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MVDRAG3D: DRAG-BASED CREATIVE 3D EDITING
VIA MULTI-VIEW GENERATION-RECONSTRUCTION
PRIORS

Anonymous authors
Paper under double-blind review

Drag Mesh APAP PhysGaussian DiffEditor Ours

Drag 3D Gaussians DiffEditorPhysGaussian Ours

Figure 1: Comparison of our MVDrag3D with state-of-the-art approaches. The first two rows
present results of dragging on meshes, while the last two focus on 3D Gaussians. Notably,
APAP (Yoo et al., 2024) is specifically designed for mesh structures, and thus, it was not tested
on 3D Gaussians. Overall, our method demonstrates the ability to produce more plausible and gen-
erative editing results, showing better performance across both 3D Gaussians and meshes.

ABSTRACT

Drag-based editing has become popular in 2D content creation, driven by the ca-
pabilities of image generative models. However, extending this technique to 3D
remains a challenge. Existing 3D drag-based editing methods, whether employing
explicit spatial transformations or relying on implicit latent optimization within
limited-capacity 3D generative models, fall short in handling significant topology
changes or generating new textures across diverse object categories. To overcome
these limitations, we introduce MVDrag3D, a novel framework for more flexi-
ble and creative drag-based 3D editing that leverages multi-view generation and
reconstruction priors. At the core of our approach is the usage of a multi-view
diffusion model as a strong generative prior to perform consistent drag editing
over multiple rendered views, which is followed by a reconstruction model that
reconstructs 3D Gaussians of the edited object. While the initial 3D Gaussians
may suffer from misalignment between different views, we address this via view-
specific deformation networks that adjust the position of Gaussians to be well
aligned. In addition, we propose a multi-view score function that distills genera-
tive priors from multiple views to further enhance the view consistency and visual
quality. Extensive experiments demonstrate that MVDrag3D provides a precise,
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generative, and flexible solution for 3D drag-based editing, supporting more ver-
satile editing effects across various object categories and 3D representations.

1 INTRODUCTION

Deforming 3D shapes by dragging point handles has been an essential interactive tool in computer
graphics, enabling intuitive manipulation of complex shapes and structures. Traditionally, such
drag-based 3D editing is often defined on mesh structures, utilizing optimization functions to pre-
serve specific properties under the constraint of control handles. These properties include the mesh
Laplacian (Lipman et al., 2004; 2005; Sorkine et al., 2004), local rigidity (Igarashi et al., 2005;
Sorkine & Alexa, 2007), and surface Jacobians (Aigerman et al., 2022; Gao et al., 2023), as well as
more recent considerations of perceptual plausibility (Yoo et al., 2024). However, these methods are
constrained by the fixed topology of mesh structures, limiting their flexibility, especially in complex
edits that require substantial changes to the topology or the generation of new textures, e.g., editing
a bird to open its wings.

In light of the recently introduced 3D Gaussian splatting (Kerbl et al., 2023) that is more expres-
sive and easy to edit, Interactive3D (Dong et al., 2024) introduces a series of deformable and rigid
3D operations to directly manipulate local 3D Gaussians. This is followed by Gaussian-to-NeRF
reformatting and refinement through Score Distillation Sampling (SDS) (Poole et al., 2022). How-
ever, this method suffers from prolonged NeRF optimization and the typical limitations of vanilla
SDS, such as over-saturation. PhysGaussian (Xie et al., 2024) also simulates drag-induced motion
by integrating physically grounded dynamics into 3D Gaussians. However, it requires an accurate
predefinition of the physical properties involved, which can be difficult to obtain. Besides, both
methods still face challenges in making large structural changes and generating new content.

Notably, recent drag-based editing has seen considerable success in the 2D domain (Pan et al., 2023;
Mou et al., 2023; 2024; Zhang et al., 2024; Shin et al., 2024), largely due to the capabilities of pow-
erful image generative models, such as GANs (Karras et al., 2020) and diffusion models (Rombach
et al., 2022). These models encompass a latent space that enables various harmonious manipulations,
including object deformation, layout adjustments, and coherent new content generation. Building
on this success, some 3D editing methods have begun to explore generative 3D dragging within a
3D latent space. For instance, Drag3D (Tang, 2023), adapts DragGAN (Pan et al., 2023) by incorpo-
rating a 3D GAN (Shen et al., 2021) into a motion-based latent optimization framework. Similarly,
CNS-Edit (Hu et al., 2024) employs a latent-based method but combines it with a 3D neural vol-
ume diffusion model (Hui et al., 2022). This approach requires training separate models for each
shape category, making it less flexible and more resource-intensive. Obviously, both of the above
approaches are limited by the capacity and generalization of current 3D generative models.

In pursuit of a stronger generative prior for more powerful drag-based 3D editing, we have observed
the following from existing 3D generation and reconstruction work: 1) most 3D representations can
be rendered into multiple views; 2) 3D objects can be faithfully reconstructed from four and more
views (Tang et al., 2024a; Xu et al., 2024b); and 3) existing multi-view diffusion models provide a
strong prior for generating consistent images across four orthogonal views (Shi et al., 2023b; Kant
et al., 2024). These observations inspire us to explore the potential of leveraging both large-scale
multi-view generation and reconstruction models as 3D priors, agnostic to 3D representations, to
facilitate precise, generative, and general 3D dragging. Ideally, we expect that the 3D dragging
operation should exhibit the following properties 1) Accuracy: the ability to precisely drag any point
on a 3D object’s surface to a target spatial position; 2) Generative capability: the ability to generate
visually plausible new content to match the drag intention; and 3) Versatility: compatibility with
various input object categories and most 3D representations, such as 3D Gaussians or meshes.

To this end, we introduce MVDrag3D, a novel framework for drag-based 3D editing that leverages
multi-view generation and reconstruction priors. Our method begins by rendering four orthogonal
views of a 3D object and projecting the dragging points onto the corresponding views. To ensure
consistent 3D edits, we extend the score-based gradient guidance mechanism within a multi-view
diffusion model and propose a multi-view guidance energy function, enabling consistent edits across
all four views. Thanks to the generative capabilities of the multi-view diffusion model, edits across
four views can faithfully reflect significant structural changes or newly synthesized textures. The
edited views are then fused into a 3D Gaussian representation using a multi-view Gaussian recon-
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struction model. Although the initial 3D Gaussian appears complete, we observe a loss of appear-
ance detail, and the 3D Gaussians in the overlapping regions between views do not align accurately,
leading to noticeable discrepancies in the 2D rendering. To address these issues, we employ a de-
formation network that predicts the displacement of each Gaussian to correct the 3D alignment.
Additionally, we formulate an image-conditioned multi-view score function to distill generative pri-
ors from the multiple views simultaneously, ensuring high-fidelity results while preserving details
across all views. We summarize our contributions as follows:

1. We propose MVDrag3D, a drag-based 3D editing framework that leverages multi-view
generation-reconstruction priors. It is accurate, generative, and adaptable to diverse input
categories and most 3D representations, such as 3D Gaussians and meshes.

2. We extend the gradient guidance mechanism into a multi-view diffusion model and intro-
duce multi-view guidance energy, which ensures consistent drag-based edits across four
views.

3. We design a lightweight deformation network that corrects each 3D Gaussian’s position and
enhances geometric consistency. Furthermore, we introduce an image-conditioned multi-
view score function to iteratively refine the 3D Gaussian, ensuring high-fidelity appearance
and preserving fine details across all views.

2 RELATED WORK

We will review prior research, starting from drag-based 2D image editing techniques, and progress-
ing to more recent developments in drag-based 3D editing and 3D generation-reconstruction priors.

Drag-based image editing. Drag-based image manipulation allows users to exert precise control
over specific areas of the image via manual interactions like dragging and clicking. Most existing
techniques employ iterative latent optimization in the latent space, and they can be roughly divided
into two categories: methods that rely on motion tracking (Pan et al., 2023; Shi et al., 2024; Zhang
et al., 2024; Cui et al., 2024; Liu et al., 2024a; Ling et al., 2024) and those based on guidance gradi-
ents (Mou et al., 2023; 2024). DragGAN (Pan et al., 2023), for instance, optimizes the latent space
of GANs using iterative motion supervision and point tracking. Later, diffusion-based methods,
including DragDiffusion (Shi et al., 2024), GoodDrag (Zhang et al., 2024), StableDrag (Cui et al.,
2024), DragNoise (Liu et al., 2024a), and FreeDrag (Ling et al., 2024), have further refined these
motion-driven techniques for more refined results. Meanwhile, DragonDiffusion (Mou et al., 2023)
and DiffEditor (Mou et al., 2024) utilize a gradient-based approach by optimizing an energy func-
tion (Epstein et al., 2023) to achieve desired edits. Since both motion- and gradient-based methods
require time-consuming iterations, SDEDrag (Nie et al., 2024) and FastDrag (Zhao et al., 2024) have
been proposed to accelerate the editing process. More recently, InstantDrag (Shin et al., 2024) de-
composes the dragging task into two components: learning motion dynamics and generating images
conditioned on motion, achieving a better balance among interactivity, speed, and quality.

Drag-based 3D editing. To achieve drag-based 3D editing, classical mesh deformation techniques
are commonly employed. These methods often design optimization functions to preserve specific
geometric properties, such as the mesh Laplacian (Lipman et al., 2004; 2005; Sorkine et al., 2004),
local rigidity (Igarashi et al., 2005; Sorkine & Alexa, 2007), and surface Jacobians (Aigerman et al.,
2022; Gao et al., 2023), under the constraints of user-interactive handles like key points or cages.
Despite their widespread use, these techniques frequently result in unnatural shape distortion, pri-
marily due to their inability to ensure perceptual plausibility. To address this limitation, APAP (Yoo
et al., 2024) introduced an innovative approach by incorporating SDS loss to optimize the Jacobian
deformation field. However, like previous mesh deformation methods, APAP is constrained by the
fixed topology of mesh structures, limiting its flexibility, particularly for complex edits that require
generating entirely new content. On the other hand, Interactive3D (Dong et al., 2024) introduces
a series of deformable and rigid 3D point operations on 3D Gaussians and also employs SDS to
optimize the deformed or transformed Gaussians/NeRFs. Besides, PhysGaussian (Xie et al., 2024)
also involves certain types of drag-related motion by integrating physically grounded dynamics into
3D Gaussians, however, it requires a suitable predefinition of the physics involved. Although these
latter two methods employ more expressive 3D representations, they often require labor-intensive
post-processing and face challenges in refining fine details or generating coherent new content.
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As drag-based image editing techniques evolve, some 3D editing methods have begun to explore
generative 3D dragging within a 3D latent space. For instance, Drag3D (Tang, 2023), built upon
DragGAN (Pan et al., 2023), integrates a 3D GAN model into a motion-based latent optimization
framework. However, the approach is inherently limited by the capacity and generalization con-
straints of current 3D GAN models. Later, CNS-Edit (Hu et al., 2024) introduces a coupled neural
shape representation to facilitate 3D shape editing. This method utilizes a latent code to capture
high-level global semantics, while a 3D neural feature volume provides spatial context for local
shape modifications. However, CNS-Edit’s category-specific design requires separate models for
different 3D shape categories. Different from them, in this work, we achieve 3D generative drag-
ging within a more powerful multi-view latent space.

Multi-view Image Generation. 2D diffusion models (Rombach et al., 2022; Saharia et al., 2022)
initially focus on generating a single-view image. Recently, several models (Shi et al., 2023b; Wang
& Shi, 2023; Shi et al., 2023a; Li et al., 2023b; Long et al., 2024; Kant et al., 2024; Tang et al.,
2024b; Liu et al., 2024b) turned to employ a 3D-aware multi-view diffusion approach, incorporating
camera poses as additional inputs and fine-tuning the diffusion model on multi-view data (Deitke
et al., 2023). This strategy enables the consistent generation of multi-view images representing the
same object. Essentially, these multi-view diffusion models capture a rich, generalizable distribution
of 3D data, agnostic to a specific 3D representation. Also, given the limitations of current “pure”
3D generative models—those trained directly on 3D data—we believe that leveraging multi-view
diffusion models as a 3D prior proxy could offer a promising solution for flexible 3D editing.

Feed-forward Multi-view 3D Reconstruction. By generating 3D-consistent multi-view images,
various optimization techniques can be employed to reconstruct 3D objects (Shi et al., 2023b; Wang
& Shi, 2023; Liu et al., 2023). To improve generation speed and quality, more recent work has
explored large-scale reconstruction models using multi-view images (e.g., 4 or 6) (Wang et al.,
2023; Xu et al., 2023; Li et al., 2023a; Wang et al., 2024; Xu et al., 2024a). These approaches
leverage transformers to directly regress triplane-based NeRF representations. Newer methods like
LGM (Tang et al., 2024a) and GRM (Xu et al., 2024b) replaced triplane NeRF with 3D Gaus-
sians (Kerbl et al., 2023), achieving high-fidelity rendering at faster speeds. In summary, these
recent feed-forward multi-view reconstruction models provide a robust 3D reconstruction prior, en-
abling the fast and faithful recreation of complete 3D objects from sparse-view images. In this work,
we utilized a 4-view reconstruction model (Tang et al., 2024a) and a 4-view diffusion model (Shi
et al., 2023b) as our generation-reconstruction priors.

3 METHOD

In this section, we briefly introduce score-based guidance energy for image editing, followed by a
detailed explanation of our method.

3.1 PRELIMINARY

Score-based gradient guidance for image editing. Recently, DragonDiffusion (Mou et al., 2023)
and DiffEditor (Mou et al., 2024) have applied score-based gradient guidance (Dhariwal & Nichol,
2021) to efficient and flexible image-editing tasks. The score function enables sampling from a more
enriched distribution, generally defined as:

ϵ̃tθ(xt) = ϵtθ(xt) + η · ∇xt
E(xt,y), (1)

where the first term is the unconditional denoiser, and the second term is the conditional gradient
produced by an energy function. Here, η is the learning rate, and y represents the edit target, such
as text embedding. During the diffusion sampling process, the gradient guidance from the energy
function aligns with the editing target, gradually modifying the input image to meet the desired edit.

In recent 2D dragging task (Mou et al., 2024; 2023), the guidance energy function is constructed
based on image feature correspondence within a pre-trained diffusion model as follows:

∇zt log q(y|zt) = α ·medit · ∇xtEedit + β · (1−medit) · ∇xtEcontent, (2)

where medit is the editing region mask. The energy function Eedit measures the diffusion feature
similarity between areas near the dragging start and destination points, while Econtent ensures that
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Figure 2: Method overview. Given a 3D model and multiple pairs of 3D dragging points, we first
render the model into four orthogonal views, each with corresponding projected dragging points.
Then, to ensure consistent dragging across these views, we define a multi-view guidance energy
within a multi-view diffusion model. The resulting dragged images are used to regress an initial set
of 3D Gaussians. Our method further employs a two-stage optimization process: first, a deforma-
tion network adjusts the positions of the Gaussians for improved geometric alignment, followed by
image-conditioned multi-view score distillation to enhance the visual quality of the final output.

unedited content stays consistent with the original image. α and β are balance weights. In our work,
we extend both the editing energy and content energy to a multi-view version. This ensures that
modifications made in one view are coherently reflected across all views.

3.2 OVERVIEW

The entire process is visualized in Fig. 2. Given a 3D model M to be edited, and k pairs of 3D
dragging points {(p3D

j ,q3D
j )}kj=1, we first render M into four orthogonal images I = {Ii}4i=1,

along with the corresponding dragging points (Sec. 3.3). We then propose a multi-view guidance
energy function (Sec. 3.4), which ensures consistent and coherent dragging across all views. The
edited images Ie = {Ie,i}4i=1 are used to regress 3D Gaussians using (Tang et al., 2024a). While
the initial reconstruction appears complete, we further use a deformation network and introduce an
image-conditioned multi-view score distillation to correct the misalignment between Gaussians in
the overlapping regions of each view and enhance the visual appearance across all views, resulting
in the final edited results (represented in 3D Gaussians) (Sec. 3.5).

3.3 3D-2D RENDERING AND PROJECTION

We decompose the 3D dragging operation in a multi-view manner. First, we render the 3D model
M into four orthogonal images {Ii}4i=1 using any suitable renderer. Since MVDream typically
generates images with gray backgrounds, we adopt a similar gray background for rendering. In terms
of camera setup, we adopt the same configuration as MVDream (Shi et al., 2023b) and LGM (Tang
et al., 2024a), which serve as our generation-reconstruction priors. Specifically, the four views are
chosen at orthogonal azimuths (0◦, 90◦, 180◦, 270◦) and a fixed elevation (0◦). Then, the k pairs of
3D dragging points can be projected onto the corresponding views, represented as {(p2D

i,j ,q
2D
i,j )}kj=1.

However, due to potential occlusions in certain views, we discard the point pairs if the z-axis value
of p2D

i,j or q2D
i,j exceeds the rendered depth at the corresponding 2D position.

3.4 MULTI-VIEW GRADIENT GUIDANCE FOR DRAGGING

Since a 3D object can be rendered into multiple images and numerous drag-based 2D editing meth-
ods already exist, a straightforward approach to achieve drag-based 3D editing would be to inde-
pendently edit each view and then reconstruct the 3D model. However, this leads to significant 3D
inconsistencies (see the results of DiffEditor (Mou et al., 2024) in Fig. 1), as the editing results of
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(a) Inputs

(b) Inversion w/o random noise

(c) Inversion w/ random noise (d) Results w/o 
random noise 

(e) Results w/ 
random noise 

(a) Inputs

(b) Inversion w/o random noise

(c) Inversion w/ random noise (d) Results w/o 
random noise 

(e) Results w/ 
random noise 

Figure 3: Effect of DDIM inversion with random noise. For the rendered four images, when inverted
into MVDream’s data distribution, the resulting noise deviates from a Gaussian distribution (b). By
adding random noise (N (0, 0.01)) to the background’s pixel domain, we help the latent variables
conform more closely to a Gaussian distribution (c). The resulting multi-view edits are shown in (d)
and (e). Yellow dashed boxes indicate the regions with evident differences.

each image become misaligned across various factors such as pose, layout, texture, and more. Based
on the observation that multi-view diffusion models can simultaneously generate a consistent set of
multi-view images, and recognizing the effectiveness of score-based gradient guidance in image
editing, we extend gradient guidance to a multi-view version.

Specifically, we first apply DDIM inversion (Song et al., 2020) to transform each of {Ii}4i=1 into
a Gaussian distribution. These distributions are combined and represented as zT ∈ R4×H×W×C

within the latent space of MVDream. Using zT , we can extract an intermediate feature F from the
UNet decoder. Note that MVDream reshapes zT into a 4HW × C format, thus extending self-
attention to the cross-view version. This ensures that guidance from one view can influence the
others. With this, we follow (Mou et al., 2023) and define a multi-view guidance energy:

Eedit =
4∑

i=1

1

0.5 · cos
(
Fedi

i,t [m
edi
i ], sg(Fori

i,t [m
ori
i ])

)
+ 0.5

,

Econtent =
4∑

i=1

1

0.5 · cos
(
Fedi

i,t [m
unedited
i ], sg(Fori

i,t [m
unedited
i ])

)
+ 0.5

,

(3)

where Fedi
i,t and Fori

i,t are intermediate features of zedii,t and zorii,t . zorii,t corresponds to the latent
variables of original image at time step t, while zedii,t represents the edited latent variable. sg(·) is the
gradient clipping operation. In the dragging operation, mori (or medi) is a 3 × 3 rectangular patch
centered around the 2D dragging points p2D (or q2D). munedited denotes the areas without editing.
To enhance readability, the index labels on each image are omitted. Note also that all layers of the
UNet decoder features are used to compute the guidance energy, ensuring more comprehensive and
robust results. The gradient of Eedit is then used to generate consistently edited images {Ie,i}4i=1,
while Econtent employed to preserve the appearance of the unedited regions, keeping them as close
to the original images as possible.

DDIM inversion with random noise. During DDIM inversion, we observed that for the given
four images, their latent noise does not follow a Gaussian distribution, as depicted in Fig. 3 (b).
This discrepancy often causes instability during the editing process, making it difficult to preserve
the object’s identity (see Fig. 3 (d)). We believe this issue arises because MVDream was never
trained on images with smooth, noise-free regions like the background, leading to a domain gap
during inversion (Ouyang et al., 2024). To address this issue, we found that introducing small,
nearly imperceptible perturbations to the pixel domain—especially in smooth areas like the back-
ground—significantly improves the inversion process. These subtle disturbances help the latent
variables conform more closely to a Gaussian distribution (see Fig. 3 (c)). The final results exhibit
smoother transitions and better overall fidelity in the edited images, as shown in Fig. 3 (e).

3.5 3D GAUSSIAN RECONSTRUCTION AND REFINEMENT

Once we obtain the four edited images, we employ LGM (Tang et al., 2024a) to regress
a partial 3D Gaussians for each view and then fuse them into a unified 3D Gaussian rep-
resentation. However, we encountered two significant challenges: (1) because we only use
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four orthogonal views, the predicted Gaussians in the overlapping regions between views
are usually not aligned correctly, resulting in noticeable discrepancies in the 2D rendering
(see Fig. 4 (c)), and (2) the appearance details are frequently lost during LGM’s regres-
sion process, reducing the visual fidelity of the final 3D reconstruction (see Fig. 5 (c)).

(a) Inputs

(b) Multi-view drag results

(c) Reconstruction results w/o deformation

(d) Reconstruction results w/ deformation

Figure 4: Effect of Gaussian position optimiza-
tion. (c) shows 3D reconstruction result may ex-
hibit structural misalignment. By employing a de-
formation network to optimize the Gaussian po-
sition, we achieve better compactness and consis-
tency among the Gaussians across different views,
as shown in (d).

In our early tests, to address these issues, we
applied vanilla SDS on the initial reconstruc-
tion, incorporating a multi-view reconstruction
loss across the four views. However, these
adjustments did not resolve the underlying is-
sues. We attribute these challenges to the in-
herent ambiguity in the SDS and reconstruc-
tion losses. Specifically, it is difficult to di-
rectly optimize independent Gaussians consis-
tently without regularization, and the losses do
not effectively indicate when to adjust the po-
sition or when to densify or prune the Gaus-
sians, resulting in suboptimal outcomes. To ad-
dress these challenges, we propose a two-step
approach: first, we adjust the Gaussian’s posi-
tion via deformation fields to achieve better ge-
ometric alignment and then focus on enhancing
visual quality.

Gaussian position optimization. Consider-
ing that the geometric misalignment problem
across views mainly involves low-frequency
overall structural changes and the Gaussians
belonging to the same view should be moved more consistently, for each view’ Gaussian set,
we propose to use an individual deformation network f to predict each Gaussian’s movement
(δxi, δyi, δzi). This means we employ a total of four lightweight individual MLPs, one for each
view. Besides, since standard MLPs are generally ineffective for low-dimensional coordinate-based
regression tasks (Tancik et al., 2020), we enhance the model by applying Fourier positional embed-
dings (pe(·)) to each Gaussian’s (x, y, z) coordinates. The new position for each Gaussian is then
calculated as: (x′, y′, z′) = (x, y, z) + f(pe((x, y, z))). The training loss is the VGG-based LPIPS
loss, applied to the four images. This helps maintain perceptual similarity and ensures better align-
ment across views: LLPIPS =

∑4
i=1 LPIPS(Ie,i, Irender

e,i ), where Irender
e,i is the rendered image by the

optimized Gaussians after their positions have been corrected. Note that Gaussian densification and
pruning are not performed at this stage. Fig. 4 (d) shows the effectiveness of the Gaussian position
optimization stage.

(a) Inputs (b) Drag results (c) w/o optimization (d) w/ optimization

Figure 5: Effect of image-conditioned multi-
view SDS. (c) presents the reconstruction results
without appearance optimization, while (d) dis-
plays the corresponding results after optimization,
which are sharper and clearer.

Gaussian appearance optimization. The de-
formation network described above is limited
to optimize the positions of the Gaussians and
is therefore unable to recover lost texture details
during multi-view reconstruction. Drawing in-
spiration from ReconFusion (Wu et al., 2024a),
we propose reframing the Gaussian appearance
enhancement task as an image-conditioned
multi-view SDS optimization problem. Our ob-
jectives are twofold: (1) to ensure multi-view
consistency across novel camera angles beyond
the initial four views, and (2) to preserve the
identity of the edited four views. To achieve
this, we define an edited-image-conditioned
multi-view score function:

∇ϕLSDS = Et,ϵ,o[(ϵθ(Î; t, Ie,i, o)− ϵ)
∂Î

∂ϕ
], and i = 1, 2, 3, or 4, (4)

where Î represents the rendered batch images from any four orthogonal views, and o denotes the
corresponding camera poses. During each SDS iteration, we randomly render four orthogonal views

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and randomly select one edited image Ie,i as a condition to compute the SDS loss. The multi-view
diffusion model employed is ImageDream (Wang & Shi, 2023), which can be seen as an image-
conditioned version of MVDream. This allows it to be seamlessly integrated into our framework. In
each iteration, we also compute LLPIPS. It is important to note that all Gaussian properties are opti-
mized during this process. Additionally, following (Kerbl et al., 2023), we incorporate densification
and pruning operations to create or remove Gaussians, to adjust inaccurately reconstructed regions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We conducted all experiments on a single 48 GB A6000 GPU. For multi-
view image dragging, we employed DDIM sampling with 150 steps, applying random Gaussian
noise N (0, 0.01) to the background. In the Gaussian deformation stage, we used 4 MLPs, each
trained for 2, 000 iterations with a learning rate of 0.00001. Each MLP consists of a linear layer,
a ReLU activation, and another linear layer arranged in a residual structure. For multi-view SDS
optimization, we performed 1, 000 iterations, gradually decaying Tmax from 0.49 to 0.02.

Datasets. We perform dragging on two of the most popular 3D representations: meshes and 3D
Gaussians. For the mesh experiments, we collected 8 meshes from (Yoo et al., 2024) and Ge-
nie (Luma AI). For the 3D Gaussian experiments, we collected 8 3D Gaussians from Tang et al.
(2024a). We collect data that are representative to demonstrate drag editing but do not cherry-pick
based on any results. The 3D drag points are manually specified using MeshLab, following (Yoo
et al., 2024).

Metrics. In this work, we employ two assessment metrics for quantitative evaluation: Dragging
Accuracy Index (DAI) (Zhang et al., 2024) and GPTEval3D (Wu et al., 2024b). DAI measures the
effectiveness of a method in transferring source content to a target point. While DAI effectively
measures drag accuracy, it is insufficient because the editing process sometimes introduce overall
distortions or artifacts, resulting in unrealistic or unnatural results. To address this, we use GPTE-
val3D, which leverages GPT-4V and customizable 3D-aware prompts to offer flexible comparisons
between two 3D assets based on a set of specific evaluation criteria. For more details about these
metrics, please refer to Sec. A.2.

4.2 RESULTS

Baselines. One baseline comparison involves leveraging a 2D drag method to edit each view in-
dependently. In this setup, we use DiffEditor (Mou et al., 2024) to drag the four rendered views,
followed by the same reconstruction and optimization steps as ours to produce the final 3D results.
During our initial experiments, we observed that when editing much more than four views, such as
120, DiffEditor introduced significant 2D inconsistencies. Thus, for a fair comparison, we limit the
process to four images as in our approach. We also compare our method with APAP, the state-of-
the-art drag-based mesh deformation technique. Additionally, we include PhysGaussian (Xie et al.,
2024), which enables user control over Gaussian-based dynamics. For this comparison, we start
with a 3D model, render four images, reconstruct a 3D Gaussian, and feed it into the PhysGaussian
simulator. More detailed drag setup for PhysGaussian please refer to Sec. A.3. Note that as the re-
leased code of Interactive3D (Dong et al., 2024) cannot be run successfully, we are unable to include
it in our comparisons. But conceptually, our approach provides a stronger multi-view diffusion prior
compared to the SDS loss in Interactive3D, as we can also observe in our comparison with APAP.

Visual Comparisons. We first conduct a visual comparison of the proposed MVDrag3D against
baselines, as demonstrated in Fig. 6. The first three rows present results of dragging on meshes,
while the last three rows show results on 3D Gaussians. For each method, we render two views
to highlight the respective editing results. Take the wolf mode in the first row as an example, we
aim to lift its left leg. While APAP deforms the leg, it bends rather than lifts it, resulting in a
less realistic motion. In contrast, our method produces an articulation-like motion that is more
natural. DiffEditor generates a successful edit in some views, but others fail, leading to inconsistent
3D results. As for PhysGaussian, it relies on predefined physical properties. Since the optimal
parameters are unknown, its results exhibit some distortion. Additionally, it is unable to generate
new content. For more visual results, please refer to the supplemental video demo.
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DiffEditorPhysGaussian OursDrag 3D Gaussians

Drag Mesh APAP PhysGaussian DiffEditor Ours

Figure 6: 3D dragging results on meshes and 3D Gaussians. The first three rows show the results
for the mesh, and the last three rows show the results for the 3D Gaussians. Black dashed circles
indicate some detailed differences.

Table 1: Quantitative comparison with state-of-the-art methods on both meshes and 3D Gaussians.
Left side of “/”: Mesh. Right side: 3D Gaussians. γ represents the patch radius, which defines the
neighborhood around the 2D dragging points. APAP was not tested on 3D Gaussians. In the last
column, we report a rough average running time.

Method γ = 1(↓) γ = 3(↓) γ = 5(↓) γ = 7(↓) γ = 10(↓) Time

APAP 0.2154 / – 0.2467 / – 0.2150 / – 0.1859 / – 0.1672 / – 6 minutes
PhysGaussian 0.1763 / 0.2468 0.1887 / 0.2331 0.1671 / 0.2153 0.1448 / 0.1979 0.1296 / 0.1814 1 minutes
DiffEditor 0.1564 / 0.1722 0.1452 / 0.1735 0.1348 / 0.1619 0.1299 / 0.1486 0.1300 / 0.1358 6 minutes
Ours (LGM) 0.1153 / 0.1702 0.1080 / 0.1588 0.0989 / 0.1397 0.0890 / 0.1260 0.0865 / 0.1130 3 minutes
Ours + deformation 0.1121 / 0.1269 0.1044 / 0.1150 0.0975 / 0.1081 0.0908 / 0.1017 0.0881 / 0.0937 5 minutes
Ours + deformation + SDS 0.1461 / 0.1159 0.1292 / 0.1074 0.1175 / 0.1020 0.1064 / 0.0960 0.0994 / 0.0900 8 minutes

Quantitative Comparisons. In addition to the visual comparisons, we conducted a quantitative
evaluation to assess the effectiveness of all compared methods in terms of dragging accuracy (DAI)
and overall editing quality (GPTEval3D). Table 1 reports different methods’ DAI across varying
patch radius values γ. As γ increases from 1 to 10, our method, both with and without SDS, shows
consistently lower error against other approaches like APAP, PhysGaussian, and DiffEditor. In Ta-
ble 2, the GPTEval3D evaluation reveals that the “Ours + deformation + SDS” method performs
almost the best across all criteria on both meshes and 3D Gaussians. Notably, we observed that
while the SDS version of our method may not always achieve the highest DAI score, this is under-
standable. The SDS tends to sharpen visual details, which can lead to minor numerical decreases, but
it ultimately results in more visually pleasing outputs. This is further supported by the GPTEval3D
results, where the SDS version achieves the highest score in texture details.
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Table 2: Evaluation results of GPTEval3D. “Ours + deformation + SDS” performs almost the best
across all criteria on both meshes and 3D Gaussians.

Method Text-Asset
Alignment (↑) 3D Plausibility (↑) Text-Geometry

Alignment (↑) Texture Details (↑) Geometry Details (↑) Overall (↑)

Mesh 3DGS Mesh 3DGS Mesh 3DGS Mesh 3DGS Mesh 3DGS Mesh 3DGS
APAP 895.53 – 906.63 – 961.97 – 945.32 – 905.80 – 917.80 –
PhysGaussian 828.46 973.08 870.32 881.52 911.28 950.91 920.78 977.59 898.65 968.70 891.62 979.76
DiffEditor 982.32 883.25 1054.11 924.96 1045.48 868.99 1042.24 894.55 975.34 885.61 992.50 897.78
Ours (LGM) 1074.58 1047.74 1001.04 975.45 1090.78 1011.64 1075.72 959.59 1084.85 1026.61 1041.38 1048.89
Ours + deformation 1023.55 954.67 1060.81 947.32 1012.23 961.58 945.32 1066.18 1051.28 962.77 1066.18 982.10
Ours + deformation + SDS 1172.77 1113.36 1139.37 1103.98 1059.67 1122.44 1076.25 1098.33 1109.46 1108.64 1136.80 1100.33

Figure 7: Results of dragging on image-conditioned multi-view diffusion model. We extend the
dragging stage to ImageDream (Wang & Shi, 2023). The results are less flexible as indicated by
black arrows.

4.3 ABALATION AND DISCUSSION

Abalation. We start with the initial reconstruction from (Tang et al., 2024a) as a baseline (Ours
(LGM)) and progressively integrate our two-step optimizations: (i) Gaussian position optimization
(Ours + deformation), and (ii) image-conditioned multi-view SDS (Ours + deformation + SDS).
Table 1 presents a clear comparison of the impact of each stage on both mesh data and 3D Gaussians.
Fig. 4 and Fig. 5 also visually demonstrate the effectiveness of our proposed optimization strategy.

Drag on image-conditioned diffusion model. Considering the existence of several image-
conditioned multi-view diffusion models, such as Imagedream (Wang & Shi, 2023) and
Zero123++ (Shi et al., 2023a), an intuitive idea is to extend the multi-view dragging stage to these
models. Here, we specifically extend it to Imagedream. Fig. 7 shows two cases. The conditioning
image is the front view of each input. Under this setting, we observe that the results are less visu-
ally pleasing. We suspect the reason is that the image condition is too strong, thereby restricting
the editing effects. In Mou et al. (2024), the authors introduce the use of both image and text for
fine-grained image editing by tuning a new encoder, enabling a more detailed description of the
desired changes. We see this as a potential direction for our work, aiming to enhance precision and
flexibility in multi-view editing.

5 CONCLUSION

In this work, we introduce MVDrag3D, a novel paradigm that harnesses the power of multi-view
generation-reconstruction priors for creative 3D editing. MVDrag3D first applies a multi-view drag-
ging technique to ensure consistent edits across four orthogonal views. Following this, a reconstruc-
tion model generates 3D Gaussians of the edited object. To refine these initial 3D Gaussians, we
introduce a deformation network that aligns the Gaussians across different views, complemented
by a multi-view score function to enhance visual sharpness and consistency. Extensive experiments
showcase the precision, generative capabilities, and flexibility of our method, making it a versatile
solution for 3D editing across various object categories and representations.
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A APPENDIX

A.1 ADDITIONAL PARAMETERS FOR MULTI-VIEW DRAGGING

For multi-view image dragging, parameters such as the editing and content energy balance weights
α and β (see Eq. 2) and the classifier-free guidance (CFG) need to be configured. We leave these as
open parameters for users, as the optimal settings may vary depending on the specific edit target.

A.2 METRIC EXPLANATION

DAI. DAI measures the effectiveness of a method in transferring semantic content to a target point.
Specifically, it evaluates whether the content at the source position denoted as pj , has been suc-
cessfully moved to the target location qj in the edited 3D object. For each 3D object, the DAI is
computed over four views and considers all non-occluded dragging points as follows:

DAI =
1

4

4∑
i=1

k∑
j=1

∥∥Ii · Ω(p2D
i,j , γ)− Ie,i · Ω(q2D

i,j , γ)
∥∥2
2

(1 + 2γ)2
, (5)

where Ω(p2D
i,j , γ) represents a patch centered at p2D

i,j with radius γ. Eq. 5 calculates the mean squared
error between the patch at p2D

j of I and the patch at q2D
j of Ie. By adjusting the radius γ, the metric

can focus on different levels of context. A smaller γ provides a precise evaluation of differences at
the exact control points, while a larger γ includes a broader region, allowing for an assessment of
the surrounding context. This adaptability makes DAI a flexible tool for examining various aspects
of editing quality. Given that the image resolution is 256× 256, we set γ = 1, 3, 5, 7, 10.

GPTEval3D. While DAI effectively measures drag accuracy, it is not sufficient on its own because
the editing process can introduce distortions or artifacts, leading to unrealistic or unnatural results.
Therefore, evaluating the naturalness and fidelity of the edited images is crucial for a comprehensive
quality assessment. This task is particularly challenging due to the absence of ground-truth edited
3D objects for reference. To address this, we utilize GPTEval3D, which leverages GPT-4V with
customizable 3D-aware prompts. GPTEval3D aligns well with human judgment across several di-
mensions, including text-to-asset alignment, 3D plausibility, texture-–geometry coherence, texture
details, and geometry details. Specifically, GPTEval3D prompts GPT-4V to compare two 3D assets
generated by different methods using four rendered images and normal maps. The pairwise com-
parisons are then used to calculate Elo ratings, which reflect each method’s performance. For more
details, please refer to (Wu et al., 2024b).
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Analysis:
1. Text prompt & Asset Alignment:
The left model resembles a crocodile, but it appears to have a bulkier, less defined body, and the posture seems less dynamic. The right model has a clearer and 
better defined crocodilian shape with accurate limbs and head posture as indicated in the text prompt.
The right one is better.

2. 3D Plausibility:
The left model appears quite bulky and less natural in its proportions. The right model has a more natural stance, body shape, limbs, and head positioning that 
are typical of real crocodiles.
The right one is better.

3. Geometry-Texture Alignment:
The left model's texture does not align well with its geometry, particularly in the head and tail regions. The right model’s texture adheres well to the geometry, 
showing a coherent and realistic alignment.
The right one is better.

4. Low-Level Texture Details:
The left model has blurriness in textures, lacking detailed skin patterns. The right model exhibits fine details such as scales and skin texture, and appears more 
detailed and aligned with the typical aesthetic of a crocodile.
The right one is better.

5. Low-Level Geometry Details:
The left model's geometry appears noisier and less organized, particularly in the head and forelimb areas. The right model presents more accurate and smooth 
geometry without meaningless noise.
The right one is better.

6. Overall:
Considering all the evaluations, the right model is superior in terms of text prompt alignment, 3D plausibility, geometry-texture alignment, low-level texture 
details, and low-level geometry details.
The right one is better.

Final answer:
2 2 2 2 2 2

Ours (LGM) Ours (full) GPTEval3D

Figure 8: An analysis example of GPTEval3D on two versions of our method: Ours (LGM) and
the full version, Ours + deformation + SDS. The left side of the figure shows selected four-view
results from both methods, including both the appearance image and the normal map. On the right,
GPT-4V’s evaluation is presented, which aligns with human observations. The final line on the right
confirms that the second method, Ours + deformation + SDS, outperforms the first, Ours (LGM),
across all five evaluation criteria.

Fig. 8 presents a pairwise comparison example of GPTEval3D on two versions of our method: Ours
(LGM) and the full version, Ours + deformation + SDS. The visual results on the left show that
Ours (LGM) produces somewhat blurry output with noticeable noise in the geometry, particularly
around the tail region. This can be attributed to the lack of optimization provided by the deformation
network and SDS in this version. On the right side of the figure, GPT-4V’s judgment aligns with
our observations, concluding that the second method, Ours + deformation + SDS, outperforms Ours
(LGM) across all five evaluation criteria.

A.3 DRAG SETUP FOR PHYSGAUSSIAN

In PhysGaussian (Xie et al., 2024), we use the translation function as a proxy for the drag operation.
We set the drag starting points as the center points and use the direction from the starting points to the
destination points to define the initial velocity. For each dragging point pair, we assign a translation
movement, and the simulation continues until either the starting point reaches the destination or the
iteration count reaches the set maximum (75 by default).

A.4 RUNNING TIME STATISTICS

The last column of Table 1 also summarizes the rough average running time for each method. APAP,
DiffEditor, and the full version of our method are slower than PhysGaussian, Ours (LGM), and “Ours
+ deformation”, mainly due to the absence of SDS optimization in their pipelines. PhysGaussian
runs the fastest since it does not involve any optimization process.

Input “a dachshund” “a dachshund with 
mouth open” Input “a lotus bud” “a lotus bud, 

in bloom”

Figure 9: Effect of different text prompts. When editing images, a text prompt that better aligns with
the drag intention can help query more meaningful features from the diffusion model, ultimately
leading to more visually pleasing results. Black dashed circles highlight edit differences.
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A.5 TEXT PROMPT

Interestingly, during our early tests, we observed that text input plays a crucial cue for generative
editing. As shown in Fig. 9, when dragging the dog’s mouth to open, using a more specific text
prompt like “a dachshund with an open mouth” can effectively guide the process. This proves the
significance of prompt design in aligning the diffusion model’s features with the intended edits.
In all our experiments, we provide a more detailed text prompt when the drag intention is clear.
However, for cases where the intention is less defined, we use a more general description instead.

A.6 EFFECT OF DDIM INVERSION WITH RANDOM NOISE

Fig. 10 shows a new example to better illustrate the advantages of DDIM inversion with random
noise. In this case, the editing intention is to lift the wolf’s left leg, and the editing mask is applied
solely to the area near the left leg, as shown in Fig. 10 (a). The regions outside the mask are expected
to remain unchanged. However, as highlighted in the yellow dashed box in Fig. 10 (d), performing
DDIM inversion without random noise leads to noticeable changes in the wolf’s tail and many
regions in the left-bottom view, even if these regions are outside of the editing mask. This occurs
because the noise generated during DDIM inversion lacks precision and deviates from a Gaussian
distribution, as shown in Fig. 10 (c). By introducing simple random noise processing, the DDIM
inversion noise becomes more consistent with a Gaussian distribution, allowing regions outside the
mask to better align with the original image.(a) Inputs

(b) Inversion w/o random noise

(c) Inversion w/ random noise (d) Results w/o 
random noise 

(e) Results w/ 
random noise 

(a) Inputs

(b) Inversion w/o random noise

(c) Inversion w/ random noise (d) Results w/o 
random noise 

(e) Results w/ 
random noise 

Figure 10: Effect of DDIM inversion with random noise. For the rendered four images, when
inverted into MVDream’s data distribution, the resulting noise deviates from a Gaussian distribution
(b). By adding random noise (N (0, 0.01)) to the background’s pixel domain, we help the latent
variables conform more closely to a Gaussian distribution (c). The resulting multi-view edits are
shown in (d) and (e). Yellow dashed boxes indicate the regions with evident differences.

A.7 SMOOTH SURFACE EXTRACTION

Since the final output of our method is a 3D Gaussians for 3D meshes, extracting a mesh model
from the 3D GS may result in some loss of detail. Regarding improved mesh extraction, 2D GS
could serve as a potential solution. Additionally, we came across the open-source work Lara (Chen
et al., 2025), which uses four views to feed-forwardly regress a 2D GS model with a smoother
surface. Fig. 11 shows the extracted mesh surface normal by Lara. In the future, we plan to release
a Lara-based version of our method.

(a) Multi-view dragging results (b) Reconstructed surface normal by Lara

Figure 11: Mesh surface normal of Lara.
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Drag Mesh APAP PhysGaussian DiffEditor Ours

Figure 12: An example of failure cases. In this example, our goal is to close the owl suit. Although
our method successfully closes the suit to a certain degree, it still fails to reach the final position
perfectly and introduces an unintended style change in the tie, as shown in the dashed circle region.

Table 3: User study on 3D Dragging results for all testing data. We calculated the proportion of
results that users were most satisfied with among the comparison methods.

Method APAP PhysGaussian DiffEditor Ours

Mesh 3DGS Mesh 3DGS Mesh 3DGS Mesh 3DGS
User preference (↑) 20.7% – 5.7% 15.1% 13.4% 17.3% 60.2% 67.5%

A.8 USER STUDY

We also conducted a user study to compare our method with others, focusing on a comprehensive
assessment of editing quality, specifically how well the results match the dragging intention and
exhibit the best visual quality. Participants were shown a reference image with dragging trajectories
alongside all 3D editing results. The options were presented in a shuffled order, and there was no
time limitation for responses. We received 62 responses to the survey. As shown in Table 3, the
results demonstrate that our method outperforms others on both 3D Gaussian and mesh models,
achieving the best performance in terms of user preference.

A.9 LIMITATIONS

Firstly, the editing quality can occasionally alter the object’s identity (the tie part of the owl suit
in Fig. 12). The intended edit in this case is to close the suit. While our result achieves this goal
to some extent, it still fails to reach the final position perfectly and introduces an unintended style
change in the tie. This limitation arises because accurately adjusting the suit’s position necessitates
significant modifications to the tie area, where nearly half of the tie will be overlapped by the suit.
Consequently, the gradient-guided editing mechanism modifies the latent noise in this region and
completely relies on the diffusion prior to generate a semantically plausible result. However, this
process inherently entangles dragging accuracy (e.g., closing the suit), identity preservation (e.g.,
maintaining the tie’s style), and global visual plausibility, making it challenging to fully satisfy all
these aspects simultaneously. This issue is also common in current drag-based image editing ap-
proaches (e.g., DiffEditor and DragonDiffusion) and video editing methods (e.g., DragNUWA (Yin
et al., 2023)) and remains a challenging problem to address. How to achieve more precise local
control is non-trivial. Secondly, despite achieving consistent results, the four-view image editing
process sometimes requires significant parameter tuning, highlighting the need for a simpler, more
user-friendly multi-view editing tool, akin to InstantDrag (Shin et al., 2024). Finally, while we use
multi-view images as a 3D proxy, dragging points can sometimes become occluded in all views.
This limitation motivates future work on training a “pure” 3D generative model to enable more
flexible and accurate 3D editing.

17


	Introduction
	Related work
	Method
	Preliminary
	Overview
	3D-2D Rendering and Projection
	Multi-view gradient guidance for dragging
	3D Gaussian Reconstruction and Refinement

	Experiments
	Experimental Setup
	Results
	Abalation and Discussion

	Conclusion
	Appendix
	Additional Parameters for multi-view dragging
	Metric explanation
	Drag setup for PhysGaussian
	Running time statistics
	Text prompt
	Effect of DDIM inversion with random noise
	Smooth surface extraction
	User study
	Limitations


