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ABSTRACT

How can we compress large language models without compromising accuracy?
Quantization, which reduces the number of bits for representing weights, is an
essential technique to utilize large language models (LLMs) in real-world appli-
cations. Specifically, binary-coding quantization (BCQ) is a promising approach
since it has extensive representation space, which encompasses the representation
space of uniform quantization (UQ), and fast inference speed. However, because
of the lack of accurate optimization techniques, BCQ shows inferior performance
compared to UQ algorithms, failing to leverage their powerful expressive power.
In this paper, we propose FLEXBCQ (FLEXible Binary-Coding Quantization), an
accurate optimization algorithm for BCQ. We leverage the sophisticated optimiza-
tion techniques of UQ by decomposing the quantization process of BCQ into the
composition of a UQ and an inner BCQ. As a result, we take advantage of both
the sophisticated optimizing techniques of UQ, specifically the flexible mapping
technique, and the powerful expressive capability of BCQ. Through extensive ex-
periments, we find that FLEXBCQ provides 3.24%p higher accuracy than existing
UQ and BCQ algorithms on MMLU 5-shot benchmark when quantizing a Llama-
3 70B model into 3 bits.

1 INTRODUCTION

How can we compress large language models without compromising accuracy? Reducing the size
of large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Dubey et al., 2024)
is crucial for deploying LLMs in real-world applications, as their gigantic size makes deployment
challenging. Quantization (Xu et al., 2018; Kwon et al., 2022; Dettmers et al., 2022; Xiao et al.,
2023; Lee et al., 2023; Lin et al., 2024) is a technique used to compress LLMs by reducing the
number of bits needed to represent their weights. It reduces the bit count by representing the model’s
weights as a smaller set of values, namely, quantization levels. For example, 3-bit quantization uses
23 distinct values to represent all the weights in the model. It is essential to use a quantization
scheme that aligns well with the distribution of the model’s weights, such as uniform quantization
(UQ) (Lee et al., 2023; Lin et al., 2024; Liu et al., 2024) and binary-coding quantization (BCQ) (Xu
et al., 2018; Kwon et al., 2022), to maximize the accuracy of a quantized model.

Uniform quantization (UQ) is a scheme that has evenly-spaced quantization levels. Figure 1(a) illus-
trates the quantization process of Round-to-Nearest (RTN) which maps a weight w0 to the nearest
quantization level q3. RTN provides an optimal mapping for approximating weight itself, but if
we consider the distribution of inputs, other mapping strategies encompassing farther quantization
levels exhibit better accuracy (Nagel et al., 2020; Lee et al., 2023). FlexRound (b) achieves out-
standing performance through its flexible mapping which allows weights to explore diverse quanti-
zation levels flexibly and map the weights to the quantization levels that maximize the accuracy of
quantized models. On the other hand, binary-coding quantization (BCQ) is a scheme that has non-
uniform quantization levels. Figure 1(c) illustrates the quantization process of Alternating update
approach (Xu et al., 2018), a representative BCQ algorithm. As shown in the figure, BCQ adapts
its non-uniform quantization levels close to the weight and reduces quantization errors which rep-
resents the distance between the weight and the mapped quantization level. Additionally, a recent
study (Park et al., 2024) has introduced a fast inference kernel that supports BCQ and UQ at the
same speed, providing faster inference speed than conventional UQ kernels (Frantar et al., 2023;
Lin et al., 2024). This advancement positions BCQ as a promising quantization scheme, excelling
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Figure 1: Comparison of quantization processes of RTN, FlexRound, Alternating, and FLEXBCQ.
FLEXBCQ leverages the useful optimization technique of UQ (flexible mapping) and the powerful
expressive capability of BCQ (adaptive quantization levels), resulting in effective quantization.

in expressive power and inference speed. However, because of the lack of accurate quantization al-
gorithms designed for BCQ, BCQ provides significantly lower accuracy than UQ despite its strong
expressive power.

In this paper, we propose FLEXBCQ, an accurate optimization algorithm for BCQ. We decompose
BCQ’s quantization process as the composition of UQ and inner BCQ to leverage the advanced
optimization techniques of UQ. This approach enables flexible mapping through its UQ compo-
nent and adaptive quantization levels via inner BCQ, combining the strengths of both schemes, as
shown in Figure 1 (d). We propose Unified Initialization technique which integrates the initializa-
tion methods of UQ and BCQ to initialize the quantization parameters of FLEXBCQ. We optimize
the quantization parameters of FLEXBCQ on a small sample dataset by reconstructing blockwise
outputs of quantized models. We propose novel optimization techniques such as Gradient Filtering
and Periodic Remapping to maximize the accuracy of FLEXBCQ. Finally, through Composition
Theorem (Theorem 1), we prove that the decomposed quantization process is able to merge back
into a single BCQ after optimization, showing that FLEXBCQ maintains the fast inference speed
of BCQ. Through extensive experiments with diverse models on various benchmarks, we find that
FLEXBCQ shows up to 3.24%p higher accuracy than existing UQ and BCQ algorithms on MMLU
5-shot benchmark when quantizing a Llama-3 70B model into 3 bits.

We summarize the main contributions of this paper as follows:

• Algorithm. We propose FLEXBCQ, an accurate BCQ algorithm which exploits both so-
phisticated optimization techniques of UQ algorithms and the powerful expressive capa-
bility of BCQ algorithms. We propose useful techniques for optimizing BCQ models that
effectively enhance the accuracy of quantized models. To the best of our knowledge, this is
the first work that transfers UQ’s useful optimization technique to optimize BCQ.

• Experiments. We conduct exhaustive experiments to verify the performance of
FLEXBCQ. FLEXBCQ shows 3.24%p higher accuracy than existing UQ and BCQ al-
gorithms on MMLU 5-shot benchmark when quantizing a Llama-3 70B model into 3 bits.

• Analysis. We analyze the quantized models generated by FLEXBCQ and demonstrate
that FLEXBCQ successfully takes advantage of FlexRound’s flexible mapping and binary-
coding quantization’s adaptive quantization levels, as we intended.

The rest of this paper is organized as follows. We formally define LLM quantization problem and
provide preliminaries in Section 2. We propose FLEXBCQ in Section 3 and show our experimental
results in Section 4. After introducing related works in Section 5, we conclude.

2 PRELIMINARY

2.1 LLM QUANTIZATION PROBLEM

We have an accurate LLM f , a desired bit-width k, and a sample dataset D of input token sequences.
Our goal is to find an accurate k-bit quantized model f̂(k). In this paper, we focus on uniform quan-
tization (UQ) and binary-coding quantization (BCQ) which are supported by a fast inference kernel,
LUT-GEMM Park et al. (2024). We directly compare the accuracies of UQ and BCQ algorithms
since they exhibit the same inference speed with LUT-GEMM when they have the same bit width.

2.2 UNIFORM AND BINARY-CODING QUANTIZATIONS

In LLM quantization, we gather a small number of weights as a group and assign quantization levels
for each group to maximize the accuracy of quantized models. Given a weight group w ∈ Rg of g
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Figure 2: 2-bit quantization processes of UQ and BCQ. (a) UQ begins with clipping process, then
quantize w into ŵ(2) through the sequential process of (1) Transformation (T ), (2) Mapping (MU ),
and (3) Detransformation (D). (b) BCQ begins with adapting its quantization levels, then quantizing
w into ŵ(2) through Mapping (MB) process. See Sections 2.2.1 and2.2.2 for details.

weights and a desired bit-width k, quantizer Q quantizes weights into ŵ(k) = Q(w, k; Θ) where Θ
is a set of quantization parameters of Q. The quantization parameters are found through a calibration
process of optimization on a sample dataset before quantizing weights. Each quantization scheme
has its own quantizer and quantization parameters. Before proposing our method, we elaborate on
the quantization process of UQ and BCQ as a background in Sections 2.2.1 and 2.2.2, respectively.

2.2.1 UNIFORM QUANTIZATION (UQ)

Uniform quantization (UQ) is a quantization scheme that has uniformly spaced quantization levels.
Figure 2(a) illustrates how UQ quantizes a weight w ∈ [wm, wM ] into 2-bit weight ŵ(2) where
wm and wM are the minimum and maximum weights in the weight group w, respectively. UQ’s
quantization process begins with clipping process, which determines the minimum wm,c and the
maximum wM,c values of the clipped range which is the range of the values to represent after quan-
tization. UQ’s quantization parameters ΘU = {∆(k), zU,(k)} are determined based on the clipping
range; ∆(k) = (wM,c − wm,c)/(2

k − 1) as a scale factor and zU,(k) = ⌊−wm,c/∆(k)⌉ as a a zero-
point where ⌊·⌉ is a rounding function. After calibration, UQ quantizes w using UQ quantizer QU

in Equation 1.

w ≈ ŵ(k) = QU (w, k; ΘU ) = D(MU (T (w; ΘU ), k); ΘU ) (1)

Transformation T (w; ΘU ), Mapping MU (w̄(k), k), Detransformation D(w̃(k); ΘU ) functions are
defined as in Equations 2 to 4. w̄(k), w̃(k), and ŵ(k) are transformed, mapped, and quantized weights
in k bits, respectively. Clamp(·,m,M) is a clamp function with min-max range [m,M ].

T (w; ΘU ) = w̄(k) = w/∆(k) + zU,(k) (2)

MU (w̄(k), k) = w̃(k) = Clamp(⌊w̄(k)⌋, 0, 2k − 1) (3)

D(w̃(k); ΘU ) = ŵ(k) = ∆(k)(w̃(k) − zU,(k)) (4)

After quantization, we save the mapped weight w̃(k) and quantization parameters in QU , then re-
construct the quantized weight ŵ using D(w̃(k); ΘU ) when we inference.

As described in Equation 3, the mapping process MU of UQ is a straightforward process that maps
transformed weights w̄(k) to the nearest integer. Therefore, introducing an advanced transformation
process is essential to improve the accuracy of quantized models. FlexRound (Lee et al., 2023) en-
hances the accuracy of the quantized models by revising its transformation process as in Equation 5.

TF (w; ∆(k), s, sr, zU,(k)) = w/(∆(k) · s · sr) + zU,(k) (5)

s and sr ∈ R+ are scale factors that divide each weight before mapping; s is assigned individually
for each weight, while sr is shared across all weights in a row of a weight matrix. The modified
transformation process enables weights to explore diverse quantization levels beyond the nearest
one, and finally maps them to the quantization level that maximizes model accuracy.
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2.2.2 BINARY-CODING QUANTIZATION (BCQ)

Binary-coding quantization (BCQ) is a non-uniform quantization scheme that has a set ΘB =
{α(k), zB,(k)} of quantization parameters where α(k) ∈ Rk is a vector of scale factors and
zB,(k) ∈ R is a shifting factor. α(k) and zB,(k) determine the quantization levels of BCQ by the
summation and subtraction of scale factors in α(k) after shifting with zB,(k). For example, BCQ
quantizer in Figure 2(b) has a set {zB,(2)−α(2),1−α(2),2, zB,(2)−α(2),1+α(2),2, zB,(2)+α(2),1−
α(2),2, zB,(2) +α(2),1 +α(2),2} of quantization levels illustrated as the leaves of a binary tree. BCQ
calibrates α(k) and zB,(k) on a sample dataset to adapt its quantization levels to maximize the accu-
racy of quantized models. After the adaption process, BCQ maps each weight to the corresponding
quantization level by assigning a binary code b(k) ∈ {−1,+1}k of the quantization level to the
weight. A BCQ quantizer QB quantize a weight w into ŵ(k) as in Equation 6. MB(w; ΘB) is a
mapping function that maps weights to the nearest quantization level.

w ≈ ŵ(k) = QB(w, k; ΘB) = αT
(k)b(k) + zB,(k)

where b(k) =MB(w; ΘB) = argmin
b′
(k)

||w − (αT
(k)b

′
(k) + zB,(k))|| (6)

After quantization, we save binary code b(k) of each weight and quantization parameters in QB . We
use Reconstruction functionRB(b(k); ΘB) = αT

(k)b(k)+ zB,(k) to reconstruct the quantized weight
ŵ when we inference.

The main advantage of BCQ is its strong expressive capability; it has been proven that any UQ is
representable in the form of BCQ (Appendix C in Park et al. (2024)). However, there has been
limited research on optimization algorithms for BCQ, especially for LLMs. The only low-cost algo-
rithm (Xu et al., 2018) that is applicable to LLMs with BCQ scheme does not take input distribution
into account and ignores dependencies of different weight groups, resulting in low accuracy. As a
result, its quantized models exhibit significantly lower accuracy when we use BCQ compared to the
case when we use UQ despite its theoretical advantage.

3 PROPOSED METHOD

3.1 OVERVIEW

In this section, we propose FLEXBCQ, an accurate optimization algorithm for BCQ. The motiva-
tion behind FLEXBCQ is to leverage advanced optimization techniques designed for UQ to optimize
BCQ while retaining BCQ’s strong expressive capability. Before presenting our main idea, we out-
line key challenges that must be tackled.

C1. Formulation. How can we modify the quantizer of BCQ to leverage the useful optimization
techniques designed for UQ without losing the strong expressive capability of BCQ?

C2. Initialization. How can we effectively initialize quantization parameters to accurately cap-
ture the distribution of the weights in the model?

C3. Optimization. How can we optimize quantization parameters on the sample dataset to
maximize the accuracy of quantized models?

We address these challenges with the following main ideas:
I1. FLEXBCQ (Section 3.2). We decompose the quantization process of conventional BCQ

into the composition of UQ and inner BCQ to utilize the optimization techniques from UQ.
Decomposed BCQ takes advantage of both UQ’s advanced optimization techniques and
BCQ’s strong expressive capability simultaneously.

I2. Unified Initialization (Section 3.3). We integrate the clipping range search algorithm of
UQ and the alternating update algorithm of BCQ to initialize the quantization parameters
of FLEXBCQ. Our initialization process is accurate by considering both clipping range and
adaptive quantization levels at the same time.

I3. Blockwise output reconstruction (Section 3.4). We optimize the quantization parame-
ters of FLEXBCQ by minimizing blockwise reconstruction errors. We propose novel opti-
mization techniques including Gradient Filtering and Periodic Remapping to maximize the
accuracy of the quantized models.

We carefully analyze the quantization processes of UQ and BCQ, and design FLEXBCQ to com-
bine the strengths of both quantization schemes. Figure 3 illustrates the calibration and deployment
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Figure 3: A comparison of the quantization processes of FlexRound, Alternating, and FLEXBCQ.
FLEXBCQ benefits from both flexible mapping and adaptive quantization levels. B is a binary code
matrix whose columns are binary codes of weights in w. We decompose ŵ in Equation 6 into α and
B when we save quantized weights. The notation (k) for bit-width is omitted for simplicity.

phases of FlexRound (Lee et al., 2023) (UQ), Alternating (Xu et al., 2018) (BCQ), and FLEXBCQ.
In calibration phases, FlexRound begins with initializing its quantization parameters through a clip-
ping range search which finds a proper clipping range [wm,c, wM,c]. After initialization, it quantizes
weights through the sequential process of transformation (TF ), mapping (MU ), and detransfor-
mation (D). Flexible mapping, which is the main advantage of FlexRound, is achieved through
its improved transformation process TF . On the other hand, Alternating initializes its quantization
parameters through a quantization level adaptation process, and quantizes weights using the ini-
tialized parameters. The strength of Alternating lies in the mapping process (MB) to its adapted
non-uniform quantization levels, which are adjusted during initialization.

FLEXBCQ integrates the strengths of both methods by first applying a transformation process TF
as FlexRound, followed by mapping (MB) to the adapted quantization levels within this trans-
formed space (w̄). This allows FLEXBCQ to take advantage of advanced UQ techniques, such
as FlexRound’s flexible mapping, while also benefiting from BCQ’s adaptive quantization levels.
Once calibration is completed, we quantize the pretrained model for deployments with its calibrated
quantization parameters as in the “Deployment” column. FLEXBCQ shows identical saving and
inference to the conventional BCQ algorithm by merging its integrated quantization process into a
single BCQ quantization process (R∗

B) based on Theorem 1. Therefore, there is no memory and
latency overhead for utilizing flexible mapping in the calibration phase. We elaborate on the details
of formulation, initialization, and optimization techniques of FLEXBCQ in the following sections.

3.2 FLEXIBLE BINARY-CODING QUANTIZATION (FLEXBCQ)

FLEXBCQ utilizes an inner BCQ in the transformed weight space w̄ of UQ to leverage FlexRound’s
training techniques and BCQ’s adaptive quantization levels at the same time. FlexBCQ has both
FlexRound’s quantization parameters ∆(k), zU,(k), s, and sr, as well as BCQ’s quantization parame-
ters α(k), and zB,(k) since it incoporates both BCQ and FlexRound. The quantizer QF parameterized
by ΘF = ΘU ∪ΘB ∪ {s, sr} is defined in Equation 7. Equation 5.

w ≈ ŵ(k) = QF (w, k; ΘF ) = D(MB(TF (w; ΘU , s, sr); ΘB); ΘU ) (7)

As described in the Equation 7, QF includes both TF and MB to leverages both FlexRound’s
flexible mapping and BCQ’s adaptive quantization levels. After calibration, we save binary code b(k)
of each weight, ΘB for BCQ’s reconstruction process, and ΘU for detransformation; we discard s
and sr which are used only for transformation. The Reconstruction function RF for FLEXBCQ is
defined as in Equation 8.

ŵ(k) = RF (b(k); ΘB ,ΘU ) = D(RB(b(k); ΘB); ΘU ) (8)

As described in Equation 8, FLEXBCQ has memory and latency overhead due to ΘU and D com-
pared to the conventional BCQ’s Reconstruction function RB(b(k); ΘB). To address this issue, we
propose Composition Theorem which integrates the expensive two-step reconstruction process of
FLEXBCQ into a single process.
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Algorithm 1 Unified Initialization
Require: A weight group w, a bit-width k, a number N of iterations for grid search, and a number

T of iterations for quantization level adaptation
Ensure: Initialized UQ’s scale factor ∆∗

(k), zero-point z∗U,(k), and a vector α∗
(k) of BCQ’s scale

factors.
1: wm ← min(min(w), 0), wM ← max(max(w), 0)
2: zB,(k) ← (2k − 1)/2, s← 1, sr ← 1, e∗ ←MAX NUM
3: for γ in 1/N, 2/N, ..., 1 do
4: ∆(k) ← γ(wM − wm)/(2k − 1), zU,(k) ← ⌊−wm/∆(k)⌉
5: w̄(k) ← TF (w; ∆(k), zU,(k)) ▷ Equation 5
6: α(k) ← adapt-quant-level(w̄(k),k,T ) ▷ Algorithm 2 in (Xu et al., 2018)
7: ŵ← QF (w, k; ΘF ) ▷ Equation 7
8: e← ||w − ŵ(k)||22
9: if e < e∗ then

10: ∆∗
(k), z

∗
U,(k), α

∗
(k) ← ∆(k), zU,(k), α(k) ▷ Update quantization parameters

11: e∗ ← e ▷ Update the minimum quantization error
12: end if
13: end for

Theorem 1 (Composition Theorem). Given a BCQ Reconstruction function RB(b(k); ΘB) and a
Detransformation functionD(w̃(k); ΘU ) where w̃(k) = RB(b(k); ΘB). There is a BCQ Reconstruc-
tion functionR∗

B(b(k); Θ
∗
B) = D(RB(b(k); ΘB); ΘU ) for any b(k).

Proof. See Appendix E.1.

As a result, FLEXBCQ’s expensive Reconstruction function RF is substituted into a single BCQ’s
Reconstruction functionR∗

B , removing the memory and latency overhead.

3.3 UNIFIED INITALIZATION

After formulation, we need to optimize FLEXBCQ’s quantization parameters in ΘF to maximize
the accuracy of the quantized models. We need an accurate algorithm to initialize the quantiza-
tion parameters before optimization. We unify the initialization processes of UQ and BCQ since
FLEXBCQ has the quantization parameters of both quantization schemes. We initialize s and sr
as 1 to make the flexible mapping mimic the traditional rounding-to-nearest (RTN) method at the
beginning, following FlexRound (Lee et al., 2023). We initialize zB,(k) = (2k − 1)/2 and fix it
since the transformed space, in which the inner BCQ is defined, is designed for mapping weights to
the range [0, 2k − 1]. We propose Unified Initialization for initializing the remaining quantization
parameters ∆(k), zU,(k), and α(k) as in Algorithm 1.

We precisely initialize quantization parameters through an iterative process that integrates a grid
search-based clipping range search algorithm with the alternating quantization level adaptation (Al-
gorithm 2 in (Xu et al., 2018)). In each iteration, we adjust the length γ(wM − wm) of the clipping
range by modifying the ratio γ fixing the minimum value wm. Within the adjusted clipping range,
we compute the candidate scale factor ∆(k) and candidate zero-point zU,(k) of UQ, followed by the
flexible transformation process in Equation 5 (lines 4-5). We find a candidate vector α(k) of scale
factors of BCQ through quantization level adaptation using the transformed weights w̄(k) (line 6).
After that, we compute the quantized weight ŵ(k) following Equation 7 and compute the quanti-
zation error e (lines 7-8). If e is smaller than the minimum quantization error e∗ found through
previous iterations, we update the quantization parameters ∆∗

(k), z
∗
U,(k), and α∗

(k) with the candidate
quantization parameters ∆(k), zU,(k), and α(k), respectively. In this case, we also update e∗ with
e to find better quantization parameters. This process is performed independently for each weight
group and each group has the precise quantization parameters after initialization.

3.4 BLOCKWISE OUTPUT RECONSTRUCTION

After initializing quantization parameters, we perform Blockwise Output Reconstruction process
to optimize the quantization parameters in FLEXBCQ. From the bottom block to the top block,

6
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we sequentially minimize the reconstruction loss Li in Equation 9, which reduces the gap between
outputs of the i-th blocks before and after quantization, using stochastic gradient descent. fi and f̂i
are the i-th blocks of the pretrained LLM f before and after quantization, respectively. Xi and X̂i

are the inputs of fi and f̂i, respectively. θi is the pretrained parameters in the i-th block of f .

Li = ||fi(Xi;θi)− f̂i(X̂i;θi,ΘF )||2F (9)

We optimize ∆(k), zU,(k), s, sr, and α(k) during the optimization process and do not update the
pretrained model’s parameters. We utilize straight-through estimator (STE) (Bengio et al., 2013) to
update ∆(k), zU,(k), s, sr corresponding to TF since the mapping functionMB is not differentiable.
We propose gradient filtering and periodic remapping to precisely optimize quantization parameters.

Gradient Filtering. Gradient filtering is a technique that filters the gradients of the weights that
have large mapping errors, i.e., |w̄(k) − w̃(k)|, to stabilize the optimization process of FLEXBCQ.
STE hypothesizes that the gradient of the transformed weight (w̄(k)) and mapped weight (w̃(k)) have
the same gradients. However, if the difference between two values is significant, the hypothesis does
not hold and it degrades the accuracy of the quantized models. Therefore, we set a hyperparameter
τ and we filter the gradients of weights that have a mapping error larger than τ ; i.e. we zero-out the
gradients of a weight w if |w̄(k) − w̃(k)| > τ .

Periodic Remapping. Periodic remapping is a technique designed to reduce the errors induced by
the excessive change of mapping between weights and quantization levels. During an optimization
process, α(k) is updated according to the mapping between weights and quantization levels, and the
mapping between weights and quantization levels is changed by the update of α(k). The renewed
mapping induces error since α(k) is updated according to the previous mapping and BCQ’s mapping
functionMB does not guarantee the reduction of the output reconstruction error. Therefore, we set
a hyperparameter p and update mapping in every p steps, rather than every step.

4 EXPERIMENTS

We perform experiments to answer the following questions.
Q1. (General knowledge benchmark) How accurate are the models quantized by FLEXBCQ

on general knowledge benchmarks, e.g. MMLU?
Q2. (Task-specific knowledge benchmark) How accurate are the models quantized by

FLEXBCQ on task-specific knowledge benchmarks, e.g. GSM8K?
Q3. (Ablation study) How do the main ideas of FLEXBCQ contribute to improving the accu-

racy of quantized models?
Q4. (Analysis) Does FLEXBCQ effectively utilize flexible mapping and quantization levels?

4.1 EXPERIMENTAL SETUP

Setup. We use PyTroch (Paszke et al., 2019) and Transformers (Vaswani et al., 2017) libraries for
implementation. We use Llama-3 8B, Llama-3 70B (Dubey et al., 2024), and Mistral 7B (Jiang
et al., 2023) models for evaluating the amount of general knowledge in quantized models on
MMLU (Hendrycks et al., 2021) benchmark. We use Llama-3 8B Instruct (Dubey et al., 2024) model
for evaluating the amount of task-specific knowledge within quantized models on GSM8K (Cobbe
et al., 2021) benchmark. We sample 128 token sequences of length 2048 from C4 (Raffel et al.,
2020) and GSM8K (Cobbe et al., 2021) as a sample dataset to quantize models for general and
task-specific benchmarks, respectively. We use a single A100 GPU for quantization.

Baselines. We directly compare the performance of FLEXBCQ with both UQ and BCQ algorithms
since they have the same inference speed with the state-of-the-art inference kernel (Park et al., 2024)
when they have the same bit width. We use Round-to-Nearest (RTN), OmniQuant (Shao et al., 2024),
and FlexRound (Lee et al., 2023) as UQ competitors. We use Greedy and Alternating versions of
algorithms in Xu et al. (2018) as BCQ competitors.

Hyperparameters. We use 3 and 4-bit weight-only quantization with a group size of 128. We opti-
mize quantization parameters for 20 epochs with a batch size of 1 following OmniQuant Shao et al.
(2024). We use a learning rate of 0.005 for all experiments with a cosine annealing learning rate
scheduler (Loshchilov & Hutter, 2017). We set hyperparameters N , T , p, and τ to 50, 15, 2, and
min(α(k)), respectively. We use p as 1 for Llama-3 70B model.
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Table 1: Average accuracies of quantized models on 5-shot and 0-shot MMLU (Hendrycks et al.,
2021) benchmarks. FLEXBCQ shows the highest or second-highest accuracy in all cases. Bold and
underlined texts indicate the highest and second-highest accuracies, respectively.

# Bits Scheme Method Mistral 7B Llama-3 8B Llama-3 70B
5-shot 0-shot 5-shot 0-shot 5-shot 0-shot

Full precision 62.57 60.22 65.02 60.52 78.89 76.15

4

UQ
RTN 60.91 57.93 62.11 57.79 66.10 69.56
OmniQuant 59.85 57.31 63.17 58.99 77.90 75.35
FlexRound 61.20 58.45 63.25 58.32 78.61 75.86

BCQ
Greedy 24.77 25.45 24.90 24.51 22.95 22.95
Alternating 57.18 54.50 56.27 53.10 44.98 43.17
FLEXBCQ 61.38 59.03 63.81 58.56 78.36 75.61

3

UQ
RTN 53.01 50.69 38.12 39.50 46.50 34.82
OmniQuant 54.00 52.51 51.56 45.06 72.80 69.47
FlexRound 58.58 55.84 58.89 54.65 73.19 71.68

BCQ
Greedy 24.70 24.66 27.15 26.84 22.95 22.95
Alternating 26.16 23.40 25.85 23.10 24.62 23.49
FLEXBCQ 59.08 56.53 59.33 54.49 76.43 73.14

Table 2: Accuracies of 3 and 4-bit quantized
Llama-3 Instruct 8B models on GSM8K
benchmark. FLEXBCQ outperforms all of
the competitors in all cases.

Scheme Method 4bit 3bit
Full precision 76.12

UQ
RTN 70.89 22.37
OmniQuant 70.36 45.79
FlexRound 73.39 64.67

BCQ
Greedy 0.00 0.00
Alternating 56.79 0.08
FLEXBCQ 75.44 67.22

Table 3: Accuracies of quantized models
with and without our main ideas. We evaluate
the accuracy of quantized models on MMLU
5-shot benchmark. All of our main ideas, es-
pecially gradient filtering, improve the accu-
racy of FLEXBCQ. We analyze the effect of
unified initialization in Section 4.5.

Method 4bit 3bit
FLEXBCQ 63.81 59.33
- flexible mapping 62.83 57.45
- gradient filtering NaN
- periodic remapping 63.70 58.18

4.2 GENERAL KNOWLEDGE BENCHMARK

We compare the accuracies of quantized models on 5-shot and 0-shot MMLU benchmarks to esti-
mate the amount of general knowledge within quantized models. Table 1 summarizes the evaluation
results. The results show that FLEXBCQ achieves the highest performance or the second-highest
performance by a small margin in all cases. In the 3-bit quantization case of the Llama-3 70B model,
FLEXBCQ outperforms the second-best model by a substantial margin of 3.24% in the 5-shot set-
ting and 1.46% in the 0-shot setting. This demonstrates that FLEXBCQ effectively quantizes models
while preserving their general knowledge. In contrast, in the 4-bit quantization results, FLEXBCQ
performs 0.25% lower than FlexRound in both 0-shot and 5-shot settings. This slight drop in perfor-
mance is suspected due to the FLEXBCQ’s strong fitting capability, which may have caused slight
overfitting to a small sample dataset.

4.3 TASK-SPECIFIC KNOWLEDGE BENCHMARK

We compare the accuracies of 3 and 4-bit quantized Llama-3 8B Instruct model on GSM8K, which
focuses exclusively on mathematical problems. We summarize the experimental results in Table 2.
The experimental results show that FLEXBCQ achieves the highest performance, outperforming
the second-best competitor by 2.55% and 2.05% in the 3-bit and 4-bit experiments, respectively.
Notably, while most BCQ competitors demonstrate less than 1% accuracy in almost all cases,
FLEXBCQ consistently delivers significantly higher accuracy than them. In task-specific knowledge
benchmarks, the distribution between sample and test datasets is more closely aligned than in gen-
eral knowledge benchmarks. This suggests that FLEXBCQ ’s strong fitting capability, enabled by
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Figure 4: Visualizations of (a) the adaptive quantization levels produced by FLEXBCQ and (b)
flexible mappings of weights quantized by FLEXBCQ and FlexRound (see Section 4.5 for details).
FLEXBCQ successfully adapts its quantization levels to the distribution of weights and enables
weights to plentifully explore flexible mappings analogous to FlexRound. I(w̃F ) and I(w̃) represent
the indices of the quantization levels mapped to the weights when flexible transformation is applied
and not applied, respectively.

Table 4: Weight quantization errors and MMLU accuracies of the 3-bit quantized models initialized
by unified initialization (unified init.) and competitors. We report the scaled quantization error by
multiplying 106 for simplicity. Unified initialization shows the lowest weight quantization errors in
all types of layers leading to the highest accuracy. See Section 4.5 for details.

Weight Quantization Error (×106, ↓) MMLU (↑)Scheme Initialization Q K V O U G D 5-shot 0-shot

UQ Grid Search 16.33 37.67 2.15 2.28 5.39 4.35 4.41 38.12 39.50
BCQ Alternating 16.88 38.40 1.82 2.08 5.00 4.03 4.05 25.85 23.10
BCQ Unified Init. 12.57 28.50 1.61 1.86 4.46 3.61 3.63 39.93 40.51

its adaptive quantization levels, contributes to its superior performance. In conclusion, FLEXBCQ
resolves the optimization deficiencies seen in existing BCQ algorithms, fully utilizing the expressive
power that BCQ offers, resulting in a remarkable performance on a task-specific benchmark.

4.4 ABLATION STUDY

We conduct an ablation study to show the powerfulness of our main ideas. We summarize the re-
sult of the ablation study in Table 3. “-flexible mapping” refers to the case where only the BCQ
quantization parameters are used without flexible transformation (TF ). “-gradient filtering” denotes
the result when optimization is performed using all gradients without filtering. Lastly, “-periodic
remapping” refers to the case where weights are remapped to quantization levels at every step dur-
ing optimization. The experimental results show that all three techniques significantly contribute to
improving the accuracy of the quantized model. In particular, the results show that it is impossible
to optimize the quantization parameters without applying gradient filtering technique. We suspect
that this phenomenon occurs due to the weight clipping process within unified initialization. The
weight clipping process generates weights with severe mapping errors which violate the hypoth-
esis of straight through estimator (STE) that the gradient of a weight is the same as the gradient
of the mapped weight. Unified initialization is an algorithm proposed to initialize FLEXBCQ, and
there is no existing alternative algorithm to replace it. Therefore, we demonstrate its effectiveness in
Section 4.5 by comparing it with existing methods for initializing UQ and BCQ.

4.5 ANALYSIS

Thus far, we have validated the superiority of FLEXBCQ and the proposed techniques based on the
benchmark scores of quantized models. In this section, beyond the benchmark scores, we analyze a
quantized model produced by FLEXBCQ to verify whether the intended mechanisms function as ex-
pected. Specifically, we examine whether FLEXBCQ effectively learns quantization levels adapted
to the weight distribution, whether weights explore diverse quantization levels through flexible map-
ping, and whether unified initialization reduces weight reconstruction error more effectively than
existing parameter initialization methods.
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Figure 4(a) visualizes the distribution of weights within a weight group and the quantization levels
of the group learned by FLEXBCQ. As shown in the figure, FLEXBCQ assigns dense quantization
levels near zero, where most of the weights are concentrated, while assigning sparse quantization
levels in regions where fewer weights are distributed. This demonstrates that FLEXBCQ indeed
learns quantization levels adapted to the weight distribution.

Figure 4(b) shows the difference in indices of quantization levels of weights in a weight group in
a quantized model, comparing cases where flexible transformation is applied versus when it is not.
I(w̃F ) and I(w̃) represent the indices of the quantization levels mapped to the weights when flexible
transformation is applied and not applied, respectively. The difference between these indices indi-
cates the extent of flexible mapping. We compare the results of the model quantized by FLEXBCQ
(b1) and FlexRound (b2), which proposed flexible mapping. The results show that sufficient flexible
mapping occurs in both methods, demonstrating that FLEXBCQ successfully exploits flexible map-
ping. Combining both results in Figure 4, FLEXBCQ successfully leverages both UQ’s advanced
optimization technique of flexible mapping and BCQ’s adaptive quantization levels, as we intended.

Table 4 compares the performance of the unified initialization algorithm proposed in this paper with
other initialization algorithms used in existing UQ and BCQ algorithms. We compare the pre- and
post- quantization differences in weights by calculating ||w− ŵ||22. We use the weights in the query
(Q), key (K), value (V), out (O), up (U), gate (G), and down (D) projections within a single Trans-
former block for comparison. We compare the accuracy of models initialized with each initialization
method to evaluate the impact of the initialization techniques on model accuracy. The experimental
results show that unified initialization algorithm results in significantly lower errors than competi-
tors in all cases, which leads to high accuracy. Notably, although Alternating algorithm (Xu et al.,
2018) has the same expressive power as unified initialization, its performance is even lower than UQ,
suggesting that we need an effective initialization method to fully leverage BCQ’s strong expressive
capability, and unified initialization fulfills this need. FLEXBCQ adopts an extensible approach that
introduces and modifies the transformation function to BCQ. Unified initialization is effectively
utilized to initialize the quantization parameters of techniques following this methodology.

5 RELATED WORK

Despite BCQ’s (Kwon et al., 2022; Xu et al., 2018) strong expressive power, it has been under-
investigated to uniform quantization (Lin et al., 2024; Ashkboos et al., 2024; Liu et al., 2024),
which has a weaker expressive capability, mainly due to the lack of accelerated kernels for BCQ.
To the best of our knowledge, there has been no research on accurately compressing LLMs using
the BCQ scheme. In this context, the most important research related to BCQ is the development
of the LUT-GEMM kernel (Park et al., 2024), which enables BCQ and UQ to be accelerated at the
same speed. LUT-GEMM leverages the fact that BCQ’s binary code is composed of only 1s and -1s,
resulting in repetitive operations regardless of the weight values. LUT-GEMM enables fast general
matrix multiplication (GEMM) by referencing the look-up table (LUT) constructed based on this
observation. LUT-GEMM has demonstrated that it performs inference with the OPT-175B (Zhang
et al., 2022) model using BCQ faster than OPTQ (Frantar et al., 2023) and AWQ (Lin et al., 2024),
which support the acceleration of UQ, under small batch size constraints. Although LUT-GEMM
has demonstrated excellent performance under constrained environments, subsequent works, such
as You et al. (2024), indicate that fast kernels supporting BCQ are evolving. Precise BCQ algorithms,
such as FLEXBCQ, are crucial since they boost the studies of fast inference kernels for BCQ.

6 CONCLUSION

In this paper, we propose FLEXBCQ, an accurate optimization algorithm for binary-coding quan-
tization (BCQ). Our motivation is to integrate uniform quantization (UQ)’s advanced optimization
technique into BCQ’s powerful expressive capability. We find that the UQ’s advanced optimization
techniques stem from its transformation process and propose a novel formulation that utilizes the
UQ’s transformation process for BCQ without latency overhead. Combined with our effective ini-
tialization and optimization techniques, FLEXBCQ shows 3.24%p higher accuracy than existing UQ
and BCQ algorithms on MMLU 5-shot benchmark when quantizing Llama-3 70B into 3 bits.
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7 REPRODUCIBILITY STATEMENT

We report detailed hyperparameter settings including learning rate, learning rate scheduler, batch
size, the number of epochs, the number of iterations for unified initialization, and the remapping
period in Section 4.1, and another implementation detail regarding BCQ’s mapping function in Ap-
pendix C to promote the reproducibility of the experimental results. We include the proof of Com-
position Theorem in Section E.1 in Appendix for completeness. We provide an in-depth analysis of
quantized models generated by FLEXBCQ that can be used for examining reproduced results with
figures and a table using the additional 10th page.
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A TERMINOLOGY

To promote clarity, we summarize the definitions of terminologies frequently used in this paper.

Units in LLMs. We summarize the definitions of units in Large Language Models (LLMs) from
a weight to a model. Figure 5 exhibits an example of a Transformer-based LLM with L blocks.

Input token ids

Multi-head Attention
(4 linear layers)

RMSNorm

×𝑳 Blocks

Multi-layer Perceptron
(3 linear layers)

MLP Module

MHA Module

Classifier

RMSNorm

Embedding

Output token id

: A delay of a single iteration

Figure 5: An illustration of a
Transformer-based LLM.

• Weight: the smallest unit, representing an individual nu-
merical weight value.

• Weight group: a collection of weights grouped by a spec-
ified group size, all of which share the same quantization
parameters.

• Weight matrix: a two-dimensional matrix composed of
weights, containing multiple weight groups.

• Layer: a component that performs affine transformations
using a weight matrix and a bias vector. For example, Q,
K, V, O, U, G, and D in Table 4 of the paper represent
individual layers.

• Module: a collection of layers that performs a specific
function. In Transformers, modules include Multi-Head
Attention (MHA) and Multi-Layer Perceptron (MLP).

• Block: a fundamental unit of a Transformer, consisting of
one MHA module and one MLP module.

• Model: a complete language model composed of multiple
blocks. An LLM refers to a model.

Quantization error and reconstruction error. Assume that we have a weight matrix W and we
quantize W into k-bit and obtain Ŵ . If we have input matrices X and X̂ for W and Ŵ , respec-
tively, then the quantization error Equant and reconstruction error Erecon are defined as follows:

Equant = ||W − Ŵ |2F and Erecon = ||WX − Ŵ X̂|2F
Reducing Erecon provides more accurate models than when reducing Equant since Erecon takes
input distribution into account.
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B SYMBOLS AND DEFINITIONS

We summarize symbols and their definitions that are frequently used in this paper in Table 5.

Table 5: Symbols and definitions.
Symbols Definitions

Weights and Bit-width
w A weight
w A weight group
k A constant for representing a bit-width of k

(·)(k) A subscript for representing that (·)’s bit-width is k
w̃(k) A transformed weight
w̄(k) A mapped weight
ŵ(k) A quantized weight
b(k) A binary code of a weight

Functions
T A transformation function
TF A flexible transformation function
MU A mapping function of UQ (rounding and clamping)
MB A mapping function of BCQ (map to the nearest)
D A detransformation function
RB A reconstruction function of BCQ
RF A reconstruction function of FLEXBCQ
R∗

B An integrated reconstruction function of FLEXBCQ

Quantizers
QU A UQ quantizer
QB A BCQ quantizer
QF A FLEXBCQ quantizer

Quantizatin Parameters
ΘU A set of quantization parameters of UQ
ΘB A set of quantization parameters of BCQ
ΘF A set of quantization parameters of FLEXBCQ
∆(k) A sacle facor of UQ
zU,(k) A zoro-point of UQ
s An element-wise scale factor for flexible mapping
sr A row-wise scale factor for flexible mapping
α A vector of scale factors of BCQ

zB,(k) A shifting factor of BCQ

Hyperparameterss
N The number of iterations for clipping range search
T The number of iterations for alternating updates
p A remapping period
τ A threshold for Gradient Filtering

Others
f A pretrained LLM
f̂ A k-bit quantized pretrained LLM
fi The i-th block of f
Xi The input matrix of fi
θi The parameters matrix of fi
Li The block reconstruction loss of fi

14
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C IMPLEMENTATION DETAILS OF FLEXBCQ

In this section, we discuss the implementation details necessary to reproduce the performance of
FLEXBCQ reported in this paper. We first summarize hyperparameter settings used in the main
text. Then we summarize the performance variations of FLEXBCQ, emphasizing the importance
of implementing the mapping function, along with the impacts of the remapping period, Gradient
Filtering threshold, optimization epochs, sample dataset, and clipping strategy.

C.1 HYPERPARAMETER SETTINGS

Since FLEXBCQ employs a Blockwise Output Reconstruction process that requires additional hy-
perparameters, we aim to demonstrate that the outstanding performance of FLEXBCQ is achieved
without expensive hyperparameter tuning. To this end, we fix all hyperparameters except for the
Remapping Period p and utilize only two combinations of hyperparameters across all cases, includ-
ing the experiments presented in the Appendix, except for the sensitivity analysis. These combina-
tions are outlined in Table 6.

Table 6: Hyperparameter settings of FLEXBCQ
Hyperparameter Setting

Learning rate 0.005
Clipping range search iterations (N ) 50

Alternating update iterations (T ) 15
Remapping Period (p) 1, 2

Gradient Filtering threshold (τ ) min(α(k))
∗

* Minimum value among α(k) for each weight group.

C.2 IMPLENETATION OF BCQ’S MAPPING FUNCTION

One critical implementation detail is about the computational speed of the mapping functionMB

of BCQ. In Xu et al.’s Algorithm 1 (Xu et al., 2018), this mapping function is implemented using
a binary search tree (BST), but because of its sequential nature, it is significantly slow and makes
training infeasible within a reasonable time. Therefore, in this paper, we replace this operation with
the following GPU-friendly process: (1) calculate the values of all quantization levels, (2) compute
the distance between each weight and every quantization level in parallel, (3) return the index of the
closest quantization level for each weight, (4) mapping the weight to the corresponding quantization
level found in (3). We named this process as Direct BCQ Mapping process. Table 7 compares the
running time of the two mapping functions when they map all weights in the weight matrix of size
4096 × 4096 to corresponding quantization levels, assuming they have group sizes of 128. We use
3-bit and 4-bit quantization settings, meaning there are 8 and 16 quantization levels, respectively.
We report the average running time of both functions using 100 runs.

Table 7: Running time of Xu et al’s BCQ mapping function and Direct mapping function used in our
paper. The ratio represents the multiple of time taken compared to Direct.

Mapping Function 4bit 3bit
Time (s) Ratio (×) Time (s) Ratio (×)

BST (Xu et al., 2018) 0.1694 23.62 0.5250 37.31
Direct (ours) 0.0072 1.00 0.0141 1.00

As depicted in the table, Direct mapping requires a significantly shorter time than BST-based map-
ping function used in Xu et al. (2018). Note that mapping functions are used in every weight matrix
in every forwarding step and BST requires infeasible time for Blockwise Output reconstruction pro-
cess. Therefore, the implementation detail of BCQ’s mapping function is essential for implementing
FLEXBCQ and reproducing the experimental results.
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C.3 SENSITIVITY ANALYSIS REGARDING p AND τ

Table 8: MMLU benchmark accuracies of 3-
bit Llama-3 8B models quantized by FlexBCQ
with different remapping period p. p = 1 rep-
resents the case that we remap weights to quan-
tization levels in every step.

p 5-shot 0-shot Average
1 58.87 53.98 56.42
2 59.33 54.49 56.91
4 59.05 52.91 55.98
8 59.23 55.13 57.18

16 59.12 54.23 56.68

Table 9: MMLU benchmark accuracies of 3-
bit Llama-3 8B models quantized by FlexBCQ
with different gradient filtering threshold τ .
min(α(k)) represents that τ is equal to the
minimum value of α(k) in each weight group.

τ 5-shot 0-shot Average
0.25 57.95 52.63 55.29
0.5 58.68 55.03 56.85
1 58.98 54.03 56.50

min(α(k)) 59.33 54.49 56.91

Remapping period (p). Periodic Remapping is a technique that performs weight remapping not at
every step during Blockwise Output Reconstruction but at intervals of p steps. Table 8 presents the
performance variations of FLEXBCQ across different remapping periods.

The experimental results indicate that the performance of FLEXBCQ exhibits slight variations based
on the remapping period p. When p = 2, as employed in the main text, FLEXBCQ delivers strong
performance. Moreover, when p = 8, FLEXBCQ shows even higher accuracy than the performance
reported in the paper. In conclusion, using p = 2 without hyperparameter tuning is sufficient to
achieve the excellent results proposed in the paper, except for Llama-3 70B which requires p = 1.
Additionally, further performance gains are realized by tuning p for specific configurations.

Gradient Filtering threshold τ . We adopt a gradient filtering technique to exclude gradients that
could negatively impact performance during optimization and introduce hyperparameter τ as the
filtering threshold. We select τ in FLEXBCQ taking its mapping process into account.

In FLEXBCQ, the mapping process is performed in the space of transformed weights and we map
each weight to its nearest quantization level. If integers in the range [0, 2k − 1] are used as quanti-
zation levels, as shown in Figure 2(a), this corresponds to uniform quantization (UQ). Alternatively,
if a binary tree is used to represent non-uniform quantization levels, as shown in Figure 2(b), it
corresponds to FLEXBCQ.

For simplicity, we first consider the case of uniform quantization. Weights within the clipping range
[wm,c, wM,c] are transformed to real values within [0, 2k − 1], while weights outside this range take
on values beyond, e.g. wm and wM . These out-of-range weights cause substantial mapping errors.
In the transformed space, the interval between quantization levels in UQ is 1, and each level has a
range of 0.5 on either side. Thus, it is reasonable to allow a margin of 0.5 even for the extreme levels
0 and 2k−1.

For FLEXBCQ, the value of 0.5 is replaced by the smallest scale factor min(α(k)) in BCQ. There-
fore, τ is assigned as the smallest scale factor in each weight group, automatically providing a
threshold suited to the group’s characteristics.

To evaluate the effectiveness of selecting τ as minα(k), we compare it against the UQ-based thresh-
old of 0.5 from (2), as well as alternative thresholds of 0.25 (half of 0.5) and 1.0 (double of 0.5).
The results of these experiments are presented in Table 9. As shown in the table, min(α(k)), which
is employed in our paper, shows the highest accuracy by providing the adaptive gradient filtering
threshold for each weight group.
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C.4 SENSITIVITY ANALYSIS REGARDING SAMPLE DATASET

In this section, we analyze the effect of selecting a sample dataset and the size of the sample dataset
on the performance of FLEXBCQ. We use Llama-3 8B model for the experiments.

Selecting Sample dataset FLEXBCQ performs Blockwise Output Reconstruction based on SGD
using a small size of a sample dataset and selecting the sample dataset has a critical impact on the per-
formance of the quantized models. Based on previous studies (Lee et al., 2023; Frantar et al., 2023;
Lee et al., 2023), we conduct experiments using the C4 dataset in the main text. In this section, we
aim to examine how the performance of FLEXBCQ changes when using the SlimPajama (Soboleva
et al., 2023) and FineWeb-Edu dataset (Lozhkov et al., 2024).

Table 10: MMLU benchmark accuracies of 3-bit quantized Llama-3 8B models on C4 and SimPa-
jama datasets. Difference column indicates the amount of improvement in average accuracy over the
case of using C4.

Dataset 5-shot 0-shot Average Difference

C4 59.33 54.49 56.91 0
SlimPajama 59.78 55.92 57.86 0.94

FineWeb-Edu 59.14 55.67 57.41 0.50

Experimental results indicate that using the SlimPajama dataset and FineWeb-Edu dataset achieves
an average accuracy improvement of 0.94% and 0.5%, respectively. This enhancement is attributable
to the extensive preprocessing of those datasets, such as the removal of duplicates Soboleva et al.
(2023). These results underscore that the performance of a quantized model is influenced by the
characteristics of the sample dataset used for calibration.

Sensitivity on the size of sample dataset. To illustrate the effect of sample dataset size on the
performance of FLEXBCQ, we quantized the Llama-3 8B model to 3 bits using sample datasets
of varying sizes and evaluated its performance on the MMLU benchmark. We use sample datasets
ranging in size from 32 to 256, with 128 being the specific size used in our paper. Each sample
dataset comprises 2,048 tokens. We summarize the result in Table 11.

Table 11: MMLU 0-shot and 5-shot accuracies of 3-bit quantized Llama-3 8B models on various
sizes of sample datasets.

Benchmark 32 64 128 256

5-shot 58.76 59.36 59.33 59.66
0-shot 54.53 54.70 54.49 54.63

Average 56.65 57.03 56.91 57.15

Experimental results indicate that the performance of the quantized models remains largely stable
except in cases where the sample dataset size is extremely small (e.g., 32). This is attributed to the
fact that even the largest sample dataset (with 256 samples), consisting of tokens represents only
approximately one ten-millionth of the tokens used to train the Llama-3 8B model Dubey et al.
(2024). As such, marginal increases in dataset size do not result in significant performance changes.
Based on these observations, the dataset size of 128, used in our study, is appropriate for comparing
the accuracy of different quantization methods.
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C.5 SENSITIVITY ANALYSIS REGARDING OPTIMIZATION EPOCHS

In our experimental setup, we adopt OmniQuant (Shao et al., 2024)’s SGD-based optimization
framework and set the number of epochs to 20. Table 12 illustrates the impact of varying the number
of epochs on FLEXBCQ ’s performance.

Table 12: Accuracy variation of 3-bit quantizaed Llama-3 8B models using FLEXBCQ on the
MMLU benchmark across different epoch settings.

Benchmark 10 20 30

5-shot 59.17 59.33 59.23
0-shot 54.28 54.49 53.65

Average 56.72 56.91 56.44

The experimental results demonstrate that FLEXBCQ’s performance is not critically affected by the
number of epochs, and the 20-epoch setting used in our experiments achieves the highest average
accuracy. Overfitting appears to occur at approximately 30 epochs, further validating that training
with 20 epochs is a proper choice.

C.6 ANALYZING THE EFFECT OF CLIPPING STRATEGY

There are three possible strategies for clipping range search used in Unified Initialization: (a) Fixed
Minimum strategy which fixes the minimum weight and adjusts only the maximum value, (b) Fixed
Maximum strategy which fixes the maximum weight and adjusts only the minimum value, and (c)
Balanced strategy which adjusts both the minimum and maximum values to find the clipping range.
The performance of these strategies for quantizing the Llama-3 8B model into 3 bits is presented in
Table 13.

Table 13: Accuracies of 3-bit quantized Llama-3 8B models with different clipping strategies on
MMLU benchmark.

Clipping Strategy 5-shot 0-shot Average

Fixed Minimum 59.33 54.49 56.91
Fixed Maximum 59.23 54.99 57.11

Balanced 58.77 54.59 56.68

Experimental results reveal that while all three strategies deliver comparable performance, the Fixed
Minimum strategy achieves a higher score than the Balanced strategy. Therefore, Fixed Minimum,
used in Algorithm 1, is a proper strategy for initialization. Furthermore, as shown in the table, using
Fixed Maximum strategy provides a slight performance improvement.

D IMPLEMENTATION DETAILS OF COMPETITORS

D.1 OMNIQUANT (SHAO ET AL., 2024)

We use the official implementation1 of OmiQuant. We use the hyperparameters reported in the paper
and GitHub1 for running OmniQuant.

D.2 FLEXROUND (LEE ET AL., 2023)

We implement the FlexRound following the paper (Lee et al., 2023). Since FlexRound and
FLEXBCQ have similar quantization and optimization processes, we implement FlexRound on top
of our implementation of FLEXBCQ besides its UQ quantizer. We use the same hyperparameter
settings, e.g. learning rate, for fair comparison.

1https://github.com/OpenGVLab/OmniQuant
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D.3 RTN

We use clipping range search with 50 iterations for implementing RTN which is the same as the
number of iterations used in unified initialization. We use the same source code for clipping range
search in unified quantization.

D.4 GREEDY AND ALTERNATING (XU ET AL., 2018)

We implement Greedy and Alternating based on the paper (Xu et al., 2018) besides its BCQ mapping
function as explained in Section C.2. We use alternating update with 15 iterations for implementing
Alternating which is the same as the number of iterations used in unified initialization. We use the
same source code for clipping range search in unified quantization.

E DETAILS OF COMPOSITION THEOREM

Composition Theorem is an essential part of FLEXBCQ enables us to exploit flexible mapping
without any memory and latency overhead compared to the conventional BCQ algorithms. We first
provide a proof of Composition Theorem and perform an in-depth analysis of its effect.

E.1 PROOF OF THEOREM 1

Proof. By the definitions of R(b(k); ΘB) and D(w̃(k); ΘU ), we reduce D(QB(b(k); ΘB); ΘU ) as
follows.

D(RB(b(k); ΘB); ΘU ) = ∆(k)((α
T
(k)b(k) + zB,(k))− zU,(k))

= (∆(k)α(k))
T b(k) +∆(k)(zB,(k) − zU,(k))

Thus, α∗
(k) = ∆(k)α(k), z∗B,(k) = ∆(k)(zB,(k) − zU,(k)), and Θ∗

B = {α∗
(k), z

∗
B,(k)}.

E.2 EFFECT OF COMPOSITION THEOREM

In this section, we analyze the effect of Composition Theorem by comparing the size and latency
of the quantized models when we use and do not use Composition Theorem. Assume that we have
a group w ∈ Rg of weights consists of g weights, and we quantize w into k-bit using Alternating,
FLEXBCQ without and with Composition Theorem. Then, quantization results for saving, number
of bits for saving, and reconstruction process for inference for each case is summarized in Table 14
We assume we use 16 bits to save quantization parameters following our experimental setting.

Table 14: Comparison of quantized results, number of bits for saving, and reconstruction process of
Alternating, FLEXBCQ without and with Composition Theorem, when quantizing a group w ∈ Rg

of weights into k bits.
Method Composition* Quantized Results Bits Reconstruction

Alternating - B, α(k), zB,(k) gk + 16(k + 1) RB(B; ΘB)
FLEXBCQ - B, α(k), zB,(k), ∆(k), zU,(k) gk + 16(k + 3) D(RB(B; ΘB); ΘU )
FLEXBCQ ✓ B, α∗

(k), z
∗
B,(k) gk + 16(k + 1) R∗

B(B; ΘB)

* Whether apply Composition Theorem or not.

B is a binary code matrix containing binary weights codes in w. α∗
(k) and z∗B,(k) are scale factors

and a shifting factor of the integrated BCQ Reconstruction function R∗
B . the definitions of other

symbols are summarized in Table 5. If we do not apply Composition Theorem, FLEXBCQ requires
additional quantization parameters ∆(k) and zU,(k) since it utilizes flexible transformation function
TF , requiring additional 32 bits per weight group. Moreover, FLEXBCQ requires a dequantization
process whenever it performs inference and this slows down the inference speed of quantized mod-
els. On the other hand, if we apply Composition Theorem, the memory and latency overheads are
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removed since it integrates the inefficient two-step reconstruction process of FLEXBCQ into a sin-
gle BCQ’s Reconstruction functionR∗

B . Therefore, Composition Theorem is essential for deploying
quantized models generated by FLEXBCQ.

F ADDITIONAL ANALYSIS OF FLEXBCQ

In this section, we analyze the running time and memory usage of FLEXBCQ. We also analyze the
patterns of flexible mapping when we quantize LLMs using FLEXBCQ.

F.1 RUNNING TIME AND MEMORY USAGE OF FLEXBCQ

Table 15: Running times (s) of FlexRound and
FLEXBCQ for quantizing Llama-3 8B into 2,
3 or 4 bits.

Method 4bit 3bit 2bit
FlexRound 16526 16523 16521
FLEXBCQ 36505 27306 25412

Table 16: Average number of bits per weight of
FLEXBCQ and FlexRound. Column names are
bits for saving a weight.

Method Scheme 4bit 3bit 2bit
FlexRound UQ 4.25 3.25 2.25
FLEXBCQ BCQ 4.63 3.50 2.38

In LLM quantization, the feasible running time and the size of the model after quantization are
important factors for practical usage. In this section, we evaluate the running time and memory
usage of FLEXBCQ by comparing it with FlexRound, which achieved the second-best performance
in our experiments. Table 15 summarizes the comparison of running time for quantizing Llama-3
8B, and Table 16 shows the average number of bits required to store weights. In Table 16, the column
headers indicate the bits needed to store a single weight without quantization parameters, and the
values include the bits required for quantization parameters, providing the average number of bits
needed per weight.

FLEXBCQ requires longer quantization times and increases the model size by approximately 8%.
However, note that the quantization time is only incurred during the initial process and does not
impact subsequent usage. Therefore, FLEXBCQ’s running time is still feasible for practical usage.
Moreover, we prioritize the acceleration capabilities of quantized models over memory size. Since
both UQ and BCQ schemes achieve the same acceleration on state-of-the-art hardware such as LUT-
GEMM, the 8% increase in memory usage is considered acceptable. For memory-constrained appli-
cations, channel-wise quantization, which minimizes memory overhead from quantization parame-
ters become negligible, is a viable alternative. In this setting, FLEXBCQ significantly outperforms
other methods by a large margin as presented in Table 22.

In conclusion, considering the outperforming performance demonstrated across various experiments
in the main text and Appendix, the running time and memory usage of FLEXBCQ are both reason-
able.

F.2 PATTERNS OF FLEXIBLE MAPPING

The main idea of FLEXBCQ is to transfer the flexible mapping technique from FlexRound, a state-
of-the-art UQ algorithm, to the BCQ. We examine the proportion of flexible mapping applied across
all model weights to assess the effectiveness of this transfer. Tables 17, 18 and 19 illustrate the pro-
portion of the flexibly mapped weights in the entire model, by block location, and by module type,
respectively. The column names in the tables indicate the amount of changes in indices of weights’
mapped quantization levels resulting from flexible mapping. We use a 3-bit quantized Llama-3 8B
model for the experiment.

We recognize patterns from P1 to P4 as follows:

P1. Across the entire model, FLEXBCQ demonstrates a similar level of flexible mapping as
FlexRound.
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Table 17: Proportion of weights exhibiting flexible mapping across the entire model. Each column
indicates the index change in the quantization level resulting from flexible mapping.

Method 0 1 2 >2
FlexRound 95.4132 4.5862 5.00E-04 1.30E-05
FlexBCQ 96.0395 3.8619 9.85E-02 7.62E-05

Table 18: Proportion of weights exhibiting flexible mapping across different block positions. Each
column corresponds to the index change in the quantization level resulting from flexible mapping.
Bold values indicate the highest proportion within each column.

Block Location FlexBCQ FlexRound
0 1 2 >2 0 1 3 >2

Lower 98.04 1.89 6.35E-02 9.44E-05 97.34 2.66 1.05E-03 4.43E-05
Mid-Lower 96.35 3.55 1.02E-01 1.75E-05 95.72 4.28 4.28E-05 6.25E-07
Mid-Upper 95.66 4.24 9.60E-02 2.24E-05 95.12 4.88 6.83E-05 8.75E-07

Upper 94.11 5.76 1.33E-01 1.70E-04 93.47 6.53 9.99E-04 5.75E-06

P2. The proportion of weights undergoing flexible mapping across the model is approximately
4%. This suggests that flexible mapping does not occur universally but is selectively applied
to specific weights where necessary.

P3. In both methods, flexible mapping tends to occur more frequently in the upper layers of the
model compared to the lower layers.

P4. In both methods, flexible mapping is generally more prevalent in MHA modules than in
MLP modules for both methods.

From P1, it is clear that FLEXBCQ effectively utilizes flexible mapping across the entire model as
we intended. P2, however, shows that most weights do not undergo flexible mapping, which aligns
with the fact that mapping to the nearest quantization level typically minimizes quantization error.
This indicates that the model leverages flexible mapping to reduce reconstruction error in specific
cases. The trends observed in P3 and P4, by model location and module type, are similar to the
patterns seen in modules that are effectively pruned by the module pruning algorithm (Zhong et al.,
2024). When comparing these findings with P2, we interpret that more cautious flexible mapping
occurs in the lower layers and MLP modules, which have a greater impact on model performance. In
conclusion, we confirm that FLEXBCQ successfully utilizes flexible mapping as intended and our
objective of transferring the optimization techniques of UQ algorithms to BCQ has been successfully
achieved.
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Table 19: Proportion of weights exhibiting flexible mapping across different module types. Each
column corresponds to the index change in the quantization level resulting from flexible mapping.
Bold values indicate the highest proportion within each column.

Module Type FlexBCQ FlexRound
0 1 2 >2 0 1 3 >2

MHA 95.26 4.61 1.27E-01 1.31E-04 94.69 5.31 5.00E-04 1.30E-05
MLP 96.22 3.68 9.18E-02 6.30E-05 95.59 4.41 5.49E-04 1.30E-05

G ADDITIONAL EXPERIMENTS

In the main text, we demonstrated the superiority of FLEXBCQ by comparing the accuracy of 3-
bit and 4-bit quantized models on MMLU and GSM8K benchmarks under a weight group size of
128. In this section, we extend our analysis to additional experimental settings. All experiments
are conducted using the Llama-3 8B. We introduce GPTQ and AWQ as additional competitors for
rigorous comparison.

Perplexity benchmarks. The main text evaluates quantized LLM’s knowledge using MMLU bench-
marks, which assess general knowledge, and GSM8K, which focuses on mathematical reasoning.
In this section, we further evaluate the quantized models’ ability to generate texts by comparing the
perplexity of quantized models on the WikiText-2 (Merity et al., 2017) and C4 (Raffel et al., 2020)
benchmarks. The results are presented in the Table 20.

Table 20: Comparison of perplexities of quantized models on WikiText-2 and C4 benchmakrs. Lower
perplexity indicates better performance.

4-bit 3-bitScheme Method Wiki C4 Wiki C4
- Full precision 6.14 8.89 6.14 8.89

RTN 6.75 9.67 10.82 14.85
AWQ 6.54 9.40 8.23 11.59
GPTQ 6.54 9.36 9.05 11.70

OmniQuant 6.69 9.59 8.82 12.36
UQ

FlexRound 6.55 9.36 7.62 10.76
Greedy 6.22E+04 2.45E+04 8.32E+04 3.81E+04

Alternating 7.70 10.88 869.89 978.83BCQ
FlexBCQ 6.46 9.24 7.42 10.46

The results demonstrate that FLEXBCQ achieves the highest performance (lowest perplexities)
across all bit widths and benchmark types. This confirms that FLEXBCQ not only excels in gen-
eral and task-specific knowledge retention but also outperforms in sentence generation tasks.

2-bit quantization While the main text focuses on relatively high bit widths (3-bit and 4-bit), this
experiment evaluates the robustness of FLEXBCQ under an extremely low bit width of 2 bits. The
results are summarized in Table 21.

The results show that all algorithms, except FLEXBCQ, fail to function effectively under the extreme
quantization setting. On MMLU benchmark, other methods achieve accuracy near or below the
random guess rate of 25% which randomly selects an answer among four choices. On GSM8K
benchmark, all competitors achieve less than 1% accuracy, with perplexity values reaching tens to
millions. In contrast, FLEXBCQ succeeds in retaining pretrained models’ knowledge under low
bit widths, outperforming the second-best competitor by 10.27%, 7.48%, and 22.14% in MMLU
5-shot, MMLU 0-shot, and GSM8K, respectively. These findings highlight FLEXBCQ ’s superior
performance in extremely low-bit scenarios, achieved by our main ideas.

Channel-wise quantization In quantization algorithms, such as UQ and BCQ, weights in the same
weight group share quantization parameters. As the group size increases, quantization becomes more
challenging since more weights share the same quantization parameters. We use a small group size
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Table 21: Accuracies and perplexities of 2-bit quantized Llama-3 8B models using FLEXBCQ and
competitors. Higher accuracy and lower perplexities represent better performance.

Accuracy (↑) Perplexity (↓)Scheme Method MMLU 5-shot MMLU 0-shot GSM8K Wiki C4
- Full precision 65.02 60.52 76.12 6.14 8.89

RTN 22.95 22.95 0.00 1.97E+06 2.44E+06
AWQ 22.95 22.95 0.00 1.72E+06 2.13E+06
GPTQ 25.32 24.43 0.40 450.59 254.37

OmniQuant 25.04 22.91 0.00 987.10 1395.17
UQ

FlexRound 24.27 24.97 0.23 68.54 66.57
Greedy 26.76 26.89 0.00 4.96E+05 6.85E+05

Alternating 23.59 22.97 0.00 7.34E+06 3.97E+06BCQ
FlexBCQ 37.02 34.37 22.54 14.95 16.55

of 128 to minimize accuracy degradation in the main text, this experiment evaluates performance
when the group size is expanded to the size of each weight matrix’s input channel; we perform
channel-wise quantization. The results are summarized in Table 22.

Table 22: Accuracies of Llama-3 models compressed with channel-wise quantization using
FLEXBCQ and competitors.

4bit 3bitScheme Method 5-shot 0-shot Average 5-shot 0-shot Average
- Full precision 65.02 60.52 62.77 65.02 60.52 62.77

RTN 57.02 52.31 54.67 25.39 23.15 24.27
AWQ 61.67 55.61 58.64 43.86 37.96 40.91
GPTQ 41.62 41.94 41.78 25.92 25.98 25.95

OmniQuant 58.11 53.86 55.99 25.35 28.02 26.69
UQ

FlexRound 60.84 53.21 57.02 54.52 45.92 50.22
Greedy 24.19 23.00 23.59 24.65 26.44 25.55

Alternating 22.95 22.95 22.95 25.51 25.51 25.51BCQ
FlexBCQ 62.26 57.01 59.63 55.73 51.01 53.37

As a result, all algorithms except FLEXBCQ exhibit significant performance degradation, especially
in 3-bit quantization. FLEXBCQ shows 0.99% and 3.15% higher accuracy compared to the second-
best algorithm in 4-bit and 3-bit quantization, respectively.

Across all experiments, FLEXBCQ demonstrates the best performance. Whether generating sen-
tences, operating under extremely low bit widths, or managing large group sizes, FLEXBCQ con-
sistently excels. These results highlight its capability to tackle challenging problems where other
methods fail.
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