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Abstract

Large language models (LLMs) require contin-001
ual knowledge updates to stay abreast of the002
ever-changing world facts, prompting the for-003
mulation of lifelong model editing task. While004
recent years have witnessed the development005
of various techniques for single and batch edit-006
ing, these methods either fail to apply or per-007
form sub-optimally when faced with lifelong008
editing. In this paper, we introduce LEMoE,009
an advanced Mixture of Experts (MoE) adap-010
tor for lifelong model editing. We first ana-011
lyze the factors influencing the effectiveness of012
conventional MoE adaptor in lifelong editing,013
including catastrophic forgetting, inconsistent014
routing and order sensitivity. Based on these in-015
sights, we propose a tailored module insertion016
method to achieve lifelong editing, incorpo-017
rating a novel KV anchor routing to enhance018
routing consistency between training and infer-019
ence stage, along with a concise yet effective020
clustering-based editing order planning. Exper-021
imental results demonstrate the effectiveness of022
our method in lifelong editing, surpassing pre-023
vious model editing techniques while maintain-024
ing outstanding performance in batch editing025
task. Our code will be available.026

1 Introduction027

Large language models (OpenAI, 2023; Touvron028

et al., 2023a,b; Jiang et al., 2023; Bai et al., 2023)029

encode a vast amount of world knowledge dur-030

ing pre-training, which can be accessed and uti-031

lized through natural language prompts (Petroni032

et al., 2019). However, the dynamic nature of the033

real world necessitates regular and continual up-034

dates to these models to correct outdated infor-035

mation or integrate new knowledge (Yao et al.,036

2024; Wang et al., 2024). Also, retraining or fine-037

tuning of LLMs is often resource-intensive and038

time-consuming (Li et al., 2024a), making it im-039

practical for lifelong growing knowledge. There-040

fore, lifelong model editing (Hartvigsen et al.,041
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Figure 1: The conceptual framework for LEMoE. We
align the expert networks in MoE architecture with data
batches and freeze the expert networks corresponding
to previous data when conducting current edits. Datai
and FFNi represent the current data and module, with
dashed line parts indicating future edits.

2023) has been proposed to remedy the continual 042

knowledge updates and injections for LLMs in a 043

cheap and timely manner (Wang et al., 2024). 044

In recent years, there has been a proliferation 045

of effective model editing techniques proposed for 046

single or batch editing, such as MEND (Mitchell 047

et al., 2022a), ROME (Meng et al., 2022), 048

MEMIT (Meng et al., 2023), and MEMoE (Wang 049

and Li, 2024). However, these methods often prove 050

inapplicable or exhibit suboptimal performance 051

when faced with lifelong editing task (Wang et al., 052

2024). In this paper, we introduce LEMoE, an 053

advanced Mixture of Experts (MoE) adaptor, to 054

address the challenges inherent in lifelong editing. 055

Initially, we analyze the factors that influence 056

the effectiveness of conventional MoE adaptor in 057

lifelong editing, including catastrophic forgetting, 058

inconsistent routing, and order sensitivity. In the 059

Catastrophic Forgetting Analysis (§3.1), we evalu- 060

ate the performance of conventional MoE adaptor 061

at different positions within the editing sequence to 062

quantify the impact of subsequent edits on preced- 063

ing ones. We observe that the conventional MoE 064

adaptor exhibits significant catastrophic forgetting, 065

where earlier edits are more prone to errors. In 066

the Routing Consistency Analysis (§3.2), we com- 067

1



pare the expert networks selected by routing strat-068

egy during the training and inference stages when069

faced with the same input. This comparison reveals070

a routing inconsistency in the conventional routing071

strategy, where identical inputs are routed to differ-072

ent experts at different stages. Finally, in the Order073

Sensitivity Analysis, we highlight that editing or-074

der profoundly impacts model performance (§3.3).075

Through varying the sequence order of the same076

dataset during lifelong editing, we observe perfor-077

mance variations of up to 20 points, surpassing the078

improvement of some optimization algorithms.079

Based on these insights, we propose a tailored080

module insertion method to achieve lifelong editing081

(§4.1). As illustrated in Figure 1, we align the ex-082

pert networks in the MoE architecture with the data083

batches in the sequential editing process. When084

conducting current editing, we freeze the expert net-085

work corresponding to the previous data, thereby086

mitigating the adverse effects of current data edit-087

ing on previous edits and alleviating catastrophic088

forgetting from a model mechanism perspective.089

Secondly, we introduce a novel Key-Value (KV) an-090

chor routing (§4.2), wherein each expert is assigned091

a key vector and the input instance-level embed-092

ding serves as the corresponding value. Based on093

these key-value pairs, we align the routing compu-094

tation processes during both training and inference095

stage. This ensures that identical inputs undergo096

same routing computation to reach the same expert097

across all stages, thereby enhancing routing consis-098

tency and further mitigating catastrophic forgetting.099

Finally, leveraging the consistency between the100

MoE preferences of editing order and the objec-101

tives of clustering algorithm, we employ a concise102

yet effective clustering-based order planning to en-103

hance the overall performance of LEMoE (§4.3).104

We conduct experiments on the LLaMA-7B and105

Mistral-7B models using the ZsRE (Levy et al.,106

2017) and SelfCheckGPT (Manakul et al., 2023)107

datasets to evaluate the performance of LEMoE.108

Experimental results show that our approach sur-109

passes previous model editing methods, while110

maintaining excellent performance in batch editing.111

The main contributions of our work can be sum-112

marized as follows:113

• We analyze the influential factors of conven-114

tional MoE adaptor in lifelong editing task,115

including catastrophic forgetting, inconsistent116

routing, and order sensitivity.117

• We introduce LEMoE, an advanced MoE adap-118

tor for lifelong model editing. To address the 119

aforementioned challenges, we propose a mod- 120

ule insertion method, KV anchor routing, and 121

clustering-based order planning. 122

• Experimental results show the efficacy of our 123

proposed method in lifelong editing, while si- 124

multaneously preserving outstanding perfor- 125

mance in batch editing. 126

2 Preliminaries of Model Editing 127

Based on previous research (Yao et al., 2023; 128

Zhang et al., 2024; Li et al., 2024a), model editing 129

involves the process of transforming an initial base 130

model fθ (where θ denotes the model’s parameters) 131

into an edited model fθ′ . The goal is to modify 132

the model’s outputs for a specific set of editing in- 133

stances, while maintaining consistent behavior for 134

all other instances (Li et al., 2024a). The target 135

editing instance can be described as (xei , y
e
i ), with 136

the condition that fθ(xei ) ̸= yei . The set of this 137

instances is termed the editing scope Iedit, whereas 138

the out-of-scope set Oedit comprises inputs not as- 139

sociated with the editing examples. Formally, the 140

criteria for a successful edit can be described as: 141

fθ′ (xi) =

{
yei if xi ∈ Iedit

fθ(xi) if xi ∈ Oedit

(1) 142

143We divide model editing tasks into two cate- 144

gories: Batch Editing and Lifelong Editing: 145

1) Batch Editing refers to the simultaneous modi- 146

fication of model fθ using multiple input instances 147

in one editing operation: 148

θ′ ← argmin
θ

∑n

i=1
(∥ fθ(xei )− yei ∥) (2) 149

where n represents the batch size. Batch editing 150

with batch size of 1 is also known as Single Editing. 151

2) Lifelong Editing refers to the continuous it- 152

erative modification of model fθ, also known as 153

Sequential Batch Editing. Lifelong editing use 154

dataset Dedit = {B1,B2, . . . ,Bs} with s sequen- 155

tial batches and each batch Bi contains n edits: 156

θ′ ← argmin
θ

s∑
j=1

j×n∑
i=(j−1)×n+1

(∥ fθ(xei )− yei ∥)

(3) 157

Note that the model is not rolled back to the initial 158

state after each batch editing. Similarly, lifelong 159

editing with batch size of 1 in the sequence is also 160

referred to as Sequential Editing. 161

Based on the above settings, an effective model 162

editor must satisfy the criteria of three fundamental 163
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Figure 2: Left: Reliability of conventional MoE under different stage evaluation. “Immediate evaluation” occurs
immediately after each edit, “Final evaluation” occurs after all edits in lifelong editing. Right: Visualization of
routing consistency. The value Cij in each block denotes the proportion of the input data processed by expert i
during the training phase that is routed to expert j during the testing phase. Model: LLaMA2-7B. Dataset: ZsRE.

properties: Reliability, Generality, and Locality164

(Yao et al., 2023). These properties are formally165

defined as follows (Zhang et al., 2024):166

1) Reliability denotes the average precision of the167

post-edit model fθ′ concerning the intended edits:168

E(xe
i ,y

e
i )∼Iedit1

{
argmaxy fθ′ (y | x

e
i ) = yei

}
(4)169

2) Generality quantifies the average precision of170

the model fθ′ on instances uniformly sampled from171

the equivalence neighborhood Nedit, encompassing172

input/output pairs pertinent to Iedit:173

E(xi,yei )∼Nedit
1
{
argmaxy fθ′ (y | xi) = yei

}
(5)174

3) Locality is measured by the proportion at which175

predictions of the post-edit model fθ′ remain unal-176

tered compared to the pre-edit model fθ:177

E(xi,yi)∼Oedit
1
{
fθ′ (y | xi) = fθ (y | xi)

}
(6)178

3 Analysis of Influencing Factors179

In this section, we analyze the factors that influ-180

ence the effectiveness of conventional MoE adaptor181

in lifelong editing, including Catastrophic Forget-182

ting Analysis (§3.1), Routing Consistency Analysis183

(§3.2), and Order Sensitivity Analysis (§3.3).184

3.1 Catastrophic Forgetting Analysis185

In the field of continual learning, the general phe-186

nomenon of catastrophic forgetting where training187

on new tasks degrade performance on old tasks188

has been extensively reported and studied (Kotha189

et al., 2023). We aim to investigate whether the190

MoE adaptor in lifelong model editing also suffers191

from catastrophic forgetting: whether editing with192

new data leads to forgetting previously edited data. 193

To assess this, we employ the classic evaluation 194

method for catastrophic forgetting, which involves 195

measuring the performance decrease on previously 196

edited data during the course of lifelong editing. 197

Experiments To evaluate the impact of current 198

data editing on previous ones during the lifelong 199

editing process, we employ two different stage eval- 200

uation methods: (1) a normal evaluation conducted 201

on all editing data only after all edits are completed, 202

and (2) an evaluation conducted immediately after 203

editing the current data to assess the effectiveness 204

of these edits at the current stage. We do not set up 205

another control group where the base model edits 206

only the current data without considering previous 207

data because the accuracy of MoE adaptor under 208

the second evaluation method is nearly 100%. We 209

utilize the LLaMA2-7B as base model and ZsRE 210

dataset (detailed in §5.1). In lifelong editing setting, 211

we perform 100 sequential editing steps, with each 212

step editing a batch of 10 instances, resulting in a to- 213

tal of 1000 edited instances. The evaluation metric 214

is Reliability (detailed in §2). The implementation 215

of conventional MoE adaptor follows (Wang and 216

Li, 2024), employing 4 experts and topk = 1. 217

Results In the left plot of Figure 2, the reliability 218

of the immediate evaluation during the entire life- 219

long editing process shows that only once do the 220

score fall below 100. This indicates that the model 221

consistently achieves desired editing goals at every 222

individual step. However, the model’s overall per- 223

formance is only around 60 in the final evaluation, 224

with earlier edits exhibiting a more significant de- 225

cline in effectiveness and some initial edits scoring 226

close to 0. This suggests a pronounced catastrophic 227
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forgetting phenomenon, where the model’s forget-228

fulness of previous editing data markedly dimin-229

ishes its overall performance in lifelong editing.230

3.2 Routing Consistency Analysis231

In MoE structure, the specificity of experts directly232

impacts model performance (Fedus et al., 2022).233

The design philosophy of MoE adaptor encourages234

"professional people do professional things", en-235

suring that the same inputs are routed to the same236

expert for processing during both training and test-237

ing phases (Wang and Li, 2024). We aim to assess238

the consistency of the routing within the MoE adap-239

tor under lifelong editing setting and explore the240

degree of specificity among these experts.241

Experiments To assess the routing consistency,242

we log the processing expert for each input during243

the training phase and compare it against the ex-244

pert processing the same input during testing. We245

train models under batch editing setting and life-246

long editing setting on identical dataset to compare247

routing consistency across different tasks. In the248

lifelong editing setup, sequential editing steps is249

set to 100 steps, each step editing a batch of 10250

instances. Maintaining the same edited data, batch251

editing utilize a batch size of 1000. We employ252

LLaMA2-7B and ZsRE, with all other experimen-253

tal settings consistent with §3.1.254

Results On the right side of Figure 2, each sub-255

graph depicts the proportion Cij where the input256

processed by expert i during the training phase is257

routed to expert j during the testing phase. The258

diagonal element Cii represents the probability that259

the same input is routed to the same expert during260

both training and testing phases. Experimental re-261

sults comparing two editing setups reveal that rout-262

ing consistency is notably poorer in lifelong editing263

task, with minimal specificity observed among dif-264

ferent experts. In contrast, batch editing exhibits265

significant routing consistency. Hence, there is a266

critical need to devise more accurate and effective267

routing algorithm to guide expert specialization.268

3.3 Order Sensitivity Analysis269

In continual learning, the performance of a model270

significantly varies based on the order of the task271

arrival sequence (Bell and Lawrence, 2022; Yoon272

et al., 2020). Previous researches on lifelong edit-273

ing ignored the impact of editing order on perfor-274

mance. Therefore, we aim to investigate how dif-275

ferent editing order affect the overall performance276
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Figure 3: Left: Performance variability under different
editing order. Right: Within-Batch/Between-Batch Se-
mantic Similarity v.s. Reliability.

in lifelong editing. Additionally, model tend to 277

learn similar tasks more effectively in continual 278

learning (Bell and Lawrence, 2022), and sentences 279

with high semantic similarity often contain related 280

knowledge. Therefore, we also aim to explore the 281

relationship between the semantic similarity of edit- 282

ing inputs and the editing results. 283

Experiments To evaluate the model’s editing or- 284

der sensitivity, we employ the same set of edit- 285

ing data and randomly shuffle the order before 286

performing lifelong editing. In this lifelong edit- 287

ing setup, the sequential editing steps is set to 288

10, with each step editing a batch of 10 (or 100) 289

instances, resulting in a total of 100 (or 1000) 290

edited instances. Each of these two data vol- 291

umes experiment is conducted 100 times. To as- 292

sess the relationship between the semantic simi- 293

larity of the editing inputs and the editing results, 294

we calculate both within-batch semantic similar- 295

ity (WBS) and between-batch semantic similar- 296

ity (BBS) of the editing data. Specially, given 297

dataset Dedit = {B1,B2, . . . ,Bs} with s sequen- 298

tial batches and each batch Bi contains n edits 299

Bi = {(xei , yei )}i∈[1,n], the WBSi of Bi and BBS 300

can be calculated as: 301

WBSi =
2

n(n− 1)

∑
1≤i<j≤n

sim(ei, ej) (7) 302

303
BBS =

2

s(s− 1)

∑
1≤i<j≤s

sim(Bi,Bj) (8) 304

where sim(·) denotes cosine similarity based on 305

embedding, ei = concat(embed(xei , y
e
i )) and 306

embed represents the embedding vector output 307

from the model’s embedding layer. For input con- 308

sisting of multiple tokens, the embedding is the 309

mean for each token. In Equation 8, Bi = Ei(ei) 310

denotes the average semantic vector for the i-th 311

group. We employ LLaMA2-7B and ZsRE, with 312

all other experimental settings consistent with §3.1. 313
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Figure 4: The overall architecture of LEMoE compared with conventional MoE adaptor. We assume that LEMoE is
currently at time i to edit datai using module FFNi. Left: When editing data datai, the prior experts corresponding
to previous data are all frozen, leaving only the new model FFNi and router trainable. Right: In the training stage,
depicted by the solid lines, the routing weight g(i | x) (abbreviated as gi) is computed using the instance-level
embedding and expert key vectors {k1,k2, . . . ,ki} for expert selection. During inference, as indicated by the
dashed lines, the same routing computation is employed to direct the input to the corresponding expert.

Results On the left of Figure 3, the MoE adaptor314

demonstrates significant order sensitivity. Varying315

the order of the same editing data leads to perfor-316

mance fluctuations exceeding 20 points. In 100317

data editing, these fluctuations even range from 30318

to 90 point. This substantial impact of editing order319

on model performance suggests that adopting order320

align with model preferences can greatly enhance321

editing efficiency. The results on the right reveal322

that higher within-batch semantic similarity and323

lower between-batch semantic similarity correlate324

with better editing results. These provide insights325

for designing more effective editing order.326

4 Methods327

Based on the above insights, in this section, we pro-328

vide a detailed introduction to LEMoE an advanced329

MoE adaptor with new module inserting, KV an-330

chor routing and clustering-based order planning.331

4.1 New Module Inserting332

Inspired by (Wang and Li, 2024), LEMoE intro-333

duces multiple parallel experts within the trans-334

former feed-forward network (FFN) via a bypass335

mechanism, while freezing all the model’s original336

parameters. This module is applied in only one337

transformer block of the entire model. The choice338

to use the FFN module is motivated not only by its339

traditional role in MoE but also by recent experi-340

mental findings from knowledge probing technolo-341

gies that suggest the MLP layers within the FFN342

store knowledge (Geva et al., 2021; Meng et al.,343

2022, 2023). The bypass mechanism preserves all344

the original parameters of the model, enhancing the 345

locality of model editing. 346

However, in conventional MoE adaptor, all ex- 347

perts are sequentially trained without any mech- 348

anism to protect prior editing knowledge, which 349

allows current edits to easily affect previous ones 350

and leads to severe catastrophic forgetting. Mean- 351

while, experimental results indicate that a single 352

FFN expert is sufficient to learn a batch of editing 353

data (Wang and Li, 2024). Therefore, in LEMoE, 354

we adopt a straightforward method to maintain ed- 355

its from previous learning phases. As shown on the 356

left of Figure 4, when facing a new batch of editing 357

data in the sequence, we add a new FFN module as 358

an expert to learn this batch of data and freeze the 359

expert network corresponding to the previous data. 360

By aligning the expert networks in MoE architec- 361

ture with the data batches in lifelong editing, we 362

mitigate the adverse effects of current data editing 363

on previous edits, thereby alleviating catastrophic 364

forgetting from a model mechanism perspective. 365

Specially, when the t + 1th batch in lifelong 366

editing dataset arrives, the LEMoE adaptor inte- 367

grates previous t experts denoted as f1, f2, . . . , ft, 368

a router g(i | x) which outputs the corresponding 369

coefficients for each fi based on the input x along 370

with a newly added expert ft+1. The output h of 371

this module can be expressed as: 372

h(x) = W0 · x+ λ

t+1∑
i=1

g(i | x)fi(x)

g(i | x) = Topk(
er(x)i∑
er(x)j

)

(9) 373
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where W0 is the frozen original FFN parameters,374

r(x) is the routing strategy and is modeled by one375

MLP in conventional MoE. λ is a non-negative376

weighting coefficient used to balance the old and377

new knowledge and usually set to 1.378

4.2 KV Anchor Routing379

We propose the KV anchor routing to align the380

training and inference processes for expert selec-381

tion, thereby enhancing routing consistency and382

addressing catastrophic forgetting at routing level.383

During the training phase, when the t-th batch384

in the lifelong editing dataset arrives, we freeze the385

parameters of all previous experts f1, f2, . . . , ft−1386

and introduce a new expert ft to accomplish the387

current batch editing. We allocate a key vector ki388

for each expert fi (at time t, only ft is allocated a389

new key, while the keys corresponding to previous390

experts remain frozen) and compute instance-level391

embedding features of the input as values.392

The KV anchor process begins with the j-th in-393

put sentence Xjt = {xjti }Li=1 of the current t-th394

batch data passing through the embedding layer395

of the LLM backbone to obtain Et
j (we omit the396

superscripts t for simplicity). Since Ej ∈ Rm×d397

and each key vector ki ∈ Rd have different se-398

quence lengths, we apply mean-pool operation on399

the length dimension of Ej , and obtain ej ∈ Rd.400

Then ej is fed to a sub-network to project it into the401

spaces of the key vectors for better feature align-402

ment. This consists of down and up projection:403

404
vj = W up(SiLU(W down · ej)) (10)405

where W down ∈ Rdp×d and W up ∈ Rd×dp are406

learnable projection parameters. Then, the router407

g(i | ej) in Equation 9 can be defined as:408

g(i | ej) = Topk(
ekjvj∑t
i=1 e

kivi
) (11)409

The output for the input token xjti of aggregated410

experts can be obtained:411

h(xjti ) = W0 · x+ λ
t∑

i=1

g(i | ej)fi(xjti ) (12)412

During the inference phase, when testing data413

from different batches arrive, they undergo the414

same routing computation of Equations 10 and 11415

to reach the appropriate expert. Although there416

is a possibility that the earlier testing data may be417

routed to the experts corresponding to the later data,418

we mitigate this issue by employing the clustering- 419

based editing order selection described in §4.3 420

which reduces semantic similarity between batches. 421

In summary, aligning the routing computations dur- 422

ing training and testing phases through KV anchors 423

enhances routing consistency and further mitigates 424

catastrophic forgetting. 425

4.3 Clustering-based Order Planning 426

In §3.3, we observed a correlation between im- 427

proved editing performance and editing order char- 428

acterized by high between-batch semantic similar- 429

ity and low within-batch semantic similarity. This 430

suggests that editing performance can be improved 431

by selecting editing order that align with model 432

biases. Additionally, this objective aligns with the 433

goals of clustering algorithms which aim for high 434

intra-cluster similarity and low inter-cluster simi- 435

larity. Therefore, we employed the K-means algo- 436

rithm to group the editing data based on semantic 437

similarity and preferentially selected data from the 438

same cluster for each batch during editing. Exper- 439

imental results indicate that this straightforward 440

approach is highly effective. 441

5 Experiments 442

5.1 Experimental Setups 443

Datasets and Metrics We used two lifelong 444

model editing datasets: ZsRE (Levy et al., 2017) 445

and SelfCheckGPT (Manakul et al., 2023). ZsRE 446

is a context-free Question Answering (QA) dataset 447

built upon zero-shot relation extraction, and we 448

adopt the split provided by (Zhang et al., 2024). 449

SelfCheckGPT is a dataset for evaluating the per- 450

formance of model editing methods on mitigat- 451

ing model hallucination, and we We followed the 452

GRACE (Hartvigsen et al., 2023) data processing 453

approach. Further details about the datasets are 454

provided in Appendix B.1. In terms of evaluation 455

metrics, we use the three metrics mentioned in §2: 456

Reliability (Rel.), Generality (Gen.), and Local- 457

ity (Loc.), along with the average scores (Avg.) 458

over these metrics. Notably, for the SelfCheckGPT 459

dataset,following (Wang et al., 2024), we use the 460

perplexity (PPL) to verify Reliability, and there is 461

no proper metric for generalization. 462

Baselines We compare LEMoE with the follow- 463

ing four types baselines: 464

• Fine-tuning based methods: FT-L (Meng 465

et al., 2022), FT-EWC (Kirkpatrick et al., 2016). 466
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Table 1: Lifelong editing results. Bold is the best result. T : Num Edits.

Method
ZsRE SelfCheckGPT

T = 100 T = 1000 T = 100 T = 600

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ PPL↓ Loc.↑ PPL↓ Loc.↑

LLaMA2-7B

FT-L 0.30 0.27 0.23 0.27 0.19 0.16 0.03 0.13 33.06 0.41 69.22 0.26
FT-EWC 0.83 0.74 0.08 0.55 0.76 0.69 0.08 0.51 2.10 0.16 4.56 0.24
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.04 0.88 1847.90 0.00
ROME 0.23 0.22 0.04 0.16 0.01 0.01 0.00 0.01 94.15 0.05 104.93 0.02
MEMIT 0.76 0.68 0.85 0.76 0.69 0.65 0.62 0.65 7.18 0.96 13.47 0.94
DEFER 0.20 0.12 0.27 0.20 0.03 0.03 0.74 0.27 8.91 0.19 19.16 0.12
GRACE 0.96 0.00 1.00 0.65 0.97 0.08 1.00 0.68 9.44 1.00 9.34 1.00
MEMoE 0.72 0.46 1.00 0.73 0.70 0.43 1.00 0.71 3.00 1.00 6.59 1.00

LEMoE 0.83 0.62 1.00 0.82 0.80 0.60 1.00 0.80 2.01 1.00 3.36 1.00

Mistral-7B

FT-L 0.11 0.10 0.02 0.08 0.16 0.13 0.01 0.10 1594.93 0.00 - -
FT-EWC 0.82 0.72 0.09 0.54 0.76 0.69 0.09 0.51 4.73 0.17 5.46 0.25
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23114.94 0.01 - -
ROME 0.05 0.05 0.02 0.04 0.04 0.04 0.02 0.03 103.75 0.03 241.17 0.01
MEMIT 0.73 0.71 0.88 0.77 0.73 0.70 0.62 0.68 3.22 0.97 7.28 0.95
DEFER 0.28 0.17 0.26 0.24 0.02 0.02 0.67 0.24 9.54 0.43 24.16 0.13
GRACE 1.00 0.00 1.00 0.67 1.00 0.02 1.00 0.67 9.53 1.00 9.57 1.00
MEMoE 0.70 0.43 1.00 0.71 0.70 0.41 1.00 0.70 4.96 1.00 8.91 1.00

LEMoE 0.78 0.52 1.00 0.77 0.75 0.48 1.00 0.74 3.03 1.00 4.39 1.00

FT-L directly fine-tunes a single layer’s FFN467

and FT-EWC is a continual learning fine-tuning468

methods based on Elastic Weight Consolidation.469

• Locate and edit methods: ROME (Meng et al.,470

2022), MEMIT (Meng et al., 2023). These471

methods treat FFN of transformer as a linear472

associative memory apply causal tracing to lo-473

cate the editing area within model.474

• Meta-learning methods: MEND (Mitchell475

et al., 2022a). MEND learns a hyper-network476

using additional training data to transform gra-477

dient obtained by standard fine-tuning.478

• Memory based methods: DEFER (Mitchell479

et al., 2022b), GRACE (Hartvigsen et al., 2023).480

DEFER is inspired by SERAC (Mitchell et al.,481

2022b) using an external cache to store explicit482

editing cases, while GRACE adopts a codebook483

to store relevant edits.484

Implementation Details We selected LLaMA2-485

7B and Mistral-7B as base models. The modifica-486

tion was applied to layer 18 with topk = 1. Due to487

limited computational resources, we were able to488

add a maximum of 5 FFN experts. Consequently,489

the sequential editing steps were set to 5 and each490

step contains a batch of 25 (or 200) instances, re-491

sulting in a total of 100 (or 1000) editing instances. 492

We use AdamW (Loshchilov and Hutter, 2019) as 493

the optimizer with a learning rate of 2e-4. Further 494

details are provided in the Appendix B. 495

5.2 Main Results 496

Experimental results are presented in Table 1. On 497

ZsRE dataset, LEMoE outperforms all the compar- 498

ison methods in average scores, achieving up to 499

a 12.68% improvement over the nearest competi- 500

tor. While MEMIT shows comparable performance 501

at T=100, our method demonstrates a substantial 502

performance gap in longer sequence editing task. 503

In Locality, our method consistently scores 1.00, 504

indicating minimal impact on irrelevant inputs. Al- 505

though GRACE and FT-EWC achieve higher score 506

in Reliability and Generality, these methods make 507

great sacrifices in generality and locality respec- 508

tively. Only our method achieves a better balance. 509

The performance advantage of LEMoE is more 510

pronounced on SelfCheckGPT dataset, maintain- 511

ing the lowest perplexity scores of 3.36 and 4.39 at 512

T = 600, with a maximum improvement of 26.31% 513

over the nearest competitor and a constant locality 514

score of 1.00. In summary, across the two datasets 515

and eight baselines, our method shows a clear per- 516

formance advantage. 517
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Table 2: Batch editing results. Bold is the best result,
and underline is the second-best. ZsRE. LLaMA2-7B.

Method Rel.↑ Gen.↑ Loc.↑ Avg.↑

FT-L 0.14 0.13 0.70 0.32
MEND 0.01 0.28 0.97 0.34
MEMIT 0.24 0.40 0.17 0.27
SERAC 0.89 0.16 0.81 0.62
GRACE 0.95 0.38 1.00 0.78
MEMoE 1.00 0.90 1.00 0.97
LEMoE 1.00 0.88 1.00 0.96

Table 3: Scaling to 3K edits. ZsRE. LLaMA2-7B.

Method
T = 2000 T = 3000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GRACE 0.96 0.03 1.00 0.66 0.96 0.03 1.00 0.66
MEMIT 0.64 0.58 0.55 0.59 0.58 0.53 0.47 0.53
LEMoE 0.74 0.50 1.00 0.75 0.70 0.48 1.00 0.73

6 Detailed Analysis and Discussion518

6.1 Batch Editing519

Considering the significant performance advan-520

tages of conventional MoE adaptor in batch edit-521

ing (Wang and Li, 2024), we aim to evaluate the522

changes in batch editing performance of its im-523

proved version, LEMoE, after applying the pro-524

posed optimizations. The batch size is set to 30525

here. As shown in Table 2, LEMoE continues to526

excel in batch editing, achieving perfect reliabil-527

ity and locality scores of 1.00, with only a slight528

decline in generalization. Overall, LEMoE’s per-529

formance is nearly on par with the original MoE,530

demonstrating the dual advantages in both batch531

editing and lifelong editing.532

6.2 Longer Sequence Editing533

We scale the number of lifelong editing to 3K in534

Table 3. We observe that LEMoE outperforms the535

strongest baselines MEMIT and GRACE. GRACE536

excels in reliability but almost entirely loses gen-537

eralization. While MEMIT demonstrates better538

generalization, its lower locality scores indicate539

a significant impact on unrelated data inputs, po-540

tentially affecting the model’s general ability (Gu541

et al., 2024). Only our method achieves a balanced542

editing performance. Moreover, the performance543

advantage of our approach increases with the num-544

ber of edits, highlighting the potential of LEMoE545

to handle extremely long sequential editing.546

6.3 Ablation Study547

We present a series of ablation studies to evaluate548

the influence of various model components, includ-549

ing routing strategies, embedding levels and order550

Table 4: Results of ablation study using 1k edits. Bold
is the best result. ZsRE. LLaMA2-7B.

Rel.↑ Gen.↑ Loc.↑ Avg.↑

LEMoE 0.82 0.59 1.00 0.80
+ Conventional Routing 0.70 0.43 1.00 0.71
+ Knowledge Routing 0.72 0.48 1.00 0.73
+ Token-level Embed. 0.75 0.46 1.00 0.74
+ Entity-level Embed. 0.80 0.57 1.00 0.79
- Order Planning 0.78 0.55 1.00 0.78
+ Hierarchical Cluster 0.82 0.58 1.00 0.80

planning. The experimental results are shown in 551

Table 4. Conventional routing means the router is 552

modeled by an MLP, knowledge (anchor) routing is 553

the routing strategy in MEMoE and entity-level em- 554

bedding means substitute the embeddings of named 555

entities from the input for ej in Equation 10. More 556

details in Appendix B.4. 557

We observe that: (1) Different model settings 558

exhibit minimal impact on locality but significantly 559

affect generality. (2) Alteration in routing strategy 560

notably affect reliability and generality, and con- 561

ventional routing yields the lowest scores across all 562

metrics. Meanwhile, employing knowledge rout- 563

ing marginally enhances performance yet still lags 564

behind LEMoE, highlighting the pronounced effi- 565

cacy of KV-anchor routing. (3) Using token-level 566

embeddings for routing inputs notably diminishes 567

model generality. A possible reason is that token 568

representation may not be suitable for measuring 569

semantic similarity in autoregressive LLMs (Wang 570

et al., 2024), thereby hindering router’s ability to 571

router the same input to the same expert. (4) Substi- 572

tuting hierarchical clustering for K-means in edit- 573

ing order planning minimally impacts model perfor- 574

mance, yet K-means demonstrates higher computa- 575

tional efficiency. This may stem from our utiliza- 576

tion of a small number of clusters and a large batch 577

size during dataset construction, which provides 578

clustering algorithms with greater fault tolerance, 579

thereby partially masking the performance differ- 580

ences between the two clustering algorithms. 581

7 Conclusion 582

In this paper, We propose LEMoE, an advanced 583

MoE adaptor for lifelong model editing. We an- 584

alyze three factors influencing the effectiveness 585

of MoE adaptor in lifelong model editing. Then, 586

we propose three optimization modules. These 587

modules align the routing computation processes 588

between training and testing phases, ensuring the 589

same inputs are routed to the same experts. Experi- 590

mental results validate the effectiveness of LEMoE 591

across multiple models and datasets. 592
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Ethics Statement593

Our research on model editing and the proposed594

LEMoE module adheres to the ethical guidelines595

outlined by the ACL Ethics Policy. The primary596

objective of our work is to enhance lifelong edit-597

ing performance in LLMs. We recognize the crit-598

ical importance of addressing privacy concerns599

when model editing publicly accessible, central-600

ized LLMs with private data. And, we acknowl-601

edge the potential risks associated with direct pa-602

rameter edits within models, especially when using603

harmful data, which require careful mitigation. It’s604

essential to bear in mind that ill-intentioned model605

editing could lead the model to generate harmful606

or inappropriate outputs. Therefore, ensuring safe607

and responsible practices in model editing is of608

paramount importance. The application of these609

techniques should be guided by ethical considera-610

tions, with safeguards in place to prevent misuse611

and the production of harmful results. Our com-612

mitment to accountability, responsible governance,613

and continuous ethical assessment underscores our614

dedication to upholding the highest standards of615

integrity in the development and deployment of616

model editing methods.617

Limitations618

There are several limitations to consider for future619

directions of model editing of large language mod-620

els. Firstly, when the learning sequence scales to621

more data, such as hundreds of batches or tens of622

thousands of editing instances, continually allocat-623

ing an expert block for each batch would lead to624

significant computational and storage costs. There-625

fore, exploring methods to prune and merge similar626

experts in the continual learning process presents627

an interesting research direction. Secondly, our628

work primarily focuses on the acquisition of factual629

knowledge, neglecting other types of knowledge.630

We prioritize the accuracy of knowledge learn-631

ing while paying less attention to other aspects,632

such as knowledge reasoning abilities. Thirdly,633

due to hardware constraints, our investigation was634

limited to models with up to 7 billion parame-635

ters with 5 experts. Additionally, we concentrated636

on decoder-only autoregressive models, excluding637

encoder-decoder architectures. Further research638

that replicates our study using larger-scale models639

with much more experts and different architecture640

would be beneficial in confirming our findings.641
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A Related Work1077

A.1 Model Editing1078

Model editing is a new and active research area1079

where the goal is to make targeted changes to a1080

pre-trained model’s behavior (Zhang et al., 2024).1081

Given the fast-growing parameter sizes of LLMs,1082

frequently updating LLMs with new knowledge1083

through retraining is more and more expensive.1084

Hence, it is vital to effectively edit the LLMs’1085

knowledge without retraining. Previous studies1086

have explored multiple methods for editing the1087

knowledge of LLMs, which can be broadly catego-1088

rized into two streams based on whether it alters1089

the parameters of the original model (Yao et al.,1090

2023; Zhang et al., 2024):1091

Preserve model parameters: (1) Retrieve aug- 1092

mentation. These techniques leverage an exter- 1093

nal knowledge base to enrich or correct informa- 1094

tion accessible to language models. These aug- 1095

mented knowledge bases seamlessly integrate with 1096

the base model, enabling effective retrieval of rel- 1097

evant information when prompted (Murty et al., 1098

2022; Madaan et al., 2022; Li et al., 2023a). For 1099

example, IKE (Zheng et al., 2023) employs an in- 1100

context learning approach that adjusts language 1101

model outputs using corpus-based demonstrations 1102

guided by similarity metrics, thereby obviating the 1103

need for gradient-based adjustments. (2) Adding 1104

additional parameters: This paradigm involves 1105

introducing additional trainable parameters to aug- 1106

ment a language model’s existing knowledge, while 1107

preserving its original parameters in a frozen state. 1108

T-Patcher (Huang et al., 2023) and CaliNET (Dong 1109

et al., 2022) exemplify this paradigm by integrating 1110

specific neurons or patches into the final layer of 1111

their Feed-Forward Networks. T-Patcher assigns 1112

individual neurons to each distinct error, while Ca- 1113

liNET incorporates multiple neurons to handle var- 1114

ious knowledge scenarios. In contrast, GRACE 1115

(Hartvigsen et al., 2023) employs a discrete code- 1116

book mechanism to dynamically add and update 1117

elements, enhancing the model’s predictive capa- 1118

bilities over time. (3) Meta learning Recent meta- 1119

learning methods use hypernetworks for aiding 1120

editing. MEND (Mitchell et al., 2022a) introduces 1121

a hypernetwork designed to decouple fine-tuning 1122

gradients into updates that generalize edits with- 1123

out compromising performance on unrelated in- 1124

puts. To mitigate the cancellation issue inherent 1125

in MEND, MALMEN (Tan et al., 2023) employs 1126

a hyper-network to generate weight shifts for edit- 1127

ing, formulating the aggregation of these shifts as 1128

a least squares problem. 1129

Modify model parameters: This methodology 1130

begins by identifying parameters associated with 1131

specific knowledge and directly adjusting them. 1132

The Knowledge Neuron (KN) approach (Dai et al., 1133

2022) introduces a technique to attribute knowl- 1134

edge to individual "knowledge neurons" and subse- 1135

quently updates these neurons accordingly. ROME 1136

(Meng et al., 2022) utilizes causal mediation analy- 1137

sis to pinpoint areas requiring modification. Both 1138

KN and ROME operate under the constraint of edit- 1139

ing one factual association at a time. To overcome 1140

this limitation, MEMIT (Meng et al., 2023) extends 1141

ROME’s framework, enabling simultaneous edit- 1142
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ing across multiple instances. Building on MEMIT,1143

PMET (Li et al., 2023b) integrates attention val-1144

ues to achieve superior performance enhancements.1145

COMEBA-HK (Li et al., 2024b) identifies the Lo-1146

cal Editing Scope and extends MEMIT for sequen-1147

tial editing.1148

A.2 Mixture of Experts1149

The concept of MoE, particularly when combined1150

with sparse routing, is recognized for significantly1151

enhancing model capacity with minimal computa-1152

tional overhead (Fedus et al., 2022). Key distinc-1153

tions in this approach include: i) adapter experts1154

are not trained during the pre-training of the base1155

model, ii) they are parameter-efficient, and iii) they1156

are tailored to specific tasks, unlike token-level1157

opaque computation units whose specialization is1158

not easily interpretable (Jiang et al., 2024). Regard-1159

ing the second point, (Wang et al., 2022; Zadouri1160

et al., 2023) utilize routing each example to a set1161

of experts, demonstrating improved performance1162

on unseen tasks. (Gupta et al., 2022) implements1163

a separate router for each task and selects a router1164

from a similar task based on domain knowledge.1165

(Ye et al., 2022) proposes task-level MoEs, where1166

a collection of transformer layers acts as experts,1167

and a router dynamically selects from these ex-1168

perts. Additionally, several recent studies have1169

proposed methods for routing queries to special-1170

ized pretrained open-source LLMs (Lu et al., 2023;1171

Shnitzer et al., 2023).1172

A.3 Continual Learning1173

Continual Learning (CL) (Shi et al., 2024; Wu1174

et al., 2024a) is an essential aspect of machine1175

learning as it enables models to adapt to new tasks1176

while retaining performance on previous ones. It1177

mainly focus on the issue of catastrophic forget-1178

ting in deep learning models when exposed to1179

new knowledge (Lange et al., 2022). Recent re-1180

search has explored diverse approaches in this do-1181

main. Among these approaches, continual fine-1182

tuning stands out, involving the iterative refinement1183

of LLMs with incoming instances. For instance,1184

(Lin et al., 2022) conducts an extensive investiga-1185

tion into this method. However, it has been noted1186

that integrating regularized fine-tuning techniques1187

such as Elastic Weight Consolidation (Kirkpatrick1188

et al., 2016), Experience Replay (Rolnick et al.,1189

2019), and Maximally Interfered Replay (Aljundi1190

et al., 2019) can lead to a decline in performance1191

on earlier tasks while preserving some memory1192

of past inputs. This observation underscores the 1193

challenges unique to editing in contrast to conven- 1194

tional continual fine-tuning (Henn et al., 2021), 1195

particularly given the uneven distribution of ed- 1196

its. One promising avenue in continual learning 1197

involves the adoption of key-value methodologies, 1198

inspired by advancements in computer vision (Liu 1199

et al., 2021; van den Oord et al., 2017). Notably, 1200

discrete key-value methods have proven effective 1201

in managing shifting distributions (Träuble et al., 1202

2023). These methods cache values to ensure in- 1203

puts remain within distribution bounds for down- 1204

stream encoders, thereby enabling the integration 1205

of longer-term memory, contingent on available 1206

computational resources. 1207

A.4 Data Clustering for LLMs 1208

Data clustering methods for LLMs have been pro- 1209

posed to enhance performance and reduce task in- 1210

terference (Fifty et al., 2021; Gururangan et al., 1211

2023; Gou et al., 2023). These methods include 1212

clustering based on similarities computed using tf- 1213

idf and neural embeddings, K-means clustering 1214

with balanced linear assignment, and soft clus- 1215

tering with Gaussian Mixture Models (GMMs) 1216

(Chronopoulou et al., 2023; Gururangan et al., 1217

2023; Duan et al., 2021). Recent work by (Zhou 1218

et al., 2022) highlights the potential of adapter pa- 1219

rameters as effective task embeddings for cluster- 1220

ing. Additionally, a similar observation regarding 1221

task gradients has been made by (Vu et al., 2020). 1222

B Implementation Details 1223

B.1 Datasets Details 1224

ZsRE The ZsRE dataset is a context-free Ques- 1225

tion Answering (QA) dataset that has been ex- 1226

tensively studied in the model editing literature 1227

(Meng et al., 2022, 2023; Mitchell et al., 2022b; 1228

Hartvigsen et al., 2023; Wang and Li, 2024). Each 1229

record in this dataset includes an editing statement 1230

xe
i with target answer ye

i , a paraphrase prompt 1231

xgeni and and a locality prompt xloc. We adopt 1232

the same train/test split as (Mitchell et al., 2022a), 1233

consisting of 163,196 training examples and 19,086 1234

test examples. Notably, MEND is the only method 1235

that requires fitting a hyper network on the training 1236

set; other methods discard the training set and di- 1237

rectly perform edits and evaluations on the test set. 1238

For our experiments, we randomly sampled 1k and 1239

3k records from the test set to form the edit sets. 1240
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Table 5: An editing dataset example from ZsRE and SelfCheckGPT.

Dataset Type Text

ZsRE
xe
i ,y

e
i Which continent is Berkner Island in? South America

xloci ,yloc who gets the golden boot if its a tie? shared
xgeni ,y

e
i On which continent is Berkner Island located? South America

SelfCheckGPT

xe
i ,y

e
i This is a Wikipedia passage about heinz christian pander. Heinz Christian Pander

(1794 - 1865) was a German anatomist and embryologist who was born in Riga, Latvia.
He studied medicine at the University of Dorpat and later at the University of Berlin.
In 1820, he took part in a scientific expedition to Bokhara as a naturalist.

xloc,yloc Tired and restlessly, drifting in and out of sleep. Hearing crashing and banging,
thinking the roof will cave in. Not alert enough to quite know what. it was, I yelled
loudly for whoever was making those noises at such an hour to stop. They heard
and listened, I’m guessing

Table 6: Dataset statistics for main results. Locality
Data is the irrelevant data of the editing process. T is
the number of samples. Pre-edit is the unedited model’s
performance on each dataset.

SETTING EDITING DATA T Pre-edit (LLaMA/Mistral)

QA ZsRE 1,000 0.36/0.39 ACC
Hallucination SelfCheckGPT 600 27.4/19.4 PPL

SelfCheckGPT We employ SelfCheckGPT1241

(Manakul et al., 2023),the same dataset as GRACE,1242

to evaluate the effectiveness of Model Editors in1243

reducing hallucinations in autoregressive language1244

models. This dataset consists of highly inaccurate1245

sentences generated from GPT-3 (Brown et al.,1246

2020), which are then replaced with corresponding1247

accurate sentences from Wikipedia. This setup1248

mirrors real-world deployment scenarios where1249

models exhibit "unexpected behaviors". The edits1250

in this dataset are significantly longer compared1251

to ZsRE, presenting a more challenging editing1252

environment. Unlike GRACE, which utilized1253

GPT2-XL (1.5B), our primary experiments use1254

larger LLMs, specifically LLaMA and Mistral,1255

each with 7B parameters. We measure the1256

retention of xloc from the base model, RedPajama1257

(Computer, 2023), a publicly available version of1258

LLaMA’s pre-training data.1259

B.2 Implementation of Baselines1260

FT-L We followed the procedures outlined in1261

(Wang et al., 2024): all other layers of the LLMs1262

remain frozen, and only a single MLP layer un-1263

dergoes fine-tuning using an autoregressive loss1264

function. Furthermore, we impose a L∞ norm con-1265

straint to ensure that the parameters do not devi-1266

ate significantly from the pretrained distribution.1267

Employ the Adam optimizer with consideration 1268

of learning rates at 1e-5, 1e-4, and 5e-4, and con- 1269

duct gradient descents for 50 iterations, ultimately 1270

reporting the best results at a learning rate of 5e-4. 1271

FT-EWC Elastic Weight Consolidation (EWC) 1272

effectively mitigates catastrophic forgetting by up- 1273

dating model weights using the Fisher information 1274

matrix, which is computed based on past parame- 1275

ter updates and scaled by a factor λ (Kirkpatrick 1276

et al., 2016). In line with (Hartvigsen et al., 2023), 1277

our implementation does not incorporate L∞ norm 1278

constraints, setting the learning rate at 1e-2, the 1279

λewc penalty factor at 0.1, and the number of re- 1280

play instances at 10. 1281

MEND MEND (Mitchell et al., 2022a) performs 1282

model editing by employing a hyper-network to 1283

transform the gradients derived from standard fine- 1284

tuning. This process involves decomposing the 1285

model gradients into a low-rank format (rank=1) 1286

before converting them into new gradients, which 1287

are subsequently applied to the target layer for pa- 1288

rameter updates. During training, a small auxiliary 1289

hyper-network processes editing examples (xe
i ,y

e
i ) 1290

and (xgeni ,y
e
i ). The training loss for MEND con- 1291

sists of the standard autoregressive loss combined 1292

with the KL divergence loss, measuring the model’s 1293

output on (xgeni ,y
e
i ) before and after editing. This 1294

hyper-network is pivotal in the editing procedure. 1295

Due to the substantial computational resources re- 1296

quired to train the meta-network for, the results are 1297

from (Wang et al., 2024). 1298

ROME ROME (Meng et al., 2022) employs 1299

causal analysis to identify knowledge residing in 1300

specific MLP layers and refines the entire matrix 1301

via least squares approximation. This approach as- 1302
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sumes MLP as the central repository of knowledge1303

(Geva et al., 2021), incrementally injecting individ-1304

ual pieces of information into the MLP through a1305

Lagrangian residual term at each iteration. Follow-1306

ing (Wang et al., 2024), in LLaMA and Mistral,1307

ROME edits the fifth layer, while MEMIT edits1308

layers [4,5,6,7,8].1309

MEMIT The MEMIT utilized in this study, de-1310

noted as MEMIT-MASS as introduced in (Wang1311

et al., 2024), differs notably from its original coun-1312

terpart. In contrast to sequential editing, MEMIT-1313

MASS facilitates batch processing for modifying1314

multiple knowledge fragments concurrently. Sup-1315

pose we collect streaming errors as (X ,Y) =1316

{(x0,y0), (x1,y1), ..., (xT ,yT )} and inject them1317

collectively into the MLP, it only involves a sin-1318

gle editing operation on the original model as1319

fΘT
= MEMIT(fΘ0 ,X ,Y). Despite its drawback1320

of lacking real-time correction capabilities, we in-1321

clude this approach as a baseline in our experi-1322

mental evaluations, given the extremely bad perfor-1323

mance of the original MEMIT framework.1324

DEFER In GRACE, a reimplementation of1325

SERAC (Mitchell et al., 2022b) is utilized, denoted1326

as DEFER. DEFER integrates a network denoted as1327

g (akin to the scope classifier in SERAC). This net-1328

work g predicts whether to rely on: 1) predictions1329

from the LLMs, or 2) predictions from a newly1330

introduced model. This new model, configured as1331

a single-layer linear network o with a sigmoid acti-1332

vation function, parallels the counterfactual model1333

in SERAC. Throughout the editing phase, g and1334

o undergo joint fine-tuning processes. The exper-1335

iment with learning rates of 7e-5, 7e-4, and 1e-3,1336

and ultimately report using 7e-5 (optimal).1337

GRACE GRACE (Hartvigsen et al., 2023) uti-1338

lizes a discrete key-value codebook and main-1339

tains the codebook throughout the editing flow by1340

adding, expanding, and splitting KEYs. During the1341

inference phase, it retrieves the nearest KEY and1342

determines whether to replace the activation of the1343

hidden layer output. We adhere to the meticulously1344

crafted parameters outlined in the original study,1345

configuring the optimization of the learning rate to1346

a value of 1 and using “replace last” to only replace1347

the activation of the last token in autoregressive sce-1348

narios.. The iterative process for optimizing these1349

values spans 100 cycles, with an initial ϵ = 1.1350

MEMoE MEMoE (Wang and Li, 2024) updates1351

knowledge using a bypass MoE structure, keeping1352

the original parameters unchanged to preserve 1353

the general ability of LLMs. And, the knowledge 1354

anchor routing ensures that inputs requiring similar 1355

knowledge are routed to the same expert, thereby 1356

enhancing the generalization of the updated 1357

knowledge. Following the parameters identified 1358

in the original paper, we consulted 4 experts, 1359

setting the top − k value to 1 and a learning 1360

rate of 2e-4. The modification is applied to 1361

model.layers[16].mlp.up_proj.weight and 1362

model.layers[16].mlp.down_proj.weight. 1363

We also adopt auxiliary loss for balancing the top-k 1364

selection of routing following (Fedus et al., 2022). 1365

B.3 Training Details of LEMoE 1366

The training loss for the attentive learning of the 1367

t-th batch data Bt is: 1368

Ltask = −
∑

(xt,yt)∈Tt

logP
(
yt | xt; θm, θf , θproj, θk

)
(13) 1369

where θm, θf , θproj and θk are parameters of the 1370

LLM backbone, the experts, the query projection 1371

layer and the set of all key vectors, respectively. 1372

And only those parameters belongs to the current 1373

t-th task are trainable, including θft , θproj and θkt . 1374

The hyperparameters for the ZsRE and Self- 1375

CheckGPT are identical. Specially, We use 1376

the AdamW (Loshchilov and Hutter, 2019) 1377

as the optimizer with a learning rate of 2e-4. 1378

The modification of the model is applied to 1379

model.layers[18].mlp.up_proj.weight and 1380

model.layers[18].mlp.down_proj.weight. 1381

All the experiments are deployed on NVIDIA RTX 1382

3090 Tensor Core GPUs, and we use 4 GPUs 1383

for training and single GPU for evaluation. For 1384

lifelong editing, due to computational constraints, 1385

we can accommodate a maximum of 5 experts. 1386

Consequently, the batch size in the sequence is 1387

determined by the total number of edits and the 1388

number of experts. For instance, when there are 1389

100 edits and 5 experts, the batch size is set to 20; 1390

whereas with 1000 edits, the batch size scales up to 1391

200. For bath editing in §6.1, the batch size is 30 1392

and all the other parameters are the same as above. 1393

B.4 Implementation for Ablation Study 1394

In §6.3, we conducted an ablation study on several 1395

modules of LEMoE. Here, we detail the implemen- 1396

tation of these ablations. In Table 4, Conventional 1397

routing means the router is modeled by a single- 1398

layer MLP, with the preservation of the insertion 1399
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Figure 5: Reliability, Generality and Locality of conventional MoE under different stage evaluation. “Immediate
evaluation” occurs immediately after each edit, “Final evaluation” occurs after all edits in lifelong editing. Model:
LLaMA2-7B. Dataset: ZsRE.

method. Knowledge routing is the knowledge an-1400

chor routing in MEMoE for short, also maintains1401

the insertion method. Token-level embedding in-1402

volves substituting ej in Equation 12, which means1403

g(i | ej) = g(i | xjti . For entity-level embedding,1404

we initially utilize the NLTK tool 1 for extracting1405

named entities from the input instance. In cases1406

where there are multiple named entities present1407

in the input, we utilize the average pooling of the1408

embeddings of these entities. Subsequently, we1409

replace ej in Equation 10 with this embedding vec-1410

tor as the input to the sub-network to obtain the1411

corresponding “value” of the input instances. All1412

the other training hyperparameters are the same1413

detailed in Appendix B.3.1414

C More Results and Analyses1415

C.1 More results for Influencing Factors1416

In §3.1, we employed two different evaluation1417

methods: (1) a standard evaluation conducted on1418

all edited data only after all edits were completed,1419

and (2) an evaluation conducted immediately after1420

each edit to assess the effectiveness of these edits1421

at the current stage. Figure 2 shows the variations1422

in the reliability metrics, and we further provide1423

the changes in all three metrics here. To better1424

illustrate these trends, we averaged the metrics1425

over every four steps in a sequence of 100 edit-1426

ing steps. As shown in Figure 5, both reliability1427

and generalization exhibit catastrophic forgetting1428

phenomenon, where subsequent edits significantly1429

affect the performance on prior data. This effect1430

is most pronounced in the reliability metric. Ad-1431

ditionally, around step 80, minimal fluctuations in1432

1https://www.nltk.org

the current editing reliability result in substantial 1433

oscillations in generality. This can be attributed 1434

to the fact that, like human, a model must first ac- 1435

curately learn knowledge before it can generalize 1436

that knowledge. Thus, the generality metric is, to 1437

some extent, contingent upon reliability. Regard- 1438

ing locality, the overall level remains consistently 1439

high, above 0.97, and thus the graph shows no 1440

discernible pattern of fluctuations. This further cor- 1441

roborates that knowledge editing through bypass 1442

mechanisms minimally impacts the model’s gener- 1443

alization capability (Wang and Li, 2024). 1444

C.2 Case Study 1445

In Table 7, we present bad cases of using LEMoE 1446

to edit the LLaMA-2-7B on the ZsRE dataset and 1447

mitigating these failures is critical for future work 1448

in model editing. We observe that: 1449

i) errors occur only in part of the tokens, and 1450

these errors constitute a large proportion of the 1451

bad cases, indicating that the edits have not been 1452

sufficiently fitted. We wonder whether employing 1453

different learning rates and epochs for each batch 1454

in lifelong editing could alleviate this issue through 1455

more refined training. 1456

ii) displays cases where the entire output is in- 1457

correct. These types of errors are the most common 1458

occurrences. 1459

iv) presents cases of generalization failure. For 1460

example in prompt of last line, where the model 1461

answered “1942” which is partially correct, but 1462

did not fully follow the ground truth, indicating 1463

significant room for improvement in the accuracy 1464

of generalized edits. 1465

Meanwhile, in iii) we surprisingly find that even 1466

when LEMoE errs on the Edit Prompt, it can cor- 1467
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Table 7: Failure cases of LEMoE. ✔✗ represents errors in part of the tokens, ✗represents complete output errors
(i.e.,factual failures), and ✓indicates the expected exact match. Italics correspond to generality prompt. LLaMA2-7B.

Prompt Edit Target Post-Edit Output

i

What level is Javan surili’s iucn conservation status? critically threatened near threatened ✔✗

What is Javan surilis ucn conservation status? critically threatened threatened ✔✗

The point in time of Air France Flight 447 was when? 12 July 1944 12 July 1967 ✔✗

When did Air France Flight 447 occur? 12 July 1944 12 July 1967 ✔✗

ii

Which war was William Babcock Hazen in? World War II US Civil War ✗
What war did William Babcock Hazen go to? World War II Spanish Civil War ✗
When was the inception of Parcelforce? 1961 1963 ✗
When was Parcelforce formed? 1961 1960 ✗

iii
What team is Nicolas Raffault associated with? Arizona Coyotes Aqua ✗
Which team is Nicolas Raffault associated with? Arizona Coyotes Arizona Coyotes ✓
What sports team was Petteri Nummelin a member of? Columbus Blue

Bombers
Cleveland Monsters ✗

In which sports team was Petteri Nummelin a member? Columbus Blue
Bombers

Columbus Blue Bombers ✓

iv

What level is Javan surili’s iucn conservation status? critically threatened nearlly threatened ✓
What state is Qaleh Lan in? critically threatened unknown ✗
When did Battle of the Java Sea occur? 27 February 1942 27 February 1942 ✓
When did the battle on the Java Sea begin? 27 February 1942 1942 ✔✗

rectly answer its paraphrase prompt. Upon closely1468

examining these anomalous cases, we found that1469

they predominantly pertain to question-answering1470

scenarios within sports contexts, such as inquiries1471

about a person’s team affiliation. We hypothesize1472

that this phenomenon may stem from the relatively1473

limited number of teams in sports contexts, com-1474

bined with the higher number of athletes and the1475

occurrence of name duplication. Consequently, the1476

model may accidentally provide correct answers to1477

some of these questions.1478

In summary, LEMoE can handle contextual in-1479

formation correctly in some cases but falls short in1480

specific editing instructions, suggesting that opti-1481

mizing editing instructions (modifying the editing1482

context) may be a direction for improvement.1483

C.3 More Ablation Results1484

As an extension §6.3, we evaluate the effectiveness1485

of LEMoE applied to different layers. For experi-1486

mental setup, we utilize the LLama2-7b model and1487

the ZsRE dataset. Lifelong editing involves 10001488

instances, with all the other training hyperparam-1489

eters consistent as detailed in Appendix B.3. Ex-1490

perimental results are depicted in Table 8. Notably,1491

the 18-th layer exhibits the most significant editing1492

improvements, achieving peak performance across1493

all metrics. Conversely, the first layer demonstrates1494

the least improvement, and the editing hardly takes1495

effect in the low-level transformer block. In con-1496

trast, high-level transformer blocks display pro-1497

Table 8: Performance of LEMoE on different layer of
LLaMA2-7B using ZsRE.

Layer Rel.↑ Gen.↑ Loc.↑ Avg.↑

0 0.28 0.14 1.00 0.47
2 0.55 0.41 1.00 0.65
4 0.52 0.34 1.00 0.62
6 0.44 0.25 1.00 0.56
8 0.48 0.26 1.00 0.58
10 0.47 0.25 1.00 0.57
12 0.54 0.26 1.00 0.60
14 0.58 0.33 1.00 0.64
16 0.77 0.55 1.00 0.77
18 0.80 0.60 1.00 0.80
20 0.76 0.59 1.00 0.79
22 0.70 0.54 1.00 0.75
24 0.74 0.51 1.00 0.75
26 0.77 0.56 1.00 0.78
28 0.73 0.48 1.00 0.74
30 0.43 0.24 1.00 0.56

nounced editing effects, maintaining high reliabil- 1498

ity consistently from the 16-th layer onwards. How- 1499

ever, significant degradation in editing efficacy is 1500

noted towards the 30-th layer, possibly due to the in- 1501

creased proximity to the output. On the other hand, 1502

locality remains unaffected, consistently scoring 1503

1.00. Thus, our findings further validate that the 1504

high-level transformer blocks of LM based on the 1505

transformer architecture contain factual informa- 1506

tion, and editing of these layers will have a signifi- 1507

cant effect (Yao et al., 2024). 1508
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C.4 LEMoE with LoRA structure1509

In the era of LLMs, parameter-efficient fine-tuning1510

(PEFT) methods such as LoRA have proven highly1511

effective and convenient for achieving impressive1512

results across various downstream tasks. LoRA1513

(Hu et al., 2022), proposes a technique that decom-1514

poses the update gradient matrix into two small1515

rank-n matrices, significantly reducing the memory1516

requirements for training LLMs. Meanwhile, in1517

fields of MoE, some studies have explored replac-1518

ing traditional MoE structures with LoRA (Zadouri1519

et al., 2023; Wu et al., 2024b). Consequently, we1520

replace the MLP-based expert networks in LEMoE1521

with LoRA modules. Given the challenging nature1522

of lifelong learning tasks, we evaluate the perfor-1523

mance of this low-parameter model structure on1524

batch editing tasks with batch size set to 30.1525

We investigated the effects of varying the num-1526

ber of experts (Exp.), different LoRA ranks, and1527

different topk values. Detailed experimental re-1528

sults are provided in the Table 9 to facilitate1529

further research. We conducted experiments1530

on all even-numbered layers, expert number in1531

[1,10,20], topk in [1,10,20] and LoRA Rank in1532

[2,4,8,16,32,64,128,256,512,1024,2048]. We filter1533

out results with Reliability below 0.1, Generality1534

below 0.1, and Locality below 0.5. It is evident1535

that this method performs poorly in editing the low-1536

level transformer blocks (with results falling below1537

the selection criteria and many being zero, hence1538

not presented in the table). Meanwhile, the higher1539

the layer being edited, the better the performance1540

observed. This LEMoE-LoRA achieved optimal1541

performance with 30 layers, 10 experts, a LoRA1542

rank of 2048, and a topk value of 10.1543
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Table 9: Experimental Results of LEMoE with LoRA module.

Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑
4 10 10 1024 0.13 0.10 0.53 0.26
4 10 10 2048 0.30 0.23 0.68 0.41
4 20 5 512 0.23 0.17 0.58 0.33
4 20 10 1024 0.30 0.27 0.50 0.36
6 20 5 1024 0.17 0.17 0.67 0.33
8 1 1 1024 0.13 0.10 0.62 0.28
8 1 1 2048 0.30 0.20 0.90 0.47
8 10 1 512 0.17 0.17 0.65 0.33
8 10 5 2048 0.40 0.13 0.67 0.40
8 10 10 1024 0.13 0.10 0.62 0.28
8 10 10 2048 0.23 0.10 0.78 0.37
8 20 5 1024 0.10 0.10 0.77 0.32
8 20 10 512 0.17 0.13 0.90 0.40
10 10 5 2048 0.13 0.20 0.93 0.42
10 20 5 512 0.13 0.13 0.93 0.40
10 20 5 1024 0.23 0.17 0.93 0.44
10 20 10 1024 0.10 0.10 0.95 0.38
12 1 1 2048 0.30 0.13 0.98 0.47
12 10 1 1024 0.17 0.10 0.68 0.32
12 10 5 1024 0.27 0.17 0.95 0.46
12 10 5 2048 0.23 0.13 0.98 0.45
12 10 10 1024 0.23 0.10 0.93 0.42
12 10 10 2048 0.23 0.17 0.98 0.46
12 20 5 512 0.20 0.10 0.98 0.43
12 20 5 1024 0.37 0.23 0.97 0.52
12 20 10 512 0.23 0.13 0.98 0.45
12 20 10 1024 0.20 0.10 0.98 0.43
14 1 1 16 0.13 0.10 0.97 0.40
14 1 1 512 0.17 0.10 0.98 0.42
14 1 1 1024 0.30 0.10 0.98 0.46
14 1 1 2048 0.33 0.17 1.00 0.50
14 10 1 128 0.13 0.10 0.68 0.31
14 10 1 512 0.40 0.30 0.98 0.56
14 10 1 1024 0.40 0.23 1.00 0.54
14 10 1 2048 0.57 0.43 1.00 0.67
14 10 5 512 0.27 0.17 0.98 0.47
14 10 5 1024 0.23 0.20 0.98 0.47
14 10 5 2048 0.50 0.43 1.00 0.64
14 10 10 16 0.13 0.10 0.95 0.39
14 10 10 128 0.20 0.20 1.00 0.47
14 10 10 512 0.23 0.20 1.00 0.48
14 10 10 1024 0.27 0.13 1.00 0.47
14 10 10 2048 0.40 0.17 1.00 0.52
14 20 1 1024 0.37 0.37 0.88 0.54
14 20 5 128 0.17 0.13 0.98 0.43
14 20 5 512 0.37 0.20 1.00 0.52
14 20 5 1024 0.40 0.23 0.97 0.53

Continued on next page
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Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

14 20 10 128 0.10 0.10 0.98 0.39
14 20 10 512 0.20 0.13 1.00 0.44
14 20 10 1024 0.30 0.20 1.00 0.50
16 1 1 128 0.20 0.10 1.00 0.43
16 1 1 512 0.37 0.30 0.98 0.55
16 1 1 1024 0.60 0.43 1.00 0.68
16 1 1 2048 0.60 0.43 0.98 0.67
16 10 1 512 0.43 0.37 0.95 0.58
16 10 1 1024 0.47 0.33 0.93 0.58
16 10 1 2048 0.73 0.50 0.93 0.72
16 10 5 16 0.17 0.10 0.97 0.41
16 10 5 128 0.17 0.13 1.00 0.43
16 10 5 512 0.50 0.27 1.00 0.59
16 10 5 1024 0.37 0.17 1.00 0.51
16 10 5 2048 0.53 0.20 1.00 0.58
16 10 10 16 0.20 0.10 1.00 0.43
16 10 10 128 0.33 0.27 1.00 0.53
16 10 10 512 0.40 0.33 1.00 0.58
16 10 10 1024 0.57 0.43 0.97 0.66
16 10 10 2048 0.63 0.33 0.98 0.65
16 20 1 128 0.33 0.13 0.80 0.42
16 20 1 512 0.37 0.17 0.97 0.50
16 20 1 1024 0.40 0.33 1.00 0.58
16 20 5 128 0.33 0.27 1.00 0.53
16 20 5 512 0.47 0.27 1.00 0.58
16 20 5 1024 0.70 0.43 1.00 0.71
16 20 10 128 0.17 0.13 1.00 0.43
16 20 10 512 0.23 0.10 1.00 0.44
16 20 10 1024 0.43 0.23 1.00 0.56
18 1 1 128 0.43 0.33 1.00 0.59
18 1 1 512 0.50 0.33 1.00 0.61
18 1 1 1024 0.57 0.37 1.00 0.64
18 1 1 2048 0.77 0.53 1.00 0.77
18 10 1 128 0.23 0.13 0.93 0.43
18 10 1 512 0.53 0.33 0.98 0.62
18 10 1 1024 0.20 0.20 0.77 0.39
18 10 1 2048 0.33 0.30 0.95 0.53
18 10 5 16 0.30 0.13 0.98 0.47
18 10 5 128 0.30 0.23 1.00 0.51
18 10 5 512 0.43 0.23 1.00 0.56
18 10 5 1024 0.53 0.40 1.00 0.64
18 10 5 2048 0.73 0.53 1.00 0.76
18 10 10 16 0.17 0.13 1.00 0.43
18 10 10 128 0.47 0.30 1.00 0.59
18 10 10 512 0.63 0.37 1.00 0.67
18 10 10 1024 0.67 0.40 1.00 0.69
18 10 10 2048 0.70 0.53 1.00 0.74
18 20 1 128 0.30 0.20 0.92 0.47

Continued on next page
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Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

18 20 1 512 0.40 0.27 0.90 0.52
18 20 1 1024 0.47 0.43 0.98 0.63
18 20 5 16 0.27 0.17 0.75 0.39
18 20 5 128 0.47 0.27 0.98 0.57
18 20 5 512 0.53 0.33 0.98 0.62
18 20 5 1024 0.67 0.50 1.00 0.72
18 20 10 16 0.27 0.17 0.97 0.47
18 20 10 128 0.30 0.27 1.00 0.52
18 20 10 512 0.50 0.33 1.00 0.61
18 20 10 1024 0.57 0.30 1.00 0.62
20 1 1 128 0.50 0.27 0.98 0.58
20 1 1 512 0.60 0.33 1.00 0.64
20 1 1 1024 0.63 0.33 1.00 0.66
20 1 1 2048 0.70 0.40 1.00 0.70
20 10 1 128 0.47 0.37 0.93 0.59
20 10 1 512 0.40 0.43 0.97 0.60
20 10 1 1024 0.33 0.20 0.88 0.47
20 10 1 2048 0.37 0.37 0.85 0.53
20 10 5 16 0.37 0.20 1.00 0.52
20 10 5 128 0.50 0.20 1.00 0.57
20 10 5 512 0.40 0.23 1.00 0.54
20 10 5 1024 0.57 0.23 1.00 0.60
20 10 5 2048 0.67 0.30 1.00 0.66
20 10 10 16 0.30 0.20 1.00 0.50
20 10 10 128 0.47 0.20 1.00 0.56
20 10 10 512 0.37 0.23 1.00 0.53
20 10 10 1024 0.60 0.30 1.00 0.63
20 10 10 2048 0.60 0.40 1.00 0.67
20 20 1 128 0.20 0.20 0.68 0.36
20 20 1 512 0.33 0.30 1.00 0.54
20 20 1 1024 0.57 0.33 0.92 0.61
20 20 5 16 0.43 0.30 0.90 0.54
20 20 5 128 0.47 0.20 1.00 0.56
20 20 5 512 0.47 0.30 1.00 0.59
20 20 5 1024 0.60 0.43 0.97 0.67
20 20 10 16 0.33 0.23 0.97 0.51
20 20 10 128 0.47 0.27 1.00 0.58
20 20 10 512 0.53 0.23 1.00 0.59
20 20 10 1024 0.50 0.30 1.00 0.60
22 1 1 128 0.40 0.17 0.98 0.52
22 1 1 512 0.40 0.23 1.00 0.54
22 1 1 1024 0.43 0.30 1.00 0.58
22 1 1 2048 0.50 0.30 1.00 0.60
22 10 1 128 0.23 0.17 0.97 0.46
22 10 1 512 0.23 0.33 0.95 0.51
22 10 1 2048 0.40 0.17 0.90 0.49
22 10 5 16 0.23 0.20 1.00 0.48
22 10 5 128 0.33 0.23 1.00 0.52
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Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

22 10 5 512 0.47 0.33 1.00 0.60
22 10 5 1024 0.47 0.20 1.00 0.56
22 10 5 2048 0.50 0.27 1.00 0.59
22 10 10 16 0.20 0.13 1.00 0.44
22 10 10 128 0.40 0.17 1.00 0.52
22 10 10 512 0.40 0.20 1.00 0.53
22 10 10 1024 0.40 0.23 1.00 0.54
22 10 10 2048 0.43 0.30 1.00 0.58
22 20 1 128 0.23 0.17 0.95 0.45
22 20 1 512 0.17 0.17 1.00 0.44
22 20 1 1024 0.40 0.30 0.87 0.52
22 20 5 16 0.30 0.13 1.00 0.48
22 20 5 128 0.37 0.20 1.00 0.52
22 20 5 512 0.47 0.20 0.97 0.54
22 20 5 1024 0.47 0.23 1.00 0.57
22 20 10 16 0.33 0.13 1.00 0.49
22 20 10 128 0.43 0.23 1.00 0.56
22 20 10 512 0.43 0.30 1.00 0.58
22 20 10 1024 0.47 0.23 1.00 0.57
24 1 1 16 0.20 0.17 1.00 0.46
24 1 1 128 0.40 0.30 1.00 0.57
24 1 1 512 0.43 0.30 1.00 0.58
24 1 1 1024 0.50 0.33 1.00 0.61
24 1 1 2048 0.57 0.47 0.98 0.67
24 10 1 512 0.37 0.20 0.97 0.51
24 10 1 1024 0.20 0.10 0.93 0.41
24 10 1 2048 0.27 0.27 0.93 0.49
24 10 5 16 0.33 0.17 1.00 0.50
24 10 5 128 0.50 0.40 1.00 0.63
24 10 5 512 0.60 0.47 1.00 0.69
24 10 5 1024 0.57 0.47 1.00 0.68
24 10 5 2048 0.53 0.37 1.00 0.63
24 10 10 16 0.43 0.23 1.00 0.56
24 10 10 128 0.50 0.43 1.00 0.64
24 10 10 512 0.37 0.40 1.00 0.59
24 10 10 1024 0.57 0.50 1.00 0.69
24 10 10 2048 0.60 0.47 1.00 0.69
24 20 1 128 0.20 0.20 0.93 0.44
24 20 1 512 0.33 0.33 1.00 0.56
24 20 5 16 0.30 0.23 1.00 0.51
24 20 5 128 0.53 0.43 1.00 0.66
24 20 5 512 0.53 0.33 0.98 0.62
24 20 5 1024 0.63 0.50 1.00 0.71
24 20 10 16 0.37 0.20 0.98 0.52
24 20 10 128 0.57 0.40 1.00 0.66
24 20 10 512 0.53 0.47 1.00 0.67
24 20 10 1024 0.47 0.40 1.00 0.62
26 1 1 16 0.13 0.13 1.00 0.42
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Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

26 1 1 128 0.57 0.37 1.00 0.64
26 1 1 512 0.53 0.50 1.00 0.68
26 1 1 1024 0.53 0.47 1.00 0.67
26 1 1 2048 0.63 0.50 1.00 0.71
26 10 1 512 0.27 0.23 0.95 0.48
26 10 1 1024 0.13 0.10 0.93 0.39
26 10 1 2048 0.37 0.33 0.95 0.55
26 10 5 2 0.10 0.10 0.90 0.37
26 10 5 16 0.50 0.30 1.00 0.60
26 10 5 128 0.57 0.37 1.00 0.64
26 10 5 512 0.57 0.43 1.00 0.67
26 10 5 1024 0.63 0.53 1.00 0.72
26 10 5 2048 0.50 0.57 1.00 0.69
26 10 10 16 0.47 0.30 1.00 0.59
26 10 10 128 0.53 0.37 1.00 0.63
26 10 10 512 0.53 0.43 1.00 0.66
26 10 10 1024 0.53 0.43 1.00 0.66
26 10 10 2048 0.63 0.57 0.98 0.73
26 20 1 16 0.10 0.13 0.72 0.32
26 20 1 512 0.23 0.20 0.90 0.44
26 20 1 1024 0.40 0.33 0.95 0.56
26 20 5 16 0.53 0.33 1.00 0.62
26 20 5 128 0.70 0.47 1.00 0.72
26 20 5 512 0.60 0.47 1.00 0.69
26 20 5 1024 0.53 0.30 1.00 0.61
26 20 10 2 0.17 0.10 0.80 0.36
26 20 10 16 0.53 0.43 1.00 0.66
26 20 10 128 0.57 0.30 1.00 0.62
26 20 10 512 0.60 0.53 1.00 0.71
26 20 10 1024 0.57 0.40 1.00 0.66
28 1 1 16 0.10 0.13 0.83 0.36
28 1 1 128 0.47 0.33 0.93 0.58
28 1 1 512 0.50 0.43 0.97 0.63
28 1 1 1024 0.60 0.37 0.98 0.65
28 1 1 2048 0.60 0.50 1.00 0.70
28 10 1 128 0.30 0.23 0.70 0.41
28 10 1 1024 0.30 0.10 0.87 0.42
28 10 1 2048 0.30 0.27 0.88 0.48
28 10 5 16 0.37 0.40 1.00 0.59
28 10 5 128 0.47 0.37 0.83 0.56
28 10 5 512 0.47 0.47 1.00 0.64
28 10 5 1024 0.70 0.60 1.00 0.77
28 10 5 2048 0.70 0.47 1.00 0.72
28 10 10 16 0.30 0.30 0.98 0.53
28 10 10 128 0.50 0.33 0.95 0.59
28 10 10 512 0.63 0.40 0.97 0.67
28 10 10 1024 0.70 0.40 1.00 0.70
28 10 10 2048 0.60 0.40 1.00 0.67
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Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

28 20 1 512 0.27 0.23 0.95 0.48
28 20 1 1024 0.27 0.10 0.93 0.43
28 20 5 16 0.47 0.33 0.98 0.59
28 20 5 128 0.50 0.40 0.97 0.62
28 20 5 512 0.50 0.37 0.92 0.59
28 20 5 1024 0.50 0.37 1.00 0.62
28 20 10 16 0.43 0.27 0.98 0.56
28 20 10 128 0.43 0.33 0.98 0.58
28 20 10 512 0.60 0.40 1.00 0.67
28 20 10 1024 0.50 0.30 1.00 0.60
30 1 1 16 0.23 0.17 1.00 0.47
30 1 1 128 0.67 0.47 1.00 0.71
30 1 1 512 0.73 0.57 1.00 0.77
30 1 1 1024 0.70 0.63 1.00 0.78
30 1 1 2048 0.73 0.73 1.00 0.82
30 10 1 128 0.23 0.10 0.95 0.43
30 10 1 512 0.20 0.20 0.95 0.45
30 10 5 16 0.53 0.40 1.00 0.64
30 10 5 128 0.57 0.63 1.00 0.73
30 10 5 512 0.53 0.63 1.00 0.72
30 10 5 1024 0.70 0.63 1.00 0.78
30 10 5 2048 0.67 0.50 1.00 0.72
30 10 10 16 0.43 0.27 1.00 0.57
30 10 10 128 0.57 0.57 1.00 0.71
30 10 10 512 0.60 0.50 1.00 0.70
30 10 10 1024 0.73 0.63 1.00 0.79
30 10 10 2048 0.77 0.73 1.00 0.83
30 20 1 16 0.10 0.10 0.63 0.28
30 20 1 128 0.17 0.13 1.00 0.43
30 20 1 512 0.27 0.27 1.00 0.51
30 20 1 1024 0.20 0.13 0.93 0.42
30 20 5 16 0.47 0.37 1.00 0.61
30 20 5 128 0.53 0.57 1.00 0.70
30 20 5 512 0.60 0.40 1.00 0.67
30 20 5 1024 0.43 0.37 1.00 0.60
30 20 10 16 0.53 0.43 1.00 0.66
30 20 10 128 0.53 0.43 1.00 0.66
30 20 10 512 0.63 0.50 1.00 0.71
30 20 10 1024 0.47 0.37 1.00 0.61
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