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Abstract
Autoregressive models are typically applied to sequences of discrete tokens, but
recent research indicates that generating sequences of continuous embeddings in an
autoregressive manner is also feasible. However, such Continuous Autoregressive
Models (CAMs) can suffer from a decline in generation quality over extended se-
quences due to error accumulation during inference. We introduce a novel method
to address this issue by injecting random noise into the input embeddings during
training. This procedure makes the model robust against varying error levels at
inference. We further reduce error accumulation through an inference procedure
that introduces low-level noise. Experiments on musical audio generation show that
CAM substantially outperforms existing autoregressive and non-autoregressive ap-
proaches while preserving audio quality over extended sequences. This work paves
the way for generating continuous embeddings in a purely autoregressive setting,
opening new possibilities for real-time and interactive generative applications.

1 Introduction
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Figure 1: Training process of CAM. The causal
Backbone receives as input a sequence of continu-
ous embeddings with noise augmentation. It out-
puts zt, which is used by the Sampler as condition-
ing to denoise a noise-corrupted version of xt.

Autoregressive Models (AMs) have become
ubiquitous in various domains, achieving re-
markable success in natural language processing
tasks [1], [2]. These models operate by predict-
ing the next element in a sequence based on the
preceding elements, a principle that lends itself
naturally to inherently sequential data like text.
However, their application to continuous data,
such as images and audio waveforms, presents
unique challenges.

First, autoregressive models for image and au-
dio generation have traditionally relied on dis-
cretizing data into a finite set of tokens using
techniques like Vector Quantized Variational
Autoencoders (VQ-VAEs) [3], [4]. This dis-
cretization allows models to operate within a
discrete probability space, enabling the use of
the cross-entropy loss, in analogy to their application in language models. However, quantization
methods typically require additional losses (e.g., commitment and codebook losses) during VAE
training and may introduce a hyperparameter overhead. Secondly, continuous embeddings can encode
information more efficiently than discrete tokens (the same information can be encoded in shorter
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sequences), enabling AMs to perform faster inference than their discrete counterparts. Recent works
explore training autoregressive models on continuous embeddings [5], [6], bypassing the need for
quantisation. While promising, these methods are particularly sensitive to error accumulation during
inference which produces a distribution shift, hindering the generation quality when using a sequen-
tially autoregressive approach (GPT-style). Instead, these works rely on cumbersome non-sequential
masking schemes (e.g., predicting embeddings at random positions at each step) [5] and careful
tuning of training and inference-time techniques [6] to indirectly tackle error accumulation. These
techniques not only add complexity but also impede the exploitation of efficient inference techniques
developed in the context of Large Language Models (LLMs) for discrete tokens (e.g., key-value
cache [7]), potentially preventing their adoption by a wider research community.

In this work, we introduce a simple yet intuitive method to counteract error accumulation and
reliably train purely autoregressive models on ordered sequences of continuous embeddings without
complexity overhead. As shown in Fig. 1, by augmenting the training data with random data-noise
mixtures, we encourage the model to learn to distinguish between real and “erroneous” signals,
making it robust to error propagation during inference. Additionally, we introduce a simple inference
technique that involves adding a small amount of artificial noise to the generated embeddings, further
increasing resilience to accumulated errors. We refer to models trained using the proposed technique
as CAMs (Continuous Autoregressive Models). We demonstrate the effectiveness of CAM through
unconditional generation experiments on an audio dataset of music stems, since we believe that fast
GPT-style models in the audio and music domains could unlock powerful interactive applications,
such as real-time music accompaniment systems and end-to-end speech conversational models. Our
results show that CAM substantially outperforms existing autoregressive and non-autoregressive
baselines regarding generation quality. Moreover, CAM does not demonstrate any degradation when
generating longer sequences, indicating its effectiveness in mitigating error accumulation. CAM
unlocks the potential of autoregressive models for efficient and interactive generation tasks, opening
new possibilities for real-time applications.

2 Related Work
Autoregressive models have achieved remarkable success in natural language processing, becoming
the dominant approach for tasks like language modeling [1], [2], [8], [9]. Extending autoregressive
models to image and audio generation has been an active area of research. Early attempts directly
model the raw data, as exemplified by PixelRNN [10] and WaveNet [11], which operate on sequences
of quantized pixels and audio samples, respectively. However, these approaches are computationally
demanding, particularly for high-resolution images and long audio sequences. To address this chal-
lenge, recent works have shifted towards modeling compressed representations of images and audio,
typically obtained using autoencoders. A popular approach involves discretizing these representations
using Vector Quantized Variational Autoencoders (VQ-VAEs) [3], enabling autoregressive models
to operate on a sequence of discrete tokens. This strategy has led to significant advances in both
image [12], [13] and audio generation [14], [15].

Recent approaches explore training AMs directly on continuous embeddings. GIVT [6] uses the
AM’s output to parameterise a Gaussian Mixture Model (GMM), enabling training with cross-entropy
loss. At inference, continuous embeddings can be sampled directly from the GMM. Despite its
success in high-fidelity image generation, GIVT requires additional techniques, such as variance
scaling and normalizing flow adapters, that add complexity to the model and training procedure.
Alternative approaches like Masked Autoregressive models (MAR) [5] learn the per-token probability
distribution using a diffusion procedure. A shallow MLP is used to sample a continuous embedding
conditioned on the output of an autoregressive transformer. However, the authors show that a
sequential autoregressive model with causal attention (i.e., GPT-style [9]) performs poorly in this
setting and requires bidirectional attention and random masking strategies during training. Our work
tackles this inconvenience to make training of GPT-style models feasible, which we believe can
unlock new avenues for real-time interactive applications, especially in the field of audio generation.

3 Background
3.1 Denoising Diffusion Models (DDMs) are a class of generative models that learn a given data dis-
tribution p(x) by gradually corrupting it with noise (diffusion) and then learning to reverse this process
(denoising). Specifically, they model the score function of the noise-perturbed data distribution at vari-
ous noise levels. Given a set of noise levels σt

T
t=1, we can define a series of perturbed data distributions
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pσt(xt) =
∫
p(x)N (xt;x, σ

2
t I)dx. For each noise level σt with t = 0, 1, ..., T , DDMs learn a score

sθ(x, t) approximating that of the corresponding perturbed distribution: sθ(x, t) ≈ ∇x log pσt(x)
where sθ is typically implemented as a neural network, x is the input data point, and t is the noise
level. The training objective is then to minimize the weighted sum of Fisher Divergences between the
model and the true score functions at all noise levels:

L =

T∑
t=1

λ(t)Epσt (xt)

[
|sθ(x, t)−∇x log pσt

(xt)|22
]
, (1)

where λ(t) is a positive weighting function that depends on the noise level. Once trained, DDMs
generate new samples using annealed Langevin dynamics: starting from a Gaussian random sample,
the process iteratively refines the sample by following the direction of the score function at decreasing
noise levels, eventually arriving at a clean sample from the target distribution p(x).
3.2 Rectified Flow (RF) [16] offers a conceptually simpler and more general alternative to DDMs and
was shown to perform better than competing diffusion frameworks on latent embedding generation
tasks [17]. RF directly connects two arbitrary distributions π0 and π1 by following straight line paths.
In the basic framework, π0 is the data distribution, and π1 is the noise distribution, typically sampled
from a standard Gaussian. Given a set of samples (x0 ∼ π0, x1 ∼ π1), a rectified flow is defined
by the ordinary differential equation (ODE) dzt = v(zt, t)dt, where zt represents the data point at
time t, and v(zt, t) is the so-called drift force and it is parameterized by a neural network trained to
minimize the loss:

L = E
[
||(x1 − x0)− v(tx1 + (1− t)x0, t)||2

]
. (2)

This objective encourages the flow to follow the straight line paths connecting x0 and x1, resulting in
a more efficient deterministic mapping than other diffusion-based frameworks.
3.3 Autoregressive Models for Continuous Embeddings, as proposed in MAR [5], employ
diffusion models to predict the next element xt in a sequence, based on the preceding el-
ements (x0, x1, ..., xt−1). This can be formulated as estimating the conditional probability
p(xt|x0, x1, ..., xt−1).2 To predict xt MAR first transforms (x0, ..., xt−1) into a vector zt using
a Backbone neural network, and then model p(xt|zt) using a diffusion process. A second network,
Sampler, predicts a noise estimate from yt, which represents xt corrupted with noise ε ∼ N (0, I).
The training objective is formulated as:

L = Et

[
∥ε− Sampler(yt|zt)∥2

]
where zt = Backbone (x0, ..., xt−1) . (3)

This objective encourages the model to learn to denoise the corrupted embedding yt and recover
the original xt based on the information about previous timesteps contained in the condition zt. At
inference time, the model generates a new sequence by iteratively predicting conditioning vectors
zt based on the previously generated elements and then using a reverse diffusion process to sample
xt from the learned distribution p(xt|zt). MAR, however, shows that naive training of GPT-style
models—using causal modeling of ordered sequences—fails to deliver compelling results. Instead,
masked modeling and bidirectional attention mechanisms are necessary to achieve performance on
par with non-autoregressive approaches. We argue that masked modeling, which involves predicting
random timesteps, mitigates error accumulation by discouraging the model from relying exclusively
on preceding time steps to generate the current one.

4 Proposed Method
Training As seen in Sec. 3.3, while MAR [5] enables training AMs on continuous embeddings, a
significant challenge emerges when generating ordered sequences: error accumulation. At inference,
prediction errors propagate throughout the generation process and compound at each subsequent
predicted time step, leading to a divergence from the learned data distribution. To address this,
we introduce a novel strategy that injects noise during training to simulate erroneous predictions,
encouraging the model to be robust against it (see Fig. 1). Specifically, we assume that at inference,
the Sampler (see Sec. 3.3) generates embeddings that can be expressed as a linear combination of the
real data xt ∼ π0 and an error ε ∼ N (0, I), weighted by an unknown error level kt:

x̃t = kt ∗ ε+ (1− kt) ∗ xt. (4)

We can then simulate inference conditions during training, aligning the distribution of embeddings
with those generated during inference, which inherently exhibit error accumulation. This can help us

2Note that, in this case, xt indicates the element of the (T + 1)-long data sequence at position t.
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mitigate the effects of the distribution shift. Specifically, our solution involves sampling kt ∼ U(0, 1)
for each timestep during training and to feed noise-perturbed sequences (x̃0, x̃1, ..., x̃T ) to the
Backbone. Importantly, and differently from the noise level in DDMs, we do not explicitly inform the
Backbone about error levels kt. This results in the backbone being trained as a discriminative model,
which must distinguish between real and “error” signals for each timestep in its input to provide the
most informative condition zt to the Sampler. Performing this noise augmentation strategy at training
time allows us to simulate the error accumulation effect during inference for any error level in (0, 1).
As for the Sampler, we use the RF framework (see Sec. 3.2) in tandem with AMs for continuous
embeddings as explained in 3.3. Given yt = σt ∗ ε+ (1− σt) ∗ xt, and a noise level σ sampled from
a lognormal distribution with m = 0 and s = 1 [17], the objective function of the end-to-end system
can be expressed as:

L = Et

[
∥vt − Sampler(yt|σt, zt)∥2

]
with zt = Backbone (x̃0, ..., x̃t−1) , (5)

where vt = xt − ε is the drift. During training, we drop out zt 20% of the time and substitute it with
a learnable embedding zSOS. At inference, following GPT-style models, we prompt the Sampler with
the start-of-sentence (SOS) embedding zSOS to sample the first element of the generated sequence.
Inference At inference, CAM generates a new sequence of embeddings autoregressively, following
the temporal order of the sequence. Given the initial conditioning vector zSOS, the Sampler generates
the first embedding x̂1 by performing an iterative reverse diffusion process (see Sec. 3.1). Subsequent
embeddings are generated by concatenating x̂t−1 to the existing sequence of previously generated
embeddings. The sequence is fed as input to the Backbone to produce the conditioning vector zt,
which is then used by the Sampler to generate x̂t. This process is repeated iteratively until the desired
sequence length is reached. Since the Sampler is parameterised by a shallow MLP, the computation
required by the denoising process can be negligible compared to the forward pass of the Backbone.
To further dampen the effects of error accumulation, we observe that adding a small constant amount
of Gaussian noise kinf to each generated embedding x̂t before feeding it back to the Backbone can
yield higher quality when generating long sequences. We hypothesize that this noise helps to reduce
the mismatch between the Gaussian distribution used for perturbation during training and the actual
distribution of errors of the Sampler’s predictions.

5 Experiments and Results
Datasets: For training and evaluation purposes, we use an internal dataset composed of ∼ 20, 000
single-instrument recordings covering various instruments and musical styles. Each audio file is
stereo and has a 48 kHz sample rate. We preprocess the dataset by extracting continuous latent
representations using an in-house stereo version of Music2Latent [18], a state-of-the-art audio
autoencoder. This results in compressed latent embeddings with a sampling rate of ∼ 12 Hz and a
dimensionality of 64. During training, we randomly crop each embedding sequence to 128 frames,
corresponding to approximately 10 seconds of stereo audio.
Implementation Details: The Backbone in CAM is a transformer with a pre-LN configuration, 16
layers, dim = 768, mlp_mult = 4, num_heads = 4. We use absolute learned positional embeddings.
The Sampler is an MLP with 8 layers, dim = 768, mlp_mult = 4. Both zt and yt are concatenated
and fed as input to the MLP, while information about the noise level σt is introduced via AdaLN
[19]. The total number of parameters for the entire model is 150 million. Regarding training, we use
AdamW [20] with β1 = 0.9, β2 = 0.999, weight decay = 0.01, and a learning rate of 1e− 4. All
models are trained for 400k iterations with a batch size of 128.
Baselines: We compare CAM against several autoregressive and non-autoregressive baselines: GIVT
models [6] with 8 and 32 modes, the model proposed by [5] in its fully autoregressive and causal
configuration (we denote this model as MAR), and a non-autoregressive diffusion model trained using
the Rectified Flow [16] framework. We also provide the results of MAR trained using Rectified Flow
instead of its original linear noise-prediction objective and of GIVT trained using our proposed noise
augmentation technique. To ensure a fair comparison in model capacity, we use the same architecture
for all models, and we increase the number of transformer layers to 21 in those models that do
not use a Sampler to roughly match the total number of parameters. We provide audio samples at
sonycslparis.github.io/cam-companion/.
Evaluation Metrics: We use Frechet Audio Distance (FAD) [21] to evaluate the quality of generated
samples. We use FAD calculated using CLAP features [22], which accepts 10-second high-sample
rate samples as input and has been shown to exhibit a stronger correlation with perceived quality
compared to VGGish features [23]. FAD is calculated using a reference set of 10,000 samples and
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background sets of 1,000 samples, and we report the average over 5 evaluations. All samples are 10
seconds long. To evaluate the influence of error accumulation, we also use FADacc, which is the FAD
obtained by the 10 seconds of audio that are autoregressively generated after the first 10 seconds.

(a) Model FAD FADacc

MAR 0.453 0.458
MAR RF 0.442 0.453

(b)

Model FAD FADacc

Non-Autoregressive
Rectified Flow 0.448 n/a

Autoregressive
GIVT (8 modes) 0.889 0.950
GIVT (32 modes) 0.865 0.931
GIVT+noise (32 modes) 0.514 0.511
MAR RF 0.442 0.453
CAM (Ours) 0.405 0.394

(c)

Figure 2: (a) Comparison between MAR trained using noise-prediction with linear schedule and MAR
RF using Rectified Flow. (b) Influence of kinf on FAD and FADacc. (c) Comparison of CAM with
Autoregressive and Non-Autoregressive Baselines.
Influence of Rectified Flow: In 2a, we first compare MAR trained using the original noise-prediction
with linear schedule diffusion framework to the same model trained using a Rectified Flow formulation.
For each model, we use the number of denoising steps in the range (10,100) that results in the lowest
FAD. The model trained using Rectified Flow achieves a lower FAD.
Influence of Inference Noise: We evaluate FAD and FADacc when CAM uses different values of kinf
in the [0, 0.05] range. Fig. 2b shows the results obtained for each noise level. Remarkably, we note
how with k = 0.02, FADacc < FAD, pointing to an improvement in generation quality for longer
generations. A possible explanation of this result is: since the Backbone receives a maximum context
of ∼ 10 seconds, it generates all embeddings after the 10 seconds mark using a full context, which
may result in higher quality embeddings. We use k = 0.02 for all subsequent experiments.
Comparison with Baselines: We evaluate CAM and the baselines concerning their ability to
generate high-fidelity audio. The FADacc metric directly evaluates the resilience of the models to error
accumulation. A model that does not suffer from error accumulation would achieve the same results
on both the first and the second 10-second generated audio sequence. Since we are not interested in
evaluating or minimizing inference speed, for each model relying on diffusion sampling we use the
number of denoising steps in the range (10,100) that results in the lowest FAD. We also use variance
scaling for GIVT to sample embeddings with a temperature of t = 0.9, which we empirically find to
result in a lower FAD. A technique to simulate sampling with different temperatures has also been
proposed for MAR [5]; however, we find that the best metrics are obtained with t = 1. As we show
in Tab. 2c, CAM outperforms all autoregressive and non-autoregressive baselines on FAD metrics.
CAM also exhibits a decrease in FAD when autoregressively generating longer sequences. The same
result can be noticed for GIVT when trained with our proposed noise augmentation, which also
performs vastly better than the original GIVT models. This demonstrates that our proposed training
approach can be successfully adapted to different categories of autoregressive models for continuous
embeddings. In contrast, all other autoregressive baselines show a degradation in audio quality as the
generated sequence length increases.

6 Conclusion
This paper introduced CAM, a novel method for training purely autoregressive models on continuous
embeddings that directly addresses the challenge of error accumulation. By introducing random noise
into the input embeddings during training, we force the model to learn robust representations resilient
to error propagation. Additionally, a carefully calibrated noise injection technique employed during
inference further mitigates error accumulation. Our experiments demonstrate that CAM substantially
outperforms existing autoregressive and non-autoregressive models for audio generation, achieving
the lowest FAD while maintaining consistent audio quality even when generating extended sequences.
This work paves the way for new possibilities in real-time and interactive audio applications that
benefit from the efficiency and sequential nature of autoregressive models.
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