

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EVA: ACHIEVING DISCRIMINATIVE AND SEMANTI- CALLY FAITHFUL MULTI-SCALE EEG-VISION ALIGN- MENT

006
007 **Anonymous authors**
008
009
010
011
012

Paper under double-blind review

ABSTRACT

013 Decoding semantic information from electroencephalography (EEG) signals
014 elicited by diverse visual stimuli remains a critical challenge in brain-computer
015 interfaces and cognitive neuroscience. Existing approaches typically align EEG
016 with single-modality visual stimuli but struggle to generalize across multiple
017 modalities and temporal scales. We propose EVA (EEG-Vision Alignment), the
018 first framework that unifies multi-scale EEG alignment with heterogeneous visual
019 stimuli, including rapid image presentations, continuous video sequences, and 3D
020 object rotations, within a single contrastive learning-based architecture. EVA’s
021 Universal EEG Encoder features two key innovations: (1) a Frequency-Aware Dy-
022 namic Encoding (FADE) module that transforms EEG signals into the frequency
023 domain via real-valued fast Fourier transform, enabling compact, adaptive rep-
024 resentations through adjustable band-pass filtering; and (2) an Adaptive Chan-
025 nel Clustering (ACC) module that dynamically updates channel groupings using
026 cross-attention and gradient-based optimization, capturing inter-channel synergies
027 while mitigating noise. By optimizing EEG features to achieve both discrimina-
028 tive power for robust classification and semantic fidelity for high-quality recon-
029 struction from brain signals, our framework achieves state-of-the-art performance
030 across diverse tasks, including image retrieval, video classification, and 3D object
031 recognition, on multiple datasets. Notably, our zero-shot reconstruction of 200 ob-
032 ject categories from the THINGS-EEG dataset, using only aligned EEG features
033 without textual or low-level cues, surpasses prior state-of-the-art by a significant
034 margin. These results underscore EVA’s capability to extract robust, generalizable
035 representations from EEG signals, demonstrating the superiority of our unified
036 framework. Code will be released upon publication.

1 INTRODUCTION

037
038 Understanding the neural mechanisms that underlie human visual cognition represents one of the
039 most profound challenges in neuroscience and artificial intelligence (Van Essen et al., 1992; DiCarlo
040 & Cox, 2007; Tsao et al., 2006). During visual processing, distinct patterns of electrical activity
041 arise across the brain (Hebart et al., 2023), which can be measured non-invasively through elec-
042 troencephalography (EEG) (Gifford et al., 2022; Liu et al., 2024b; Guo et al., 2024). These neural
043 signatures contain rich semantic information about observed stimuli, yet decoding this information
044 presents significant challenges due to EEG’s high dimensionality and poor signal-to-noise ratio. Re-
045 cent advances in neural recording technologies and the collection of relevant datasets have created
046 opportunities to extract meaningful visual semantics from brain signals, with potential applications
047 spanning assistive technologies and novel human-computer interaction paradigms (Benchetrit et al.,
048 2023; Chen et al., 2024).

049 Recent advances in visual representation learning, particularly through contrastive learning ap-
050 proaches (Radford et al., 2021a; Zhai et al., 2023) and vision-language models (Li et al., 2023; Jia
051 et al., 2021; Zhai et al., 2022), have demonstrated impressive zero-shot capabilities across diverse
052 visual tasks. These powerful models offer a promising avenue for brain decoding: aligning neural
053 signals with their semantic spaces could potentially unlock more effective neural decoding. While
this approach has shown success in fMRI studies (Scotti et al., 2024; Gong et al., 2025), in the EEG

domain, this direction remains largely unexplored, with only a handful of studies attempting such alignment (Song et al., 2024; Li et al., 2024). These pioneering works face significant limitations: most employ simplistic encoders that fail to capture complex EEG dynamics, ignore multi-channel relationships, and typically target specific tasks or datasets. Current approaches lack the flexibility to handle diverse visual stimuli across varying temporal scales, and a unified framework capable of aligning EEG signals with different visual modalities (images, videos, 3D objects) remains elusive.

EEG data features high temporal resolution but low signal-to-noise ratio, with signals spanning multiple frequency bands that carry different cognitive information. Traditional time-domain encoding approaches (Zhang et al., 2023b; Altaheri et al., 2022; Zhang et al., 2022) often struggle to capture frequency-specific information in EEG signals, particularly those elicited by rapid visual stimuli. Additionally, existing approaches to handling the multi-channel nature of EEG are limited (Shi et al., 2023): Channel Dependent methods indiscriminately combine all channels, potentially causing over-smoothing (Song et al., 2022); Channel Independent methods process each channel separately, ignoring inter-channel relationships (Nie et al., 2022); Prior knowledge-based methods and hard clustering approaches remain fixed during training, unable to adapt to evolving data distributions and task requirements (Yi et al., 2023).

To address these challenges, we propose EVA (EEG-Vision Alignment), a novel framework that unifies the alignment of multi-scale EEG signals with heterogeneous visual stimuli through contrastive learning with vision-language models. As illustrated in Fig. 1, our framework optimizes EEG feature representations to balance two critical properties: Feature Discriminability and Semantic Fidelity. High discriminability ensures that EEG features from different stimulus categories are well-separated, which is essential for classification and retrieval tasks. High fidelity ensures that EEG features closely match their corresponding visual features, which is crucial for retrieval and reconstruction tasks. This dual optimization is directly inspired by human visual cognition: when viewing stimuli, the brain concurrently performs categorical identification and detailed visual encoding (Clarke & Tyler, 2015). By achieving an optimal balance in the upper-right quadrant of this property space, EVA enables superior performance across diverse neural decoding tasks. Our contributions:

- A Frequency-Aware Dynamic Encoding module that transforms EEG signals into the frequency domain, enabling more compact representation of brain dynamics through adjustable band-pass filtering preserving critical information while controlling compression.
- An Adaptive Channel Clustering module that updates channel groupings through cross-attention mechanisms, featuring real-time adjustment of clustering centers, inter-channel synergy modeling, and end-to-end differentiability.
- The first framework to align multi-scale EEG signals (100ms image presentations, 2s video stimuli, 1s 3D object rotations) with diverse visual modalities, achieving state-of-the-art (SOTA) performance across multiple datasets and tasks.
- Specialized components for alignment, classification, and reconstruction, enabling zero-shot reconstruction of 200 object categories from THINGS-EEG using only aligned EEG features without auxiliary cues, significantly outperforming previous SOTA methods.

2 RELATED WORK

EEG signal encoding models. EEG encoders are essential for connecting brain signals with vision-language representations. Time-domain approaches like EEG Conformer (Song et al., 2022) com-

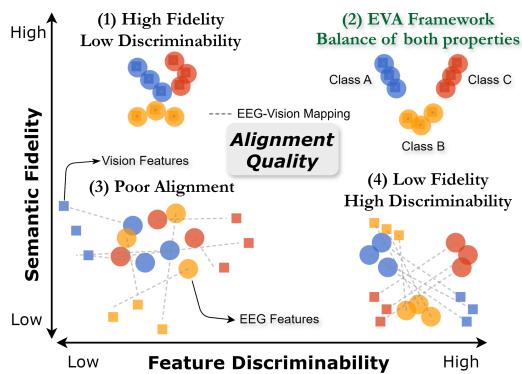


Figure 1: EEG-Vision Alignment Quality Assessment. Circles indicate EEG features, and squares indicate Vision features.

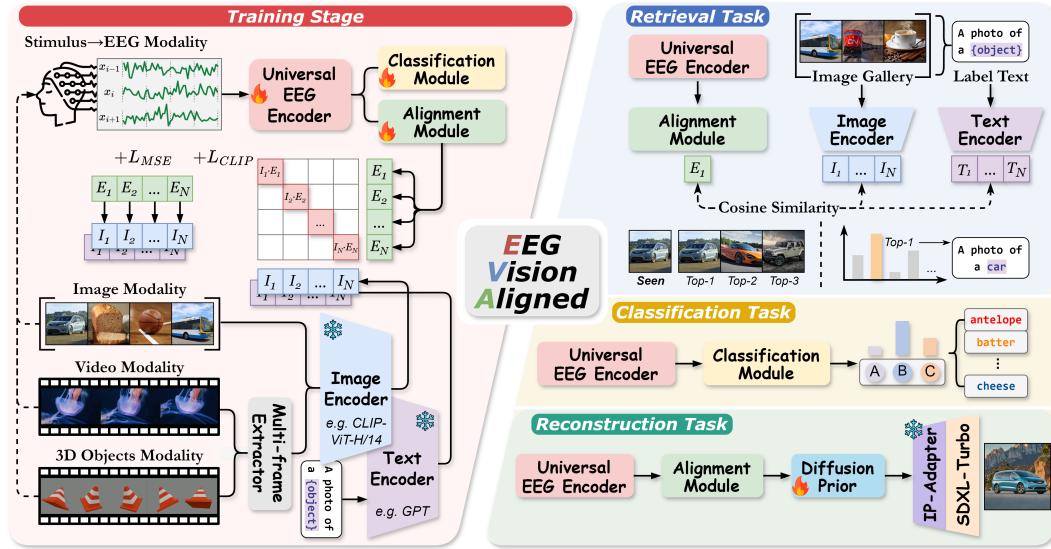


Figure 2: Overview of the EVA architecture and workflow (Training and Inference).

bine CNNs with self-attention (Vaswani et al., 2017) to capture signal patterns, while frequency-domain methods such as MEET (Shi et al., 2023) transform signals into multi-band images preserving spatial electrode relationships. Multi-channel EEG processing has evolved from simple Channel Dependent methods prone to over-smoothing and Channel Independent approaches that ignore inter-channel relationships (Nie et al., 2022), to more sophisticated techniques like DGCNN (Zhang et al., 2020). Recent EEG foundation models including Brant (Zhang et al., 2023a; 2024) leverage masked brain modeling for self-supervised pretraining. However, existing models typically suffer from loss of frequency-specific information, reliance on fixed filter banks, or static channel clustering. Our FADE module addresses these limitations through adaptive frequency-domain processing with adjustable filtering, while our ACC module dynamically optimizes channel groupings via cross-attention and gradient-based learning.

Brain-vision alignment and reconstruction. Contrastive learning has transformed multimodal representation learning, with models like CLIP (Radford et al., 2021a) demonstrating powerful zero-shot capabilities by aligning visual and textual representations (Liu et al., 2024a). This approach has advanced brain-to-image reconstruction (Takagi & Nishimoto, 2023), particularly from fMRI data, as seen in MindEye (Scotti et al., 2024; 2023) which maps brain activity to CLIP’s image space for high-quality reconstruction. In the EEG domain, NICE (Song et al., 2024) established self-supervised object recognition using contrastive learning, while ATM-S (Li et al., 2024) aligned EEG with CLIP embeddings for image reconstruction. Recent work has expanded beyond static images, with EEG2Video (Liu et al., 2024b) developing a large-scale dataset for video reconstruction from EEG and Neuro-3D (Guo et al., 2024) pioneering 3D visual decoding. Despite this progress, current approaches remain task-specific and struggle to balance discriminative power with semantic fidelity. Our EVA framework addresses these challenges by providing a unified solution for aligning multi-scale EEG signals with diverse visual stimuli while optimizing for both discriminative and semantically faithful representations.

3 METHOD

3.1 EEG-VISION ALIGNMENT

As illustrated in Fig. 2, EVA establishes a unified framework for aligning multi-scale EEG signals with diverse visual stimuli through contrastive learning. Our framework consists of three main components: (1) a Universal EEG Encoder that transforms raw EEG signals into compact representations, (2) a Classification Module for stimulus category prediction, and (3) an Alignment Module that bridges EEG features with corresponding visual semantics.

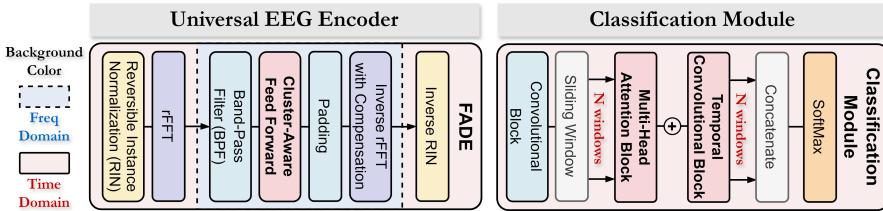
162 During the training stage, EVA processes various visual modalities (images, videos, and 3D objects)
 163 and their corresponding EEG recordings. The visual stimuli are encoded through pre-trained vision-
 164 language models: CLIP ViT-H/14 (Radford et al., 2021b; Schuhmann et al., 2022; Dosovitskiy
 165 et al., 2020) for visual content and GPT (Brown et al., 2020) for textual descriptions, providing
 166 high-quality semantic targets. Simultaneously, our Universal EEG Encoder transforms brain signals
 167 into a shared representation space optimized for both discriminability and semantic fidelity.

168 We formulate this dual objective through a joint optimization framework:

$$\mathcal{L} = \alpha \mathcal{L}_{fidelity} + (1 - \alpha) \mathcal{L}_{discrim} + \beta \mathcal{L}_{struct} \quad (1)$$

169 where $\mathcal{L}_{fidelity}$ encourages EEG features to closely match their corresponding visual features (measured via MSE), $\mathcal{L}_{discrim}$ promotes discriminability between different stimulus categories (implemented through contrastive learning), and \mathcal{L}_{struct} regularizes the latent structure of the EEG representations. The hyperparameters α and β control the trade-off between these objectives.

170 This unified approach enables EVA to generalize across multiple downstream tasks—retrieval, classification, and reconstruction. For retrieval tasks, the Alignment Module computes cosine similarity
 171 between EEG features and a gallery of visual or textual embeddings. For classification, the Classification Module directly maps EEG features to stimulus categories. For reconstruction, our framework
 172 leverages the aligned EEG features with diffusion priors to generate detailed visual reconstructions
 173 of the original stimuli.



180
 181 Figure 3: Pipeline of the Universal EEG Encoder and Classification Module.

182 3.2 UNIVERSAL EEG ENCODER

183 3.2.1 FREQUENCY-AWARE DYNAMIC ENCODING (FADE)

184 The Universal EEG Encoder consists of two key components: Frequency-Aware Dynamic Encoding
 185 and Adaptive Channel Clustering. EEG signals elicited during rapid visual stimulation (on the
 186 millisecond scale) exhibit complex temporal dynamics that are challenging to model directly in the
 187 time domain. Traditional approaches using recurrent or convolutional architectures often struggle
 188 to efficiently capture the relevant frequency patterns. FADE addresses this challenge by leveraging
 189 frequency domain transformations to extract compact and informative representations. The module
 190 operates through the following process, as shown in Fig. 3:

201 **Frequency transformation:** We convert time-domain EEG signals to the frequency domain using
 202 the real Fast Fourier Transform (rFFT): $\hat{X} = \text{rFFT}(X) \in \mathbb{C}^{C \times F}$, where C is the number of EEG
 203 channels and F represents the number of frequency components.

204 **Spectral processing:** FADE incorporates an adjustable bandpass filtering mechanism to focus on
 205 relevant frequency bands while eliminating extraneous components. This step not only reduces noise
 206 but also compresses the representation while preserving essential EEG characteristics. The filtered
 207 frequency representation is then processed through a channel-wise spectral encoder that captures
 208 frequency-specific patterns.

209 **Inverse mapping:** The processed frequency representation is mapped back to the time domain using
 210 the inverse real Fast Fourier Transform (irFFT): $Z = \text{irFFT}(\hat{Z}) \in \mathbb{R}^{C \times T'}$, where T' may differ
 211 from the original signal length, requiring zero-padding prior to the inverse transformation.

212 This approach is effective for rapid visual stimuli where transient neural responses may be obscured
 213 by noise in the time domain but can be effectively isolated in the frequency domain. The FADE
 214 module enables our model to maintain semantic coherence across different temporal scales, from
 215 brief image presentations (100ms) to extended video sequences (2s) and 3D object rotations (1s).

216 3.2.2 ADAPTIVE CHANNEL CLUSTERING (ACC)
217218 ACC dynamically groups EEG channels based on their functional relationships rather than fixed
219 anatomical positions. It features three key innovations:
220221 **Dynamic cluster centers and soft cluster assignment:** The module initializes K learnable cluster
222 embeddings c_1, \dots, c_K , where each $c_k \in \mathbb{R}^d$ (with d representing the hidden dimension), that adapt to
223 the evolving distribution of channel features during training. Given an EEG input X , each channel is
224 transformed into a d -dimensional embedding h_i using a linear projection. The association between
225 channel i and cluster k is determined by computing a probability:
226

227
$$p_{i,k} = \text{Normalize}\left(\frac{c_k^\top h_i}{\|c_k\| \|h_i\|}\right) \in [0, 1] \quad (2)$$

228 **Cluster updating via cross-attention:** We employ a mask-based cross-attention mechanism to
229 update the cluster embeddings based on channel features:
230

231
$$\hat{\mathbf{C}} = \text{Normalize}\left(\exp\left(\frac{(W_Q \mathbf{C})(W_K \mathbf{H})^\top}{\sqrt{d}}\right) \odot \mathbf{M}^\top\right) W_V \mathbf{H} \quad (3)$$

232 where $\mathbf{C} = [c_1, \dots, c_K] \in \mathbb{R}^{K \times d}$ is the cluster embedding matrix, $\mathbf{H} = [h_1, \dots, h_C] \in \mathbb{R}^{C \times d}$ is the
233 channel embedding matrix, and W_Q , W_K , and W_V are learnable weight matrices. The mask matrix
234 \mathbf{M} is derived using a reparameterization technique to approximate a Bernoulli distribution.
235236 **Differentiable optimization:** To enable end-to-end training, we introduce a spectral clustering-
237 inspired regularization term:
238

239
$$\mathcal{L}_{struct} = -\text{Tr}(\tilde{\mathbf{P}}^\top \mathbf{S} \tilde{\mathbf{P}}) + \text{Tr}\left((\mathbf{I} - \tilde{\mathbf{P}} \tilde{\mathbf{P}}^\top) \mathbf{S}\right) + \lambda \sum_{c,k} -\mathbf{P}_{ck} \log \mathbf{P}_{ck} \quad (4)$$

240 where $\tilde{\mathbf{P}}$ is a softened assignment matrix derived using Gumbel-Softmax relaxation, and \mathbf{S} denotes
241 the channel similarity matrix. The first term maximizes similarities within clusters, the second pen-
242 alizes similarities between different clusters, and the entropy term prevents trivial solutions where
243 all channels collapse into a single cluster. The implementation of ACC is relatively complex, further
244 details are provided in Appendix A.1.
245246 3.3 TASK-SPECIFIC MODULE
247248 To adapt our Universal EEG Encoder for various downstream applications, we develop specialized
249 modules for classification, alignment, and reconstruction tasks.
250251 **Classification module.** To enhance the classification performance by integrating both frequency and
252 time domain information, we have fine-tuned the structure of Universal EEG Encoder and simplified
253 the computation process as follows. The rationale for this design is provided in the Appendix A.8.
254

255
$$\text{FreqEnhanced}(X) = X \odot W_f + \alpha \cdot \mathcal{F}^{-1}(|F| \odot M \cdot e^\phi) \quad (5)$$

256 where W_f represents learnable channel weights, $F = \mathcal{F}(X)$ is the rFFT of input signal X , $|F|$
257 and ϕ are the magnitude and phase components, \mathcal{F}^{-1} denotes the irFFT, M is a frequency mask
258 emphasizing bands below a dominance threshold, and α controls fusion intensity.
259260 As shown in Fig. 3, the enhanced signals flow through a multi-stage pipeline: (1) A convolutional
261 block with temporal and spatial filters extracts local patterns; (2) A sliding window approach divides
262 features into overlapping segments, with each processed by self-attention and temporal convolu-
263 tional networks; (3) Finally, features from all windows are concatenated and mapped to classification
264 logits through max-norm constrained linear layers. This multi-faceted architecture effectively cap-
265 tures frequency characteristics, spatial relationships between channels, and temporal dependencies
266 at multiple scales, yielding discriminative features for accurate stimulus classification.
267268 **Alignment module and reconstruction pipeline.** The alignment module is designed to map EEG
269 features to the same semantic space as visual features extracted from vision-language models. In-
spired by ShallowNet (Bai et al., 2018), we implement a Spatial-Temporal ConvNet that effectively
captures both spatial and temporal patterns in EEG features (He et al., 2016). This module employs a

270 contrastive learning approach to optimize both discriminability and semantic fidelity of the extracted
 271 features.

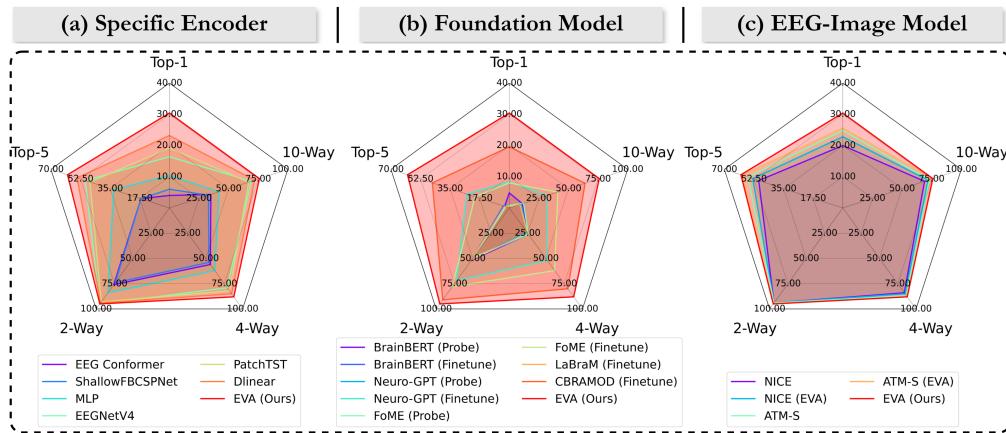
273 For image reconstruction, our framework offers a streamlined and efficient pipeline. Using only the
 274 EEG feature z_e encoded by the Universal EEG Encoder and alignment module, we aim to obtain
 275 image features z_i through a prior diffusion model. Assuming the feature output from the prior is
 276 z'_i , our training objective is to minimize the distance between z'_i and z_i . The fully trained prior is
 277 then integrated with IP-Adapter (Ye et al., 2023) and Stable Diffusion (SDXL-Turbo) (Podell et al.,
 278 2023) to achieve high-quality reconstruction of stimulus images.

279 4 EXPERIMENTS AND RESULTS

280 4.1 DATASETS AND EXPERIMENTAL DESIGN

283 **Datasets.** We evaluated our framework across three distinct visual modalities using complementary
 284 datasets. For EEG-Image alignment, the THINGS-EEG dataset (Gifford et al., 2022) provided high
 285 temporal resolution EEG responses from 10 participants viewing 16,740 unique image conditions,
 286 totaling 82,160 trials per participant presented via rapid serial visual presentation (RSVP) (Potter,
 287 2018). For EEG-Video alignment, the SEED-DV dataset (Liu et al., 2024b) comprised EEG signals
 288 from 20 subjects watching 1,400 dynamic video clips (2 seconds each) spanning 40 conceptual
 289 categories. For EEG-3D object alignment, the EEG-3D dataset (Guo et al., 2024) contained EEG
 290 recordings from 12 subjects viewing 72 categories of 3D objects,

291 **Experimental design.** We benchmarked against multiple SOTA methods across various domains:
 292 (1) EEG-specific encoders: TSConv (Song et al., 2024), EEG Conformer (Song et al., 2022), Shal-
 293 lowFBCSPNet (Schirrmeister et al., 2017), EEGNet (Lawhern et al., 2018), EEGNetV4 (Lawhern
 294 et al., 2018), DeepNet (Schirrmeister et al., 2017); (2) EEG foundation models: BrainBERT (Wang
 295 et al., 2023), Neuro-GPT (Cui et al., 2024), FoME (Shi et al., 2024), LaBraM (Jiang et al., 2024),
 296 CBRAMod (Wang et al., 2024); (3) temporal models: PatchTST (Nie et al., 2022), DLinear (Zeng
 297 et al., 2023); and (4) EEG-Vision alignment models: NICE (Song et al., 2024), ATM-S (Li et al.,
 298 2024), EEG2Video (Liu et al., 2024b), Neuro-3D (Guo et al., 2024). All experiments were con-
 299 ducted using PyTorch 2.1.2 with NVIDIA RTX 4090 GPUs and CUDA 12.4.



315 Figure 4: Zero-shot image retrieval performance (accuracy %) on the THINGS-EEG dataset. See
 316 Appendix A.4 for additional results.

318 4.2 EVALUATING FEATURE DISCRIMINABILITY OF EVA

320 We assessed the discriminative capacity of EVA-generated EEG features through multiple cross-
 321 modal retrieval and classification tasks.

323 **Image retrieval.** Using the THINGS-EEG dataset, we evaluated the framework’s ability to retrieve
 the correct visual stimulus from a pool of 200 candidates based on EEG representations. As pre-

sented in Fig. 4, EVA achieved 30.55% Top-1 accuracy and 59.90% Top-5 accuracy, substantially outperforming leading alternatives including ATM-S (24.70% Top-1, 55.90% Top-5) and DLinear (23.25% Top-1, 54.70% Top-5). Notably, EVA’s Top-1 accuracy exceeded ATM-S by 5.85 percentage points and DLinear by 7.3 percentage points, establishing a new benchmark for this task. These results indicate that EEG features encoded by EVA are sufficiently distinct and discriminative to accurately identify their corresponding visual counterparts from a large set of candidates.

Table 1: Video classification performance (accuracy %) evaluated across all subjects. See Appendix A.5 for additional results.

Year	Method	Top-1	Top-5	Color	Face	Human	N. Obj	F / S
	Chance level	2.50	12.50	20.57	62.25	71.43	65.64	50.00
1986	MLP	5.48	18.28	21.32	69.24	69.49	62.61	52.68
2017	ShallowFBCSPNet	6.01	19.82	23.75	72.54	71.01	60.47	53.71
2017	DeepNet	4.56	14.30	26.37	61.58	72.86	65.71	55.42
2018	EEGNet	4.64	14.25	25.46	61.37	72.38	64.67	51.99
2018	EEGNetv4	6.48	20.73	24.72	74.91	70.38	63.46	51.17
2022	EEG Conformer	4.93	15.36	27.53	64.96	73.00	65.73	55.02
2023	DLinear	5.56	18.20	21.33	68.44	70.09	61.80	53.13
2024	TSConv	4.92	15.05	26.89	64.39	72.68	65.39	55.32
2024	GLMNet (EEG2Video)	6.20	17.75	27.33	65.10	73.34	66.21	57.35
Ours	EVA (Alignment Module)	6.53	19.50	22.01	70.52	71.05	59.45	53.64
Ours	EVA (Ours)	7.88	24.01	31.50	78.22	73.66	68.53	57.65

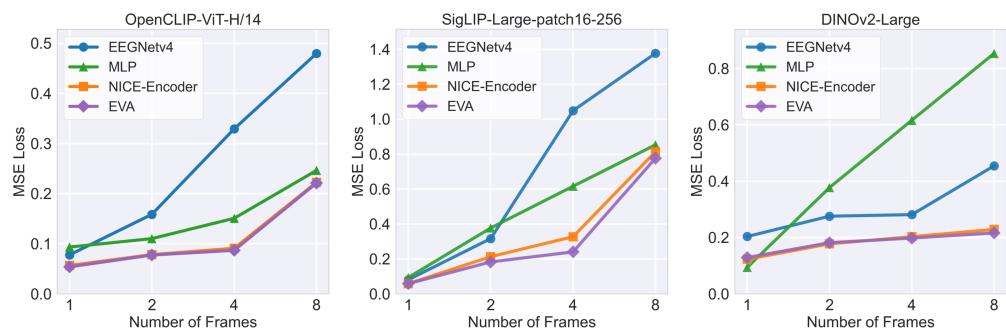
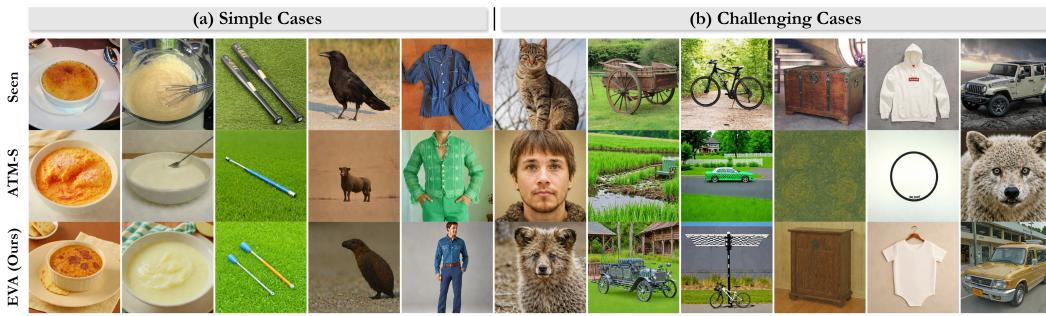
Video classification. On the SEED-DV dataset, we assessed the classification of 40 semantic categories from EEG signals. As shown in Table 1, EVA attained 7.88% Top-1 and 24.01% Top-5 accuracy, surpassing EEGNetv4 (6.48% Top-1) and EEG2Video (6.20% Top-1). The framework also demonstrated robust performance on meta-information classification tasks: color (31.50%), face detection (78.22%), and human presence (73.66%). These results indicate EVA’s efficacy in capturing discriminative temporal patterns from EEG signals related to complex video stimuli.

Table 2: Performance on 3D visual classification and retrieval tasks using the EEG-3D dataset.

Task	Year	Method	Object Type		Color Type	
			Top-1	Top-5	Top-1	Top-2
		Chance level	1.39	6.94	16.67	33.33
Classification	2017	DeepNet	3.70	9.90	20.95	49.71
	2018	EEGNet	3.82	9.72	18.35	46.47
	2022	EEG Conformer	4.05	10.30	18.27	35.81
	2024	TSConv	4.05	10.13	31.13	59.49
	2024	Neuro-3D	5.91	16.30	39.93	61.40
	Ours	EVA	6.11	16.25	40.70	63.61
Retrieval	2024	Neuro-3D	5.42	16.25	—	—
	Ours	EVA	5.70	16.39	—	—

3D object classification and retrieval. On the EEG-3D dataset, as detailed in Table 2, EVA achieved 6.11% Top-1 accuracy for object type classification across 72 categories, marginally exceeding Neuro-3D’s performance (5.91% Top-1). For color classification across 6 types, EVA demonstrated 40.70% Top-1 and 63.61% Top-2 accuracy, compared to Neuro-3D’s 39.93% and 61.40%, respectively. In retrieval tasks, EVA attained 5.70% Top-1 and 16.39% Top-5 accuracy, again showing incremental improvements over Neuro-3D (5.42% Top-1, 16.25% Top-5). These consistent improvements over a specialized 3D decoding model underscore EVA’s versatility and its ability to generate discriminative features for complex 3D visual stimuli.

Collectively, these findings across varied visual modalities and tasks provide compelling evidence for the discriminability of EVA-generated EEG features, a critical prerequisite for neural decoding.

378 4.3 EVALUATING SEMANTIC FIDELITY OF EVA
379380 Beyond discriminability, we evaluated the semantic fidelity of our framework—the degree to which
381 encoded EEG features preserve the semantic essence of corresponding visual stimuli.
382383 **Multi-frame alignment.** We quantified alignment fidelity on the SEED-DV dataset by measuring
384 Mean Squared Error (MSE) between EVA-encoded EEG features and corresponding image features
385 extracted from video frames using three pre-trained visual encoders: OpenCLIP-ViT-H/14 (Radford
386 et al., 2021b; Schuhmann et al., 2022), SigLIP-Large-patch16-256 (Zhai et al., 2023), and DINOv2-
387 Large (Oquab et al., 2023). As illustrated in Fig. 5, EVA consistently achieved the lowest MSE
388 across all visual encoders and sequence lengths compared to alternative approaches (EEGNet4,
389 MLP, NICE-Encoder). This advantage became more pronounced with increasing sequence length,
390 demonstrating EVA’s capacity to map continuous EEG signals to evolving video content with su-
391 perior fidelity.
392403 Figure 5: Multi-frame alignment performance (MSE loss) on the SEED-DV dataset.
404405 **Zero-shot image reconstruction.** Further, to demonstrate the practical implications of high seman-
406 tic fidelity, we evaluated EVA on zero-shot image reconstruction using the THINGS-EEG dataset.
407 This challenging task required generating recognizable images from EEG signals without specific
408 image-EEG pair training. Crucially, our reconstruction pipeline utilized only EVA-aligned EEG
409 features, without auxiliary information such as text prompts or low-level visual features often em-
410 ployed in other methods. As shown in Fig. 6, EVA-derived features produced reconstructions that
411 more accurately captured key semantic elements, shapes, colors, and textures of the original stimuli
412 compared to ATM-S (Li et al., 2024). EVA reconstructions demonstrated clearer object forms, more
413 appropriate color palettes, and better overall resemblance to ground truth images across both simple
414 and complex visual scenes.
415416 Figure 6: Qualitative results of zero-shot image reconstruction from the THINGS-EEG dataset. See
417 Appendix A.6 for more cases.
418419 These results substantiate EVA’s capacity to encode EEG features with high semantic fidelity, which,
420 combined with the discriminability demonstrated earlier, underpins the framework’s robust per-
421 formance across diverse neural decoding applications.
422

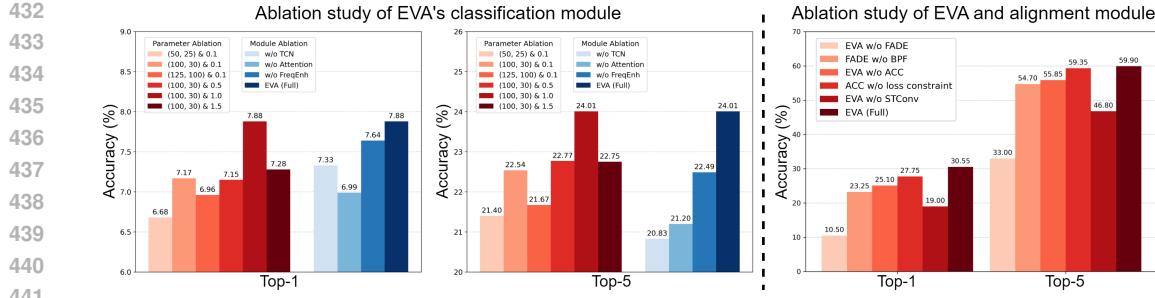


Figure 7: Ablation study results on the SEED-DV (left) and THINGS-EEG (right) datasets. See Appendix A.5 for additional results.

4.4 ABLATION STUDIES AND INTERPRETABILITY ANALYSIS

To validate the contributions of our architectural choices, we conducted ablation studies on the THINGS-EEG and SEED-DV datasets, with results shown in Fig. 7. These studies collectively affirm that the proposed FADE and ACC modules, along with the carefully designed classification head, are integral to EVA’s state-of-the-art performance.

Visualization of ACC’s cluster-wise linear layer weights (Fig. 8) revealed distinct processing strategies across clusters. For instance, while Cluster 2 exhibited diffuse weight patterns suggesting global feature processing, Cluster 4 displayed highly localized and pronounced positive/negative weights, indicating specialized selective emphasis of specific input features.

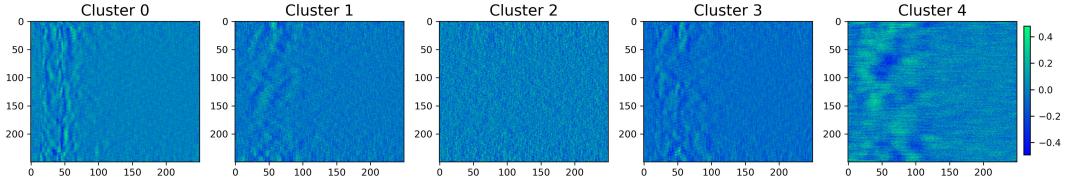


Figure 8: Visualization of learned weights for cluster-wise linear layers within the ACC module.

5 CONCLUSION AND DISCUSSION

Conclusion. In this work, we presented EVA, a novel framework for aligning multi-scale EEG signals with diverse visual stimuli through contrastive learning. By introducing the FADE module for domain transformation and the ACC module for dynamic channel grouping, our approach effectively balances feature discriminability and semantic fidelity. The theoretical foundation for this dual optimization is detailed in Appendix A.2. Extensive experiments across multiple datasets demonstrated EVA’s superior performance in various neural decoding tasks, including image retrieval, video classification, and 3D object recognition. Most notably, our framework enabled zero-shot reconstruction from the THINGS-EEG dataset using only aligned EEG features, substantially outperforming previous SOTA methods. These results highlight EVA’s ability to extract robust, generalizable representations from complex EEG signals, advancing the field of cross-modal neural decoding.

Limitations and future works. Despite EVA’s promising results, several limitations remain. First, the framework’s performance may vary across individuals due to neurophysiological differences, suggesting the need for personalization strategies. Second, while our approach handles diverse visual stimuli, extending it to other sensory modalities (e.g., auditory, tactile) would provide a more comprehensive neural decoding solution. Future work should explore online adaptation techniques to accommodate neural plasticity and investigate transfer learning capabilities across datasets and tasks. Building upon the solid reconstruction pipeline established by EVA, incorporating textual semantic information, low-level features, and deep representations to control structural elements and refine details could substantially enhance reconstruction quality.

486 REFERENCES
487

488 Hamdi Altaheri, Ghulam Muhammad, and Mansour Alsulaiman. Physics-informed attention tem-
489 poral convolutional network for eeg-based motor imagery classification. *IEEE transactions on*
490 *industrial informatics*, 19(2):2249–2258, 2022.

491 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
492 and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.

493

494 Yohann Benchetrit, Hubert Banville, and Jean-Rémi King. Brain decoding: toward real-time recon-
495 struction of visual perception. *arXiv preprint arXiv:2310.19812*, 2023.

496

497 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
498 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
499 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

500

501 Hongzhou Chen, Lianghua He, Yihang Liu, and Longzhen Yang. Visual neural decoding via im-
502 proved visual-eeg semantic consistency. *arXiv preprint arXiv:2408.06788*, 2024.

503

504 Lang Chen, Matthew A Lambon Ralph, and Timothy T Rogers. A unified model of human semantic
505 knowledge and its disorders. *Nature human behaviour*, 1(3):0039, 2017.

506

507 Alex Clarke and Lorraine K Tyler. Understanding what we see: how we derive meaning from vision.
508 *Trends in cognitive sciences*, 19(11):677–687, 2015.

509

510 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
511 Richard M Leahy. Neuro-gpt: Towards a foundation model for eeg. In *2024 IEEE International
512 Symposium on Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2024.

513

514 James J DiCarlo and David D Cox. Untangling invariant object recognition. *Trends in cognitive
515 sciences*, 11(8):333–341, 2007.

516

517 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
518 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
519 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
520 arXiv:2010.11929*, 2020.

521

522 Alessandro T Gifford, Kshitij Dwivedi, Gemma Roig, and Radoslaw M Cichy. A large and rich eeg
523 dataset for modeling human visual object recognition. *NeuroImage*, 264:119754, 2022.

524

525 Zixuan Gong, Guangyin Bao, Qi Zhang, Zhongwei Wan, Duoqian Miao, Shoujin Wang, Lei Zhu,
526 Changwei Wang, Rongtao Xu, Liang Hu, et al. Neuroclips: Towards high-fidelity and smooth
527 fmri-to-video reconstruction. *Advances in Neural Information Processing Systems*, 37:51655–
528 51683, 2025.

529

530 Zhanqiang Guo, Jiamin Wu, Yonghao Song, Jiahui Bu, Weijian Mai, Qihao Zheng, Wanli Ouyang,
531 and Chunfeng Song. Neuro-3d: Towards 3d visual decoding from eeg signals. *arXiv preprint
532 arXiv:2411.12248*, 2024.

533

534 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
535 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
536 770–778, 2016.

537

538 Martin N Hebart, Oliver Contier, Lina Teichmann, Adam H Rockter, Charles Y Zheng, Alexis Kid-
539 der, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. Things-data, a multimodal
540 collection of large-scale datasets for investigating object representations in human brain and be-
541 havior. *Elife*, 12:e82580, 2023.

542

543 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
544 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
545 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
546 PMLR, 2021.

540 Weibang Jiang, Liming Zhao, and Bao-liang Lu. Large brain model for learning generic representations with tremendous eeg data in bci. In *The Twelfth International Conference on Learning Representations*, 2024.

541

542

543

544 Yu-Ting Lan, Kan Ren, Yansen Wang, Wei-Long Zheng, Dongsheng Li, Bao-Liang Lu, and Lili Qiu.

545 Seeing through the brain: image reconstruction of visual perception from human brain signals.

546 *arXiv preprint arXiv:2308.02510*, 2023.

547

548 Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and

549 Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer

550 interfaces. *Journal of neural engineering*, 15(5):056013, 2018.

551

552 Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, Haoyang Qin, and Quanying Liu. Visual decoding

553 and reconstruction via eeg embeddings with guided diffusion. *arXiv preprint arXiv:2403.07721*,

554 2024.

555

556 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image

557 pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023.

558

559 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction

560 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024a.

561

562 Xuan-Hao Liu, Yan-Kai Liu, Yansen Wang, Kan Ren, Hanwen Shi, Zilong Wang, Dongsheng Li,

563 Bao-Liang Lu, and Wei-Long Zheng. Eeg2video: Towards decoding dynamic visual perception

564 from eeg signals. *Advances in Neural Information Processing Systems*, 37:72245–72273, 2024b.

565

566 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64

567 words: Long-term forecasting with transformers. In *The Eleventh International Conference on Learning Representations*, 2022.

568

569 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,

570 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning

571 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

572

573 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe

574 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image

575 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

576

577 Mary C Potter. Rapid serial visual presentation (rsvp): A method for studying language processing.

578 In *New methods in reading comprehension research*, pp. 91–118. Routledge, 2018.

579

580 Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish

581 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning

582 transferable visual models from natural language supervision. In *ICML*, 2021a.

583

584 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

585 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

586 models from natural language supervision. In *International conference on machine learning*, pp.

587 8748–8763. PmLR, 2021b.

588

589 Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin

590 Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and

591 Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization.

592 *Human brain mapping*, 38(11):5391–5420, 2017.

593

594 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi

595 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An

596 open large-scale dataset for training next generation image-text models. *Advances in neural information processing systems*, 35:25278–25294, 2022.

594 Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
 595 Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
 596 mind’s eye: fmri-to-image with contrastive learning and diffusion priors. *Advances in Neural*
 597 *Information Processing Systems*, 36:24705–24728, 2023.

598

599 Paul S Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva, Reese Kneeland, Tong Chen,
 600 Ashutosh Narang, Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman,
 601 et al. Mindeye2: Shared-subject models enable fmri-to-image with 1 hour of data. *arXiv preprint*
 602 *arXiv:2403.11207*, 2024.

603

604 Enze Shi, Sigang Yu, Yanqing Kang, Jinru Wu, Lin Zhao, Dajiang Zhu, Jinglei Lv, Tianming Liu,
 605 Xintao Hu, and Shu Zhang. Meet: A multi-band eeg transformer for brain states decoding. *IEEE*
 606 *Transactions on Biomedical Engineering*, 71(5):1442–1453, 2023.

607

608 Enze Shi, Kui Zhao, Qilong Yuan, Jiaqi Wang, Huawei Hu, Sigang Yu, and Shu Zhang. Fome:
 609 A foundation model for eeg using adaptive temporal-lateral attention scaling. *arXiv preprint*
 610 *arXiv:2409.12454*, 2024.

611

612 Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolutional
 613 transformer for eeg decoding and visualization. *IEEE Transactions on Neural Systems and*
 614 *Rehabilitation Engineering*, 31:710–719, 2022.

615

616 Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding
 617 natural images from eeg for object recognition. In *The Twelfth International Conference on*
 618 *Learning Representations*, 2024.

619

620 Yu Takagi and Shinji Nishimoto. High-resolution image reconstruction with latent diffusion models
 621 from human brain activity. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 622 *Pattern Recognition*, pp. 14453–14463, 2023.

623

624 Doris Y Tsao, Winrich A Freiwald, Roger BH Tootell, and Margaret S Livingstone. A cortical
 625 region consisting entirely of face-selective cells. *Science*, 311(5761):670–674, 2006.

626

627 David C Van Essen, Charles H Anderson, and Daniel J Felleman. Information processing in the
 628 primate visual system: an integrated systems perspective. *Science*, 255(5043):419–423, 1992.

629

630 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 631 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 632 *processing systems*, 30, 2017.

633

634 C Wang, V Subramaniam, A Yaari, G Kreiman, B Katz, I Cases, and A Barbu. Brainbert: Self-
 635 supervised representation learning for intracranial electrodes. In *International Conference on*
 636 *Learning Representations*. ICLR, 2023.

637

638 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
 639 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. *arXiv preprint*
 640 *arXiv:2412.07236*, 2024.

641

642 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 643 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

644

645 Ke Yi, Yansen Wang, Kan Ren, and Dongsheng Li. Learning topology-agnostic eeg representations
 646 with geometry-aware modeling. *Advances in Neural Information Processing Systems*, 36:53875–
 647 53891, 2023.

648

649 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 650 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 651 11121–11128, 2023.

652

653 Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
 654 and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In *Proceedings of the*
 655 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 18123–18133, 2022.

648 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
649 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
650 pp. 11975–11986, 2023.

651

652 Chi Zhang, Lina Sun, Fengyu Cong, Tuomo Kujala, Tapani Ristaniemi, and Tiina Parviainen. Opti-
653 mal imaging of multi-channel eeg features based on a novel clustering technique for driver fatigue
654 detection. *Biomedical Signal Processing and Control*, 62:102103, 2020.

655 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
656 Foundation model for intracranial neural signal. *Advances in Neural Information Processing
657 Systems*, 36:26304–26321, 2023a.

658

659 Daoze Zhang, Zhizhang Yuan, Junru Chen, Kerui Chen, and Yang Yang. Brant-x: A unified phys-
660 iological signal alignment framework. In *Proceedings of the 30th ACM SIGKDD Conference on
661 Knowledge Discovery and Data Mining*, pp. 4155–4166, 2024.

662 Shu Zhang, Lin Wu, Sigang Yu, Enze Shi, Ning Qiang, Huan Gao, Jingyi Zhao, and Shijie Zhao. An
663 explainable and generalizable recurrent neural network approach for differentiating human brain
664 states on eeg dataset. *IEEE transactions on neural networks and learning systems*, 2022.

665 Shu Zhang, Enze Shi, Lin Wu, Ruoyang Wang, Sigang Yu, Zhengliang Liu, Shaochen Xu, Tianming
666 Liu, and Shijie Zhao. Differentiating brain states via multi-clip random fragment strategy-based
667 interactive bidirectional recurrent neural network. *Neural Networks*, 165:1035–1049, 2023b.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 THE DETAILED IMPLEMENTATION OF ADAPTIVE CHANNEL CLUSTERING**
705706 EEG signals are captured across multiple electrode channels distributed over the scalp, each record-
707 ing activity from different brain regions. Existing approaches for multi-channel processing typically
708 adopt one of three strategies: (1) channel-dependent approaches that mix all channels indiscrimi-
709 nately, risking over-smoothing; (2) channel-independent approaches that process each channel sep-
710 arately, neglecting inter-channel relationships; or (3) prior knowledge-based approaches that group
711 channels according to fixed anatomical regions. Some recent methods employ hard clustering tech-
712 niques to group channels, but these assignments remain static throughout training, limiting adapt-
713 ability.
714715 To overcome these limitations, we propose the Adaptive Channel Clustering (ACC) module, which
716 dynamically groups EEG channels based on their functional relationships rather than fixed anatom-
717 ical positions.
718719 **A.1.1 CHANNEL CLUSTERING WITH LEARNABLE QUERIES**
720721 ACC adaptively learns channel groupings through a fully differentiable clustering mechanism, en-
722 abling end-to-end optimization within our framework. The algorithm proceeds as follows:
723724 **Initialization:** We initialize K learnable cluster embeddings c_1, \dots, c_K , where each $c_k \in \mathbb{R}^d$ (with
725 d representing the hidden dimension). These cluster centers serve as prototype representations for
726 different functional channel groups.
727728 **Channel embedding:** Given an EEG input $X \in \mathbb{R}^{C \times T}$ with C channels and T time points, we
729 transform each channel into a d -dimensional embedding using a linear projection: $h_i = W_h \cdot X_i + b_h$
730 where $X_i \in \mathbb{R}^T$ represents the time series of the i -th channel, and $W_h \in \mathbb{R}^{d \times T}$ and $b_h \in \mathbb{R}^d$ are
731 learnable parameters.
732733 **Soft cluster assignment:** The association between channel i and cluster k is determined by com-
734 puting a normalized similarity score:
735

736
$$p_{i,k} = \frac{\exp\left(\frac{c_k^\top h_i}{\|c_k\| \|h_i\| \cdot \tau}\right)}{\sum_{j=1}^K \exp\left(\frac{c_j^\top h_i}{\|c_j\| \|h_i\| \cdot \tau}\right)} \in [0, 1] \quad (6)$$

737

738 where τ is a temperature parameter controlling the softness of the assignment. This creates a prob-
739 ability distribution over the K clusters for each channel.
740741 **Mask generation:** To enable gradient-based optimization while approximating discrete assign-
742 ments, we apply a Gumbel-Softmax reparameterization technique:
743

744
$$\tilde{p}_{i,k} = \frac{\exp((\log p_{i,k} + g_{i,k})/\gamma)}{\sum_{j=1}^K \exp((\log p_{i,j} + g_{i,j})/\gamma)} \quad (7)$$

745

746 where $g_{i,k} \sim \text{Gumbel}(0, 1)$ are random samples from the Gumbel distribution, and γ is an annealing
747 temperature parameter. From these probabilities, we derive the clustering mask matrix $\mathbf{M} \in \mathbb{R}^{C \times K}$,
748 where each element $M_{i,k}$ approximates a Bernoulli distribution. Higher probability values $p_{i,k}$
749 translate to $M_{i,k}$ values closer to 1, indicating strong association between channel i and cluster k .
750751 **A.1.2 CLUSTER UPDATING VIA CROSS-ATTENTION**
752753 A key innovation in ACC is the dynamic updating of cluster prototypes based on the current channel
754 features and their cluster assignments. We implement this through a mask-based cross-attention
755 mechanism:
756757 **Query, Key, Value projection:** We define the cluster embedding matrix $\mathbf{C} = [c_1, \dots, c_K] \in \mathbb{R}^{K \times d}$
758 and the channel embedding matrix $\mathbf{H} = [h_1, \dots, h_C] \in \mathbb{R}^{C \times d}$. We project these matrices to obtain
759 query, key, and value representations:
760

761
$$\mathbf{Q} = W_Q \mathbf{C}, \quad \mathbf{K} = W_K \mathbf{H}, \quad \mathbf{V} = W_V \mathbf{H} \quad (8)$$

762

756 where $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ are learnable parameter matrices.
 757

758 **Attention with mask:** We compute the attention scores between clusters and channels, and use the
 759 transpose of the mask matrix $\tilde{\mathbf{M}}^\top$ to focus attention on relevant channel-cluster pairs:

$$760 \quad \mathbf{A} = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \odot \tilde{\mathbf{M}}^\top \right) \quad (9)$$

763 where \odot represents element-wise multiplication. This ensures that each cluster primarily attends to
 764 channels that have been assigned to it.

765 **Cluster update:** The refined cluster embeddings are computed as:
 766

$$767 \quad \hat{\mathbf{C}} = \mathbf{A}\mathbf{V} \quad (10)$$

769 These updated prototypes capture the shared patterns of channels within each cluster, adapting to
 770 the evolving features during training.

771 772 A.1.3 CLUSTER-AWARE FEED-FORWARD NETWORKS

773 Rather than processing all channels with the same weights or using separate weights for each chan-
 774 nel, we utilize the soft cluster assignments to share parameters efficiently:
 775

776 **Cluster-specific processing:** For each cluster k , we define a separate feed-forward network $f_{\theta_k}(\cdot)$
 777 with parameters θ_k .

778 **Weighted processing:** Given a channel embedding z_i , its processed representation is computed as
 779 the weighted combination of outputs from all cluster networks:
 780

$$781 \quad \hat{z}_i = \sum_{k=1}^K p_{i,k} \cdot f_{\theta_k}(z_i) \quad (11)$$

784 where $p_{i,k}$ is the assignment probability of channel i to cluster k .
 785

786 This approach allows channels with similar functional properties to share parameters, while still
 787 accounting for their unique characteristics through the soft assignment weights.

788 789 A.1.4 DIFFERENTIABLE CLUSTER OPTIMIZATION

790 To guide the learning of meaningful channel groupings, we introduce a spectral clustering-inspired
 791 regularization term:
 792

$$793 \quad \mathcal{L}_{\text{struct}} = -\text{Tr}(\tilde{\mathbf{P}}^\top \mathbf{S} \tilde{\mathbf{P}}) + \text{Tr} \left((\mathbf{I} - \tilde{\mathbf{P}} \tilde{\mathbf{P}}^\top) \mathbf{S} \right) + \lambda \sum_{c=1}^C \sum_{k=1}^K -\mathbf{P}_{c,k} \log \mathbf{P}_{c,k} \quad (12)$$

796 This loss function consists of three components:
 797

1. Intra-cluster Similarity: The term $-\text{Tr}(\tilde{\mathbf{P}}^\top \mathbf{S} \tilde{\mathbf{P}})$ encourages channels within the same clus-
 799 ter to have high similarity, where $\mathbf{S} \in \mathbb{R}^{C \times C}$ is the channel similarity matrix computed
 800 based on feature correlations.
2. Inter-cluster Dissimilarity: The term $\text{Tr} \left((\mathbf{I} - \tilde{\mathbf{P}} \tilde{\mathbf{P}}^\top) \mathbf{S} \right)$ penalizes high similarity between
 802 channels assigned to different clusters.
3. Entropy Regularization: The term $\lambda \sum_{c=1}^C \sum_{k=1}^K -\mathbf{P}_{c,k} \log \mathbf{P}_{c,k}$ with hyperparameter λ
 805 prevents trivial solutions where all channels collapse into a single cluster or each channel
 806 forms its own cluster.

807 808 A.1.5 ALGORITHM SUMMARY

809 The complete ACC algorithm can be summarized as Algorithm 1:

810

Algorithm 1: Adaptive Channel Clustering (ACC)

811

Input: EEG input $X \in \mathbb{R}^{C \times T}$, number of clusters K , temperature τ , annealing parameter γ

812

Output: Updated cluster embeddings $\hat{\mathbf{C}}$, processed channel features $\{\hat{z}_i\}_{i=1}^C$, structural loss $\mathcal{L}_{\text{struct}}$

813

814

```

1 Initialize learnable cluster centers  $\{c_1, \dots, c_K\}$  where  $c_k \in \mathbb{R}^d$ 
2 Project each channel:  $h_i = W_h \cdot X_i + b_h$  for  $i = 1, \dots, C$ 
3 for each channel  $i$  and cluster  $k$  do
4   Compute soft assignment:  $p_{i,k} = \frac{\exp\left(\frac{c_k^\top h_i}{\|c_k\| \|h_i\| \cdot \tau}\right)}{\sum_{j=1}^K \exp\left(\frac{c_j^\top h_i}{\|c_j\| \|h_i\| \cdot \tau}\right)}$ 
5 end
6 Sample Gumbel noise:  $g_{i,k} \sim \text{Gumbel}(0, 1)$  for all  $i, k$ 
7 Generate mask matrix:  $\mathbf{M}_{i,k} = \frac{\exp((\log p_{i,k} + g_{i,k})/\gamma)}{\sum_{j=1}^K \exp((\log p_{i,j} + g_{i,j})/\gamma)}$ 
8 Compute attention with mask:  $\mathbf{A} = \text{Softmax}\left(\frac{(W_Q \mathbf{C})(W_K \mathbf{H})^\top}{\sqrt{d}} \odot \mathbf{M}^\top\right)$ 
9 Update cluster prototypes:  $\hat{\mathbf{C}} = \mathbf{A}(W_V \mathbf{H})$ 
10 for each channel  $i$  do
11   Process with cluster-aware FFN:  $\hat{z}_i = \sum_{k=1}^K p_{i,k} \cdot f_{\theta_k}(z_i)$ 
12 end
13 Compute structural loss:  $\mathcal{L}_{\text{struct}} = -\text{Tr}(\tilde{\mathbf{P}}^\top \mathbf{S} \tilde{\mathbf{P}}) + \text{Tr}((\mathbf{I} - \tilde{\mathbf{P}} \tilde{\mathbf{P}}^\top) \mathbf{S}) + \lambda \sum_{c,k} -\mathbf{P}_{c,k} \log \mathbf{P}_{c,k}$ 
14 return  $\hat{\mathbf{C}}, \{\hat{z}_i\}_{i=1}^C, \mathcal{L}_{\text{struct}}$ 

```

815

By dynamically adapting to the functional properties of EEG channels rather than relying on fixed anatomical groupings, ACC enables more effective feature extraction than traditional approaches. This is particularly important for EEG-based visual semantic decoding, where relevant neural patterns may span multiple brain regions and evolve differently across subjects, tasks, and stimulus types.

816

817

A.2 THE CONNECTION BETWEEN BRAIN-INSPIRED MOTIVATION AND METHODOLOGY

818

Our framework’s core principle of optimizing for both discriminability and semantic fidelity is not merely a technical choice but a fundamental design philosophy inspired by human visual cognition. This section provides detailed justification for this approach and demonstrates its empirical validity.

819

820

A.2.1 MOTIVATION DRIVES METHODOLOGY

821

The principle of balancing discriminability and fidelity directly informed our choice of a joint-optimization framework with distinct loss terms. A project focused solely on classification would likely exclude generative losses (MSE to visual priors), while a reconstruction-only approach might neglect contrastive terms essential for class separation. Inspired by the brain’s dual capabilities (Clarke & Tyler, 2015; Chen et al., 2017), our goal was to create a single versatile encoder capable of supporting both outcomes simultaneously.

822

823

We acknowledge that optimally balancing these objectives represents a complex challenge, and while our multi-loss approach constitutes a significant advance, it may not represent the final solution. To demonstrate that these properties are deeply intertwined and that our motivation directly connects to our experimental findings, we present two concrete examples from our results:

824

825

Case 1: NICE vs. EVA Performance Analysis. During training, the NICE encoder achieves an MSE loss of 0.07841 when aligning EEG embeddings to CLIP embeddings, remarkably close to EVA’s 0.07748. This similarity suggests comparable initial alignment fidelity between feature pairs. However, downstream performance reveals stark differences: NICE’s reconstruction quality is substantially lower (Table 9), and its retrieval accuracy reaches only 20.08% compared to EVA’s 30.55%. This demonstrates that similar initial alignment fidelity becomes insufficient when discriminability is poor, severely compromising final reconstruction quality and proving the interdependence of these properties.

864 **Case 2: ATM vs. EVA Reconstruction Analysis.** In Figure 6, ATM baseline produces reconstruc-
 865 tions that match the style and color palette of original stimuli (columns 6 'cat', 7 'cart', 8 'bike', 11
 866 'jeep'), suggesting high global feature fidelity. However, the core objects in these reconstructions
 867 are incorrect. EVA correctly reconstructs the primary objects in these cases. This illustrates the
 868 opposite effect: high stylistic fidelity proves insufficient when poor discriminability prevents correct
 869 object identification, resulting in semantically flawed outputs.

870 Both examples demonstrate that discriminability and fidelity function as mutually supportive proper-
 871 ties rather than independent objectives. Our core motivation of explicitly balancing these properties
 872 therefore represents a necessary principle requiring both effective loss structure and, fundamentally,
 873 a powerful encoder like EVA to provide high-quality features enabling such balance.

875 A.2.2 MOTIVATION DRIVES ENCODER DESIGN

877 This principle directly informed our encoder architecture. To create embeddings sufficiently rich
 878 to support both discriminative and reconstructive tasks, representations must be both noise-free and
 879 compact. This requirement for high-quality feature extraction motivated the development of FADE
 880 (spectral noise reduction and compact frequency representations) and ACC (efficient channel-wise
 881 feature compression). Our ablation studies confirm that removing these components degrades per-
 882 formance on both task types, demonstrating the encoder's intrinsic connection to our central goal of
 883 creating balanced, versatile representations.

884 A.2.3 CONCEPTUAL CONTRIBUTION

886 This framing represents a conceptual contribution to the field. While prior work employed similar
 887 losses as technical tools, we explicitly posit that balancing discriminability and fidelity constitutes a
 888 fundamental objective for future general-purpose brain-computer interfaces. This framework guides
 889 research toward creating more holistic and capable neurotechnologies that mirror the brain's own
 890 dual processing capabilities.

891 A.3 DATASET DESCRIPTIONS

893 **THINGS-EEG dataset.** The THINGS-EEG dataset, utilized for EEG-Image alignment tasks, was
 894 developed to model the dynamics of human visual object recognition using high-resolution EEG.
 895 Data were collected from 10 healthy adults who viewed images from the THINGS database (Hebart
 896 et al., 2023), depicting objects on natural backgrounds. The study employed a rapid serial visual
 897 presentation (RSVP) paradigm where each image was shown for 100 ms with a 200 ms stimulus
 898 onset asynchrony, while participants performed an orthogonal target detection task. The dataset
 899 is extensive, containing 1,854 object concepts split into 1,654 training concepts (10 images per
 900 concept, 16,540 unique training images, each repeated 4 times) and 200 test concepts (1 image per
 901 concept, 200 unique test images, each repeated 80 times), totaling 82,160 trials per participant. EEG
 902 data were recorded from a 64-channel EASYCAP system at a 1000 Hz sampling rate, online filtered
 903 (0.1-100 Hz), and later epoched from -200 ms to 800 ms relative to stimulus onset.

904 **SEED-DV dataset.** For EEG-Video alignment, the SEED-DV dataset was employed. This dataset
 905 was created to facilitate research into decoding dynamic visual perception by providing EEG-video
 906 paired data. It includes EEG signals from 20 healthy student participants (10 females, 10 males,
 907 mean age: 21.75) while they watched 1,400 two-second dynamic video clips. These clips repre-
 908 sented 40 distinct concepts, which were also grouped into 9 coarser classes, with 35 unique video
 909 clips available for each fine-grained concept. The experimental paradigm involved presenting videos
 910 in 7 blocks, each block comprising 200 clips (5 clips for each of the 40 concepts presented in a
 911 randomized order per block). A 3-second hint preceded each group of 5 same-class videos, and each
 912 block lasted approximately 8 minutes and 40 seconds, with at least a 30-second rest between blocks.
 913 EEG data were acquired using a 62-channel AgCl electrode cap (10-10 system) with an ESI Neu-
 914 roScan System at a 1000 Hz sampling rate. Preprocessing involved a 0.1-100 Hz band-pass filter
 915 and down-sampling to 200 Hz. For EEG segmentation, the Multi-frame Extractor uses four non-
 916 overlapping sliding windows of different sizes (2s, 1s, 500ms, and 250ms) to obtain signals at four
 917 different scales, corresponding to the extraction of 1, 2, 4, and 8 stimulus frames, respectively. Data
 918 splitting for classification involved 7-fold cross-validation (One block for testing, the previous one
 919 for validation, and the rest for training).

EEG-3D dataset. The EEG-3D dataset, used for EEG-3D object alignment, offers paired EEG signals with 3D object stimuli to investigate the neural basis of 3D visual perception. It contains extensive EEG recordings from 12 healthy adult participants (5 males, 7 females, mean age: 21.08) who viewed 72 categories of 3D objects sourced from the Objaverse dataset (10 objects per category). The visual stimuli comprised both 6-second rotating videos (30 Hz) of the 3D objects and 0.5-second static images (the initial and final frames of these videos). Each stimulus block presented a static image, then the rotating video, followed by a static image, with blank screens and a 1-second fixation cross between object blocks. Objects designated for training received 2 measurement repetitions, whereas test set objects received 4 repetitions, conducted over 24 sessions for each participant, totaling approximately 5.5 hours of experiment time per participant, including 5-minute resting-state EEG recordings at the beginning and end of all sessions. EEG data were recorded from a 64-channel EASYCAP system (10-10 system) at 1000 Hz. Preprocessing included segmenting the continuous EEG into 1s epochs for static stimuli and 6s epochs for dynamic stimuli, down-sampling to 250 Hz, applying a 0.1-100 Hz bandpass filter and a 50 Hz notch filter, and performing multivariate noise normalization.

Table 3: Evaluation results (accuracy %) of zero-shot retrieval task based on THINGS-EEG dataset (**train and test on one subject**). The test set contains 200 classes and performance is evaluated using Top-1 and Top-5 accuracies. We present a comprehensive comparison of different model types (EEG foundation models, time series models, and EEG-image models). NICE (EVA) denotes the integration of the NICE model into our proposed EVA framework for testing. The best result is highlighted in **bold**.

Method	Neuro-GPT (Finetune)	CBraMod (Finetune)	Dlinear	NICE	ATM-S	NICE (EVA)	EVA (Ours)
Top-1 retrieval accuracy (0.5% chance level)							
Subject 1	0.3	24.5	24.0	16.0	16.5	19.7	31.0
Subject 2	0.8	16.5	26.0	16.2	18.5	17.2	25.5
Subject 3	5.0	23.5	25.5	20.8	21.5	25.3	33.0
Subject 4	9.0	19.5	26.5	26.8	22.0	28.5	36.5
Subject 5	0.5	9.5	12.0	12.7	16.5	15.8	21.5
Subject 6	5.0	22.5	21.5	20.0	20.5	21.8	27.0
Subject 7	16.0	13.0	29.0	21.0	22.0	22.2	28.5
Subject 8	19.5	25.0	34.5	25.7	33.5	35.3	44.0
Subject 9	11.0	16.5	10.0	19.0	27.0	16.8	26.5
Subject 10	15.5	26.0	23.5	22.7	29.0	25.8	32.0
Average	8.3	19.7	23.3	20.1	22.7	22.8	30.6
Top-5 retrieval accuracy (2.5% chance level)							
Subject 1	0.9	48.5	54.0	41.3	44.5	50.5	61.5
Subject 2	30.0	44.0	54.0	47.8	44.0	45.0	59.0
Subject 3	14.0	50.5	63.0	48.2	48.5	58.5	67.0
Subject 4	25.0	45.5	61.0	59.8	52.0	60.3	60.5
Subject 5	2.5	25.5	40.5	33.3	45.0	36.5	46.0
Subject 6	19.0	49.0	55.5	51.3	52.0	52.8	52.5
Subject 7	39.0	38.0	61.0	54.5	56.5	48.3	62.5
Subject 8	46.5	54.5	70.5	60.5	67.0	70.5	72.5
Subject 9	26.5	39.5	29.5	45.3	54.5	43.3	52.5
Subject 10	51.5	58.0	58.0	52.2	65.0	63.2	65.0
Average	25.5	45.3	54.7	49.4	52.9	52.9	59.9

A.4 ADDITIONAL RESULTS FOR IMAGE RETRIEVAL AND CLASSIFICATION

Table 3 presents the evaluation results for zero-shot retrieval tasks on the THINGS-EEG dataset, comparing our EVA framework against several existing approaches, including EEG foundation models (Neuro-GPT, CBraMod), time series models (Dlinear), and EEG-image models (NICE, ATM-S),

972 based on Top-1 and Top-5 accuracy across 10 subjects for 200 distinct classes. Our proposed EVA
 973 demonstrates a significant improvement over all compared methods, achieving the highest average
 974 Top-1 accuracy of 30.6% and an average Top-5 accuracy of 59.9%. This markedly surpasses the next
 975 best performing models, such as Dlinear (23.3% Top-1, 54.7% Top-5) and ATM-S (22.7% Top-1,
 976 52.9% Top-5). The table also shows that integrating the NICE model within our EVA framework
 977 (NICE (EVA)) yields improved performance over standalone NICE, though our end-to-end EVA
 978 solution provides the most substantial gains, underscoring its superior capability in aligning EEG
 979 signals with visual semantic content in a challenging zero-shot scenario.

980 Table 4 presents a comprehensive evaluation of the zero-shot image retrieval task on the THINGS-
 981 EEG dataset using a leave-one-subject-out (LOSO) cross-validation approach, with performance
 982 assessed across Top-1, Top-5, 2-way, 4-way, and 10-way accuracies against their respective chance
 983 levels (0.5%, 2.5%, 50.00%, 25.00%, and 10.00%). Our proposed EVA demonstrates strong results,
 984 achieving the highest Top-1 accuracy of 12.40%. While ATM-S leads in Top-5 (33.73%) accuracy,
 985 EVA remains highly competitive with 30.25% in this category. These findings underscore EVA’s ro-
 986 bust generalization for image retrieval from EEG features of unseen subjects, outperforming various
 987 EEG-specific models like EEGNetV4 (6.25% Top-1) and EEG foundation models such as CBraMod
 988 (Finetune) (6.60% Top-1), and also showing a clear advantage over the NICE model even when in-
 989 tegrated within our framework (NICE (Our Framework), 8.70% Top-1).

990
 991 Table 4: Overall performance (accuracy %) of zero-shot image retrieval task based on THINGS-
 992 EEG dataset (**leave one subject for test**). The test set contains 200 classes and performance is
 993 evaluated using Top-1 and Top-5 accuracies as well as 2-way, 4-way and 10-way accuracies. The
 994 best result is highlighted in **bold**.

995 Retrieving image using EEG features (leave one subject for test)						
996 Model	997 Methods	998 Top-1	999 Top-5	1000 2-Way	1001 4-Way	1002 10-Way
996 Type	997 Chance level	998 0.50	999 2.50	1000 50.00	1001 25.00	1002 10.00
1000 EEG 1001 Specific 1002 Model	MLP	4.46	15.26	75.80	55.08	34.05
	EEGNetV4	6.25	20.95	82.85	64.65	42.35
	EEG Conformer	0.87	4.42	56.54	31.80	13.89
	ShallowFBCSPNet	2.51	12.03	75.76	53.63	31.43
1003 EEG Foundation 1004 Model	CBraMod (Finetune)	6.60	20.30	80.25	61.45	42.55
	FoME (Finetune)	3.57	10.43	62.50	48.51	29.35
1005 EEG-Image 1006 Model	NICE	6.20	21.40	—	—	—
	NICE (Our Framework)	8.70	26.10	84.50	67.35	49.10
	ATM-E	7.00	21.12	80.65	61.65	39.66
	ATM-S	11.84	33.73	87.36	72.80	53.80
	EVA (Ours)	12.40	30.25	88.50	72.50	59.13

1010 Further extending the evaluation, Table 5 details the performance on the zero-shot text retrieval
 1011 task from THINGS-EEG data, where models were trained and tested on individual subjects. In this
 1012 distinct task, EVA exhibits superior performance across all metrics, securing the top results with
 1013 10.85% Top-1 accuracy, 28.05% Top-5 accuracy, 84.70% 2-way accuracy, 69.55% 4-way accuracy,
 1014 and 49.25% 10-way accuracy. This consistent lead highlights EVA’s strong capability in aligning
 1015 EEG signals with textual semantic representations. Compared to other models, including ATM-S
 1016 (7.55% Top-1, 22.60% Top-5) and NICE (Our Framework) (7.25% Top-1, 26.60% Top-5), EVA
 1017 again demonstrates a clear advantage, reinforcing its effectiveness in diverse zero-shot retrieval sce-
 1018 narios from EEG.

1020 A.5 ADDITIONAL RESULTS FOR VIDEO CLASSIFICATION

1021 Metric Definitions in Table 1:

1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 226

1026

1027 Table 5: Overall performance (accuracy %) of zero-shot text retrieval task based on THINGS-EEG
1028 dataset (**train and test on one subject**). The best result is highlighted in **bold**.

Retrieving text using EEG features (train and test on one subject)						
Model Type	Methods	Top-1	Top-5	2-Way	4-Way	10-Way
	Chance level	0.50	2.50	50.00	25.00	10.00
EEG-Specific Model	MLP	2.80	9.70	69.30	47.70	25.40
EEG Foundation Model	EEGNetV4	3.10	13.70	75.50	53.75	32.05
	BrainBERT (Probe)	0.60	2.70	49.30	24.90	9.90
	BrainBERT (Finetune)	1.00	3.40	53.50	25.60	10.70
	Neuro-GPT (Probe)	0.45	2.75	69.30	42.60	23.50
	Neuro-GPT (Finetune)	1.72	9.25	49.80	24.50	9.60
EEG-Image Model	CBraMod (Finetune)	5.95	16.35	74.95	55.20	33.80
	NICE (Our Framework)	7.25	26.60	83.40	66.85	46.65
	ATM-S	7.55	22.60	82.75	65.40	43.25
	EVA (Ours)	10.85	28.05	84.70	69.55	49.25

1043

1044

1045 video clips into 2 categories: Fast, Slow. We choose the median OFS of 1.799 as the
1046 threshold to make sure the label is balanced.1047 • “N. Obj” (Object Number): The number of the main objects. There are 3 categories: One,
1048 Two, Many. Many indicates the number of the main objects is equal to or more than three.
1049

1050

1051 Table 6: Ablation study on the SEED-DV dataset: impact of sliding window parameters (Size,
1052 Stride) and fusion coefficient on **Top-1** classification accuracy (%). Results are shown for individual
1053 subjects (N=10) and their average.

Method Subject	Sliding Window (Size, Stride) & Fusion Coefficient					
	(50, 25) & 0.1	(100, 30) & 0.1	(125, 100) & 0.1	(100, 30) & 0.5	(100, 30) & 1.0	(100, 30) & 1.5
Subject 1	10.52	12.19	8.33	12.60	14.06	13.65
Subject 2	6.15	7.50	8.44	7.92	9.48	8.85
Subject 3	5.73	6.88	7.08	5.42	6.25	5.63
Subject 4	4.48	4.58	5.42	4.38	5.42	5.42
Subject 5	7.29	7.60	7.19	8.33	10.94	6.46
Subject 6	5.94	5.73	6.35	6.25	6.67	5.94
Subject 7	5.63	5.10	6.35	5.10	4.69	6.46
Subject 8	7.71	9.58	8.96	8.44	6.88	8.13
Subject 9	7.60	5.52	5.21	6.15	7.60	5.83
Subject 10	5.73	6.98	6.25	6.88	6.77	6.46
Average	6.68	7.17	6.96	7.15	7.88	7.28

1069

1070 Tables 6, 7, and 8 detail extensive ablation studies conducted on the SEED-DV dataset to validate
1071 our parameter choices and component contributions. Specifically, Tables 6 and 7 assess the impact
1072 of varying sliding window parameters (Size, Stride) and the fusion coefficient on Top-1 and Top-5
1073 classification accuracy, respectively. The results demonstrate that a sliding window of (100, 30)
1074 combined with a fusion coefficient of 1.0 achieves the highest average performance, yielding 7.88%
1075 Top-1 accuracy and 24.01% Top-5 accuracy. Furthermore, Table 8 evaluates the significance of
1076 individual model components (Frequency Enhancement, Attention Block, TCN). This component-
1077 wise ablation confirms that the full EVA model consistently outperforms variants lacking any of
1078 these key modules, with average Top-1 and Top-5 accuracies of 7.88% and 24.01% respectively,
1079 highlighting the integral role each component plays in the framework’s overall efficacy. For instance,
removing the Attention Block or TCN notably degrades performance, underscoring their critical
contributions.

1080

1081 Table 7: Ablation study on the SEED-DV dataset: impact of sliding window parameters (Size,
1082 Stride) and fusion coefficient on **Top-5** classification accuracy (%). Results are shown for individual
1083 subjects (N=10) and their average.

Method Subject	Sliding Window (Size, Stride) & Fusion Coefficient					
	(50, 25) & 0.1	(100, 30) & 0.1	(125, 100) & 0.1	(100, 30) & 0.5	(100, 30) & 1.0	(100, 30) & 1.5
Subject 1	26.56	34.69	25.94	34.58	38.85	34.48
Subject 2	21.56	23.65	21.56	23.85	24.58	22.40
Subject 3	17.29	19.69	20.83	16.98	18.23	17.92
Subject 4	18.02	15.63	20.42	20.52	18.13	17.40
Subject 5	23.33	25.94	22.50	28.13	31.04	24.38
Subject 6	19.06	20.10	20.31	20.21	19.79	20.42
Subject 7	20.83	17.92	19.38	17.40	19.06	22.50
Subject 8	22.81	28.65	24.06	26.46	25.21	25.00
Subject 9	22.50	18.54	21.56	18.44	21.25	20.73
Subject 10	22.08	20.63	20.10	21.15	23.96	22.29
Average	21.40	22.54	21.67	22.77	24.01	22.75

1087

1100 Table 8: Ablation study on the SEED-DV dataset: impact of model components on Top-1 and Top-5
1101 classification accuracy (%). Results are shown for individual subjects (N=10) and their average.

Method Subject	w/o Frequency Enhancement		w/o Attention Block		w/o TCN		EVA (Full)	
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
Subject 1	15.00	37.08	11.87	29.27	16.04	37.08	14.06	38.85
Subject 2	9.58	25.52	7.92	19.69	6.67	23.54	9.48	24.58
Subject 3	5.73	17.40	5.31	17.29	6.35	16.98	6.25	18.23
Subject 4	4.38	15.63	3.96	17.60	5.31	15.10	5.42	18.13
Subject 5	9.48	28.44	7.50	26.46	9.58	27.19	10.94	31.04
Subject 6	7.29	23.02	6.25	19.37	7.40	18.13	6.67	19.79
Subject 7	4.79	17.71	4.17	16.46	6.04	17.71	4.69	19.06
Subject 8	6.67	21.88	8.33	25.00	5.10	18.85	6.88	25.21
Subject 9	7.29	19.27	6.25	16.77	4.38	15.10	7.60	21.25
Subject 10	6.15	18.96	8.33	24.06	6.46	18.65	6.77	23.96
Average	7.64	22.49	6.99	21.20	7.33	20.83	7.88	24.01

1118

1119

1120 A.6 MORE RECONSTRUCTION ANALYSIS AND CASES

1121

1122 We provide 40 image reconstruction results, as shown in Fig. 9, which presents comparisons between
1123 the reconstructed images, ground-truth stimuli, and the state-of-the-art method ATM-S. The features
1124 derived from EVA lead to reconstructions that more accurately capture the key semantic elements,
1125 shapes, and colors of both simple and challenging original stimuli. Compared to ATM-S, EVA-
1126 based reconstructions typically exhibit clearer object forms, more appropriate color palettes, and
1127 better overall similarity to the ground-truth images, whether the objects are common and simple,
1128 such as food or animals in straightforward scenes, or more complex, such as vehicles and detailed
1129 clothing in diverse backgrounds.

1130

1131 Table 9 offers a quantitative comparison of our EVA against other EEG-to-image methods, using
1132 a range of both low-level and high-level metrics. For low-level image fidelity, EVA demonstrates
1133 superior performance by achieving the highest pixelwise correlation (PixCorr) of 0.173 and the best
1134 structural similarity index (SSIM) of 0.372. In the high-level semantic comparisons, which primarily
1135 involve two-way identification accuracy (with a 50% chance level) using features from AlexNet
1136 (layers 2 and 5), Inception, and CLIP, alongside the SwAV average correlation distance (where

Figure 9: Additional results of zero-shot image reconstruction from the THINGS-EEG dataset. For more reconstructed original images, please refer to the supplementary materials.

lower is better), EVA again leads in most categories. Specifically, our model achieves top scores for AlexNet(2) (0.788), AlexNet(5) (0.878), CLIP (0.791), and the lowest (best) SwAV distance (0.578). While ATM shows a marginally higher score for Inception-based identification (0.734 vs. EVA's 0.730), our EVA framework consistently outperforms the other listed methods across the majority of metrics, indicating its enhanced capability in accurately reconstructing both the structural details and semantic content of images from EEG signals.

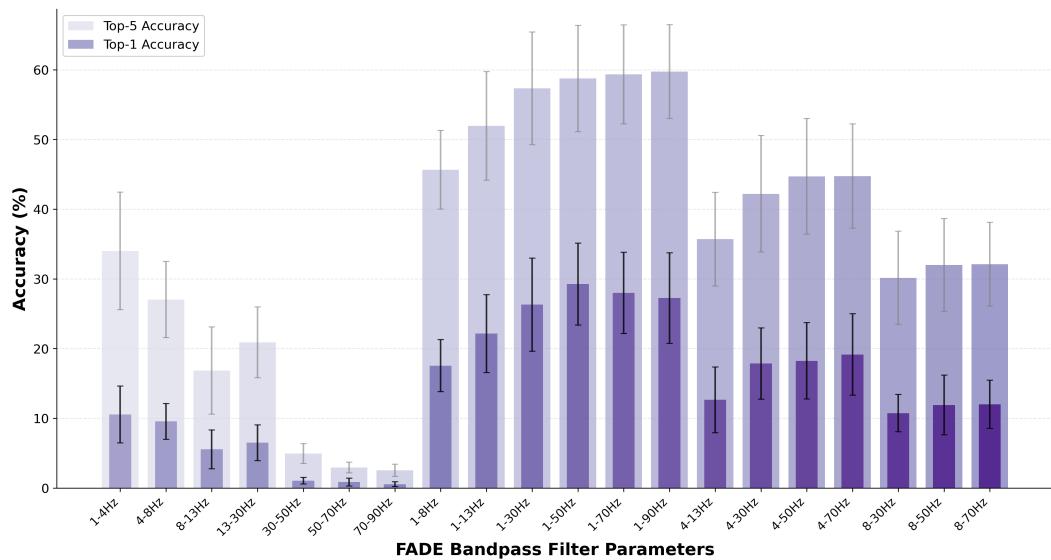
A.7 ADDITIONAL RESULTS FROM ABLATION STUDIES

Fig. 10 demonstrates the performance comparison of different bandpass filter parameters in the Frequency-aware Dynamic Encoding (FADE) method across various frequency ranges. The nested bar chart illustrates both Top-1 and Top-5 retrieval classification accuracies, where the darker purple

1188
 1189 Table 9: Quantitative comparison of EEG-to-image methods. PixCorr denotes the pixelwise cor-
 1190 relation between ground truth and reconstructions; SSIM represents the structural similarity index
 1191 metric; SwAV indicates the average correlation distance. All other metrics refer to two-way iden-
 1192 tification (with a 50% chance level). Two-way identification measures the percentage of correct
 1193 decisions when comparing whether the original image embedding is more similar to its correspond-
 1194 ing EEG embedding or to a randomly selected EEG embedding.

Methods	Low-level		High-level				
	PixCorr↑	SSIM↑	AlexNet(2)↑	AlexNet(5)↑	Inception↑	CLIP↑	SwAV↓
NICE	0.142	0.276	0.739	0.832	0.659	0.722	0.612
EEGNetV4	0.140	0.302	0.767	0.840	0.713	0.773	0.581
ATM	0.160	0.345	0.776	0.866	0.734	0.786	0.582
EVA (Ours)	0.173	0.372	0.788	0.878	0.730	0.791	0.578

1201
 1202 **Top-1 and Top-5 Accuracy vs. FADE Bandpass Filter Parameters**
 1203



1222 Figure 10: Performance comparison of FADE bandpass filter parameters showing Top-1 (dark purple)
 1223 and Top-5 (light purple) retrieval classification accuracies with standard deviation error bars.
 1224

1225
 1226 bars represent Top-1 accuracy nested within the lighter purple bars showing Top-5 accuracy. The
 1227 results reveal that broader frequency ranges generally yield superior performance, with the 1-90Hz
 1228 configuration achieving the highest Top-5 accuracy of 59.75% ($\pm 6.74\%$) and the 1-50Hz range de-
 1229 livering the best Top-1 accuracy of 29.25% ($\pm 5.87\%$). Notably, low-frequency components (1-4Hz,
 1230 4-8Hz) demonstrate substantial contribution to classification performance, while high-frequency
 1231 ranges (50-70Hz, 70-90Hz) show limited effectiveness with Top-1 accuracies below 1%. The com-
 1232 prehensive frequency range of 1-70Hz and 1-90Hz configurations exhibit comparable performance,
 1233 suggesting that frequencies above 70Hz provide minimal additional discriminative information.
 1234 These findings indicate that FADE’s effectiveness is primarily driven by low and mid-frequency
 1235 neural oscillations, with optimal performance achieved when incorporating the full spectrum from
 1236 1Hz to approximately 50-90Hz.

1237
 1238 **A.8 RATIONALE FOR THE SEPARATE CLASSIFICATION MODULE**
 1239

1240 In an ideal scenario, a robust alignment module should be sufficient to enable zero-shot classification
 1241 without a separate head. As shown in Table 5, using only the alignment module with a text-based
 prompt, EVA achieves the best zero-shot classification performance among all compared methods.

1242 However, we find that in practice, the feature space learned through contrastive alignment with vi-
1243 sual features may not be perfectly optimized for supervised classification tasks with fixed, discrete
1244 label sets. The separate classification module is therefore a standard and effective practice in repre-
1245 sentation learning. It functions as a task-specific "head" that fine-tunes the general-purpose features
1246 from our encoder, ensuring optimal performance on specific benchmarks. This design allows our
1247 core EEG encoder to remain versatile while accommodating the specific requirements of different
1248 downstream tasks.

1249

1250

A.9 USE OF LARGE LANGUAGE MODELS

1251

1252 Large Language Models (LLMs) were used in a limited capacity during the preparation of this
1253 manuscript. Specifically, LLMs were employed solely for language polishing and text refinement
1254 purposes, including:

1255

- Grammar checking and correction of minor linguistic errors
- Improving sentence structure and clarity for better readability
- Ensuring consistent terminology usage throughout the manuscript

1259

LLMs were **not** involved in:

1260

- Research ideation or conceptual development
- Experimental design or methodology formulation
- Data analysis or interpretation of results
- Generation of technical content or scientific claims
- Writing of core technical sections or novel contributions

1268

1269 All scientific ideas, methodological innovations, experimental results, and technical contributions
1270 presented in this work are entirely the product of the authors' original research. The authors take
1271 full responsibility for all content in this manuscript, including any text that was refined using LLMs.
1272 The use of LLMs was limited to improving the presentation and clarity of the authors' original ideas
1273 and findings.

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295