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Figure 1: Illustration of biologically plausible perturbations and their downstream effects across
structural and imaging modalities. Left: Protein structure perturbations applied to atomic coor-
dinates and annotations. The upper panel shows perturbed protein backbones, while the lower
panel depicts the corresponding outputs from inverse folding (sequence recovery) after perturba-
tion. Right: Cryo-EM image perturbations simulating experimental artifacts and noise. The upper
panel shows corrupted cryo-EM particle images, and the lower panel presents reconstructed 3D den-
sities obtained from these perturbed inputs.

ABSTRACT

Biological Foundation Models (Bio-FMs) have demonstrated remarkable success
across diverse biomedical domains, enabling advances in drug discovery, protein
design, and molecular analysis. However, the robustness of Bio-FMs remains un-
derexplored, particularly in terms of the unique risks and perturbations they may
encounter in real-world deployment and how these challenges impact their utility.
In this work, we characterize the robustness of Bio-FMs from both biology and
machine learning (ML) perspectives, and we observe that Bio-FMs are not yet
robust to biological data curation and ML transformations. Specifically, (i) from
the biological data curation perspective, we design biologically plausible pertur-
bations that mimic corruptions commonly observed in biological experiments, and
assess their impact on Bio-FMs; (ii) from the ML perspective, we probe how data
transformations, preprocessing, and embedding affect model performance. We
systematically evaluate state-of-the-art Bio-FMs on a spectrum of protein-related
downstream tasks, spanning protein design, generation, function prediction, cryo-
EM reconstruction, and structure classification, over structure, sequence, and im-
age modalities. Our results reveal that most Bio-FMs are vulnerable to both ML
transformations and biological perturbations; however, cryo-EM reconstruction
models (e.g., CryoDRGN) exhibit a surprising robustness, which maintains stabil-
ity even under worst-case adversarial scenarios. Notably, we also find that subtle
biological perturbations, which are often imperceptible to current measurement
tools, yet induce severe discrepancies in Bio-FM outputs, leading to critical fail-
ures. Our work highlights underappreciated vulnerabilities and provides a new
perspective for evaluating and improving the trustworthiness of Bio-FMs.
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1 INTRODUCTION
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Figure 2: The biologically plausible data perturbation and ML transformations pipeline. The bio-
logically plausible data perturbation includes geometric and coordinate-level perturbations and an-
notation and format-level perturbations. The ML transformations consider data and representation
transformations perturbations.

The recent development of biological foundation models (Bio-FMs) has enabled inspiring success
in deciphering biological molecules, ranging from individual proteins (Jumper et al., 2021b), single-
cell RNA sequences (Theodoris et al., 2023) to large molecular complexes (Zhou et al., 2022; Baek
et al., 2024; Guo et al., 2024; Lu et al., 2022a; Corso et al., 2022). This rapidly growing community
has significantly accelerated the discovery and design of novel molecules, substantially advancing
real-world biomedical applications such as therapeutic development, drug discovery, and vaccine
design (Zhang et al., 2025; Sharma et al., 2022).

However, despite these remarkable breakthroughs, the robustness of Bio-FMs in real-world deploy-
ment remains largely unexplored. Most recently, a preliminary study (Lyu et al., 2025) reveals that
both AlphaFold2 (Jumper et al., 2021b) and AlphaFold3 (Abramson et al., 2024b) exhibit systematic
flaws in reproducing biomolecular energetics, raising concerns about the reliability of these leading
Bio-FMs. At the same time, several correspondences (Bloomfield et al., 2024; Wang et al., 2025)
have drawn global attention to the broader safety issues surrounding Bio-FMs.

In this work, we aim to call attention to the robustness issues of Bio-FMs and to ensure their de-
pendable use by presenting a principled and systematic study of their robustness from both biological
and machine learning (ML) perspectives. Specifically, we raise the following critical questions that
remain to be answered: (1) What kinds of factors in real-world deployment may influence the re-
liability of these biological models? (2) Under what conditions are they most likely to fail? (3)
To what extent are their predictions and practical utilities affected by real-world perturbations or
interference?

To investigate these questions, we characterize and highlight key differences between Bio-FMs and
general foundation models in real-world deployment, as illustrated in Figure 2, focusing on two
key aspects: biologically plausible perturbation and ML transformations. Any changes, noise, or
perturbations within each procedure can introduce robustness issues for Bio-FMs, which are often
overlooked or assumed to be ideal during their development. Therefore, in this work, we aim to pro-
vide a systematic study from these two perspectives and specifically propose biologically plausible
perturbations and machine learning transformations to analyze their detailed effects on model
performance. Considering the wide range of Bio-FMs, we focus our study on leading protein-based
Bio-FMs across structure, sequence, and image modalities (i.e., cryo-EM images used for 3D molec-
ular reconstruction). In biologically plausible perturbations, we introduce noise commonly encoun-
tered when curating folding data from models such as AlphaFold; geometric-level perturbations;
coordinate-level perturbations; format-level perturbations, and corruption noise observed during bi-
ological data acquisition for structure, sequence, and image modalities. From the machine learning
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perspective, machine learning transformations include data and representation transformations per-
formed within Bio-FMs, including internal parameters such as the radius and kNN parameters used
to construct graph representations within the model.

In summary, we benchmark 2,128 experiments across 11 state-of-the-art Bio-FMs, spanning 7
datasets and 4 categories of downstream tasks. As a result, we find that even subtle perturbations
to the input can induce large changes in the predictions of state-of-the-art models, as illustrated
in Figure 1. Specifically, on a spectrum of protein-related downstream tasks, including protein de-
sign, generation, structure classification, function prediction and cryo-EM reconstruction, we reveal
that most Bio-FMs are vulnerable to both ML transformations and biological perturbations at dif-
ferent severity levels, while we find that cryo-EM reconstruction models (e.g., CryoDRGN) exhibit
a surprising robustness, which maintains stability even under worst-case adversarial attacks. Addi-
tionally, we also find that subtle biological perturbations, which are often imperceptible to current
measurement tools, yet induce severe discrepancies in Bio-FM outputs, leading to critical failures.

In a nutshell, our contributions can be summarized as follows: (1) To the best of our knowledge,
we are the first to present a systematic and comprehensive study of biological robustness from both
biological and machine learning perspectives. (2) We identify key robustness challenges of Bio-
FMs and introduce biologically plausible perturbations and machine learning transformations to
evaluate and benchmark the robustness of leading Bio-FMs. (3) We investigate a broad spectrum of
protein-based Bio-FMs and applications across sequence, structure, and image modalities to provide
a comprehensive robustness analysis. (4) Through extensive evaluations on seven datasets spanning
different modalities, we reveal the vulnerability of current Bio-FMs under varying degrees of per-
turbation and demonstrate their adverse impact on downstream applications.

2 RELATED WORK

2.1 BIOLOGICAL FOUNDATION MODELS

Recently, the development of biological foundation models, drawing inspiration from the success
of large language models, have significantly accelerated biological molecular analysis and design.
Early efforts, such as ProGen (Madani et al., 2023), relied solely on autoregressive pretraining over
protein sequences. However, the generated sequences often lacked connections with the correspond-
ing 3D structures. To enable more effective representation learning and structure-aware design,
many recent works explicitly incorporate 3-D structural or geometric information alongside se-
quences. For instance, GearNet (Zhang et al., 2023c) introduces a geometry-aware relational graph
neural network that represents proteins as graphs with residue-level nodes and connected by diverse
edge types, pretrained via multiview contrastive learning. Similarly, ProNet (Wang et al., 2023a)
employs a 3D graph network for structure-aware protein representation, but with a hierarchical de-
sign to capture multi-level structural information. SaProt (Su et al., 2024) extends the sequence
modeling paradigm by augmenting the vocabulary with structure tokens, enabling the training of
a structure-aware protein language model. ProSST (Li et al., 2024) further advances this direction
by quantizing protein structures into discrete tokens through a structure-encoding module, and then
applying disentangled attention in a Transformer to model interactions between residue tokens and
structure tokens. In parallel, the AlphaFold family Jumper et al. (2021a); Abramson et al. (2024a);
Baek et al. (2024), with its transformer blocks over MSA columns and pair matrices, has achieved
unprecedented accuracy in protein structure prediction and provided representations that strongly
benefit downstream protein design. The ESM family (Bjerregaard et al., 2025; Hsu et al., 2022; Lin
et al., 2022) complements these advances by scaling protein pretraining to billions of sequences and
embedding multiple data modalities jointly. Besides sequence and structure modalities, the emer-
gence of cryo-electron microscopy (cryo-EM) enables high-resolution visualization of biomolecules
in near-native states and has encouraged the development of machine learning models (Zhong et al.,
2021a;b; Huang et al., 2024b; Qu et al., 2025b; Liu et al., 2023; Herreros et al., 2025; Lu et al.,
2022b; Punjani et al., 2017; Qu et al., 2025a) for automatic reconstruction of 3D molecular struc-
tures from image inputs for structural analysis.

2.2 SECURITY AND ROBUSTNESS IN FOUNDATION MODELS

With the rapid development of powerful foundation models, concerns about their security in real-
world applications have grown significantly (Das et al., 2025; Yu et al., 2025; Ma et al., 2025; Huang
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et al., 2024a; Zhang et al., 2024a). For instance, large language models (LLMs) have been shown to
be vulnerable to attacks such as prompt injection and distribution shifts, which can trigger harmful or
misleading outputs (Perez & Ribeiro, 2022; Crothers et al., 2023). Likewise, vision (Kirillov et al.,
2023) and vision–language foundation models (Shayegani et al., 2023) are highly susceptible to ad-
versarial perturbations. For instance, Segment Anything Model (SAM)(Kirillov et al., 2023) can
be compromised by adversarial examples, resulting in a severe degradation of segmentation accu-
racy(Long et al., 2025). For biological foundation models, robustness issues are only beginning to be
explored, yet they are particularly critical given the close connection to high-stakes biological appli-
cations. Jha et al. (2021) show that structure predictions from RoseTTAFold (Baek et al., 2021) can
change drastically under very small sequence perturbations. Similarly, Yuan et al. (2023) investigate
adversarial sequence mutations against the AlphaFold2 model. More recently, SafeGenes (Zhan &
Moore, 2025) demonstrates that genomic foundation models, including ESM (Meier et al., 2021),
suffer substantial performance degradation under targeted soft-prompt attacks. In parallel, SafePro-
tein (Fan et al., 2025) introduces robustness benchmarks for protein foundation models, calling for
greater attention to this direction.

3 BIO-FM ROBUSTNESS FROM ML AND BIOLOGY PERSPECTIVES

3.1 PRELIMINARY

Biological foundation models (Bio-FMs) are large-scale pretrained models that learn universal rep-
resentations from vast biological data, such as sequences, structures, and images, and serve as adapt-
able backbones for diverse downstream biomedical tasks (Guo et al., 2025). In Table 1, we present
the taxonomy of the Bio-FMs involved in this work, with their core characteristics and task do-
mains. We conduct a comprehensive investigation of more than 10 state-of-the-art Bio-FMs span-
ning protein design, sequence generation, function prediction, structural classification, and cryo-EM
reconstruction, over extensive datasets and input modalities. In Appendix A, we present the detailed
description of each Bio-FM and the conducted tasks. We provide detailed illustrations of the pertur-
bation scope for each model in Appendix B.1.

3.2 MOTIVATIONS AND CHALLENGES

Recent biological studies highlight the unreliable behaviors of Bio-FMs, raising concerns about their
reliability in critical biomedical applications. For instance, researchers have recently uncovered
systematic failure patterns of AlphaFold3 (Baek et al., 2024), even when tasked with predicting
protein structures that are close to its training distribution. Such findings underscore a fundamental
question: What are the underlying sources of vulnerability in Bio-FMs?

General FMs vs. Bio-FMs General FMs usually operate on data that is human-generated and
largely symbolic (text and images), where perturbations mostly arise from ML-side transformations,
such as data corruption, pre-processing, and embeddings. In contrast, Bio-FMs operate on biolog-
ical manifolds that are inherently physical and biochemical (e.g., protein sequences, 3D structures,
cryo-EM images). These are not just “curated data points” but representations of natural objects
with fragile physical constraints. Moreover, biological data are prone to experimental noise and
sample preparation artifacts (e.g., noisy cryo-EM reconstruction errors, sequencing misreads, pro-
tein misfolding states). Unlike text or image corpora, these errors are not always human-detectable
or correctable. Tiny biological perturbations (e.g., a single amino acid mutation, thermal fluctua-
tion in cryo-EM) may be invisible to standard tools but can catastrophically alter Bio-FM outputs.
This makes biological curation risks fundamentally different, as they introduce “silent” vulnerabili-
ties invisible to standard ML robustness pipelines. Therefore, we argue that the robustness failures
of Bio-FMs can stem from both inference-time ML transformations and biologically plausible
perturbation.

3.3 BIO-FM PERTURBATIONS FROM ML AND BIOLOGY PERSPECTIVES

In this paper, we investigate the robustness of Bio-FMs from two complementary angles: the ML
side and the biologically plausible perturbation side: (i) from the ML perspective, we examine how
internal data and representation transformations (e.g., protein graph embeddings, tokenization, and
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Table 1: The taxonomy of protein-related biological downstream tasks and biological foundational
models (or tools) involved in this work. “seq.” stands for “sequence”. “ML” and “Bio.” stand for
perturbations from ML and biological perspectives, respectively.

Downstream Tasks Model Dataset Metric Input Modality Perturbation Scope

Function or Structure
Prediction

GearNet (Zhang et al., 2023c) Enzyme Commission (EC)
Gene Ontology (GO)

ProtFunc
HomologyTAPE

AUPRC
F1

Accuracy

Structure ML, Bio.
ESM-GearNet (Zhang et al., 2023a) Structure ML, Bio.
ESM-1 (Meier et al., 2021) Sequence + Structure Bio.
ProNet (Wang et al., 2023b) Structure ML, Bio.

Sequence
Generation

ESM-3 (Hayes et al., 2025) PInvBench
(mpnn validation) Recovery Rate

Structure Bio.
ProteinMPNN (Dauparas et al., 2022) Structure ML, Bio.
ESM-IF1 (Hsu et al., 2022) Structure Bio.

Protein 3D
Reconstruction

CryoDRGN (Zhong et al., 2021a) RAG1–RAG2 complex
(EMPIAR-10049)

Fourier Shell Correlation
(FSC)

cryo-EM ML, Bio.
CryoNeRF (Qu et al., 2025b) cryo-EM ML, Bio.

Protein Fitness
Prediction

SaProt (Su et al., 2024)
ProteinGym

(DMS-substitution,
DMS-indels)

Spearman
AUC
Recall

Structure Bio.
ESM-3 (Hayes et al., 2025) Structure Bio.
ESM-IF1 (Hsu et al., 2022) Sequence + Structure Bio.
S3F (Zhang et al., 2024b) Sequence + Structure ML, Bio.
ProtinMPNN (Dauparas et al., 2022) Sequence + Structure ML, Bio.

preprocessing, shape the stability and robustness of Bio-FMs (Section 4); (ii) from the biological
perspective, we study how naturally occurring and frequently observed corruptions during data
curation (e.g., amino acid coordinate shifts, geometric distortions, and sequence mutations), impact
Bio-FM performance (Section 5). These analyses provide a dual view of robustness that reflects
both the computational transformations inherent to Bio-FMs and the biological perturbations rooted
in real-world data collection.

4 ML TRANSFORMATIONS REMAIN A THREAT TO BIO-FMS’ ROBUSTNESS

4.1 SETUP: ML TRANSFORMATIONS INSIDE BIO-FMS

ML-side perturbations are defined as inference-time transformations that occur within the internal
pipelines of Bio-FMs, such as preprocessing, embedding, and tokenization schemes. For example,
when processing protein structural information, Bio-FMs often encode structures into graphs by
connecting residues as nodes with edges determined by spatial proximity. In this step, ML con-
siderations, such as the number of neighbors or the cutoff radius used to capture spatial relations,
can significantly alter the resulting graph representation and the model’s behavior. Inference-time
perturbations test the reliability of Bio-FMs under slight data shifts and can uncover deeper aspects
of their robustness in real-world deployment. Notably, these transformations are independent of the
biological data curation process, assuming that the biological data has already been generated and
fixed in advance. Evaluating ML-side perturbations is thus essential to disentangle robustness issues
arising from computational design choices and enables a clearer understanding of how Bio-FMs fail
or succeed under different modeling assumptions.

Since protein is one of the most popular research objects in Bio-FMs, we mainly consider the ML
perturbations that happen in protein structure modeling, such as protein graph construction. In Ap-
pendix B.1, we provide the detailed perturbation strategy, including the transformations considered
in each Bio-FM, as well as the perturbation configurations. In summary, we perturb the spatial rela-
tionships and density distributions in protein graph modeling across multiple Bio-FMs, with various
strengths.

Similarity Measurement. As in prior robustness studies, defining how to measure the distance
between original and perturbed data is critical, particularly when auditing the feasibility, utility, and
broader practical implications of robustness analysis in real-world applications. Here, we quantify
perturbation strength using graph similarity metrics, including spectral distance, Frobenius norm,
and Jaccard Similarity over edges. In Appendix B.2, we present the detailed calculation procedures
of these measurements. By default, we utilize the Jaccard Similarity over edges as the similarity
measurement.

4.2 BIO-FMS ARE NOT YET ROBUST TO ML TRANSFORMATIONS

Probing the Robust Boundary of Bio-FMs. To provide a comprehensive understanding of the
robustness of Bio-FMs against ML transformations, in Figure 3 we probe the robustness boundary
of S3F, ESM-GearNet, GearNet, and ProteinMPNN across various benchmarks. Specifically, each
point in Figure 3 represents a perturbation caused by a different ML transformation, where the x-
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Figure 3: Probing the robust boundary of Bio-FMs in terms of ML transformations. We observe that
tiny perturbations (measured by graph Jaccard similarity) result in significant performance drops in
various Bio-FMs. This suggests that existing Bio-FMs are not robust to ML transformations and
require further consideration in real-world deployment.

Figure 4: The performance and similarity heatmap over various perturbation sources. It is shown
that GearNet is extremely vulnerable: a slight increase in radius during protein graph construction
in the testing time will significantly hurt performance.

axis measures the dissimilarity (i.e., 1− similarity) relative to the default transformation, and the
y-axis shows the corresponding performance on the evaluation benchmarks. We then plot the lower-
envelope curve (red line) to indicate the worst-case boundary under these perturbations. Despite
varying degrees of sensitivity, all Bio-FMs exhibit a drastic performance drop within a very small
range of perturbation, as measured by dissimilarity. For instance, GearNet, the least robust model,
drops from 0.7 to 0.1 AUPRC@MICRO when the dissimilarity is as low as 1%.
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Table 2: We investigate the impact of biologically plausible perturbations on cryo-EM data for the
Protein 3D Reconstruction task. The quality of the reconstructions is evaluated using Fourier Shell
Correlation (FSC), where a lower FSC value indicates better accuracy. We report FSC results under
different levels of perturbation severity to assess the robustness of different methods.

Gaussian Blur Rotation Translation PGD Attack
Severity CryoDGRN CryoNeRF CryoDGRN CryoNeRF CryoDGRN CryoNeRF CryoDGRN

1 3.503 3.667 3.502 3.663 3.502 3.712 3.502
3 3.503 3.754 3.736 4.195 7.205 7.688 3.501
5 8.612 9.968 4.574 6.899 64.663 66.755 3.502

Figure 5: The Vulneralbility of Density and Spa-
tial Modeling. We show the performance drop
due to changes in normalized parameters with two
modeling strategies: density modeling, denoted as
k-NN, and spatial modeling, denoted as Distance.

Tiny Perturbations Result in Significant Per-
formance Drops. The robustness boundary
motivates a deeper diagnosis of model behav-
ior under specific ML transformations. As
shown in Figure 4, the top row presents perfor-
mance variations as different ML transforma-
tion parameters change, where the coordinate
axes represent the variation scales of each pa-
rameter, while the bottom row depicts the corre-
sponding similarity changes. For GearNet and
ESM-GearNet, we vary the radius and the k
value (default k = 10) in kNN when construct-
ing the multi-relational GNN. GearNet is ex-
tremely sensitive to both parameters: even tiny
changes in either the k value or the radius can
lead to complete model failure. This severity
is further highlighted by the similarity plot on
the bottom: the constructed graphs across dif-
ferent k values maintain high similarity, yet the
performance drops sharply with only a small
change in k. In contrast, ESM-GearNet exhibits greater robustness to variations in k, maintain-
ing its performance over a relatively wider k range, while remaining sensitive to small changes in
the radius. The similarity plot is identical to that of GearNet, as both models construct input graphs
in the same way but differ in the algorithms used for processing inputs and making predictions. Be-
sides, for ProteinMPNN, we vary number of neighbors and noise level parameters when constructing
the graph representations, with results shown in the third column. ProteinMPNN demonstrates more
robustness to perturbations in graph representation construction. Note that the model applies noise
by defaultk, therefore decreasing the noise level leads to a slight increase in performance, whereas
varying the number of neighbors exerts a stronger influence on model performance.

Vulnerability of Density and Spatial Modeling. To further investigate the vulnerability of Bio-
FMs to perturbations in graph construction, we examine two commonly used modeling strategies:
density modeling, exemplified by kNN, and spatial modeling, where graph edges are established
based on atom distance thresholds. The results are shown in Figure 5, where performance degrada-
tion is plotted against normalized parameter changes. Across different levels of parameter variation,
we find that current Bio-FMs are more vulnerable to spatial modeling, which exhibiting consistently
larger performance drop under the same degree of change.

5 BIOLOGICALLY PLAUSIBLE PERTURBATION POSES INHERENT
CHALLENGES TO BIO-FMS’ ROBUSTNESS

5.1 SETUP: BIOLOGICAL PLAUSIBLE PERTURBATIONS

To systematically evaluate robustness to real-world data issues, we develop a comprehensive suite
of biologist-driven, biologically plausible perturbations spanning both protein structures and cryo-
EM images. These perturbations are engineered to mimic common errors and artifacts that arise
during experimental data curation. For protein structures, our perturbations are categorized into two
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classes. (1) Geometric and coordinate-level perturbations that directly alter the physical representa-
tion of the molecule. Examples include applying Gaussian noise to atomic coordinates to simulate
thermal fluctuations, introducing local deletions of residue segments to mimic unresolved loops or
regions of poor electron density. (2) Annotation and format-level perturbations that introduce errors
into the protein structures file’s metadata and structure. Examples include scrambling B-factor and
occupancy values, which encode atomic mobility and confidence, and removing or breaking critical
records that define chain boundaries and chemical connectivity.

For the cryo-EM imaging modality, we introduce a set of image perturbations designed to simulate
experimental artifacts such as low signal-to-noise ratios, defocus effects, and sample heterogeneity.
Specifically, we apply various noise models (Gaussian, shot, impulse, and speckle noise) (McMullan
et al., 2016; Li et al., 2013; Rice et al., 2018), image quality degradations (Gaussian blur and low
contrast)(Zhang, 2016; Glaeser, 2013), and geometric transformations (rotation, translation, and
elastic transforms) (Afanasyev et al., 2015; Zheng et al., 2017; Scheres, 2012). These corruptions
represent a range of realistic scenarios, from ice contamination to particle misalignment. In addition
to these natural corruptions, we assess worst-case vulnerability by employing a Projected Gradient
Descent (PGD)(Madry et al., 2017) method to generate adversarial perturbations.

Finally, we assess agentic pipeline risk to model error propagation in multi-stage workflows. In
this setup, a 3D structure generated by a prediction model (e.g., AlphaFold) is fed to downstream
Bio-FMs. This process reveals how inherent prediction uncertainties from an upstream model can
cascade and create vulnerabilities in subsequent ones. A detailed description of each perturbation
method is available in the Appendix C.

5.2 HOW BIOLOGICALLY PLAUSIBLE DATA PERTURBATION HURTS BIO-FMS?
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Figure 6: Biological Perturbation Robustness
Boundary. We demonstrate the dissimilarity (i.e.,
1−similarity) between graphs constructed from
inputs before and after perturbation, plotted on the
x-axis, along with the corresponding model’s task
performance on the y-axis.

Biologically Plausible Perturbations. Sim-
ilar to our study of ML transformations, we
begin by examining the robustness boundary
under perturbations introduced during the bi-
ological curation process. As shown in Fig-
ure 6, each point represents a randomly applied
biologically plausible perturbation, where we
compute the dissimilarity between graphs con-
structed with input before and after the per-
turbation and report the corresponding bench-
mark performance. Even with small dissimi-
larity changes, the worst-case performance of
each Bio-FM decreases drastically, indicating
that robustness issues are severe when Bio-FMs
are exposed to perturbations arising from real-
world data curation.

Different Bio-FMs Respond Differently to
Specific Biological Perturbations. Further-
more, we investigate two biologically plausible
perturbations that frequently arise during bio-
logical data curation: ❶ coordinate perturba-
tion, where coordinate values are fluctuated by
adding Gaussian noise, and ❷ rename pertur-
bation, where residues are incorrectly labeled
during sequence formatting. As shown in Fig-
ure 8, we examine the behavior of ESM3 and
ProNet under both perturbations. We observe
moderate robustness for both models at low perturbation levels, but their performance collapses
when the perturbation severity exceeds four. Under the rename perturbation, ESM3 demonstrates
poor robustness, likely due to its heavy reliance on sequence-based training, whereas ProNet remains
comparatively stable owing to its structure-focused design.

Bio-FM Uncertainty Risks Agentic Pipeline. Bio-FMs are deployed in agentic pipelines for ther-
apeutic design, such as combining ESM3 or ProteinMPNN with AlphaFold3 for rapid antibody
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Figure 7: Antibody design in an agentic sys-
tem. Alphafold3 provides high-confidence
marker (ptm/iptm) yet result in huge variance
in downstream tasks (Rosetta Free Energy).

development. However, our results reveal a crit-
ical robustness challenge in Bio-Agentic systems:
Bio-FMs may transmit incorrect uncertainty sig-
nals to downstream tasks, creating significant risks.
In Figure 7, we conduct antibody design experi-
ments where ProteinMPNN generates antibody can-
didates, AlphaFold3 predicts their structures, and
Rosetta (Alford et al., 2017) evaluates their free en-
ergy. While AlphaFold3 reports highly consistent
ptm/iptm scores, the corresponding Rosetta energy
calculations show large variance. This disparity un-
derscores a robustness risk: stable Bio-FM confi-
dence does not guarantee stable downstream behav-
ior. Subtly encoded uncertainties—undetected by
AlphaFold3’s self-reported metrics—can propagate
into downstream evaluations, leading to substantial
shifts in conclusions about antibody fitness.

Cryo-EM Reconstruction Models Are Robust, Even Worst-Case. As shown
in Table 2, the Cryo-EM reconstruction model is robust against biologically plau-
sible perturbation. Specifically, (1) the FSC remains below 0.5 under pertur-
bations like Gaussian Blue, Rotation with severity less than and equal to 3.

Figure 8: Biological Perturbation on Different
Bio-FMs. We show two types of biologically
plausible perturbations: (1) coordinate perturba-
tion (left), and (2) rename perturbation (right).
We plot the performance change for different lev-
els of severity of ESM2 and ProNet.

This indicates that these perturbations do not
lead the model to confuse noise with a valid
signal, except in cases of extremely high noise,
which are implausible in real-world scenarios.
(2) For translation perturbations, the FSC ex-
ceeds 0.5 under large perturbation, i.e., when
severity is greater than and equal to 3. (3) In
the case of worst-case perturbations, such as the
PGD attack, our model remains stable across
different severity levels, specifically: 6/192 for
level 1 severity, 12/192 for level 2 severity, and
12/192 for level 3 severity. We attribute such
superior robustness of Cryo-EM models (e.g.,
CryoDRGN) compared to structure/sequence
models (e.g., GearNet, ProNet) to three key fac-
tors: Information Aggregation, Training Objec-
tives, and Input Continuity. Please refer to Ap-
pendix D for more discussion.

Non-FM tool Robustness. We take enzyme function prediction Yu et al. (2023) as an example and
use BLAST as a non-FM conventional tool, as shown in Table 3. BLAST transfers the EC anno-
tation of the closest homologous sequence identified through high-scoring alignments. We show
that BLAST is not being affected in 8 out of 12 perturbations. This is because BLAST takes a se-
quence as input and matches the enzyme function via sequence similarity from external databases.
Naturally, it immunizes spatial distance perturbations such as the Gaussian coordinate perturbation.
While Bio-FMs models the spatial protein structures and significantly suffers from Gaussian coordi-
nate perturbation (e.g., GearNet drops from 0.76 to 0.65). Even for the rest 4 perturbations, BLAST
demonstrates strong resilience, e.g., BLAST only drops 3-4% accuracy on average and drops only
7% at most in the worst scenario. This shows that although Bio-FMs are highly capable on many
tasks, they also exhibit greater vulnerability compared to traditional non-FM bio tools. We will ex-
pand our discussion and include additional results, such as broader comparisons between Bio-FMs
and non-FM tools on the same tasks, to further illustrate this point in our manuscript.

6 CONCLUSION

In this paper, we propose a systematic and comprehensive analysis of biological robustness from
both biological and machine learning perspectives. This novel approach highlights the importance
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Table 3: Non-FM tool robustness analysis with BLAST and enzyme function prediction. It is shown
that non-FM biological tools are more robust to biological perturbations compared to Bio-FMs.

Dataset Halogenase Multi New
Ori BLAST 0.66 0.66 0.18 0.18 0.52 0.52

Bio. Perturb. Severity1 Severity3 Severity1 Severity3 Severity1 Severity3
Gaussian Coordinate Noise 0.66 0.59 0.18 0.18 0.52 0.51

Local Residue Deletion 0.62 0.62 0.18 0.15 0.51 0.50

Sidechain Atom Drop 0.66 0.66 0.18 0.18 0.52 0.52

Disulfide Bond Breakage 0.66 0.66 0.18 0.18 0.52 0.52

Cis-Peptide Bond Error 0.66 0.66 0.18 0.18 0.52 0.52

Local Geometric Distortion 0.66 0.66 0.18 0.18 0.52 0.52

B-Factor and
Occupancy Scrambling 0.66 0.66 0.18 0.18 0.52 0.52

Atom Name/Element
Misalignment 0.66 0.66 0.18 0.18 0.52 0.52

Residue Name and
Numbering Anomalies 0.59 0.66 0.18 0.18 0.52 0.52

Header and Terminator
Record Corruption 0.66 0.66 0.18 0.18 0.52 0.52

CONECT Record Loss 0.66 0.66 0.18 0.18 0.52 0.52

of robustness for bio-foundation models. We identify two key perturbations of bio-foundation model
robustness: biologically plausible perturbations and machine learning transformations. These two
types of perturbation affect the robustness of bio-foundation models both during data curation and
model training, covering the model from development to application. Specifically, our study ex-
plores robustness across diverse modalities, including sequence, structure, and image. This sys-
tematic analysis provides a comprehensive overview of robustness for bio-foundation models. Our
results indicate that developers should pay attention to these previously ignored robustness issues,
which are critical for the safe utilization of biological models.

Limitations. While our work provides a systematic benchmark for Bio-FM robustness, we recog-
nize several promising directions for future research. Our analysis could be extended to an even
broader range of models and tasks as the field rapidly evolves. Furthermore, connecting our in silico
findings with experimental validation remains an important next step to fully understand the real-
world impact of these vulnerabilities. Finally, delving deeper into the mechanistic underpinnings of
why certain models exhibit robustness offers a valuable path toward designing the next generation
of more reliable and trustworthy Bio-FMs.

ETHICS STATEMENT

We follow the ICLR Code of Ethics. Our study involves no private, sensitive, or personally iden-
tifiable information. We anticipate no ethical issues nor harmful societal impacts arising from this
work.

REPRODUCIBILITY STATEMENT

Reproducibility is a core aim of our study. All experimental datasets are publicly available stan-
dard benchmarks. The main paper and appendix provide complete details of the training proce-
dures, model architectures, and evaluation metrics. Upon acceptance, we will release the full code-
base—including preprocessing, training, and evaluation scripts—along with configuration files and
documentation to enable exact replication of our results. Random seeds and hyperparameters will
also be provided to further ensure reproducibility.
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A BIOLOGICAL FOUNDATION MODELS AND DOWNSTREAM TASKS

A.1 BIOLOGICAL DOWNSTREAM TASKS

Function or Structure Prediction. This category covers predicting molecular function (e.g., EC
and GO annotations, interface/ligand binding) and inferring 3D structure or structural proxies from
available inputs (Jumper et al., 2021b). In practice, Bio-FMs provide transferable sequence/structure
embeddings that are consumed by lightweight heads for classification or regression, or they directly
produce structural outputs. These tasks probe whether pretraining captures biophysical constraints,
evolutionary regularities, and fold-level inductive biases that generalize across families. They are
foundational for proteome-scale annotation, mechanism-of-action studies, and for bootstrapping
downstream design pipelines that depend on reliable structure/function priors.

Sequence Generation. Here the goal is de novo protein design: proposing amino-acid sequences
that are likely to fold, remain stable, and achieve target properties (e.g., binding, catalysis, traffick-
ing) (Madani et al., 2023). Models operate either purely in sequence space (autoregressive/Masked
LM sampling with constraints) or condition on structure/backbone contexts to steer designs. Typical
evaluation includes sequence recovery under fixed backbones, in silico stability or binding proxies,
and wet-lab validation when available. By efficiently traversing an astronomically large sequence
space, Bio-FMs accelerate discovery beyond natural diversity while enabling multi-objective opti-
mization.

Protein 3D Reconstruction. Given many noisy 2D cryo-EM projections, the task is to infer high-
resolution 3D densities and, increasingly, the continuous landscape of conformational states. Mod-
ern deep generative approaches learn mappings from images to volumes and latent variables describ-
ing heterogeneity, improving resolution and handling flexibility/partial occupancy (Zhong et al.,
2021a). Accurate reconstructions are essential for visualizing assemblies, understanding allostery,
and providing structure priors for docking and design. They also stress-test robustness, since small
imaging artifacts or alignment errors can cascade into markedly different volumetric solutions.

Protein Fitness Prediction. Fitness prediction estimates the effect of mutations (substitutions and
indels) on activity, stability, binding, or organismal viability—i.e., learning the fitness landscape.
Bio-FMs score variants using sequence likelihoods, structure-aware encoders, or multi-scale sur-
face/geometry features, and are evaluated on deep mutational scanning benchmarks (Meier et al.,
2021). Reliable fitness models guide directed evolution, variant prioritization, and safety analy-
sis by highlighting deleterious or gain-of-function changes. They also serve as a stringent test of
whether embeddings encode causal, not merely correlational, signals linking sequence, structure,
and function.

A.2 BIOLOGICAL FOUNDATION MODELS

ProNet. A hierarchical protein representation learner based on complete 3D graph networks that
captures residue-, substructure-, and protein-level signals. It ingests protein structures as graphs
(residue or atom nodes with edges from chemical connectivity and spatial proximity) to compute
expressive embeddings. Typical uses include function classification (EC/GO), interface/binding-
site prediction, stability/property regression, and family/homology classification with whole-graph
features (Wang et al., 2022).

GearNet. A multi-relational GNN for proteins with message passing over sequence-adjacent
edges, spatial neighbors, and kNN graphs to couple primary sequence and tertiary geometry. It
operates on residue-level 3D graphs augmented with geometric and physicochemical features to
produce node- or graph-level representations. Applications include function prediction, active-site
annotation, and structure-aware property prediction, providing strong structure-conditioned base-
lines (Zhang et al., 2022).

ESM-GearNet. A hybrid architecture that fuses ESM language-model embeddings with a Gear-
Net structural encoder to jointly leverage evolutionary and geometric information. It takes amino-
acid sequences for the ESM component and 3D structure/graphs for GearNet, aligning the modali-
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ties into a unified embedding. The combined representation improves EC/GO classification, bind-
ing/property prediction, and homology transfer over single-modality encoders (Zhang et al., 2023b).

ProteinMPNN. A protein designing model that design sequences for a given protein backbone
structure. It outperforms traditional physically-based methods in terms of native sequence recovery
and computational efficiency, and successfully rescues previously failed designs across a wide range
of protein design challenges. The output sequences leading to higher AlphaFold prediction accuracy,
and demonstrate improved experimental expression, thermostability, and correct assembly in diverse
applications (Dauparas et al., 2022).

ESM-1. First-generation Evolutionary Scale Modeling transformers trained on massive protein
sequence corpora to learn universal language representations of proteins. Inputs are linear amino-
acid sequences, from which residue and sequence embeddings are derived via masked-language-
modeling objectives. Resulting features support classification tasks, secondary/contact proxies, re-
mote homology detection, and zero-shot mutation scoring for fitness ranking via language-model
likelihoods (Meier et al., 2021).

ESM-3. A multi-track, multi-task Bio-FM that couples sequence modeling with struc-
tural/geometric signals and iterative generative refinement. It can consume sequences together with
structure tokens/coordinates or geometry-aware attention biases to form joint representations. Ca-
pabilities span joint sequence–structure reasoning, sequence generation/design, and structure-aware
annotation, including conditional design under backbone or functional constraints (Hsu et al., 2022).

ESM-IF (inverse folding). A structure-to-sequence model trained to generate or rank sequences
compatible with a given backbone, effectively solving the reverse of folding. It takes 3D backbones
or coordinate traces (e.g., Cα or backbone frames), optionally with side-chain context, and outputs
per-position amino-acid distributions or full sequences. Common uses include design under fixed
folds and compatibility scoring for mutations and scaffolds.

S2F. A sequence–structure fitness framework that integrates PLM-derived sequence embeddings
with geometric encoders (e.g., GNNs/GVPs) to model mutation effects (Zhang et al., 2024b). It
consumes both the amino-acid sequence and a 3D structure or predicted backbone to produce multi-
modal representations. These features are trained for fitness prediction on DMS and variant panels,
typically generalizing better than sequence-only scoring.

S3F. An extension of S2F that adds an explicit protein-surface representation (mesh or point cloud)
to capture pockets, interfaces, and local topology (Zhang et al., 2024b). Inputs comprise sequence,
3D structure, and surface geometry/features, which are encoded at multiple scales. The resulting
embeddings achieve state-of-the-art performance on fitness prediction and variant ranking, particu-
larly for interface-mediated phenotypes.

SaProt. A structure-aware protein language model that augments the token vocabulary with
structure-derived tokens, injecting geometric context during language modeling. It processes se-
quences annotated with discretized local geometry or related structural cues to produce more
structure-sensitive embeddings. These embeddings improve structure/function prediction and sta-
bility/fitness classification over sequence-only PLMs on structure-dependent endpoints (Su et al.,
2023).

CryoDRGN. A variational deep generative model for cryo-EM that maps 2D particle images into
a latent space of 3D densities, capturing continuous conformational heterogeneity. It ingests particle
images (with viewing parameters/poses) and decodes latent variables into volumetric densities con-
sistent with observed projections. Outputs support 3D reconstruction and conformational landscape
analysis, handling heterogeneous ensembles more naturally than single-state pipelines (Zhong et al.,
2021a).

CryoNeRF. A neural radiance field (NeRF) formulation of cryo-EM reconstruction that learns a
continuous volumetric field whose projections match measured images. Given cryo-EM images and
estimated poses/orientations, it fits an implicit function over 3D coordinates to recover high-fidelity
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densities. The approach extends to heterogeneous states via conditioning on latent variables and
offers smooth, grid-free volumetric representations (Qu et al., 2025b).

B ML TRANSFORMATIONS INSIDE BIO-FMS

B.1 ML TRANSFORMATIONS

In contrast to perturbations that simulate experimental or annotation errors, this category targets the
internal data processing and representation choices within the Bio-FMs, as shown in table 4. Specif-
ically, we investigate the sensitivity of models to the hyperparameters governing the construction
of protein graphs, which are fundamental data structures for many structure-aware models. These
inference-time transformations probe the stability of a model with respect to its own architectural
and preprocessing assumptions. The specific parameters perturbed for each model are detailed be-
low, with ranges selected around their default values.

• GearNet & ESM-GearNet: These models construct protein graphs based on spatial prox-
imity. We perturb two key hyperparameters that define the graph topology:

– radius: This hyperparameter defines the cutoff distance (in Å) for connecting
residues as nodes with an edge. A larger radius results in a denser graph. We per-
turb this value within the range of {5, . . . , 15} Å, where the default is 10 Å.

– KNN: As an alternative to a fixed radius, this method connects each residue to its k
nearest neighbors based on Euclidean distance. This ensures a uniform node degree
across the graph. We vary the number of neighbors k across the set {5, . . . , 15}, with
a default value of 10.

• ProNet: This model also relies on a graph representation, and we perturb its graph con-
struction parameters:

– cutoff: Similar to GearNet’s radius, this parameter sets the distance threshold for
building spatial edges between residues. It is perturbed over the range {5, . . . , 15} Å,
with a default of 10 Å.

– max_num_neighbors: This parameter imposes a hard cap on the maximum num-
ber of neighbors for any given residue, thereby controlling the maximum node degree
and graph density. We evaluate the model’s robustness to this constraint by varying
the limit from {16, . . . , 48}, where the default is 32.

• S3F: This model’s geometric encoder uses distance-based criteria to form edges, which we
perturb as follows:

– min_distance: This parameter sets a lower bound on the distance for an edge to be
considered valid, effectively filtering out residue pairs that are too close. We perturb
this value across {5, . . . , 15} Å, centered on the default of 10 Å.

– radius: This parameter acts as the upper cutoff distance for connecting edges. We
evaluate a range of {0, 4, . . . , 32} Å. The default value of 0 typically disables this filter,
so our perturbations test the effect of introducing and varying this spatial constraint.

• ProteinMPNN: This model uses a graph-based representation to inform its sequence gen-
eration process. We perturb two key aspects of its internal mechanism:

– num_neighbors: This hyperparameter controls the size of the local neighborhood
(number of nearest residues) considered during the message-passing steps for predict-
ing an amino acid at a given position. We vary this number from {24, . . . , 72}, with a
default of 48.

– noise_level: The model adds Gaussian noise to atomic coordinates during train-
ing for regularization. We test the model’s sensitivity to this factor at inference time
by applying noise with a standard deviation varying across {0.1, . . . , 0.3} Å, around
the training default of 0.2 Å.

The ML transformations focus on perturbations in the graph construction of protein structures. For
models such as ESM-1, ESM-3, ESM-IF1, and SaProt, which do not involve graph construction,
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Table 4: The ML-perspective perturbations involved in our work.
Bio-FMs Transformation Explanation Perturbation Range

GearNet radius Defines the cutoff distance (in Å) for connecting atoms into edges. {5 ... 15} (default 10)
KNN Connect each residue to its k nearest neighbors (based on Euclidean 3D distance). {5 ... 15} (default 10)

ProNet cutoff Defines distance cutoff for building spatial edges. {5 ... 15} (default 10)
max_num_neighbors A cap on how many neighbors each residue can connect to. {16 ... 48} (default 32)

ESM-GearNet radius Nodes within this distance are considered spatial neighbors. {5 ... 15} (default 10)
KNN Connect each residue to its k nearest neighbors (based on Euclidean 3D distance). {5 ... 15} (default 10)

S3F min_distance Lower bound on distances considered valid edges to filter out too-close pairs. {5 ... 15} (default 10)
radius Upper cutoff distance for connecting edges, same as above. {0, 4, 8, ... 32} (default 0)

ProteinMPNN num_neighors Controls how many nearest residues are considered when predicting an amino acid. {24 ... 72} (default 48)
noise_level Adds Gaussian noise to atomic coordinates during training. {0.1 ... 0.3} (default 0.2)

we do not apply these ML transformation perturbations. Instead, we integrate only biologically
plausible perturbations (BioPP) for these models. For models related to Protein 3D Reconstruction,
the input data are images. In this case, ML transformation perturbations align with biologically
plausible perturbations like Gaussian Blur, Rotation, and Translation. Additionally, we adopt the
gradient attack method as a type of ML transformation. Specifically, we apply the PGD Attack to
perturb Protein 3D Reconstruction tasks.

B.2 SIMILARITY MEASUREMENT

To quantify the structural dissimilarity induced by the ML transformations on the protein graph
representations, we employ a suite of metrics that capture changes at both local and global scales.
These metrics measure the distance between the original graph G = (V,E) and the perturbed graph
G′ = (V,E′).

• Jaccard Similarity: This metric provides a direct measure of edge overlap (Jaccard, 1901)
and is defined as the size of the intersection of the edge sets divided by the size of their
union: |E ∩ E′|/|E ∪ E′|. A value of 1 indicates identical graphs, while a value of 0 indi-
cates no shared edges. This metric offers a straightforward and interpretable quantification
of how local residue connectivity is altered by the perturbation.

• Frobenius Distance: Calculated on the adjacency matrices A and A′ of the two graphs
(Horn & Johnson, 2012), the Frobenius distance is defined as ∥A − A′∥F . This is the
square root of the sum of the squared differences between the elements of the matrices.
It is sensitive to the exact number of edges that differ between the two graphs, effectively
measuring the magnitude of the change in the adjacency representation.

• Spectral Distance: This metric assesses changes in the global topological properties of
the graph (Chung, 1997). It is computed as the Euclidean distance (L2-norm) between the
sorted vectors of eigenvalues (the spectra) derived from the graph Laplacian matrices, L
and L′. Since the spectrum of a graph encodes fundamental structural information, such as
connectivity, the number of components, and the presence of bipartite structures, a small
spectral distance implies that the perturbed graph maintains global properties similar to the
original.

C BIOLOGICALLY PLAUSIBLE PERTURBATIONS DURING DATA CURATION

This appendix provides a comprehensive technical description of the biologically plausible pertur-
bations designed and implemented for this study. These perturbations are engineered to mimic com-
mon errors, artifacts, and variations that occur during the experimental data acquisition and curation
pipelines for protein structures and cryo-electron microscopy (cryo-EM) images (MRC format).
Each perturbation is controlled by a severity parameter, an integer from 1 (mildest) to 5 (most
severe), which maps to specific corruption parameters.

C.1 PERTURBATIONS FOR PROTEIN STRUCTURES

Our PDB perturbations are divided into two categories: (1) those that alter the physical 3D coor-
dinates and (2) those that corrupt the file’s annotation and formatting, which can challenge parsing
and interpretation by downstream models.
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C.1.1 GEOMETRIC AND COORDINATE-LEVEL PERTURBATIONS

These perturbations directly modify the atomic coordinates, simulating physical and experimental
uncertainties.

• Gaussian Coordinate Noise: This simulates thermal fluctuations and positional uncer-
tainty inherent in experimentally determined structures (Djinovic-Carugo & Carugo, 2015;
Atilgan et al., 2001). We add Gaussian noise sampled from N (0, σ2) to the (x, y, z) coordi-
nates of every atom. The standard deviation σ (in Ångströms) is determined by the severity
level: (0.10, 0.20, 0.40, 0.80, 1.20) for severities 1 through 5, respectively.

• Local Residue Deletion: This mimics unresolved loops or regions of poor electron density
where a segment of the protein chain cannot be modeled (Chen et al., 2010; Leaver-Fay
et al., 2011). For each chain, we delete a continuous segment of residues. The deletion
is preferentially applied to the middle of the chain to better simulate loop regions. The
length of the deleted segment is a fraction of the total chain length, with the fraction frac
mapped from severity as: (0.02, 0.04, 0.06, 0.08, 0.12).

• Sidechain Atom Drop: This simulates incomplete modeling of flexible or low-resolution
sidechains (Engh & Huber, 1991; Vendruscolo et al., 2002). For each residue, with a given
probability prob, we remove all of its sidechain atoms. The backbone atoms (N, CA, C,
O) and the CB atom are preserved to maintain the basic residue structure. The probability
prob for dropping a sidechain is: (0.05, 0.10, 0.18, 0.25, 0.35).

• Disulfide Bond Breakage: This simulates errors in modeling covalent disulfide bonds or
changes in the local redox environment (Jabs et al., 1999; Tozzini, 2005). We first identify
potential disulfide bonds by finding pairs of Cysteine SG atoms within a 2.3 Å distance. For
each identified pair, with a probability prob, we break the bond by deleting one of the two
SG atoms. The breakage probability prob is: (0.3, 0.5, 0.7, 0.85, 1.0).

• Cis-Peptide Bond Error: This introduces a geometrically incorrect peptide bond confor-
mation, which is a known, albeit rare, modeling error (Karplus & Kuriyan, 2005; Tirion,
1996). We specifically target the peptide bond preceding a Proline residue (X-Pro), which is
naturally found in a trans conformation (> 99% of cases). We simulate a forced transition
towards a cis conformation by rotating the Proline residue around the C(i)-N(i+1) peptide
bond axis. The rotation angle rot_deg is chosen to approach the 180◦ flip required for a
full trans-to-cis switch: (60, 90, 120, 150, 170)◦.

• Local Geometric Distortion: This simulates localized strain or subtle inaccuracies in
bond lengths and angles within a residue (Carugo & Carugo, 2005). A fraction cover
of residues in each chain are randomly selected. For each selected residue, we apply a
minor affine transformation to its atomic coordinates. The transformation consists of an
anisotropic scaling and a slight shear, centered on the residue’s geometric center. The scal-
ing factor for each axis is drawn from 1 ± scale_span. The parameters are mapped from
severity as:

– cover: (0.05, 0.10, 0.15, 0.22, 0.30)

– scale_span: (0.02, 0.04, 0.06, 0.08, 0.12)

C.1.2 ANNOTATION AND FORMAT-LEVEL PERTURBATIONS

These text-based perturbations introduce errors into the PDB file’s metadata and structural records,
challenging the robustness of data parsers.

• B-Factor and Occupancy Scrambling: This corrupts the B-factor and occupancy
columns, which encode atomic mobility and conformational confidence. Depending on
severity (Kleywegt & Jones, 1996), we apply different schemes:

– Severity 1-2: B-factors are shuffled across all atoms, and occupancies are randomized
by sampling from N (0.7, 0.3) and clipping to [0.01, 1.0].

– Severity 3: B-factors are set to a constant value of 100.0 for all atoms; occupancies
are randomized as above (no zeroing).
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– Severity 4-5: B-factors are set to constant values of 150.0 and 200.0, respectively. In
addition, a random fraction of atoms have their occupancies set to 0.0, with the zeroing
fractions zero_frac given by (0.4, 0.5) for severities 4 and 5 (no zeroing at
lower severities).

• Atom Name/Element Misalignment: This simulates common formatting errors where
fixed-width columns are misaligned, leading to parsing failures (Berman et al., 2000). For
a fraction frac of ATOM/HETATM records, we randomly apply one of two modifications:
(1) the atom name (columns 13-16) is shifted one character to the left or right, or (2) the
element symbol (columns 77-78) is replaced with an incorrect but common element (e.g.,
’C’, ’O’, ’N’). The fraction frac is: (0.02, 0.05, 0.10, 0.15, 0.25).

• Residue Name and Numbering Anomalies: This introduces inconsistencies in residue
naming and numbering (Kleywegt & Jones, 1996). A fraction frac_name of residues are
renamed to a chemically similar but incorrect type (e.g., THR to SER, ILE to LEU). Sepa-
rately, a fraction frac_num of residues are assigned an insertion code (e.g., ’A’) or have
their residue number duplicated from an adjacent residue, creating numbering conflicts.
The fractions are:

– frac_name: (0.02, 0.04, 0.07, 0.10, 0.15)

– frac_num: (0.01, 0.02, 0.04, 0.06, 0.08)

• Header and Terminator Record Corruption: This simulates truncated or improperly
formatted files (Cock et al., 2009). We remove all TER (chain terminator) and END
(file terminator) records. Additionally, a fraction drop_remark_frac of REMARK
lines are removed, and the HEADER line is replaced with a corrupted placeholder. The
drop_remark_frac is: (0.2, 0.4, 0.6, 0.8, 1.0).

• CONECT Record Loss: This removes CONECT records, which explicitly define cova-
lent bonds for ligands, cofactors, and non-standard linkages (Feng et al., 2004). Their ab-
sence forces models to infer connectivity, which can be error-prone. We randomly discard
CONECT records, retaining only a fraction keep_frac: (0.5, 0.35, 0.2, 0.1,
0.0). At severity 5, all CONECT records are removed.

C.2 PROTEIN PERTURBATION SIMILARITY

To quantitatively assess the magnitude of structural changes induced by the geometric and
coordinate-level perturbations detailed in Section C.1.1, we employ two widely accepted metrics that
capture different aspects of structural similarity. Together, Root-Mean-Square Deviation (RMSD)
and Template-Modeling score (TM-score) provide a complementary view of structural dissimilarity,
capturing both fine-grained coordinate deviations and global topological changes, respectively.

• Root-Mean-Square Deviation (RMSD): This metric measures the average distance be-
tween corresponding atoms after an optimal rigid-body superposition of the two struc-
tures (Kabsch, 1976). It is highly sensitive to local coordinate deviations and serves as a
gold standard for comparing highly similar conformations. A lower RMSD value indicates
greater similarity. In this study, we compute the Cα-RMSD, focusing on the backbone trace
of the protein. This provides a consistent measure of fold deviation, even when sidechain
atoms are perturbed or deleted (as described in Section C.1.1), and is less susceptible to
noise from flexible sidechain movements.

• Template-Modeling score (TM-score): This metric assesses the topological similarity of
protein folds and is designed to be independent of protein length (Zhang & Skolnick, 2004).
It produces a normalized score between 0 and 1, where a score greater than 0.5 generally
indicates that two proteins share the same fold, and a score of 1.0 indicates a perfect match.
Unlike RMSD, which can be heavily skewed by local deviations or flexible loops, TM-
score places greater weight on the global fold similarity. This makes it particularly well-
suited for evaluating perturbations that may preserve the overall topology while introducing
significant local changes, such as residue deletions or geometric distortions.
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C.3 PERTURBATIONS FOR CRYO-EM IMAGES (MRC FORMAT)

Our cryo-EM perturbations target 2D particle images and are designed to simulate a range of exper-
imental artifacts and worst-case adversarial scenarios.

C.3.1 IMAGE CORRUPTIONS

These corruptions mimic noise and degradation commonly found in raw cryo-EM micrographs.

• Gaussian Noise: To tightly couple our perturbation to the biology and the cryo-EM data-
curation pipeline, we model residual detector readout/gain fluctuations after normalization
as additive zero-mean Gaussian noise (McMullan et al., 2016). We apply additive noise
sampled from N (0, c), where c is the standard deviation of the noise applied to the nor-
malized image. The parameter c is: (0.005, 0.03, 0.05, 0.10, 0.20).

• Shot Noise: Because low-dose single-electron counting yields quantum arrival statistics
that dominate the acquisition noise, we treat the signal fluctuations as shot (Poisson) noise
and simulate them via Poisson sampling (Li et al., 2013). We model this by scaling the
normalized image intensity by a factor c, applying a Poisson sampling process, and then
rescaling. A smaller c corresponds to a lower signal-to-noise ratio. The parameter c is:
(2000, 800, 300, 60, 25).

• Speckle Noise: Heterogeneity in vitreous-ice thickness, contamination, and illumina-
tion introduces multiplicative intensity modulations across micrographs—crucial in cu-
ration—so we apply a speckle-type multiplicative noise to mimic these field-dependent
variations (Rice et al., 2018). This is modeled as I ′ = I + I · N (0, c), where I is the
normalized image. The parameter c is: (0.005, 0.015, 0.03, 0.05, 0.10).

• Gaussian Blur: High-frequency attenuation from the CTF envelope, defocus mis-settings,
and residual motion blur motivate approximating these resolution-loss mechanisms with
Gaussian blurring (Zhang, 2016). We apply a Gaussian filter with a standard deviation
sigma. The parameter sigma is: (0.07, 0.10, 0.15, 1.5, 4.0).

• Low Contrast: As unstained biomolecules in vitreous ice behave as weak-phase objects
recorded under stringent low dose, we explicitly reduce image contrast to emulate the in-
herently low-contrast regime encountered in real datasets (Glaeser, 2013). We reduce con-
trast by linearly interpolating the image towards its mean value. The interpolation factor
c ranges from 1.0 (no change) to 0.0 (zero contrast). The parameter c is: (0.9, 0.7,
0.5, 0.3, 0.1).

• Impulse (Salt-and-Pepper) Noise: Sparse extreme-valued pixels arising from hot/bad pix-
els, occasional cosmic-ray/electron strikes, or imperfect gain/dark normalization in DED
cameras are modeled by impulse (salt-and-pepper) noise to reflect anomalies that curators
routinely mask (Afanasyev et al., 2015). For each pixel, with probability c/2 it is set to
the minimum intensity and with probability c/2 it is set to the maximum intensity (other-
wise it is left unchanged). The parameter c is: (0.0005, 0.001, 0.0035, 0.01,
0.03).

• Elastic Transform: Beam-induced motion and specimen charging non-rigidly deform the
ice film and particles, so we apply smooth elastic warps to approximate these local distor-
tions observed during acquisition (Zheng et al., 2017). We apply a random displacement
field to the image pixels, where the field is generated by filtering random noise with a
Gaussian kernel. The transformation is controlled by alpha (scaling of displacement) and
sigma (smoothness of displacement). The ranges for (alpha, sigma) increase with
severity.

• Translation & Rotation: To reflect pose-estimation errors and stage/sample drift in SPA
alignment/curation workflows, we inject random in-plane translations and rotations—the
primary rigid parameters optimized by standard refinement packages (Scheres, 2012). We
apply random 2D rotations and translations. Translations are performed efficiently in the
Fourier domain, while rotations use an affine transform. Both operations leverage GPU
acceleration via PyTorch. The magnitude of the transformations increases with severity,
with rotation angles up to 30◦ and translations up to 25 pixels at the highest level.
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C.3.2 ADVERSARIAL PERTURBATIONS

To assess worst-case vulnerability, we employ a standard Projected Gradient Descent (PGD) at-
tack. This is not a naturally occurring corruption but a method to find a minimal perturbation that
maximally degrades model performance.

• Projected Gradient Descent (PGD) Attack: This iterative method generates an adversar-
ial perturbation δ that is constrained within an ℓ∞-norm ball of radius ϵ. The perturbation is
optimized to maximize a given loss function L (e.g., cross-entropy for classification tasks).
The update rule at each step t is:

xt+1 = Πϵ

(
xt + α · sign(∇xL(θ, x, y))

)
(1)

where xt is the perturbed image at step t, α is the step size, ∇xL is the gradient of the loss
with respect to the input, and Πϵ is the projection operator that clips the total perturbation
to be within [−ϵ, ϵ]. We use standard parameters for the number of iterations, step size α,
and perturbation budget ϵ to evaluate model robustness under this adversarial setting.

C.4 CRYO-EM RECONSTRUCTION QUALITY METRICS

To evaluate the quality and resolution of the 3D density maps generated by the reconstruction mod-
els (e.g., CryoDRGN, CryoNeRF) from original and perturbed 2D particle images, we utilize the
following standard metrics. These metrics allow us to quantify the impact of perturbations on the
final reconstructed volume.

• Q-score: The Q-score is a per-atom metric that quantifies the resolvability of an atom
by measuring the correlation between the experimental cryo-EM density map and a map
generated from the atomic model (Pintilie et al., 2020). It provides a value between 0 and
1, where higher values indicate better local map-to-model agreement. In our analysis, to
obtain a single quality indicator for an entire protein chain, we first compute the Q-score
for every atom in the chain and then report the mean of these values. This average Q-score
serves as a robust measure of the overall quality of the model’s fit to the reconstructed
density.

• Fourier Shell Correlation (FSC): FSC is the standard method for estimating the resolution
of a cryo-EM reconstruction (Rosenthal & Henderson, 2003). It measures the normalized
cross-correlation between two 3D maps, each reconstructed independently from a random
half of the particle dataset, as a function of spatial frequency. The resolution is determined
as the spatial frequency at which the FSC curve drops below a specific threshold. Following
the "gold-standard" convention, we report the resolution at the FSC=0.143 criterion, which
provides a reliable estimate of the achievable detail in the map. A lower resolution value
(in Ångströms) indicates a higher-quality reconstruction.

D CRYO-EM RECONSTRUCTION QUALITY RESULTS

Table 5: Results of FSC across five severities and various noise methods, reconstructed by cryo-
DRGN. Each value is the average over three runs.
Severity Elastic Gaussian Blur Gaussian Impulse Low Contrast Rotation Shot Speckle Translation

1 3.502 3.503 3.502 3.503 3.502 3.502 3.504 3.502 3.502
2 3.502 3.503 3.502 3.502 3.503 3.505 3.503 3.502 3.509
3 3.504 3.503 3.505 3.502 3.503 3.736 3.504 3.503 7.205
4 3.501 4.279 3.511 3.504 3.502 4.198 3.509 3.502 22.992
5 3.502 8.612 3.535 3.509 3.503 4.574 3.518 3.506 64.663

Table 5 presents the evaluation results of cryoDRGN under five severity levels. Across nine corrup-
tion methods, cryoDRGN exhibits strong robustness to all noise-based perturbations but is highly
sensitive to translation operations, which cause a drastic collapse in reconstruction performance
as the severity level increases. We attribute such superior robustness of Cryo-EM models (e.g.,
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CryoDRGN) compared to structure/sequence models (e.g., GearNet, ProNet) to three key factors:
Information Aggregation, Training Objectives, and Input Continuity:

Information Aggregation: Cryo-EM Models: According to our task setup (see Appendix A for
more details), Cryo-EM reconstruction involves inferring a 3D density from thousands of 2D parti-
cle images. Even if individual images are perturbed (e.g., Gaussian noise or blur), the reconstruction
process effectively averages out zero-mean noise across the dataset. This acts as an inherent statisti-
cal "denoising" mechanism. Structure/Sequence Models: In contrast, models like GearNet or ProNet
operate on a single graph or sequence instance. There is no redundancy; if the connectivity of that
single input graph is perturbed (e.g., via the radius changes shown in Figure 4), the message-passing
path is fundamentally altered, leading to immediate performance degradation.

Discrete vs. Continuous Manifolds: Cryo-EM (Continuous): CryoDRGN operates in a continu-
ous image/volume space using a coordinate-based neural network (VAE/MLP). Perturbations like
rotation or translation result in continuous shifts in the latent space rather than discrete topological
breaks, allowing the model to maintain stability. Structure Models (Graph Sensitivity): Our results
in Figure 5 ("Vulnerability of Density and Spatial Modeling") reveal a mechanistic fragility in graph-
based Bio-FMs. These models rely on discrete edges defined by hard cutoffs (e.g., radius or k-NN).
A "tiny" ML perturbation (e.g., changing the radius from 10Å to 10.1Å) can discontinuously alter
the graph topology, adding or removing edges that are crucial for message passing. This topological
instability is a primary driver of the brittleness we observed.

Inherent Data Noise and Denoising Objectives: Cryo-EM (Low SNR Resilience): As the reviewer
alludes to (and as we detail in Appendix C.3, raw Cryo-EM micrographs are inherently characterized
by extremely low Signal-to-Noise Ratios (SNR) due to electron dose limitations and ice thickness.
Consequently, Cryo-EM models are explicitly designed as generative denoising frameworks. Dur-
ing training, they are forced to learn to filter out massive amounts of stochastic noise (shot noise,
background scattering) to reconstruct the underlying signal. This essentially acts as "adversarial
training" by nature—the model is conditioned to be robust to noise because the noise is a domi-
nant feature of its training distribution. Structure/Sequence (Clean Data Bias): In stark contrast,
structure-based Bio-FMs (like GearNet or Inverse Folding models) are predominantly trained on
PDB data, which consists of curated, solved atomic coordinates. These inputs represent a "cleaned"
manifold with minimal noise. Because these models rarely encounter significant geometric noise or
corruption during pre-training, they lack the learned immunity to perturbations. When we introduce
"biologically plausible" noise (e.g., coordinate shifts) at inference time, it pushes the input strictly
out-of-distribution for these models, leading to the fragility we observed.

E VISUALIZING THE ROBUSTNESS BOUNDARY UNDER BIOLOGICAL
PERTURBATIONS

In Figure 9, we illustrate the relationship between input degradation and model efficacy across dif-
ferent Bio-FMs. By plotting the task performance against the structural dissimilarity induced by
biological perturbations, we highlight the "worst-case" boundary (indicated by the lower envelope
curve) to demonstrate how rapidly reliability declines even with minor input deviations.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

For improved clarity and readability, we relied on a large language model exclusively as an editing
assistant. Its function was confined to grammar correction, style refinement, and language polishing,
comparable to traditional grammar-checking software or dictionaries. The model did not generate
scientific content or ideas, and its use aligns with accepted norms for manuscript preparation.
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Figure 9: The robust boundary of Bio-Fms in biologically plausible perturbations.
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