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Incremental Learning via Robust Parameter Posterior Fusion

ABSTRACT
The posterior estimation of parameters based on Bayesian theory is
a crucial technique in Incremental Learning (IL). The estimated pos-
terior is typically utilized to impose loss regularization, which aligns
the current training model parameters with the previously learned
posterior to mitigate catastrophic forgetting, a major challenge in
IL. However, this additional loss regularization can also impose
detriment to the model learning, preventing it from reaching the
true global optimum. To overcome this limitation, this paper intro-
duces a novel Bayesian IL framework, Robust Parameter Posterior
Fusion (RP2F). Unlike traditional methods, RP2F directly estimates
the parameter posterior for new data without introducing extra loss
regularization, which allows the model to accommodate new knowl-
edge more sufficiently. It then fuses this new posterior with the
existing ones based on the Maximum A Posteriori (MAP) principle,
ensuring effective knowledge sharing across tasks. Furthermore,
RP2F incorporates a common parameter-robustness priori to facili-
tate a seamless integration during posterior fusion. Comprehensive
experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets
show that RP2F not only effectively mitigates catastrophic forget-
ting but also achieves backward knowledge transfer.
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• Computing methodologies→ Lifelong machine learning;
Bayesian network models; Image representations.
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1 INTRODUCTION
Acquiring knowledge continuously is essential for intelligent sys-
tems operating in ever-changing environments, a process referred
to as Incremental Learning (IL) [12, 33]. In contrast to the conven-
tional training paradigm that amasses all data at once, IL adopts
a task-by-task training paradigm, where only a subset of data is
available for each training task. Training within this setting, mod-
els encounter the formidable challenge of catastrophic forgetting
[17, 35], wherein the assimilation of new knowledge often results
in diminished performance on previously learned tasks.
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To mitigate catastrophic forgetting, a fundamental strategy is
to identify and preserve the parameters critical to past tasks. This
strategy has directed the development of numerous IL methodolo-
gies [1, 9, 34, 41, 68], including techniques grounded in Bayesian
theory [20, 22, 32, 39, 46]. The Bayesian-based approaches utilize
Laplace approximation to model the parameter posterior distribu-
tion of old tasks as a Gaussian distribution. This Gaussian posterior
then serves as a priori to guide subsequent network training, en-
forcing regularization to prevent substantial deviations from this
priori. In this context, the variance of the Gaussian distribution (i.e.,
the Hessian through Laplace approximation) acts as a parameter
importance matrix to identify critical parameters.

While the regularization has proven its effectiveness in IL, con-
trolling its strength poses a considerable challenge for Bayesian-
based methods. A particular issue is ensuring that parameter ad-
justments through regularization accurately reflect the Maximum
A Posteriori (MAP) estimate of the joint posterior distribution for
both new and old tasks. Particularly, achieving a harmonious inte-
gration of the regularization (representing the old-task posterior)
with the learning loss for new tasks remains a challenge [21], even
when employing predefined weights. Furthermore, the necessity
for accommodating new data within IL contexts inevitably compels
the parameters to diverge from the old-task posterior, potentially
leading to information loss.

To address the above challenges, this paper introduces a novel
Bayesian IL framework, referred to as Robust Parameter Poste-
rior Fusion (RP2F). Unlike traditional methods that integrate the
posterior of old tasks through regularization, RP2F constructs a
parameter posterior for the new task and then directly fuses it with
the posterior from previous tasks. This integrated posterior enables
the derivation of a closed-form MAP solution for parameters, fa-
cilitating a more coherent balance across tasks. As the learning
process evolves, parameter estimates continuously adjust from the
old-task MAP with the introduction of each new task, which may
trigger potential forgetting. To mitigate this, RP2F incorporates a
parameter robustness priori within the training regimen, which
bolsters the model’s resilience against changes in parameters.

To implement RP2F, two critical techniques are imperative for
enhancing performance: the computation of the Hessian matrix
in Laplace approximation and the design of the parameter robust-
ness priori. Existing methods [22, 46] typically approximate the
diagonal of the Hessian matrix with the Fisher information matrix
due to the computational and storage constraints, where the Fisher
information matrix only depends on the model’s first-order deriva-
tive information. Instead, this paper develops a perturbation-based
method for estimating the Hessian information, which leverages
derivatives with respect to small perturbations applied to the pa-
rameters. Furthermore, our analysis reveals that a network’s ro-
bustness is closely linked to the uniformity of the singular values of
the extracted feature matrix. Drawing on this insight, we propose
regularizing the features during training to balance the singular
values, thus diminishing the potential forgetting issue caused by
parameter changes.

2024-04-13 11:56. Page 1 of 1–10.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MM, 2024, Melbourne, Australia Trovato et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In summary, the core contributions of this research are listed as
follows:
• Wepropose a novel Robust Posterior Parameter Fusion (RP2F)
framework for IL, which leverages the Bayesian theory to
derive a posterior fusion method across tasks.
• To facilitate Laplace posterior estimation, we develop a Hes-
sian approximation method via parameter perturbation. This
method captures second-order derivative information while
maintaining the computational complexity of first-order gra-
dients.
• We demonstrate that the uniformity of singular values in the
extracted features is critical for model robustness. Based on
this insight, we introduce a parameter robustness priori for
RP2F to achieve a seamless posterior fusion.
• We conduct several experiments on the CIFAR-10, CIFAR-
100, and Tiny-ImageNet datasets, demonstrating that RP2F
supports backward knowledge transfer and achieves state-
of-the-art performance.

2 RELATEDWORKS
2.1 Incremental Learning
Incremental learning focuses on developing algorithms that can
continuously learn from new data without forgetting previously ac-
quired knowledge [12, 33]. Approaches within this field are broadly
categorized into regularization-based methods, rehearsal-based
methods, and dynamic architecture methods. In the following, we
will review these three class methods.

Regularization-based methods integrate regularization loss
terms to prevent forgetting. Some methods [1, 22, 29, 68] punish
the changes in critical parameters containing old-task knowledge.
Other knowledge-distillation-based methods hinge on the principle
of transferring knowledge from an older model (teacher) to a newer
model (student) during the IL process. A seminal work is Learning
without Forgetting (LWF) proposed by Li and Hoiem [28], which
utilizes knowledge distillation to preserve previously learned in-
formation while accommodating new knowledge. Based on LWF,
several other notable methods [14, 26, 27, 47, 56, 57, 69, 71] have
been developed. Rehearsal-based IL methods operate by retain-
ing a subset of the original training data [3, 5, 6, 8, 9, 30, 38, 42]
or generating synthetic data [49, 50, 65], which is then replayed
with new data during subsequent training phases. Dark Experience
Replay (DER) [7] combines experience replay with a distillation
mechanism to maintain a balance between old and new knowledge.
DER selectively stores a subset of the data from previous tasks and
rehearses it alongside new data, thus preserving the model’s per-
formance on historical tasks. On the other hand, generative-replay-
based methods leverage generative models, such as Generative
Adversarial Networks (GANs) [16], to synthesize data from previ-
ous tasks, thereby eliminating the need to store real data.Dynamic
architecture methods typically involve modifying the architec-
ture of neural networks dynamically in response to new tasks. Some
methods are based on masks [10, 19, 23, 34], such as PackNet [34].
PackNet prunes weights that are non-essential for learned tasks,
thereby freeing up network capacity for new tasks, a process that
strategically balances between retaining learned knowledge and
adapting to new information. On the other hand, expansion-based

methods [40, 53–55, 64] like Dynamically Expandable Networks
(DEN) [66] selectively expand the network by adding neurons as
needed.

As a subset of regularization-based methods, bayesian-based
IL methods [20, 22, 25, 37, 39, 46, 61] utilise Bayesian inference
through the learning process. Elastic Weight Consolidation (EWC)
[22] applies a Bayesian perspective to determine the importance
of neural network parameters, followed by imposing a constraint
on significant deviations from previous parameters. IMM [25] pro-
poses to merge the neural network parameters from previous tasks
with the current task, which shares a similar motivation with the
posterior fusion of RP2F. Beyond IMM, RP2F further introduces
parameter robustness priori and a more precise perturbation-based
Hessian estimation method.

2.2 Robust Model Training
In the field of robust model training, the perturbation-based method
is a primary research direction within the machine learning commu-
nity. A common practice involves modeling parameter robustness
using Lipschitz continuity and enhancing robustness by constrain-
ing the upper bound of the Lipschitz constant [2, 11, 18, 58]. How-
ever, recent studies [43] have highlighted that the Lipschitz constant
is sensitive to the scale of model parameters and input features, and
propose to employ condition numbers as a more precise metric of
robustness. In the context of IL, robust methodologies have been
integrated into some exemplar-based methods. They primarily con-
centrate on model robustness to exemplar variations. For instance,
LiDER [5] forces the model to become robust to the changes of
exemplars, thereby mitigating the over-fitting issue in exemplar-
based methods. DRO [63] continually evolves the exemplar buffer
to ensure the model learns more robust features. In contrast to these
methods, our proposed RP2F does not rely on exemplar samples.
Instead, we focus on investigating robustness against parameter
variations, with the goal of mitigating information losses in poste-
rior fusion, which contributes a novel perspective to IL.

3 PRELIMINARY
3.1 Problem Definition
Incremental learning (IL) is a cognitive process characterized by
the gradual acquisition and assimilation of knowledge over time.
As a popular setting of IL, Task Incremental Learning (Task-IL) [59]
focuses on the sequential acquisition and retention of knowledge
across multiple related tasks, where each task may involve distinct
but related learning objectives.

Formally, let 𝐷1, 𝐷2, . . . , 𝐷𝑇 denote datasets of 𝑇 classification
tasks, where 𝐷𝑡 = {(𝑥𝑡𝑘 , 𝑦

𝑡
𝑘
∈ 𝑌𝑡 )}𝑛𝑡𝑘=1 is associated with task 𝑡 that

contains 𝑛𝑡 input-label pairs. These tasks feature disjoint classes,
i.e., 𝑌𝑡1 ∩ 𝑌𝑡2 = ∅,∀𝑡1 ≠ 𝑡2. Task-IL sequentially presents these
tasks to an IL model, with only the associated dataset 𝐷𝑡 being
available at time step 𝑡 . The model must adapt to task 𝑡 while also
retaining knowledge of the former tasks. During the testing phase,
the model’s overall performance across all encountered tasks will
be evaluated.
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Figure 1: (a) RP2F identifies the optimal parameter at the peak of the fusion posterior distribution. (b) After learning a new
task, parameter adjustments shift from the peak posterior of the old task toward the maximum fusion posterior, leading to
increased loss on the old task, i.e., forgetting. (c) The forgetting can be mitigated by enhancing parameter robustness against
substantial changes.

3.2 Bayesian Incremental Learning
Incremental learning has been extensively explored within the
Bayesian framework. The Bayesian IL framework leverages Bayes’
rule to systematically update the posterior parameter distribution
as new data becomes available. The fundamental concept lies in
the Bayes’ theorem, which provides an estimation of the parameter
posterior as follows:

𝑃 (𝜃 |𝐷) ∝ 𝑃 (𝐷 |𝜃 )𝑃 (𝜃 ), (1)

where 𝑃 (𝜃 |𝐷) represents the parameter posterior after observing
data 𝐷 . This posterior is shaped by the parameter priori 𝑃 (𝜃 ) and
the likelihood 𝑃 (𝐷 |𝜃 ).

In the context of IL, the posterior estimation after observing 𝑡
tasks in Eq. 1 can be extended into multiple tasks [20] as follows:

𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡 ) ∝ 𝑃 (𝜃 )
𝑡∏

𝑡
′
=1

𝑃 (𝐷𝑡
′ |𝜃 ) . (2)

Using the posterior of all the former tasks as a priori, the posterior
can be computed cumulatively:

𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡 ) ∝ 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡−1)𝑃 (𝐷𝑡 |𝜃 ) . (3)

An integral part of Bayesian-based IL methods is the estimation
of the posterior distributions 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡−1), which is often
computationally challenging for complex models. The Laplace ap-
proximation [31] offers a tractable solution by approximating the
posterior distribution with a Gaussian centred at the maximum a
posteriori (MAP) estimate. This approximation is particularly useful
when the posterior is unimodal. The mathematical representation
of this approximation is formalized as follows:

𝑃 (𝜃 |𝐷) ≈ N (𝜃 |𝜇𝑀𝐴𝑃 , 𝐻
−1
𝑀𝐴𝑃 ), (4)

where 𝜇𝑀𝐴𝑃 is the mode of the posterior distribution (i.e., the MAP
estimation), and 𝐻−1

𝑀𝐴𝑃
is the inverse of the Hessian around 𝜇𝑀𝐴𝑃 ,

providing a second-order approximation of the posterior curvature.
Building upon this framework, bayesian-based IL methods [20,

22, 25] emerge to incorporate Bayesian principles into neural net-
work training for each task. They typically mitigate catastrophic

forgetting by introducing a regularization term to the loss function
that penalizes changes to important parameters:

𝜃1:𝑡 = argmax
𝜃

log 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡 )

= argmax
𝜃

log 𝑃 (𝐷𝑡 |𝜃 )+log 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡−1)

≈ argmin
𝜃

𝐿𝑐𝑒 (𝜃, 𝐷𝑡 )+
𝜆

2 (𝜃 − 𝜇1:𝑡−1)
⊤Λ1:𝑡−1 (𝜃 − 𝜇1:𝑡−1),

(5)

where 𝐿𝑐𝑒 represents the cross-entropy loss and 𝜆 stands for a
pre-defined hyperparameter weighting the regularizer. Here, the
posterior 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡−1) is approximated by the Gaussian dis-
tribution N(𝜃 |𝜇1:𝑡−1,Λ1:𝑡−1), where 𝜇1:𝑡−1 is typically assigned to
the value of 𝜃1:𝑡−1 and Λ1:𝑡−1 signifies the importance matrix. The
continuous update of Λ1:𝑡−1 incorporates the Hessian associated
with the new task [22]:

Λ1:𝑡 = Λ1:𝑡−1 + 𝐻𝑡 = Λ1:𝑡−1 + ∇2𝜃𝐿𝑐𝑒 (𝜃, 𝐷𝑡 ) |𝜃=𝜃1:𝑡 . (6)

However, the computation of the Hessian matrix poses a signifi-
cant challenge, due to its computational complexity (second-order
partial derivatives) and the extensive storage requirements. In prac-
tice, a prevalent approach is to approximate the Hessian using the
Fisher information matrix [20, 22, 39, 46]:

𝐻𝑡 ≈ 𝐹𝑡 = ∇𝜃𝐿𝑐𝑒 (𝜃, 𝐷𝑡 )∇𝜃𝐿𝑐𝑒 (𝜃, 𝐷𝑡 )⊤ |𝜃=𝜃1:𝑡 . (7)

4 METHOD
4.1 Robust Bayesian IL Framework
Although Bayesian-based IL methods have demonstrated effective-
ness in mitigating forgetting, they encounter significant challenges.
One such challenge is the control of regularization strength. In
Eq. (5), the cross-entropy loss and the regularization terms may not
be scaled equivalently. This imbalance may lead 𝜃1:𝑡 fails to accu-
rately represent the MAP estimation of posterior 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡 ).
Manually adjusted balancing coefficients can not solve this issue,
especially in the complex and unpredictable trajectory of neural
network training. Additionally, the issue of forgetting arises as
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parameters transition from the local optimum associated with previ-
ous tasks 𝜃1:𝑡−1 to a global optimum that encompasses new learning
objectives 𝜃1:𝑡 (as illustrated in Figure 1 (b)). This forgetting be-
comes noteworthy when the performance is sensitive to parameter
changes.

To address the aforementioned challenges, we propose the Ro-
bust Parameter Posterior Fusion (RP2F) framework for IL. Specifi-
cally, RP2F reformulates Eq. (2) by choosing a specific parameter
robust priori 𝑃 (𝜃 ) as follows:

𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡 ) ∝
𝑡∏

𝑡
′
=1

𝑃 (𝜃 )
1
𝑡 𝑃 (𝐷𝑡

′ |𝜃 ). (8)

Equation (8) enables us to model task-specific posterior solely
based on the data from each respective task. In other words, instead
ofmodeling the posterior of all encountered tasks 𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡−1)
in Eq. (3), we are able to yield the MAP estimation directly for each
individual task:

𝜃∗𝑡 = argmax
𝜃

log 𝑃 (𝜃 )
1
𝑡 𝑃 (𝐷𝑡 |𝜃 )

= argmax
𝜃

log 𝑃 (𝐷𝑡 |𝜃 ) +
1
𝑡
log 𝑃 (𝜃 )

≈ argmin
𝜃

𝐿𝑐𝑒 (𝜃, 𝐷𝑡 ) + 𝜆𝐿robust_pri (𝜃 ),

(9)

where𝐿robust_pri (.) represents a parameter robustness priori weighted
by 𝜆. Notably, different from Eq. (5), Eq. (9) derives the MAP esti-
mation only for the single task 𝑡 .

Based on 𝜃∗𝑡 , we apply the Laplace approximation to estimate
𝑃 (𝜃 )

1
𝑡 𝑃 (𝐷𝑡

′ |𝜃 ) with GaussianN(𝜃 |𝜃∗𝑡 , 𝐻∗𝑡
−1), where𝐻∗𝑡 represents

the Hessian of the error around 𝜃∗𝑡 , i.e., 𝐻∗𝑡 = ∇2
𝜃
𝐿𝑐𝑒 (𝜃, 𝐷𝑡 ) |𝜃=𝜃 ∗𝑡 .

Taking into account the practical constraints of storage and com-
putation, our approach aligns with prior works [22] that employ a
diagonal matrix to estimate the Hessian matrix. The diagonal ma-
trix, denoted by Λ∗𝑡 , is thus regarded as indicative of the importance
of the parameters. Building upon the Laplace approximation, we are
able to derive the MAP estimation 𝜃∗1:𝑡 of the posterior distribution
in Eq. (8):

𝜃∗1:𝑡 = argmax
𝜃

𝑃 (𝜃 |𝐷1, . . . , 𝐷𝑡 )

≈
∑𝑡

𝑡
′
=1 Λ

∗
𝑡
′𝜃
∗
𝑡
′∑𝑡

𝑡
′
=1 Λ

∗
𝑡
′

.

(10)

For the proof of Eq. (10), please refer to the supplementary materials.
Additionally, we present a task-accumulative version, designed

to fulfil the requirements of IL settings:

𝜃∗1:𝑡 ≈
Λ∗1:𝑡−1𝜃

∗
1:𝑡−1 + Λ

∗
𝑡𝜃
∗
𝑡

Λ∗1:𝑡−1 + Λ
∗
𝑡

, (11)

where Λ∗1:𝑡 = Λ∗1:𝑡−1 + Λ
∗
𝑡 also update in an accumulative manner.

Compared to the conventional Bayesian-based IL methods, RP2F
has two specific designs. Firstly, RP2F determines the optimal param-
eter through the MAP estimate of the fusion parameter posterior
for all encountered tasks in Eq (10). Unlike regularizer-based meth-
ods that struggle to balance the regularizer in Eq. (5), the posterior
fusion manner facilitates a harmonious knowledge accumulation,
achieving an enhanced equilibrium betweenmaintaining previously
learned information (stability) and incorporating new knowledge

(plasticity). Secondly, the incorporation of the parameter-robustness
priori mitigates potential forgetting induced by parameter updating.

To implement the RP2F framework, two key components remain
to be devised: the efficient estimation of Hessian and the design
of a parameters-robustness priori. Conventionally, the Hessian is
estimated using the Fisher information matrix. Although the Fisher
information matrix possesses many desirable properties [22], as
described in Eq. (7), the common computation of Fisher inherently
contains only first-order gradient information. This limitation is
especially highlighted as previous works [22, 46] consider only the
diagonal elements of the Fisher information matrix. To address this
limitation, this paper introduces a novel Hessian matrix approxi-
mation method based on parameter perturbation, which effectively
approximates second-order derivative information with the same
computational complexity as first-order derivatives. In terms of
the robustness priori to parameters, our investigation reveals that
the uniformity in the eigenvalues of the features extracted by the
network is closely linked to the robustness of the parameters. This
observation motivates us to average the eigenvalues of features
during training.

Next, Sections 4.2 and 4.3 elaborate on the Hessian approxima-
tion method and the parameter robustness priori, respectively.

4.2 Hessian Approximating via Parameter
Perturbation

Previous works [22, 46] typically employ the diagonal Fisher in-
formation matrix to estimate the Hessian, focusing exclusively on
the first-order derivatives as outlined in Eq. (7). In contrast, our
research presents a novel Hessian estimation method based on
parameter perturbation. The estimation is based on the gradient
corresponding to infinitesimal parameter shifts, thereby providing
a more precise and efficient approximation of Hessian.

To be more specific, considering the MAP estimation for 𝑡-th
task posterior 𝜃∗𝑡 , we introduce a minor perturbation 𝛿 to 𝜃∗𝑡 . The
second-order Taylor expansion on the empirical risk function is
formulated as follows:

𝐿𝑐𝑒 (𝜃∗𝑡 + 𝛿, 𝐷𝑡 ) ≈ 𝐿𝑐𝑒 (𝜃∗𝑡 , 𝐷𝑡 ) + ∇𝐿𝑐𝑒 (𝜃∗𝑡 , 𝐷𝑡 )⊤𝛿 +
1
2𝛿
⊤𝐻∗𝑡 𝛿, (12)

where 𝐻∗𝑡 = ∇2
𝜃
𝐿𝑐𝑒 (𝜃, 𝐷𝑡 ) |𝜃=𝜃 ∗𝑡 denotes the Hessian around 𝜃∗𝑡 .

The expansion facilitates the analytical derivation of the model’s
sensitivity to parameter changes. Considering that 𝜃∗𝑡 is sufficiently
trained such that the first-order gradient approaches zero, by setting
𝛿 = 𝜂1 where 1 signifies an all-one vector and 𝜂 represents an
infinitesimally small constant, we differentiate both sides of Eq. (12)
with respect to the perturbation𝛿 yields the sum rows of theHessian
matrix:

𝜂𝐻∗𝑡 1 ≈
𝜕𝐿𝑐𝑒 (𝜃∗𝑡 + 𝛿, 𝐷𝑡 )

𝜕𝛿

����
𝛿=𝜂1

. (13)

By taking the assumption that the Hessian of a single-layer ap-
proaches diagonalization [44, 45], we estimate all the diagonal
entries of 𝐻∗𝑡 with Eq. 13 layer by layer, ultimately forming the
diagonal matrix Λ∗𝑡 .

Estimating Hessian via perturbation significantly simplifies the
complexity of Hessian computation. For a network with 𝑛 param-
eters, this method boasts a computational complexity of O(𝑛). In
contrast, the direct computation of the Hessian, considering its need
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to evaluate second-order derivatives for every pair of parameters,
generally exhibits a computational complexity of O(𝑛2), or even
O(𝑛3) when matrix inversion is involved. The efficient Hessian es-
timation enables a scalable and high-performance implementation
of RP2F.

4.3 Enhancing Parameter Robustness via
Feature Regularization

In Section 4.1, by maximizing the fusion posterior, we derive the
optimal estimation 𝜃∗1:𝑡 . Intuitively, we aspire for 𝜃∗1:𝑡 to exhibit
linear connectivity with the local optima for each task (e.g., 𝜃∗𝑡 ),
aiming to minimize the difference 𝑓 (𝑥 ;𝜃∗𝑡 ) − 𝑓 (𝑥 ;𝜃∗1:𝑡 ) for any 𝑥 ∈
𝐷𝑡 . In other words, as depicted in Figure 1, our objective is to
ensure that 𝜃∗𝑡 is robust to parameter changes, which motivates us
to incorporate robustness priori into parameters during training.

The robustness of parameters is commonly characterized by the
Lipschitz constant. However, the Lipschitz constant is sensitive to
the scale of both the data and model parameters. As an alternative,
inspired by [43], our work introduces a relative metric to assess
the robustness of the model, which compares the rate of change in
model outputs against the rate of parameter alterations:

𝑅(𝜃 ) = sup
𝛿

∑︁
𝑥∈𝐷

∥ 𝑓 (𝑥 ;𝜃 + 𝛿) − 𝑓 (𝜃 )∥/∥ 𝑓 (𝑥 ;𝜃 )∥
∥𝛿 ∥/∥𝜃 ∥ , (14)

where 𝛿 represents a perturbation applied to 𝜃 . The numerator in
(14) captures the relative change in model output due to parameter
perturbation, while the denominator reflects the relative scale of the
parameter perturbation. This formulation thus provides a measure
of output sensitivity that is normalized by both the extent of the
perturbation and the scale of the parameters, offering amore precise
evaluation of the model’s robustness.

Before delving into the robustness of deep neural models, we
begin our examination with a simpler linear model 𝑓 (𝑋 ;Θ) = Θ𝑋 ,
where 𝑋 denotes the input feature matrix with each column cor-
responding to an individual input sample 𝑥 ∈ 𝐷 . For this linear
model, the relative-robustness metric is bounded by:

𝑅(Θ) = sup
Δ

∥(Θ + Δ)𝑋 − Θ𝑋 ∥/∥Θ𝑋 ∥
∥Δ∥/∥Θ∥

= sup
Δ

∥Δ𝑋 ∥
∥Δ∥

∥Θ∥
∥Θ𝑋 ∥ = ∥𝑋 ∥

∥Θ∥
∥Θ𝑋 ∥ ≤ ∥𝑋 ∥∥𝑋

†∥,
(15)

where 𝑋 † represents the pseudo-inverse of 𝑋 . When employing the
Euclidean norm (also known as the ℓ2 norm) for the metric, 𝑅(Θ)
is bounded by the ratio between the maximum singular value of 𝑋
to its minimum singular value:

𝑅(Θ) ≤ 𝑠𝑚𝑎𝑥 (𝑋 )
𝑠𝑚𝑖𝑛 (𝑋 )

. (16)

Building upon the robustness analysis in the linear scenario, we
extend our investigation to a deep neural network composed of 𝐿
layers [20]:

𝑅(𝜃 ) ≤
𝐿∏
𝑙=1

𝑅(𝜎𝑙 )
𝐿∏
𝑙=1

𝑅(Θ𝑙 ) ≤ 𝑀

𝐿∏
𝑙=1

𝑠𝑚𝑎𝑥 (𝑋 𝑙 )
𝑠𝑚𝑖𝑛 (𝑋 𝑙 )

, (17)

where 𝑋 𝑙 , Θ𝑙 , and 𝜎𝑙 denote the input features, parameters, and
activation units of the 𝑙-th layer, respectively. We suppose that the

robustness of all activation units is bounded by a positive constant
𝑀 , i.e.,

∏𝐿
𝑙=1 𝑅(𝜎

𝑙 ) ≤ 𝑀 .
Equation (17) elucidates that the robustness of the network pa-

rameters is governed by the uniformity of the singular values of
the input features at each layer (extracted by the preceding layer).
Yujun et al. [48] have demonstrated that this uniformity can be en-
hanced by penalizing the Frobenius norm of the covariance matrix.
Based on this insight, we introduce the following priori to enhance
the robustness of network parameters:

𝐿robust_pri (𝜃 ) =
1
𝐿

𝐿∑︁
𝑙=1
∥𝑋 𝑙
⊤
𝑋 𝑙 ∥2𝐹 , (18)

where 𝑋 𝑙 represents the normalized feature matrix of the 𝑙-th layer.
However, Eq. (18) presents a considerable challenge in terms of
computational complexity, particularly for high-dimensional deep
neural networks. Given that features in the shallow layers of neural
networks tend to approach a full rank [15], in practice, we strategi-
cally apply regularization only to the features extracted from the
penultimate layer.

4.4 Incremental Learning with Robust
Parameter Posterior Fusion (RP2F)

This section elaborates on our IL algorithm, which leverages the
robust parameter posterior fusion framework. This approach in-
tegrates the perturbation-based Hessian approximation and the
parameter-robustness priori proposed in Section 4.2 and 4.3, re-
spectively. We will describe the training procedure of our method
on a multi-head model consisting of a feature extractor 𝜃 and 𝑇
task-specific classifier 𝜏1, . . . , 𝜏𝑇 .

Learning task 1. During the phase of Task 1, the feature extrac-
tor alongside the classifier undergoes joint training using dataset𝐷1.
The training leverages cross-entropy loss and parameter robustness
priori to enhance performance and ensure robustness:

𝜃∗1 , 𝜏
∗
1 ←− argmin

𝜃1,𝜏1

𝐿𝑐𝑒 (𝜏1 ◦ 𝜃1, 𝐷1) + 𝜆𝐿robust_pri (𝜏1 ◦ 𝜃1, 𝐷1),

(19)
where 𝜏 ◦𝜃 denotes a unified network that the classifier 𝜏 operating
on features extracted by the feature extractor 𝜃 . Upon the comple-
tion of training for task 1, we assign the parameters of an additional
fused posterior extractor with 𝜃∗1:1 ←− 𝜃∗1 , and approximate the
Hessian via Λ∗1:1 ←−

𝜕𝐿𝑐𝑒 (𝜃 ∗1+𝛿,𝐷𝑡 )
𝜂𝜕𝛿

.
Learning the following tasks (𝑡 for illustration). We ini-

tialize 𝜃𝑡 with the last optimal parameters 𝜃∗
𝑡−1 learned from the

previous task. This strategy aims to keep the optimization process
for all tasks within the same vicinity of a local optimum, thereby
facilitating effective fusion of the posterior distribution [25, 52].
Subsequently, during each training epoch, the model undergoes
a four-step updating process: 1) training the feature extractor 𝜃𝑡 ; 2)
estimating the Hessian Λ𝑡 surrounding 𝜃𝑡 ; 3) updating the fused
posterior extractor 𝜃1 : 𝑡 ; 4) training the task-specific classifier 𝜏𝑡 .

2024-04-13 11:56. Page 5 of 1–10.
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The formulations for these four steps are presented as follows:
𝜃𝑡 ←− 𝜃𝑡 − 𝛼∇𝜃𝑡 𝐿𝑐𝑒 (𝜏𝑡 ◦ 𝜃𝑡 , 𝐷1) + 𝜆𝐿robust_pri (𝜏𝑡 ◦ 𝜃𝑡 , 𝐷𝑡 )

Λ𝑡 ←−
𝜕𝐿𝑐𝑒 (𝜃𝑡 + 𝛿, 𝐷𝑡 )

𝜂𝜕𝛿

𝜃1:𝑡 ←−
Λ∗1:𝑡−1𝜃

∗
1:𝑡−1 + Λ𝑡𝜃𝑡

Λ∗1:𝑡−1 + Λ𝑡

𝜏𝑡 ←− 𝜏𝑡 − 𝛼∇𝜏𝑡 𝐿𝑐𝑒 (𝜏𝑡 ◦ 𝜃1:𝑡 , 𝐷1),

(20)

where 𝛼 denotes the learning rate. This iterative update is de-
signed to ensure that the classifier 𝜏𝑡 remains compatible with the
optimal fused posterior extractor 𝜃1:𝑡 . Upon the training conver-
gence, we obtain the optimal values of 𝜃∗𝑡 , Λ∗𝑡 , 𝜃∗1:𝑡 , and 𝜏

∗
𝑡 . Among

them, Λ∗𝑡 is utilized to refine the variance of the fused posterior
Λ∗1:𝑡 ←− Λ∗1:𝑡−1 + Λ

∗
𝑡 . Λ∗1:𝑡 , along with the others, is maintained for

the subsequent task training.
Inference. During the testing phase, given sample 𝑥 associated

with task identification 𝑡 , we select the corresponding classifier 𝜏∗𝑡
along with fused extractor 𝜃∗1:𝑇 to perform a prediction:

𝑦 = 𝑓 (𝑥 ;𝜏∗𝑡 ◦ 𝜃∗1:𝑇 ), (21)

where 𝑦 denotes the classification result.

5 EXPERIMENTS
5.1 Settings
Datasets. To ensure a comprehensive evaluation, we select the
following three datasets to conduct experiments:
• 5-split CIFAR-10 [24]. The CIFAR-10 dataset consists of
60,000 color images of 32 × 32 pixels distributed across 10
different classes, with each class containing 6,000 images. In
our experiments, CIFAR-10 is divided into 5 splits based on
the class labels.
• 10-split CIFAR-100 [24]. Similar to CIFAR-10, CIFAR-100
features 100 classes containing 600 images each.We partition
CIFAR-100 into 10 splits, with each containing 10 classes.
• 10-split Tiny-ImageNet [51]. Tiny-ImageNet is a scaled-
down version of the ImageNet dataset, consisting of 200
classes, each with 600 64 × 64 color images. For our study,
this dataset is segmented into 10 splits, each with 20 classes.

Performancemetrics. To thoroughly evaluate the performance
of RP2F, we employ two metrics [7, 30]: classification accuracy
(ACC) and backward knowledge transfer (BWT). ACC is calculated
after the model has been sequentially trained on all tasks. This
metric serves as a direct indicator of the model’s ability to classify
images correctly across all classes, reflecting its overall performance
in IL. BWT is designed to quantify how learning new tasks affects
the performance of previously learned tasks. A negative value of
BWT indicates forgetting, while a positive value suggests that learn-
ing new tasks has beneficial effects on previous tasks’ performance.
The formula for calculating BWT is defined as follows:

𝐵𝑊𝑇 =
1

𝑇 − 1

𝑇−1∑︁
𝑡
′
=1
(𝐴𝐶𝐶𝑇,𝑡 ′ −𝐴𝐶𝐶𝑡 ′ ,𝑡 ′ ), (22)

where 𝐴𝐶𝐶 𝑗,𝑖 represents the accuracy on task 𝑖 once the model
finish learning task 𝑗 . To ensure the reliability of results, we conduct

all experiments five times with random seeds and report the average
performance.

Baselines.We compare our method with various latest and clas-
sic IL methods, including Learning without Forgetting (LwF) [28],
Synaptic Intelligence (SI) [68], Gradient Episodic Memory (GEM)
[30], online Elastic Weight Consolidation (oEWC) [46], Learning
without Memorizing (LwM) [13], Dark Experience Replay (DER and
DER++) [7], Efficient Feature Transformation (EFT) [60], Pototype
Augmentation and Self-Supervision (PASS) [70], Gradient Projec-
tion Memory (GPM) [41], Adam-NSCL [62], Always Be Dreaming
(ABD) [50], Complementary Learning System (CLS-ER) [3], Filter
Atom Swapping (FAS) [36], DCPOC [53], PRAKA [47], and MIND
[4]. We also report the performance of a base model (referred to
as Joint), which is trained jointly using data from all tasks. Clearly,
Joint does adhere to the Task-IL setting, and its results are typically
considered as the upper bound for IL methods. Additionally, for
methods specifically designed for Class-IL, we employ a multi-head
version of them to obtain the experimental results.

Implementation details. The experiments are conducted fol-
lowing the requirements of the Task-IL setting, where only the
corresponding dataset is available for training in each task. For
exemplar-based methods, we provide them with an extra sample
buffer that can store up to 500 samples. We optimize the model
parameters using Stochastic Gradient Descent (SGD), with learning
rates adjusted specifically for each dataset: 0.2 for CIFAR-10, 0.05
for CIFAR-100, and 0.3 for Tiny-ImageNet. The hyperparameter 𝜆
(weighting the parameter-robustness regularize in Eq. (9)) is set to
1e-6 for CIFAR-10 and 1e-5 for both CIFAR-100 and Tiny-ImageNet.
Further details are available in our supplementary code.

5.2 Comparison Result
In this section, we present a comprehensive comparison of our
proposed RP2F method against several state-of-the-art baselines as
detailed in Section 5.1. Table 1 presents the average accuracy (%)
over five runs on 5-split CIFAR-10, 10-split CIFAR-100, and 10-split
Tiny-ImageNet.

The Joint model, which serves as the theoretical upper bound
performance, consistently shows the highest accuracy across all
datasets. We also found that some replay-based methods, such as
GEM, DER, DER++, and ABD, exhibit competitive performance on
small-scaled CIFAR-10, but experience a decline in efficacy on the
CIFAR-100 and Tiny-ImageNet datasets. This observation suggests
that the replay buffers and generative models may be insufficient
for modeling complex data distributions.

Additionally, EFT achieves the highest accuracy on the CIFAR-10
dataset with 95.09%, surpassing RP2F. The observed discrepancy in
the performance of RP2F may be attributed to the inherent structure
of CIFAR-10’s 5-split configuration, where each task only contains
data of two classes. This limited class diversity may lead to over-
fitted parameters, which further affect the accurate estimation of
posterior within RP2F. Nevertheless, RP2F outperforms all other
baselines on the more challenging CIFAR-100 and Tiny-ImageNet
datasets, suggesting its superior capability to handle more diverse
and complex datasets.
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Table 1: Comparison results on several datasets. We report the average accuracy (%) over five runs with random seeds, and the
higher the better. (*) indicates the upper-bound model that is jointly trained with all tasks.

Methods Venue CIFAR-10 CIFAR-100 Tiny-ImageNet Average

Joint* - 98.07 91.18 82.01 90.42
LwF [28] TPAMI2017 91.91±0.7 63.78±4.3 58.61±1.8 71.43
SI [68] ICML2017 76.15±2.6 62.21±2.6 60.91±1.3 66.42
GEM [30] NIPS2017 85.14±2.1 62.80±2.7 44.66±1.7 64.20
oEWC [46] ICML2018 64.17±4.8 38.40±1.9 31.91±0.9 44.83
LwM [13] CVPR2019 78.01±0.8 68.88±0.9 45.57±0.2 64.15
DER [7] NIPS2020 93.13±0.3 73.26±1.3 51.22±1.5 72.54
DER++ [7] NIPS2020 93.71±0.4 74.86±1.1 53.00±0.4 73.86
EFT [60] CVPR2021 95.09±0.3 79.29±0.6 63.88±0.5 79.42
PASS [70] CVPR2021 86.07±0.2 77.30±0.4 62.87±0.4 75.41
GPM [41] ICLR2021 86.58±0.9 70.93±0.9 59.84±0.2 72.45
Adam-NSCL [62] CVPR2021 87.23±0.4 65.69±0.2 59.98±0.7 70.97
ABD [50] ICCV2021 95.11±0.3 74.83±0.5 46.76±0.6 72.23
CLS-ER [3] ICLR2022 93.53±0.3 72.11±0.5 57.36±0.7 74.33
FAS [36] ICLR2022 90.89±1.3 70.89±0.6 60.10±0.2 73.96
DCPOC [53] PR2023 90.43±0.3 72.20±0.2 53.08±0.2 71.90
PRAKA [47] ICCV2023 83.74±0.5 76.21±0.4 63.50±0.3 74.48
MIND [4] AAAI2024 95.67±0.7 77.33±0.5 63.82±0.5 78.94

RP2F (ours) - 91.65±0.3 83.06±0.2 65.81±0.6 80.17

Table 2: Ablation experiment results (ACC %) of RP2F on CIFAR-100 and Tiny-ImageNet.

Hessian estimation robustness priori 10-split CIFAR-100 10-split Tiny-ImageNet

Identity matrix × 79.42±0.66 63.96±0.30
Identity matrix ✓ 79.91±0.28 64.62±0.38
Fisher information matrix × 82.29±0.16 64.40±0.57
Fisher information matrix ✓ 82.85±0.36 64.79±0.47
Parameter-perturbation based (ours) × 82.37±0.49 64.78±0.70
Parameter-perturbation based (ours) ✓ 83.06±0.2 65.81±0.6

5.3 Ablation Study
This section delves into the ablation study to analyse the effec-
tiveness of the parameter-perturbation-based Hessian estimation
method and the parameter-robustness priori. Specifically, we ex-
plore three Hessian estimation strategies: the identity matrix, the
Fisher informationmatrix, and the proposed parameter-perturbation-
based approach. For each strategy, we further investigate the im-
pact of introducing the parameter-robustness priori. The results on
CIFAR-100 and Tiny-ImageNet are presented in Table 2.

We begin with the identity matrix as the simplest form of Hessian
approximation, which yields an accuracy of 79.42% on CIFAR-100
and 63.96% on Tiny-ImageNet. Equipping the parameter-robustness
priori provides a slight enhancement, improving accuracies to
79.91% and 64.62%, respectively. Shifting to the widely used Fisher
information matrix, we observe a notable improvement in per-
formance. Without the regularizer, it achieves 82.29% accuracy on
CIFAR-100 and 64.40% on Tiny-ImageNet. Integrating the parameter-
robustness priori further boosts the performance to 82.85% and

64.79%, respectively. Our novel parameter-perturbation-based Hes-
sian estimation method is more competitive than the Fisher infor-
mation matrix. Without the regularizer, it attains an accuracy of
82.37% on CIFAR-100 and 64.78% on Tiny-ImageNet. The incorpo-
ration of the parameter-robustness priori pushes the performance
to the highest accuracy: 83.06% on CIFAR-100 and 65.81% on Tiny-
ImageNet.

All the results underscore the efficacy of parameter-perturbation-
based Hessian estimation in accurately reflecting the true landscape
of the loss function. Furthermore, these findings emphasize the
ability of the parameter-robustness priori to enhance the model’s
robustness and mitigate forgetting.

5.4 Analysis of Backward Knowledge Transfer
This section analyzes the backward knowledge transfer of RP2F, a
critical IL ability to retain or even enhance performance on previ-
ously learned tasks when new tasks are introduced. Our discussion
is based on empirical evidence in Figure 2 and Table 3.
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Figure 2: Accuracy trends over tasks on Tiny-ImageNet for DER++ (left), GPM (middle), and our proposed RP2F model (right).

Table 3: Backward knowledge transfer (BWT, %) on CIFAR-100 and Tiny-ImageNet.

Methods DER++ [7] LWF [28] OWM [67] PASS [70] GPM [41] Adam-NSCL [62] PRAKA [47] RP2F (ours)
CIFAR-100 -12.56±5.7 -20.91±3.6 -11.25±0.9 -9.34±0.7 -3.52±0.3 -2.24±0.3 -4.09±0.3 0.56±0.2
Tiny-ImageNet -29.06±1.2 -23.84±1.6 -3.30±0.2 -3.23±0.4 -7.91±0.5 -5.58±0.6 -5.42±0.1 0.92±0.8

Figure 2 visually illustrates the performance trajectory of each
task through IL. As can be seen, DER++ exhibits a declining trend
in accuracy for earlier learned tasks, signifying the occurrence of
forgetting. In contrast, GPM maintains a more stable performance
throughout the learning phases, showing its effectiveness inmitigat-
ing forgetting. Remarkably, RP2F exhibits improved performance on
older tasks with the introduction of new tasks (with the exception
of the first task).

Further quantitative evidence of BWT is presented in Table 3.
The BWT of several methods are calculated on CIFAR-100 and
Tiny-ImageNet, including DER++, LwF, OWM, PASS, GPM, Adam-
NSCL, and RP2F. It is evident that all baseline methods exhibit a
negative BWT, highlighting the challenge of forgetting in IL. In
contrast, RP2F records a positive BWT of 0.56% on CIFAR-100 and
0.92% on Tiny-ImageNet, surpassing all other methods. Both visual
illustration and quantitative values of BWT underscore RP2F’s
superior ability to backward knowledge transfer.

5.5 Sensitivity Analysis of 𝜆
This section provides a sensitivity analysis of the hyper-parameter
𝜆, responsible for weighting the parameter-robustness priori in
Eq. (9). We conduct experiments with various values of 𝜆 and sum-
marize the results in Figure 3. As can be seen, setting 𝜆 to zero
or an excessively high value results in suboptimal performance of
RP2F, attributing to the ineffectiveness or overwhelming impact
of the regularizer, which in turn perturbs the training dynamics.
Nevertheless, a stable performance window for 𝜆 is observed within
the range of [1𝑒 − 7, 1𝑒 − 5]. Based on these empirical findings, we
recommend setting 𝜆 to 1𝑒 − 5 on CIFAR-100 and Tiny-ImageNet
to achieve the best overall performance.

Figure 3: Accuracy of RP2Fwith various values of 𝜆 (Cf. Eq.(9))
on CIFAR-100 (left) and Tiny-ImageNet (right).

6 CONCLUSION
In this work, we propose the Robust Parameter Posterior Fusion
(RP2F) framework for incremental learning. RP2F models and fuses
the parameter posterior distributions from both new and existing
tasks, facilitating a more equitable integration of knowledge across
tasks. Furthermore, we incorporate robustness priori into RP2F
to mitigate potential forgetting induced by posterior fusion. By
employing MAP estimation on the fused posterior, RP2F achieves a
harmonious knowledge integration.

RP2F has certain limitations, such as relying on task boundaries
to perform posterior fusion. In future work, we plan to address this
issue by incorporating online learning techniques to extend the
applicability of our method.
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