90 4.21
LEV Trigonal 13.17 13.17 22.58 90 90 120 3.53
MOR Orthorhombic 18.26 20.53 7.54 90 90 90 6.45
AFX Hexagonal 13.67 13.67 19.70 90 90 120 3.73
AEI Orthorhombic 13.68 12.61 18.50 90 90 90 3.84
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Figure 17: OSDAs for AFI zeolites

Figure 18: OSDAs for AEI zeolites
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Figure 19: OSDAs for AFX zeolites

Figure 20: OSDAs for ITE zeolites
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Figure 21: OSDAs for LEV zeolites

Figure 22: OSDAs for LTA zeolites
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Figure 23: OSDAs for MOR zeolites

J EXPERIMENTAL DETAILS AND METRICS

K DEFINITION AND EXPLANATION OF TERMS AND CONCEPTS IN THE PAPER

SMILES (Simplified Molecular Input Line Entry System)
SMILES is a symbolic language used to represent the structure of chemical molecules. It encodes
the atoms, bonds, and spatial arrangements of a molecule in a string of characters. SMILES is widely
used in computational chemistry and AI for Science due to its simplicity in storing and exchanging
chemical information and its ability to be parsed by computer programs.

In-Context Learning (ICL)
In-Context Learning refers to the process where a pre-trained language model performs reasoning
and generates responses based on provided examples or contextual information in the input. This
is done without the need for additional model training or parameter updates, making it a form of
immediate inference for a given task.

Chain of Thought
Chain of Thought refers to a reasoning process where a model breaks down a complex problem into
a sequence of logical steps to improve the accuracy and transparency of its reasoning. This approach
helps in step-by-step problem-solving by guiding the model through intermediate steps.

RDKit
RDKit is an open-source toolkit for cheminformatics that provides a wide range of functionalities
for molecular manipulation, feature extraction, structure visualization, and drug design. It is widely
used in chemistry and bioinformatics.

SCScore (Synthetic Complexity Score)
SCScore is a metric used to assess the synthetic difficulty of a chemical molecule. It considers factors
such as the number of synthetic steps, reagents, and reaction conditions required to synthesize the
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molecule, evaluating its complexity from laboratory synthesis to industrial production. A higher
score indicates greater synthetic difficulty.

Binding Energy
Binding energy refers to the interaction energy between an OSDA (organic structure-directing agent)
molecule and the active site in a zeolite lattice. It is used to describe and predict the stability of the
OSDA during the zeolite synthesis process.

Zeolites
Zeolites are a class of porous materials with a regular framework structure composed of silicon-
oxygen (SiO4) and aluminum-oxygen (AlO4) tetrahedra linked by oxygen bridges. Their unique
molecular sieve properties allow them to selectively adsorb and separate molecules based on size and
shape. Zeolites are widely used in various industries for applications such as catalysis, adsorption,
ion exchange, gas separation, and water treatment. Due to their tunable structure, the pore size and
crystal morphology of zeolites can be optimized by using different organic structure-directing agents
(OSDAs) to meet specific application requirements.

OSDA
OSDA (Organic Structure-Directing Agent) refers to an organic compound, typically a quaternary
ammonium salt or other organic molecules, that is used in the synthesis of zeolites to guide the
formation of their crystalline structure. During the synthesis process, OSDAs interact with the
aluminosilicate framework and help direct the arrangement of atoms, thereby influencing key char-
acteristics of the zeolite such as pore size, pore shape, and crystal morphology. The use of different
OSDAs allows for the tuning of the zeolite’s properties to suit specific industrial applications, such
as catalysis, adsorption, and gas separation.
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