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Abstract

While temporal knowledge graph forecasting001
(TKGF) approaches have traditionally relied002
heavily on complex graph neural network ar-003
chitectures, recent advances in large language004
models, specifically in-context learning (ICL),005
have presented promising out-of-the-box alter-006
natives. While previous works have shown the007
potential of using ICL, its limitations and gen-008
eralization capabilities for TKGF are under-009
explored. In this study, we conduct a com-010
parative analysis of complexity (e.g., number011
of hops) and sparsity (e.g., relation frequency)012
confounders between ICL and supervised mod-013
els using two annotated TKGF benchmarks.014
Our experimental results showcase that while015
ICL performs on par or outperforms supervised016
models in lower complexity scenarios, its effec-017
tiveness diminishes in more complex settings018
(e.g., multi-step, more number of hops, etc.),019
where supervised models are superior.020

1 Introduction021

Knowledge graphs (KGs) are commonly used022

structures that store relational information as a023

graph (Bollacker et al., 2008; Vrandečić and024

Krötzsch, 2014). While using KGs for keeping025

static facts is common, they are unsuitable for026

holding complex dynamic (i.e., temporal) infor-027

mation. Temporal knowledge graphs (TKGs) are028

extensions of KGs that enable the storage of such029

information (Leetaru and Schrodt, 2013; García-030

Durán et al., 2018). Consequently, TKGs allow031

practitioners to do various predictive tasks on com-032

plex temporal data. One critical task that has been033

empowered by TKGs is temporal knowledge graph034

forecasting (TKGF) (Gastinger et al., 2023), where035

the objective is to predict future facts from a set036

of prior facts before a specific time in a TKG.037

A hypothetical real-world example of TKGF is038

to answer the question, “Who is USA going to039

Meet in June 2025?” based on previous political040

Figure 1: Example of Graph to Text Prompt Conver-
sion for ICL. The given task is to predict which country
is gonna meet the USA during the G7 summit, based on
the previous interactions between the countries.

events. This scenario can be represented by the 041

query quadruple q = (USA, Meets, ?, June 2025) 042

and the time-constrained TKG Gt = {(USA, Meets, 043

UK, June 2024), (USA, Attends, G7, June 2025), 044

(USA, Meets, Germany, June 2025), . . . }. 045

Recent studies have demonstrated large language 046

models’ (LLMs) effectiveness as general estima- 047

tors across various function classes (Garg et al., 048

2022; Mirchandani et al., 2023). Consequently, 049

these advancements have sparked interest in em- 050

ploying LLMs for temporal knowledge graph fore- 051

casting (TKGF). Specifically, LLMs have shown 052

remarkable potential for TKGF, surpassing state-of- 053

the-art supervised models in some scenarios using 054
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Temporal Rule
Complexity Sparsity

# Unique
Entities

# Unique
Relations # Hops Relation

Frequency
Time

Interval

(E1, express intent to meet−1, E2, T1) ⇒ (E1, share information︸ ︷︷ ︸
R

, E2, T2) 2 2 1 fR T2 − T1

(E1, provide military aid, E2, T1) ∧ (E2, intend to protect−1, E3, T2)
⇒ (E1, provide military aid︸ ︷︷ ︸

R

, E3, T3) 3 2 2 fR T3 − T1

(E1, riot, E2, T1) ∧ (E2,make statement, E1, T2) ∧ (E1, riot, E2, T3)
⇒ (E1, demonstrate or rally︸ ︷︷ ︸

R

, E2, T4) 2 3 3 fR T4 − T1

Table 1: Confounder values examples. The samples are taken from Liu et al. (2022) with some small modifications.
Note that fR refers to the frequency of relation R among all quadruples in the dataset.

in-context-learning (ICL) (Lee et al., 2023) (see055

Figure 1 for an example). Methods such as ICL056

present a cheap, fast, and ready-to-use alternative057

to traditional methods, many of which use com-058

putationally heavy graph neural network (GNN)059

architectures. However, despite all their benefits,060

the broad applications of such solutions for fore-061

casting problems and LLMs’ “grey box” nature062

(e.g., opaque reasoning process, unpredictability063

across different temporal patterns) raise concerns064

regarding their limitations and generalizability.065

In this study, we provide insights into the ef-066

fect of various confounders – arising from rela-067

tional and temporal patterns – on the effectiveness068

of ICL for TKGF. To this end, first, we utilize a069

state-of-the-art rule-based model to generate rea-070

soning rules from well-known TKG benchmarks,071

ICEWS14 and ICEWS18 (García-Durán et al.,072

2018). Then, based on the generated rules, we073

create two labeled datasets containing confounder074

annotations for the test sets. Finally, we use these075

datasets to compare ICL-based models to state-076

of-the-art supervised models in single-step and077

multi-step settings (Gastinger et al., 2023) across078

complexity (e.g., number of unique entities), and079

sparsity (e.g., relation frequency) confounders (see080

Table 1 for more thorough examples). Our experi-081

mental results on the annotated datasets show that082

(1) ICL-based models outperform supervised mod-083

els in scenarios with lower complexity, such as084

annotated samples with 1-hop patterns in single-085

step settings or samples involving only one unique086

relation, and (2) increasing the complexity of the087

patterns results in ICL-based models to underper-088

form massively compared to the supervised models.089

This phenomenon is particularly evident in multi-090

step settings, where ICL-based models lag behind091

supervised models in all scenarios. 092

2 Background and Related Work 093

Formal Definition of TKGF. Formally, a TKG 094

G = (Q, E ,R, T ) comprises a set of quadruples 095

Q in the form (s, r, o, t), where s and o are enti- 096

ties within E , r is a relation within R, and t is a 097

timestamp from T . The TKG forecasting task aims 098

to predict a missing entity in future quadruples, 099

either as (s, r, ?, t) for tail prediction or (?, r, o, t) 100

for head prediction, using historical data from the 101

graph. This process involves scoring all entities so 102

that the true entity receives the highest ranking. 103

Supervised Models. Recent supervised models 104

primarily utilize embedding-based GNNs to en- 105

hance their structural and sequential learning capa- 106

bilities. Specifically, they have used autoregressive 107

architectures to aggregate information both glob- 108

ally and locally in RE-Net (Jin et al., 2020), com- 109

bined convolutional and recurrent architectures for 110

modeling temporal sequences in RE-GCN (Li et al., 111

2021), introduced neural ordinary differential equa- 112

tions to model temporal sequences in TANGO (Han 113

et al., 2021), and extended convolutional architec- 114

tures to learn evolutionary patterns in CEN (Li 115

et al., 2022). In parallel to these models, other 116

approaches have been introduced in prior works, 117

such as using a copy-mechanism in CyGNet (Zhu 118

et al., 2021), leveraging reinforcement learning on 119

temporal paths in TiTer (Sun et al., 2021), and 120

learning temporal logic rules via temporal random 121

walks in TLogic (Liu et al., 2022). 122

ICL-based Models. Recent advances in LLMs 123

have drastically improved their capabilities, lead- 124

ing to emergent behaviors such as ICL. ICL al- 125

lows LLMs to perform tasks conditioned solely on 126
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Dataset |E| |R|
# of Facts Time

GranularityTrain/Valid/Test Annotated

ICEWS14 6,869 230 75k/8.5k/7.3k 11,625 1 day
ICEWS18 23,033 256 373k/46k/50k 65,003 1 day

Table 2: Dataset statistics. Each dataset consists of
historical facts divided into three subsets based on time.

the provided context without parameter optimiza-127

tion. Utilizing ICL, Lee et al. (2023) introduced128

the first LLM-based TKGF model, which showed129

performance on par with state-of-the-art supervised130

models without any training. Moreover, Xia et al.131

(2024) introduced an improved historical fact re-132

triever and an alignment training procedure, post-133

ing better performances than the state-of-the-art134

supervised models1. While these ICL-based mod-135

els have shown interesting achievements toward the136

TKGF task, we still lack a proper understanding of137

their limitations, a gap we aim to bridge.138

3 Experimental Setup139

3.1 Datasets140

Our experiments focused on two prominent TKGF141

datasets: ICEWS14 (García-Durán et al., 2018)142

and ICEWS18 (Jin et al., 2020) (see Table 2). We143

specifically chose these datasets because 1) they144

are commonly used by almost all the prior works in145

the literature and 2) they pose a much more signifi-146

cant challenge to the forecasting models compared147

to other existing datasets such as WIKI (Leblay148

and Chekol, 2018) and YAGO (Rebele et al., 2016).149

Moreover, to keep our results consistent and com-150

parable to previous works, we use the same splits151

as Gastinger et al. (2023).152

3.2 Weak Supervision153

One of the challenges we faced in our experiments154

was the absence of annotations for different con-155

founders in the existing datasets. To overcome this156

issue, we employ weak supervision (Voskarides157

et al., 2018; Zhang et al., 2024; Tong et al., 2024)158

using TLogic (Liu et al., 2022), a state-of-the-art159

rule-learning-based TKG model, to annotate test160

samples with temporal multi-hop patterns. To this161

end, first, we ran the rule-learning part of TLogic162

on the combination of all quadruples from the163

train, valid, and test sets with the number of hops164

∈ {1, 2, 3}. Then, we annotated each test sample165

1The implementation has not been made public.

using the matching pattern with the highest score2, 166

if such a rule existed. Finally, for the annotated test 167

quadruples, we extract various confounders from 168

their associated patterns, including the number of 169

unique entities and relations, the pattern’s length 170

denoted as “hop”, the relation frequency of the 171

test query, and the time interval (see Table 2 for 172

annotation statistics). 173

3.3 Models 174

For our ICL-based baseline, we utilize the model 175

as described by Lee et al. (2023), which employs 176

gpt-neox-20b (Black et al., 2022). This method is 177

an inference-time approach that demonstrates per- 178

formance comparable to supervised models. More- 179

over, for the TKG baselines we used state-of-the-art 180

models with the hyperparameters and implemen- 181

tation as provided by (Gastinger et al., 2023): RE- 182

Net (Jin et al., 2020), RE-GCN (Li et al., 2021), 183

TANGO (Han et al., 2021), CyGNet (Zhu et al., 184

2021), and CEN (Li et al., 2022). 185

3.4 Implementation Details 186

We retain the top 100 entities with the highest 187

scores (or the highest log probability) to evalu- 188

ate each prediction. This protocol is done due to 189

a limitation of the ICL-based model preventing 190

it from predicting entities that do not appear in 191

its context, which at most contains 100 historical 192

facts, bounded by the context length of the under- 193

lying model (i.e., gpt-neox-20b). Moreover, this 194

protocol allows us to evaluate and fairly compare 195

the ICL-based and supervised models across our 196

experiments. As for our metrics, we report the 197

Hits@{1,3} based on the list of retained entities for 198

each prediction. All baseline models report both 199

head and tail prediction performance by generating 200

a head query (?, r, o, t) and a tail query (s, r, ?, t) 201

for each test quadruple (s, r, o, t), following stan- 202

dard practices in the literature. We report the av- 203

erage head and tail prediction performances. The 204

codebase uses PyTorch (Paszke et al., 2019) and 205

Huggingface (Wolf et al., 2020) libraries. 206

4 Experiments 207

Table 3 presents our experimental results on both 208

single-step (top) and multi-step (bottom) queries, 209

grouped by the number of hops as the confounder. 210

We can observe that the ICL-based models only 211

2For each matched reasoning path, TLogic combines rule
confidence and temporal recency scores into one score.
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ICEWS14 ICEWS18

Single-step Train H@1 H@3 H@1 H@3

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

RE-GCN ✓ 42.6 15.2 38.7 63.6 32.2 56.1 34.5 19.5 31.9 54.7 35.5 50.2
TANGO ✓ 36.4 12.0 36.2 54.5 24.8 50.2 29.7 16.3 28.3 48.8 31.0 45.5
CEN ✓ 43.3 15.2 39.0 63.2 30.0 56.2 33.9 18.9 31.1 54.0 34.3 49.1

Average 40.8 14.1 38.0 60.4 29.0 54.2 32.7 18.3 30.4 52.5 33.6 48.3
Median 42.6 15.2 38.7 63.2 30.0 56.1 33.9 18.9 31.1 54.0 34.3 49.1

gpt-neox-20b-entity ✗ 46.4 10.6 37.7 65.8 17.8 54.0 29.8 11.2 27.9 48.1 22.4 43.6
∆ Average 5.6 -3.5 -0.2 5.4 -11.2 -0.2 -2.9 -7.1 -2.5 -4.4 -11.2 -4.6
∆ Median 3.7 -4.6 -0.1 2.7 -12.2 -2.1 -4.1 -7.8 -3.2 -5.9 -11.9 -5.5

gpt-neox-20b-pair ✗ 43.6 6.8 37.9 58.3 9.8 51.4 31.0 10.9 30.1 48.7 17.9 47.1
∆ Average 2.9 -7.4 -0.1 -2.2 -19.2 -2.7 -1.7 -7.3 -0.3 -3.8 -15.7 -1.2
∆ Median 1.0 -8.5 -0.8 -4.9 -20.2 -4.6 -2.9 -8.0 -0.4 -5.3 -16.4 -2.0

ICEWS14 ICEWS18

Multi-step Train H@1 H@3 H@1 H@3

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

RE-NET ✓ 37.3 13.3 36.0 54.1 25.9 51.3 28.8 16.0 27.8 48.0 31.4 45.0
RE-GCN ✓ 36.6 15.7 34.9 55.4 30.0 49.0 29.5 18.2 28.9 48.3 33.0 45.8
CyGNet ✓ 35.5 11.9 34.5 53.6 26.0 49.9 25.5 13.4 26.1 44.9 28.3 44.1
Average 36.4 13.6 35.1 54.3 27.3 50.1 27.9 15.9 27.6 47.1 30.9 45.0
Median 36.6 13.3 34.9 54.1 26.0 49.9 28.8 16.0 27.8 48.0 31.4 45.0

gpt-neox-20b-entity ✗ 34.3 8.7 32.1 49.6 16.9 44.6 19.7 8.9 19.7 31.3 17.8 30.7
∆ Average -2.1 -4.9 -3.0 -4.8 -10.4 -5.4 -8.2 -7.0 -7.9 -15.8 -13.1 -14.2
∆ Median -2.3 -4.6 -2.8 -4.5 -9.1 -5.3 -9.0 -7.2 -8.1 -16.7 -13.6 -14.3

gpt-neox-20b-pair ✗ 30.9 6.5 32.6 43.7 8.9 43.4 23.7 8.7 25.6 37.9 14.4 38.5
∆ Average -5.5 -7.1 -2.5 -10.6 -18.3 -6.7 -4.2 -7.2 -2.0 -9.2 -16.4 -6.5
∆ Median -5.6 -6.8 -2.3 -10.4 -17.0 -6.5 -5.0 -7.3 -2.2 -10.2 -17.0 -6.6

Table 3: Performance (Hits@K) comparison between supervised models and ICL for single-step (top) and multi-
step (bottom) prediction, grouped by the number of hops as the confounder. The first group consists of supervised
models, whereas the second group consists of ICL models, i.e., GPT-NeoX. The green and red colors represent where
ICL is outperforming and underperforming the average performance of the supervised models.

perform better with 1-hop queries in the ICEWS14212

dataset. Moreover, as the number of hops, an in-213

dicator of the pattern complexity, increases, super-214

vised models outperform ICL-based models. Inter-215

estingly, this decline in performance is not mono-216

tonic in terms of complexity, making it even more217

challenging to predict the potential pitfalls. For218

example, LLMs’ worst performance in ICEWS14219

occurs in 2-hop queries, while the performance on220

3-hop queries stays competitive. Moreover, we221

observe the same trend when analyzing other con-222

founders related to pattern complexity. For exam-223

ple, ICL-based models outperform the supervised224

models in patterns involving two unique entities225

on ICEWS14. However, as the number of unique226

entities increases, the performance of ICL-based227

models declines (see Table 4 in Appendix A). Sim-228

ilarly, this trend is evident when the samples are229

grouped by number of unique relations (see Table 5230

in Appendix A). When the samples are grouped by231

relation frequency, the ICL-based models perform232

on par or moderately outperform the supervised233

models only in the ICEWS14 single-step setting.234

In all other cases, the supervised models outper-235

form the ICL-based models. However, the upward236

trend in Figure 2 (Appendix A) indicates that as 237

relation frequency increases, the performance gap 238

between the ICL-based and supervised models de- 239

creases. Moreover, when the samples are grouped 240

by time interval (see Figure 3 in Appendix A), the 241

supervised models consistently outperform the ICL- 242

based models. We observe that ICL-based models 243

perform worse in the multi-step setup across all 244

confounders than their counterpart average super- 245

vised models. Finally, the performance gap is wider 246

on the ICEWS18 (compared to ICEWS14), which 247

could be attributed to it being more challenging. 248

5 Conclusion 249

In this paper, we presented an in-depth analysis 250

of the effect of various confounders on the predic- 251

tive power of ICL-based and supervised models 252

for TKGF. Specifically, we created two annotated 253

benchmarks for testing models across varied com- 254

plexities and sparsity levels. Our experimental re- 255

sults indicate that while ICL is effective in low- 256

complexity scenarios, its performance rapidly dete- 257

riorates as the complexity of the patterns increases. 258

These findings highlight the need for more granular 259

evaluation and testing of LLMs for TKGF. 260
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Limitations261

Our work is the first step toward a more granu-262

lar evaluation of TKGF. As such, expanding the263

presented findings with more annotated datasets,264

identifying additional confounders, and evaluat-265

ing a broader range of supervised and LLM-based266

models should be explored in future works. With267

the growing utilization of LLMs, comprehensive268

benchmarks allow us to make more grounded com-269

parisons across models rather than being misled by270

potential spurious biases. Moreover, we observed271

fluctuations in performance gaps with increased272

complexities in different confounders. This phe-273

nomenon makes the performance comparison more274

uncertain, which should be further investigated in275

future works.276
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Single-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

2 3 4 2 3 4 2 3 4 2 3 4

RE-GCN ✓ 45.2 36.8 10.6 66.0 55.2 23.2 35.0 32.9 16.0 55.2 51.7 30.2
TANGO ✓ 39.4 34.2 8.3 57.2 49.0 18.0 30.2 29.3 12.8 49.5 47.0 25.5
CEN ✓ 46.1 36.9 9.8 65.8 54.6 23.0 34.4 32.3 14.7 54.6 50.9 28.3

Average 43.6 36.0 9.6 63.0 52.9 21.4 33.2 31.5 14.5 53.1 49.9 28.0

gpt-neox-20b-entity ✗ 49.2 35.3 7.8 68.1 50.8 16.8 30.3 27.3 12.9 48.6 43.7 22.2
∆ Average 5.6 -0.7 -1.7 5.1 -2.1 -4.6 -2.9 -4.2 -1.6 -4.5 -6.1 -5.7
∆ Median 3.9 -1.5 -2.0 2.3 -3.8 -6.3 -4.1 -5.0 -1.8 -6.0 -7.1 -6.0

gpt-neox-20b-pair ✗ 41.6 34.5 6.8 61.3 48.3 9.9 31.6 30.4 12.0 49.4 46.9 19.3
∆ Average 2.1 -1.4 -2.8 -1.6 -4.7 -11.5 -1.7 -1.1 -2.5 -3.8 -3.0 -8.7
∆ Median 0.4 -2.2 -3.1 -4.4 -6.3 -13.1 -2.9 -1.9 -2.7 -5.3 -4.0 -9.0

Multi-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

2 3 4 2 3 4 2 3 4 2 3 4

RE-NET ✓ 40.0 34.1 9.9 57.3 49.2 20.2 29.3 28.7 13.0 48.7 46.6 25.6
RE-GCN ✓ 38.2 35.0 10.6 56.4 50.5 20.8 30.1 30.1 13.7 49.0 47.5 26.7
CyGNet ✓ 37.9 33.3 8.3 56.2 49.6 17.0 26.0 26.7 11.4 45.4 45.6 23.7
Average 38.7 34.1 9.6 56.6 49.8 19.3 28.5 28.5 12.7 47.7 46.6 25.3

gpt-neox-20b-entity ✗ 37.1 29.4 6.4 52.5 41.9 13.6 20.2 19.7 8.2 31.9 31.2 15.6
∆ Average -1.5 -4.7 -3.2 -4.1 -7.8 -5.7 -8.2 -8.7 -4.5 -15.8 -15.4 -9.7
∆ Median -1.1 -4.7 -3.5 -3.9 -7.7 -6.6 -9.1 -8.9 -4.8 -16.8 -15.4 -10.0

gpt-neox-20b-pair ✗ 34.1 30.2 5.8 46.7 41.4 8.4 24.4 25.4 8.8 38.7 38.4 14.4
∆ Average -4.6 -4.0 -3.8 -9.9 -8.4 -10.9 -4.0 -3.1 -3.9 -9.1 -8.2 -10.9
∆ Median -4.2 -3.9 -4.1 -9.6 -8.2 -11.8 -4.8 -3.3 -4.2 -10.0 -8.2 -11.2

Table 4: Performance (Hits@K) comparison between supervised models and ICL for single-step (top) and multi-
step (bottom) prediction, grouped by the number of number of unique entities as confounder. The first group
consists of supervised models, whereas the second group consists of ICL models, i.e., GPT-NeoX with a history
length of 100. The green and red colors represent where LLM is outperforming and underperforming the average
performance of the supervised models.

(a) ICEWS14 Single-step (b) ICEWS18 Single-step

(a) ICEWS14 Multi-step (b) ICEWS18 Multi-step

Figure 2: Hits@1 difference between the average performance of ICL and the average performance of supervised
models, grouped by the relation frequency confounder, for single-step (top) and multi-step (bottom) prediction.
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Single-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

RE-GCN ✓ 49.5 35.7 34.4 40.3 71.7 54.8 53.0 55.3 34.6 31.9 30.8 28.4 55.0 51.2 48.6 45.6
TANGO ✓ 45.5 29.2 31.8 38.0 64.6 45.4 46.9 49.7 30.9 26.9 27.6 24.8 50.8 45.1 44.1 41.1
CEN ✓ 50.1 36.6 34.5 40.3 70.2 54.9 52.4 56.3 33.8 31.3 30.1 27.9 53.9 50.4 47.7 44.9

Average 48.4 33.8 33.5 39.6 68.9 51.7 50.8 53.8 33.1 30.0 29.5 27.0 53.3 48.9 46.8 43.9
Median 49.5 35.7 34.4 40.3 70.2 54.8 52.4 55.3 33.8 31.3 30.1 27.9 53.9 50.4 47.7 44.9

gpt-neox-20b-entity ✗ 57.0 36.3 35.1 35.8 77.0 53.1 50.0 51.2 30.1 28.2 24.2 22.4 48.2 45.6 39.1 35.7
∆ Average 8.6 2.4 1.6 -3.7 8.1 1.4 -0.8 -2.6 -3.0 -1.8 -5.2 -4.6 -5.1 -3.3 -7.7 -8.2
∆ Median 7.4 0.5 0.8 -4.5 6.7 -1.7 -2.4 -4.1 -3.7 -3.1 -5.8 -5.5 -5.8 -4.7 -8.6 -9.3

gpt-neox-20b-pair ✗ 58.5 29.5 34.4 32.2 82.0 40.8 48.0 41.4 35.8 27.9 26.8 22.6 56.6 44.1 41.1 33.4
∆ Average 10.1 -4.3 0.9 -7.4 13.1 -10.9 -2.8 -12.4 2.7 -2.1 -2.7 -4.4 3.3 -4.8 -5.7 -10.5
∆ Median 9.0 -6.2 0.1 -8.1 11.8 -14.0 -4.4 -13.9 2.0 -3.3 -3.3 -5.2 2.6 -6.3 -6.6 -11.5

Multi-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

RE-NET ✓ 45.5 30.8 31.7 37.0 62.0 46.6 47.6 51.7 30.4 26.1 26.8 24.7 50.8 44.0 44.1 40.8
RE-GCN ✓ 42.5 31.2 31.7 35.8 63.6 47.6 46.1 48.5 31.3 26.9 28.6 25.0 50.6 44.8 45.0 41.0
CyGNet ✓ 46.6 27.1 31.4 34.2 66.2 43.3 46.9 49.4 28.7 22.7 25.2 21.6 49.0 41.1 42.8 37.8
Average 44.8 29.7 31.6 35.7 63.9 45.8 46.9 49.9 30.1 25.2 26.8 23.7 50.1 43.3 43.9 39.9
Median 45.5 30.8 31.7 35.8 63.6 46.6 46.9 49.4 30.4 26.1 26.8 24.7 50.6 44.0 44.1 40.8

gpt-neox-20b-entity ✗ 41.5 28.0 28.7 31.1 56.9 41.4 41.3 44.0 21.9 18.1 17.9 15.5 33.0 29.9 28.4 24.6
∆ Average -3.3 -1.7 -2.9 -4.6 -7.0 -4.4 -5.6 -5.8 -8.2 -7.2 -9.0 -8.2 -17.1 -13.4 -15.5 -15.3
∆ Median -3.9 -2.8 -3.0 -4.7 -6.7 -5.2 -5.6 -5.4 -8.5 -8.0 -8.9 -9.1 -17.5 -14.1 -15.6 -16.2

gpt-neox-20b-pair ✗ 44.8 22.3 29.5 28.6 62.8 31.2 40.3 35.8 29.0 21.0 23.0 18.5 46.7 33.3 34.1 27.5
∆ Average -0.1 -7.4 -2.1 -7.0 -1.2 -14.7 -6.6 -14.1 -1.2 -4.3 -3.8 -5.2 -3.4 -10.0 -9.9 -12.3
∆ Median -0.7 -8.5 -2.2 -7.2 -0.8 -15.5 -6.6 -13.7 -1.4 -5.1 -3.7 -6.1 -3.9 -10.6 -10.0 -13.2

Table 5: Performance (Hits@K) comparison between supervised models and ICL for single-step (top) and multi-
step (bottom) prediction, grouped by the number of number of unique relations as confounder. The first group
consists of supervised models, whereas the second group consists of ICL models, i.e., GPT-NeoX with a history
length of 100. The green and red colors represent where LLM is outperforming and underperforming the average
performance of the supervised models.

(a) ICEWS14 Single-step (b) ICEWS18 Single-step

(a) ICEWS14 Multi-step (b) ICEWS18 Multi-step

Figure 3: Hits@1 difference between the average performance of ICL and the average performance of supervised
models, grouped by the time interval confounder, for single-step (top) and multi-step (bottom) prediction.
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