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ABSTRACT

Point-supervised facial expression spotting (P-FES) aims to localize facial expres-
sion instances in untrimmed videos, requiring only a single timestamp label for
each instance during training. To address label sparsity, hard pseudo-labeling is of-
ten employed to propagate point labels to unlabeled frames; however, this approach
can lead to confusion when distinguishing between neutral and expression frames
with various intensities, which can negatively impact model performance. In this
paper, we propose a two-branch framework for P-FES that incorporates a Gaussian-
based instance-adaptive Intensity Modeling (GIM) module for soft pseudo-labeling.
GIM models the expression intensity distribution for each instance. Specifically,
we detect the pseudo-apex frame around each point label, estimate the duration,
and construct a Gaussian distribution for each expression instance. We then assign
soft pseudo-labels to pseudo-expression frames as intensity values based on the
Gaussian distribution. Additionally, we introduce an Intensity-Aware Contrastive
(IAC) loss to enhance discriminative feature learning and suppress neutral noise
by contrasting neutral frames with expression frames of various intensities. Ex-
tensive experiments on the SAMM-LV and CAS(ME)2 datasets demonstrate the
effectiveness of our proposed framework.

1 INTRODUCTION
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Figure 1: Different methods for annotation. The
fully-supervised method requires annotating the
onset, apex, and offset frames of each instance,
whereas the point-supervised method requires an-
notating only a single frame for each instance.

Facial expressions play an important role in con-
veying human emotions as a typical form of non-
verbal communication. Facial expressions can
be divided into macro-expressions (MaEs) and
micro-expressions (MEs). Macro-expressions
are of high intensity, and they usually last be-
tween 0.5 and 4.0 seconds (Ekman, 2003a).
Macro-expression analysis is important in var-
ious applications such as social robots (Rawal
& Stock-Homburg, 2022), virtual reality (Ort-
mann et al., 2023), and so on. In contrast, micro-
expressions are subtle and rapid (shorter than
0.5 seconds) (Ben et al., 2021). They are also
utilized in many emotion-related applications,
such as lie detection (Ekman & Friesen, 1969)
and psychological counseling (Ekman, 2003b)
since they are spontaneous and represent real
emotions. Therefore, both macro- and micro-
expression analysis are significant in human life.

Facial expression spotting (FES) is an important task in facial expression analysis. As a preliminary
step to recognizing the specific emotional types of facial expressions, FES aims to localize facial
expression instances in untrimmed videos, determining the onset and offset frames and classifying
the expression type (i.e., MaE or ME) for each instance. FES is crucial for accurately identifying
various expressions in videos, enabling more precise emotion recognition and enhancing applications
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in human-computer interaction. Previous works (Yin et al., 2023; Yu et al., 2023; Deng et al., 2024a)
have mainly focused on fully-supervised FES (F-FES). They usually extract optical flow features and
develop traditional algorithms or deep learning models to analyze the extracted features, achieving
good performance. The remarkable progress of F-FES can be attributed to the use of frame-level
annotations.

To incorporate the findings of these F-FES studies into more practical problems under limited
annotation cost, this paper investigates point-supervised FES (P-FES). As illustrated in Figure 1, in
contrast to F-FES, which requires annotating the onset and offset frames with low expression intensity,
P-FES requires only a single timestamp annotation at any intensity for each instance. This approach
can significantly reduce the annotation burden and time required for training models, making it more
feasible to deploy in real-world applications.

0
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… … …
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Figure 2: Motivation illustration. Due to the fact
that expression frames have various intensities, it
is difficult to describe this characteristic by hard
pseudo-labeling. We use soft pseudo-labeling to
learn the intensity distribution of each instance,
reducing the ambiguity in distinguishing neutral
and expression frames with various intensities.

The potential challenge in P-FES lies in the
difficulty of detecting complete expression in-
stances in the absence of boundary labels while
also suppressing neutral noise, which refers to
specific neutral frames that do not convey any
significant emotions but can interfere with the
spotting process. Even though there is a no-
table lack of research on P-FES, many efforts
have been devoted to point-supervised temporal
action localization (P-TAL), which shares the
same problem setting as our task, with the only
difference being in target domains. Previous
P-TAL methods (Ma et al., 2020; Lee & Byun,
2021; Zhang et al., 2024) typically employ a two-
branch framework for class-agnostic score esti-
mation and action classification. Subsequently,
they mine reliable pseudo-action frames based
on class-agnostic scores and feature similarity,
then assign them hard pseudo-labels. However,
such a hard pseudo-labeling strategy generally
used in P-TAL may not be applicable directly to the P-FES task, as it fails to help the model dis-
tinguish between neutral and expressive frames with various intensities. As illustrated in Figure 2,
low-intensity expression frames are similar to neutral frames in intensity, and they should be assigned
a label of 1 when using hard pseudo-labeling, the same as the high-intensity frames near the apex
frames. In this case, hard pseudo-labels cannot precisely describe the characteristics of expression
intensity, resulting in inaccurate class-agnostic output scores.

To solve the above-mentioned problem, we propose a two-branch framework that converts the binary
classification-based class-agnostic branch into a regression-based expression intensity branch. In
this paper, we assume that the expression intensity in each instance follows an individual smooth
Gaussian distribution instead of a Bernoulli distribution. Based on this assumption, we propose
Gaussian-based instance-adaptive Intensity Modeling (GIM) for P-FES. Specifically, we first employ
a two-branch framework to estimate expression intensity scores and action scores. We then detect the
pseudo-apex frame around each labeled frame and estimate the rough duration for each expression
instance. Subsequently, we build a Gaussian distribution for each expression instance individually.
The mean of the Gaussian distribution is determined by the feature of the pseudo-apex frame, and the
variance is calculated by measuring the distance between the mean and the features of other pseudo-
expression frames in the duration. Finally, we assign soft pseudo-labels as the expression intensity
values for supervision and optimize the expression intensity branch. In addition, we introduce an
Intensity-Aware Contrastive (IAC) loss on reliable pseudo-labeled frames from different classes,
enhancing the model’s ability to distinguish between neutral frames and expression frames with
various intensities to suppress the influence of neutral noise and highlight expression frames.

Our contributions are as follows:

• We analyze the limitations of directly applying current P-TAL frameworks to P-FES and
find that hard pseudo-labeling makes distinguishing between neutral and expression frames
with various intensities ambiguous. Thus, we propose a two-branch framework consisting
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of a regression branch to model facial expression intensity distribution using a soft pseudo-
labeling strategy to reduce this ambiguity.

• We propose a Gaussian-based instance-adaptive Intensity Modeling module to adaptively
model the expression intensity distribution of each expression proposal and assign soft
pseudo-labels to each potential expression frame for supervision.

• We introduce Intensity-Aware Contrastive learning on pseudo-labeled frames from different
classes with various intensities to enhance the discriminative feature learning and suppress
neutral noise.

2 RELATED WORKS

2.1 FULLY-SUPERVISED FACIAL EXPRESSION SPOTTING

Previous F-FES methods can be grouped into traditional methods and deep-learning methods. Tradi-
tional methods extracted optical flow and analyzed the pattern of each region of interest. Yuhong
(2021) used the optical flow for facial alignment to eliminate the influence of head movement. Zhao
et al. (2022) refined feature extraction and employed a Bayesian optimization algorithm for analyzing
optical flow patterns. Wang et al. (2024) proposed skip-k-frame block-wise main directional mean
optical flow (Liu et al., 2015) features and analyzed the M-pattern of these features.

Recently, many researchers have developed deep learning-based frameworks to solve the F-FES
task. Leng et al. (2022) extended BSN (Lin et al., 2018), which was originally designed for TAL,
and adapted it for FES. Yin et al. (2023) refined (Leng et al., 2022) approach by introducing graph
convolutional networks and action unit (AU) label information. Yu et al. (2021; 2023) designed
a two-branch framework based on A2Net (Yang et al., 2020) and introduced additional attention
modules for facial expression spotting. Deng et al. (2024a) proposed an SW-MRO feature and
introduced SpoT-GCN to improve the classification of individual frames. They then enhanced the
framework by introducing SpotFormer (Deng et al., 2024b) and explored various model architectures.

2.2 POINT-SUPERVISED TEMPORAL ACTION LOCALIZATION

Many researchers have devoted their efforts to P-TAL to mitigate the intensive labor required for
frame-level labels in F-TAL. Ma et al. (2020) proposed SF-Net to mine neighboring pseudo-action
frames around each labeled frame to train the classifiers. Lee & Byun (2021) proposed to search
for the optimal sequence for completeness learning using point labels. Fu et al. (2022) measured
the confidence of each frame based on the feature similarity and rectified the output scores to assign
reliable pseudo-labels. Zhang et al. (2024) proposed a two-stage framework to propagate high-
confidence cues in point annotations at both snippet and instance levels. Xia et al. (2024) claimed
that the most salient frame tends to appear in the central region of each instance, and they presented a
proposal-level plug-in framework to relearn the aligned confidence of proposals to refine them.

Although P-FES, the focus of this study, has many similarities with P-TAL, research specifically
dedicated to P-FES is extremely limited. To our knowledge, (Yu et al., 2024) is the only paper that
explored P-FES, employing a framework similar to general P-TAL methods. In this paper, instead of
employing hard pseudo-labeling, which may increase the ambiguity in distinguishing between neutral
and expression frames with various intensities, we propose a Gaussian-based soft pseudo-labeling
strategy to model the expression intensity distribution for each instance.

2.3 SOFT PSEUDO-LABELING

Soft pseudo-labeling is an advanced semi-supervised learning technique generally investigated in
classification tasks. Unlike hard pseudo-labeling, which assigns a single class label to unlabeled
data based on the model’s highest confidence prediction, soft pseudo-labeling generates soft labels
representing the full distribution of class probabilities, considering uncertainty in predictions. Nassar
et al. (2023) proposed PROTOCON that refines soft pseudo-labeling by knowledge of neighbors in a
prototypical embedding space for semi-supervised image classification. Lukov et al. (2022) proposed
to smooth out multiple high-confidence classes in the logits by combining them with the confidence
and assigning a fixed low probability to the low-confidence classes to mitigate the influence of noisy
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Figure 3: Overview of the proposed framework. The framework initially calculates the optical flow
and extracts snippet features. These features are fed into a two-branch framework to obtain action and
expression intensity scores. A GIM module is employed to build the Gaussian distribution for each
expression instance and assign soft pseudo-labels to model the intensity distribution. An IAC module
is employed to build contrasts among pseudo-labeled frames with various intensities to enhance
feature learning and suppress neutral noise.

labels for in-the-wild facial expression recognition. Recently, several methods (Liang et al., 2022; Wu
et al., 2023; Shen et al., 2024) built Gaussian Mixture Models to model class-wise feature distribution
for semantic segmentation. Inspired by these works, we propose to construct an individual Gaussian
distribution for each expression instance to assign soft pseudo-labels as direct intensity supervision
signals and train a regression model to learn the expression intensity distribution, rather than the
distribution of class probabilities. To the best of our knowledge, we are the first to investigate the
application of soft pseudo-labeling for P-FES, providing a novel perspective on modeling expression
intensity.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given an untrimmed facial video V = (vi)
T
i=1, we only have single timestamp annotation for each

facial expression instance, i.e., Y = (pi,yi)
N
i=1, where pi represents the annotated frame of the i-th

expression instance, N denotes the total number of ground-truth expression instances, and yi denotes
the multi-hot vector representing the action class (i.e., MaE and ME), respectively. Our objective is
to detect as many expression instances as possible, localizing the boundary frames and determining
the expression type for each instance.

3.2 BASELINE FRAMEWORK

The input video V is first divided into T overlapping snippets, where each snippet represents a short
sequence of consecutive video frames that contain the temporal context of a single frame, following
(Deng et al., 2024b). Then, we employ SpotFormer (Deng et al., 2024b) as the feature extractor to
extract and embed optical flow features into feature vectors and concatenate them along the channel
dimension, resulting in F ∈ RT×D, where D denotes the dimension of each snippet feature. Then,
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similar to general P-TAL works, we input the embedded feature vectors into a two-branch framework
to estimate the expression intensity scores a ∈ RT and the action scores S ∈ RT×C , where C
represents the number of expression classes (i.e., MaE and ME).

3.3 MOTIVATION

Due to the sparsity of point labels, propagating labels from labeled to unlabeled frames is key to
enhancing model training and performance. Current P-TAL methods (Lee & Byun, 2021; Zhang et al.,
2024) usually assign hard pseudo-labels to neighboring frames, frames with high class-agnostic scores,
or frames that have high feature similarity with labeled frames. Then, the hard pseudo-labels are
used to train a binary classification model for the class-agnostic branch and a multiclass classification
model for the action classification branch. However, we observe that the hard pseudo-labeling strategy
will cause ambiguity in FES when distinguishing between neutral and expression frames with various
intensities. For example, expression frames near boundary frames have low expression intensity,
which makes them have higher feature similarity with neutral frames than apex frames. Therefore,
it is difficult to assign hard pseudo-labels to these low-intensity expression frames, resulting in the
binary class-agnostic branch and hard pseudo-labeling being unsuitable for P-FES. To overcome
this issue, we convert the binary class-agnostic branch into a regression-based expression intensity
branch and propose GIM to assign soft pseudo-labels to frames with various intensities, modeling the
expression intensity distribution of each instance.

3.4 GAUSSIAN-BASED INSTANCE-ADAPTIVE INTENSITY MODELING (GIM)

Our solution is based on the assumption that the expression intensity within each expression instance
follows a smooth Gaussian distribution, with the apex frame corresponding to the peak intensity,
which decreases symmetrically on both sides. Neutral frames are assumed to have an intensity of 0.

Figure 3 shows the proposed framework. Our framework consists of an expression intensity branch
and an action classification branch. To model the intensity distribution for each expression instance,
we build the instance-adaptive Gaussian distributions based on the intermediate feature representations
X ∈ RT×D from the expression intensity branch and the output intensity scores a.

The algorithm for constructing the instance-adaptive Gaussian distributions and assigning soft pseudo-
labels is described as follows.

Step 1. Given the output intensity scores a and a point label pi with expression class c, we detect the
pseudo-apex frame vapexi with the highest intensity score in a pre-defined range Ii:

vapexi = argmax
j∈Ii

aj , (1)

where Ii = {n ∈ Z | pi − kc

4 ≤ n ≤ pi +
kc

4 }, and kc denotes the general duration of the c-th class
expression instance (i.e., MaE or ME). The intermediate feature of the pseudo-apex frame, xapex

i , is
selected as the µi for the i-th Gaussian distribution gi:

µi = xapex
i . (2)

This selection strategy ensures that the pseudo-apex frame is the center of the Gaussian distribution
and has the highest soft pseudo-label.

Step 2. Centered at the pseudo-apex frame vapexi , we estimate the rough duration Li for the i-th
expression instance by filtering out the neighboring expression frames whose intensity score is larger
than a threshold θ:

Li = |{j ∈ Ji | aj > θ}| , (3)

where Ji = {n ∈ Z | vapexi − kc

2 ≤ n ≤ vapexi + kc

2 }, and aj corresponds to the intensity score of vj .
Then, we expand the rough duration by a coefficient δ to consider unreliable low-intensity expression
frames to complete the expression proposal. In each expression proposal, we measure the feature
distance between each frame and the pseudo-apex frame; then, we calculate the variance σi for the
Gaussian distribution. The formulation can be described as:

σi =

√
1

δLi

∑
j∈Ki

∥xj − µi∥22, (4)

5
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where ∥ · ∥2 denotes the Euclidean distance, and Ki = {n ∈ Z | vapexi − δLi

2 ≤ n ≤ vapexi + δLi

2 }.

Step 3. Finally, we build an unnormalized Gaussian distribution gi for the i-th expression instance:

gi(xj ;µi, σi) = exp

(
−∥xj − µi∥22

2σ2
i

)
, j ∈ Ki. (5)

Given the Gaussian distribution gi, we can assign a soft pseudo-label to each pseudo-expression
frame in the range of (0, 1].

3.5 INTENSITY-AWARE CONTRASTIVE LEARNING ON PSEUDO-LABELED FRAMES

To further suppress neutral noise, highlight expression frames, and learn inter-class differences
for action classification, we introduce contrastive learning (Khosla et al., 2020) to pseudo-labeled
frames. Additionally, we consider the impact of intensity differences and propose an Intensity-
Aware Contrastive (IAC) loss. The intuition is that the intensity differences between frames are
independent of the class, and we should consider these intensity differences when building contrasts
on pseudo-labeled frames. Specifically, for two samples with the same pseudo-class label, we focus
less on pulling them together when their intensity difference is large; for two samples with different
pseudo-class labels, we focus less on pushing them apart when their intensity difference is small.

To introduce contrastive learning, identifying the neutral frames is necessary since neutral labels
are not provided. In the previous section, we focused on assigning soft pseudo-labels to pseudo-
expression frames. Suppose we assign pseudo-expression labels to Nexp frames. We employ the
top-k strategy to select pseudo-neutral frames from those not given pseudo-labels with the top-k
lowest expression intensity scores. The number of pseudo-neutral frames Nneut is determined by:

Nneut = min(Nexp, T −Nexp). (6)

Then, we select reliable pseudo-expression frames with pseudo-intensity labels larger than 0.5 and
build intensity-aware contrasts among reliable pseudo-neutral and pseudo-expression frames. Let I
represent the set of reliable pseudo-expression and pseudo-neutral frames, and the loss function is
formulated as:

LIAC =
∑
i∈I

−1

|Q(i)|
∑

q∈Q(i)

log
wi,q exp(f

⊤
i fq/τ)∑

e∈E(i) wi,e exp(f⊤
i fe/τ)

, (7)

wi,j =

{
1− |âi − âj |, if ỹi = ỹj
|âi − âj |, if ỹi ̸= ỹj

, (8)

where E(i) := I\i, and Q(i) := {q ∈ E(i) | ỹq = ỹi} represents the set of samples in the video who
has the same pseudo-class label with the i-th sample, fi is the embedded feature of the i-th sample
(the i-th snippet feature of F ∈ RT×D), τ ∈ R+ is a scalar temperature parameter, âi represents the
pseudo-intensity label of the i-th sample, respectively.

3.6 TRAINING AND INFERENCE

3.6.1 LOSS FUNCTION

General P-TAL methods (Lee & Byun, 2021; Zhang et al., 2024) treat the class-agnostic branch as a
binary-classification branch and employ the binary cross-entropy (BCE) loss function to optimize
the branch. In this paper, since we assume the expression intensity score in each expression instance
follows a smooth Gaussian distribution instead of a Bernoulli distribution, we treat it as a regression
task and employ the mean squared error (MSE) loss to optimize the expression intensity branch:

LGIM =
1

Nneut +Nexp

∑
i∈T

(ai − âi)
2, (9)

where T represents the set of all pseudo-labeled frames, and ai and âi represent the output intensity
score and the corresponding soft pseudo-label of the frame vi, respectively.

Following the previous work (Hong et al., 2021), due to the sparsity of expressions in the video, we
add an L1 normalization loss on the intensity scores:

Lnorm = ∥a∥1, (10)

6
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where ∥ · ∥1 is a L1-norm function.

We also employ a video smooth loss to encourage temporal consistency in video output by ensuring
that consecutive frames have similar predictions, stabling the training process:

Lsmooth =
1

T − 1

T−1∑
t=1

∥at+1 − at∥1. (11)

For the action classification branch, we employ general cross-entropy loss. Due to the normalization
loss and the tendency for most frames to have lower scores (neutral and low-intensity expression
frames), the model tends to produce low expression intensity scores. Therefore, we first refine action
scores by combining them with the intensity scores:

s̄i,c = si,c · ai, i ∈ {1, ..., T}, c ∈ {1, ..., C}, (12)
where si,c denotes the original output probability that the i-th sample belongs to the c-th class
expression. Then we calculate the action classification loss to encourage reliable expression frames
to generate higher scores and reliable neutral frames to generate lower scores:

Laction = − 1

|I+|
∑
i∈I+

C∑
c=1

ỹi,c log s̄i,c −
1

C|I−|
∑
i∈I−

C∑
c=1

log(1− s̄i,c) (13)

where I+ and I− represent the set of reliable pseudo-expression frames and pseudo-neutral frames,
and ỹi,c represents the pseudo-class label of the i-th sample, respectively.

Finally, the total loss function can be summarized as:
L = LGIM + Laction + λ1Lsmooth + λ2Lnorm + λ3LIAC, (14)

where λ1, λ2, and λ3 are hyper-parameters for balancing the losses, which are determined empirically.

3.6.2 TRAINING PIPELINE

In the early training epochs, the output expression intensity scores are not sure to represent the
expression intensity, and the highest score does not definitely represent the apex frame. Therefore,
we employ an easy-to-hard learning paradigm and set several warm-up training epochs to make sure
that the output intensity score can represent expression intensity. Specifically, 1) in the first stage, we
assign hard pseudo-labels to adjacent frames around each labeled frame pi in range [pi−ks1, pi+ks1].
2) In the second stage, we build the Gaussian distribution centered at the labeled frame and assign
soft pseudo-labels in a pre-defined small range pi in range [pi − ks2, pi + ks2]. 3) In the third stage,
we employ our proposed GIM module for soft pseudo-labeling and model training. The pseudo-
apex frame and the range for soft pseudo-labeling are updated at each training epoch to enhance
intensity-related feature learning.

3.6.3 INFERENCE

In the inference phase, we first obtain the expression intensity scores a and action scores S. We then
generate candidate expression proposals by using multiple thresholds for a, where each proposal
includes consecutive frames with intensity scores higher than a given threshold. Each proposal
is represented as (si, ei, ci, pOIC

i ), where si, ei, ci, and pOIC
i represent the onset frame, offset

frame, expression type, and the outer-inner-contrastive (OIC) score (Shou et al., 2018), respectively.
Specifically, ci is determined by applying a threshold of 0.5 to the action score of the pseudo-apex
frame since it is the most representative frame for each expression instance. The OIC score can be
calculated as follows:

pOIC
i =

1

Li

ei∑
t=si

at −
1
Li

2

 si−1∑
t=si−

Li
4

at +

ei+
Li
4∑

t=ei+1

at

 , (15)

Li = ei − si + 1. (16)

Finally, we combine the proposals and apply class-wise NMS (Bodla et al., 2017) to remove overlap-
ping ones with lower OIC scores.
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Table 1: Comparison with the state-of-the-art methods on SAMM-LV and CAS(ME)2 in terms of F1
score. The dagger †denotes the method originally for P-TAL and reproduced to P-FES.

Methods SAMM-LV CAS(ME)2
MaE ME Overall MaE ME Overall

F-FES MDMD (He et al., 2020) 0.0629 0.0364 0.0445 0.1196 0.0082 0.0376
Yuhong (2021) 0.4149 0.2162 0.3638 0.3782 0.1965 0.3436
SOFTNet (Liong et al., 2021) 0.2169 0.1520 0.1881 0.2410 0.1173 0.2022
Concat-CNN (Yang et al., 2021) 0.3553 0.1155 0.2736 0.2505 0.0153 0.2019
LSSNet (Yu et al., 2021) 0.2810 0.1310 0.2380 0.3770 0.0420 0.3250
3D-CNN (Yap et al., 2022) 0.1595 0.0466 0.1084 0.2145 0.0714 0.1675
MTSN (Liong et al., 2022) 0.3459 0.0878 0.2867 0.4104 0.0808 0.3620
ABPN (Leng et al., 2022) 0.3349 0.1689 0.2908 0.3357 0.1590 0.3117
AUW-GCN (Yin et al., 2023) 0.4293 0.1984 0.3728 0.4235 0.1538 0.3834
SpoT-GCN (Deng et al., 2024a) 0.4631 0.4035 0.4454 0.4340 0.2637 0.4154
Wang et al. (2024) 0.3724 0.2866 0.3419 0.5061 0.2614 0.4558

P-FES LAC(Lee & Byun, 2021)† 0.3714 0.1983 0.3223 0.3889 0.0833 0.3598
HR-Pro(Zhang et al., 2024)† 0.3395 0.1667 0.2895 0.3515 0.1345 0.3261
TSP-Net(Xia et al., 2024)† 0.3152 0.1567 0.2703 0.3781 0.0571 0.3358
Ours 0.4189 0.2033 0.3587 0.4395 0.0588 0.4000

Table 2: Ablation study on loss functions.

Loss functions SAMM-LV CAS(ME)2
LGIM(MSE) LGIM(BCE) LIAC Others MaE ME Overall MaE ME Overall

! ! 0.3994 0.2189 0.3477 0.4151 0.0556 0.3785
! ! ! 0.2892 0.1095 0.2375 0.3246 0.0282 0.2877

! ! 0.4050 0.1519 0.3360 0.4207 0.0870 0.3872
! ! ! 0.4189 0.2033 0.3587 0.4395 0.0588 0.4000

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We follow the protocol of MEGC2021 and validate our method on two datasets: SAMM-
LV (Yap et al., 2020) and CAS(ME)2 (Qu et al., 2017). The SAMM-LV dataset has 147 annotated
videos from 32 subjects with 200 fps, including 343 MaE clips and 159 ME clips. The CAS(ME)2
dataset has 98 annotated videos from 22 subjects with 300 MaE clips and 57 ME clips, and the frame
rate is 30 fps. Since the frame rates of both datasets are different, we downsample the frame rate of
SAMM-LV seven times to align the frame rates.

Evaluation metrics. We employ a leave-one-subject-out cross-validation strategy in the experiments.
An expression proposal is considered true positive (TP) if the Intersection over Union (IoU) between
the expression proposal and a ground-truth expression instance satisfies:

WProposal ∩WGroundTruth

WProposal ∪WGroundTruth
≥ θIoU, (17)

where θIoU is the IoU threshold, set to 0.5. We calculate the F1 score to evaluate the performance of
our model and compare it with other methods.

Training details. We generate single-frame annotations using a Gaussian distribution centered on the
ground-truth apex frame for each instance. The model is trained by the Adam optimizer (Kingma,
2014) on both datasets for 100 epochs with a learning rate of 2.0× 10−5 and a weight decay of 0.1.
The coefficient δ for duration estimation is set to 1.2. For the multi-stage training, the epochs for each
stage are 1, 4, and 95, respectively. kc is set to 16 for ME and 32 for MaE, respectively. ks1 is set
to 3 for MEs and 5 for MaEs, ks2 is set to 2 for MEs and 4 for MaEs. We set the loss weight λ∗ to
0.1, 0.3, and 2.0× 10−5 for SAMM-LV, and to 0.1, 2.5, and 1.4× 10−4 for CAS(ME)2, respectively.
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Table 3: Ablation study on pseudo-labeling strategies.

SAMM-LV CAS(ME)2
Strategy MaE ME Overall MaE ME Overall
Hard 0.3994 0.2189 0.3477 0.4151 0.0556 0.3785
Soft 0.1496 0.1036 0.1335 0.2705 0.0286 0.2380
Class-wise 0.2551 0.1140 0.2049 0.3072 0.0000 0.2598
Ours 0.4189 0.2033 0.3587 0.4395 0.0588 0.4000

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25

P
se

u
d

o
 L

ab
el

Frame

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

P
se

u
d

o
 L

ab
el

Frame

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13

P
se

u
d

o
 L

ab
el

Frame

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17

P
se

u
d

o
 L

ab
el

Frame

Ground-Truth Boundary Frame Point Label Ground-Truth Apex Frame

(a) ME #1 (b) ME #2 (c) MaE #1 (d) MaE #2

…

Figure 4: Pseudo-label results of four expression instances. The line graph with blue dots represents
the soft pseudo-labels assigned by our model; the leftmost and rightmost blue dots indicate the
estimated expression duration for pseudo-labeling, while the peak dot indicates the pseudo-apex
frame.

The threshold θ for estimating the rough duration of each expression proposal decreases linearly from
0.8 to 0.5 over 30 epochs and then remains at 0.5 until the end.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We first compare the performance with state-of-the-art (SOTA) methods, and the results are shown in
Table 1. Since there is no prior P-FES method, we reproduce and apply several SOTA P-TAL methods
to the P-FES task. Note that for a fair comparison, we use the same feature extractor as in our method
when reproducing these SOTA P-TAL methods, which can significantly improve the performance of
P-FES. It can be seen that our method outperforms SOTA point-supervised methods by 11.3% on
SAMM-LV and 11.2% on CAS(ME)2. Note that the separate F1 scores for MaE and ME spotting
in Table 1 represent their performance when we achieved the optimal overall performance, rather
than their individual best performances. This partially explains why our ME spotting performance
on CAS(ME)2 is lower than that of other SOTA methods. We also show the results of several
F-FES methods for comparison, and the results demonstrate that our method achieves competitive
performance in MaE spotting but a relatively low ME spotting performance. The reason is that our
method focuses on significantly suppressing neutral noise, which may overshadow extremely subtle
micro-expressions without the help of precise frame-level annotations.

4.3 ABLATION STUDY

4.3.1 LOSS FUNCTION

We conduct ablation studies on loss functions to verify the effectiveness of our proposed modules.
The results are shown in Table 2. By comparing the results of using the MSE loss and the BCE loss,
we can see that treating the expression intensity branch as a regression task performs better than
treating it as a binary classification task. This is because when our GIM generates soft labels for
low-intensity expression frames, and these labels accurately describe the intensity, using the MSE loss
allows them to be treated as direct intensity supervision without causing a large loss value. However,
if we use the BCE loss, even when the soft pseudo-labels are accurate enough, the loss value could
still be large, severely affecting model training. The first row of Table 2 shows that when we only use
the proposed GIM to estimate the duration of each expression instance and assign hard pseudo-labels,
the performance is lower. The results demonstrate that our proposed GIM module can accurately
describe the intensity of each expression frame and improve the performance. In addition, the third
row and the fourth row in Table 2 also demonstrate the effectiveness of our proposed IAC loss.
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Figure 5: Expression intensity results of an entire video.

4.3.2 PSEUDO-LABELING STRATEGY

To verify the effectiveness of our proposed GIM, we conduct ablation studies on various pseudo-
labeling strategies. In Table 3, Hard denotes our implemented hard pseudo-labeling method, which
is the same as the first row in Table 2. Soft refers to using cosine similarity in the feature space as the
soft pseudo-label instead of employing the proposed GIM, and Class-wise indicates that we use the
class-wise average feature of point labels as the µ of the Gaussian distribution instead of detecting
the pseudo-apex frame. The comparison with Hard and Soft demonstrates the effectiveness of our
proposed GIM for soft pseudo-labeling. Additionally, the comparison with Class-wise highlights the
effectiveness of our instance-adaptive approach and the choice of the µ for the Gaussian distribution.
This is because when we select the class-wise average feature corresponding to point labels as the
µ of the Gaussian distribution, even expressions within the same class can vary greatly in intensity.
Therefore, considering the whole class instead of individual expression instances may cause some
expressions to be assigned low soft labels, leading the model to ignore certain expressions, which
negatively affects the performance. In summary, the results demonstrate the effectiveness of our
instance-adaptive Gaussian distribution, built based on pseudo-apex frames and feature distances, for
describing the expression intensity distribution.

4.4 QUALITATIVE EVALUATION

Pseudo-label results. For an intuitive illustration, we present some qualitative results of pseudo-
labels, which are shown in Figure 4. According to the results, we can see that our GIM can detect
apex frames more accurately than just using point labels as the pseudo-apex frames. In addition,
our GIM can precisely estimate the duration of the expression instance, thus assigning reliable soft
pseudo-labels.

Intensity score results of an entire video. We present the expression intensity score results for an
entire video, as shown in Figure 5. The results demonstrate that our method significantly suppresses
neutral noise while maintaining the intensity of expressions, highlighting the effectiveness of our
proposed method.

5 CONCLUSION

In this paper, we investigated point-supervised facial expression spotting (P-FES). For this purpose,
we proposed a two-branch framework by converting the general binary classification-based class-
agnostic branch to a regression-based expression intensity branch to model the expression intensity
distribution of each expression instance. In the expression intensity branch, we introduced a Gaussian-
based instance-adaptive Intensity Modeling (GIM) module for soft pseudo-labeling. During training,
we detected the pseudo-apex frame around each labeled frame and estimated the rough duration
of each expression instance. Then, we built the Gaussian distribution centered at the pseudo-apex
frame and assigned soft pseudo-labels to all potential expression frames in the estimated duration.
In addition, we introduced an Intensity-Aware Contrastive (IAC) loss on pseudo-neutral frames and
pseudo-expression frames with various intensities to enhance feature learning and further suppress
neutral noise. Extensive quantitative and qualitative experiments on the SAMM-LV and CAS(ME)2
datasets demonstrated the effectiveness of our proposed method.
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A APPENDIX

A.1 DISCUSSION ON CONSECUTIVE FACIAL EXPRESSION SPOTTING

In typical scenarios, facial expression spotting often focuses on individual expressions. However, two
or more facial expressions may also occur consecutively within a short time, each with distinct apexes.
This raises challenges in learning accurate intensity outputs and spotting consecutive expression
instances.

To address this challenge, we categorize the issue into two cases: 1) consecutive expression instances
of the same class (either MaEs or MEs); 2) consecutive expression instances of different classes.

Soft pseudo-labeling. For the first case, a frame might have multiple soft pseudo-labels when
multiple close point-labels are used to build partially overlapping Gaussian distributions for soft
pseudo-labeling. When assigning a soft pseudo-label to a single frame that already has a soft
pseudo-label (not 0), we randomly retain one label and discard the other. This is done to prevent our
model from being biased toward either high-intensity or low-intensity output, which could affect the
performance of our model.

We further validate the effectiveness of our solution by comparing it with two other optional solutions:
1) keeping the higher soft label when two soft labels are generated for a single frame, denoted as
‘Higher’; 2) keeping the lower soft label when two soft labels are generated for a single frame, denoted
as ‘Lower’. The results are shown in Table 4, which demonstrate that the ‘random selection’ strategy
achieves the best performance.

Table 4: Ablation study on pseudo-labeling strategies for consecutive expression instances.

SAMM-LV CAS(ME)2
Strategy MaE ME Overall MaE ME Overall
Higher 0.4104 0.1885 0.3473 0.4338 0.0882 0.3988
Lower 0.4304 0.1579 0.3570 0.4276 0.0579 0.3891
Random (Ours) 0.4189 0.2033 0.3587 0.4395 0.0588 0.4000

For the second case, it is practical for us to use two arrays to store the soft pseudo-labels for the
two different classes separately, even if the two classes share the same intensity output. This means
that one frame may have two soft pseudo-labels for intensity supervision. When calculating the loss
LGIM between the output intensity and pseudo-labels, both soft pseudo-labels are used, and the two
loss values are averaged. This strategy enables our model to learn various intensity information of
possible composite expressions that occur in different facial areas (e.g., a person is performing an
MaE with the eyebrows, and an ME occurs at the mouth corner later).
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Figure 6: Expression intensity results for several examples of consecutive facial expressions. Each
subfigure includes the expression intensity outputs of LAC (Lee & Byun, 2021) (first row) and
our model (second row). Orange lines and blue lines represent the ground-truth boundaries of two
consecutive expression instances, respectively.
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Inference phase. During the post-processing, a trough will appear in the intensity output between
two consecutive expressions, allowing us to use the multi-threshold strategy to detect and separate
them by the trough. The expression class is determined by each proposal’s pseudo-apex frame, which
has the highest intensity score.

Figure 6 presents more intuitive qualitative results. Combining with the multi-threshold strategy, our
method can effectively detect and separate consecutive expression instances.

A.2 HYPER-PARAMETER kc FOR MACRO-EXPRESSION

As the hyper-parameter of the range for soft pseudo-labeling, kc can affect the model performance
significantly. In our method, kc is set based on the understanding that general MEs last less than 0.5
seconds, while MaEs last longer than 0.5 seconds. Since we pre-process the datasets to standardize
the frame rate at 30 fps, 0.5 seconds corresponds to 15 frames. In practice, we set kc to 16 for MEs.
However, due to the varying length of MaEs, the choice of kc for MaEs can affect the accuracy
of assigned soft pseudo-labels. Small number is not helpful for assigning enough reliable soft
pseudo-labels while a large number could result in assigning soft labels to noisy neutral frames or to
expression frames of other expression instances. Therefore, we evaluated several choices of kc for
MaEs, and the results are shown in Table 5.

Table 5: Ablation study on choices of kc for macro-expressions.

SAMM-LV CAS(ME)2
kc for MaEs MaE ME Overall MaE ME Overall
24 0.4240 0.1700 0.3541 0.4272 0.0317 0.3898
32 0.4189 0.2033 0.3587 0.4395 0.0588 0.4000
48 0.4144 0.1735 0.3510 0.4172 0.0822 0.3811
64 0.3833 0.1826 0.3271 0.4046 0.0563 0.3682

The results show that optimal performance is achieved when kc is set to 32 for MaEs, which is
suitable for assigning enough reliable pseudo-MaE frames and enhancing feature learning.

A.3 EVALUATION OF PSEUDO-APEX FRAME DETECTION
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Figure 7: Changes in the average frame distance be-
tween pseudo-apex and ground-truth apex frames
during training, evaluated starting from the 5th
epoch.

Although the facial expression spotting task only
requires detecting the onset and offset frames,
the apex frame is crucial for further emotion
recognition. Therefore, we evaluate the perfor-
mance of our model in detecting pseudo-apex
frames. Figure 7 shows that as training proceeds,
the average frame distance between pseudo-apex
and ground-truth apex frames decreases and sta-
bilizes at a low level, which demonstrates the
effectiveness of our method in apex frame detec-
tion.
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