
Get RICH or Die Scaling:
Profitably Trading Inference Compute for Robustness

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent work shows that increasing inference-time compute through generation of1

long reasoning traces improves not just capability scores, but robustness to various2

text jailbreaks designed to control models or lower their guardrails. However,3

multimodal reasoning offers comparatively little defense against vision jailbreaks,4

which typically succeed by creating noise-like perturbations. When attacking a5

robust model, vision attacks are also capable of and often must resort to producing6

human-interpretable perturbations. Rather than operating in a model’s blind-spot7

or out of its training distribution, such interpretable attacks construct familiar8

concepts connected to the attacker’s goal. Inspired by the ability of robust models9

to force attacks into this space that appears more in-distribution for reasoning tasks,10

we posit the Robustness from Inference Compute Hypothesis (RICH): defending11

against attacks with inference compute (like reasoning) profits as those attacks12

become more in-distribution. To test this, we adversarially attack models of varying13

robustness with black-box-transfer and white-box attacks. RICH predicts a rich-14

get-richer dynamic: models that start with higher initial robustness gain more15

robustness benefits from increases in inference-time compute. Consistent with16

RICH, we find that robust models benefit more from increased compute, whereas17

non-robust models show little to no improvement. Our work suggests that inference-18

time compute can be an effective defense against adversarial attacks, provided19

the base model has some degree of robustness. In particular, layering disparate20

train-time and test-time defenses aids robustness not additively, but synergistically.21

Figure 1: As model robustness increases, the benefits of inference-time compute on robustness
also increase. A red dot indicates the step at which the model first generates the output targeted by the
PGD attack. Robustness increases from LLaVA-v1.5 to FARE-LLaVA-v1.5 to Delta2LLaVA-v1.5.
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1 Introduction22

Foundation models have grown increasingly capable with the scaling of their pretraining and post-23

training [Kaplan et al., 2020, Hoffmann et al., 2022, Sardana and Frankle, 2023]. More recently,24

inference-time compute scaling to produce long reasoning trajectories has proved capable of generat-25

ing human-expert-level performances on various benchmarks [OpenAI et al., 2024, OpenAI, 2025,26

Guo et al., 2025, DeepMind, 2025, Anthropic, 2025]. However, despite these advances, adversarial27

robustness remains an open challenge, particularly in safety-critical applications such as autonomous28

driving. Neural networks are known to be vulnerable to carefully designed inputs that can subvert29

their intended behavior, bypass guardrails, or generate harmful output [Szegedy et al., 2013]. Solving30

this challenge is the key to a successful deployment of AI in real-world applications.31

Recent work by Zaremba et al. [2025] represents an exciting direction, showing that inference-time32

compute offers an intriguing dual benefit: not only does it improve task performance, but it also33

enhances robustness to text jailbreaks. However, we found that this benefit does not extend cleanly to34

the vision domain (see Figure 2). Multimodal reasoning [Liu et al., 2023, Zaremba et al., 2025], while35

effective at tasks like visual question answering, offers comparatively little defense against vision36

jailbreaks, which typically succeed by introducing noise-like perturbations that remain uninterpretable37

to both humans and models. These perturbations frequently occur in underexplored or off-distribution38

regions of the input space, where noise-like distortions mislead the model or confuse its semantic39

understanding of the image, making additional computation at test time only marginally effective.40

A separate line of work on adversarially trained image classification models and vision-language mod-41

els has shown that increasing robustness of the model alters the nature of adversarial attacks: rather42

than remaining imperceptible or noise-like, attacks become visually interpretable and often resemble43

semantically meaningful concepts (e.g., textures, patterns, or objects aligned with the attacker’s44

objective) [Gaziv et al., 2023, Bartoldson et al., 2024, Wang et al., 2025, Fort and Lakshminarayanan,45

2024]. Appearing as everyday objects, these interpretable perturbations may be closer to the model’s46

training distribution, and we suspect they may thus be more amenable to reasoning-based defenses –47

particularly those implemented by increased inference-time compute.48

Inspired by this observation, we introduce the Robustness from Inference Compute Hypothesis49

(RICH): inference-time compute (e.g., long reasoning traces) is most effective as a defense when50

attacks are forced into in-distribution regimes understandable by the model. In other words, inference-51

compute-based defenses work best when the model is already somewhat robust, and thus able to push52

attackers into a domain where test-time reasoning is effective.53

RICH predicts a “rich-get-richer" dynamic: models that begin with higher baseline robustness gain54

disproportionately more robustness benefits from additional inference-time compute. In contrast,55

non-robust models, which remain vulnerable to out-of-distribution (OOD) perturbations, see compute56

scaling provide little to no defense against attacks that easily generate data that is OOD for the model.57

To test this hypothesis, we conduct adversarial evaluations of VLMs with varying degrees of robust-58

ness using both white-box and black-box-transfer attacks. We systematically vary inference-time59

compute and analyze how its defense benefits scale as a function of base robustness. As shown in60

Figure 1, more robust models exhibit increased resistance as compute scales, with attacks requiring61

more steps or exhibiting reduced success rates. Conversely, non-robust models are comparatively62

brittle regardless of the amount of reasoning at test time.63

These findings demonstrate that inference-time compute and train-time defenses interact not additively64

but synergistically: together they provide greater robustness than either alone. The contributions of65

this work are as follows:66

1. We propose a hypothesis that explains prior failures of inference-time compute to signifi-67

cantly boost robustness to vision attacks, and which suggests that these failures could be68

addressed by using more robust base models.69

2. We test our hypothesis using attacks from prior work and novel attacks. Our novel white-box70

vision attack is the first white-box attack used to test the multimodal robustness benefits of71

scaling inference-time compute, to the best of our knowledge.72

3. Consistent with our hypothesis, we demonstrate that inference-time compute provides larger73

benefits when the base model is more robust. This result clarifies how to improve robustness74

in exchange for inference-time compute, with a better rate of return.75
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Figure 2: Frontier models with inference-time compute defenses are less robust than adversari-
ally trained VLMs on vision attacks. Using Attack-Bard data [Dong et al., 2023], we show model
accuracy on clean (left) and adversarial (right) data, evaluating under low and high inference-time
compute settings. Moreover, for LLaVA-v1.5, a non-robust model, increased inference-time compute
does not necessarily provide benefits, consistent with the fact that reasoning on top of a corrupted
image understanding is not beneficial. See Figure 3 for Attack-Bard image descriptions from the
VLMs we study, and see Section 3.2 for experiment details.

2 Background and Exploratory Findings76

Zaremba et al. [2025] found that scaling inference-time compute defends against adversarial attacks,77

driving attack success rates towards zero for many settings. However, this inference-time scaling78

seems to fall short for vision attacks defended against via multimodal reasoning. Indeed, as shown in79

Figure 2, the accuracy of o1-v on clean images – i.e., data that isn’t attacked – in a low-compute80

setting (left panel) is not able to be reached on attacked images (right panel), even when using the81

highest level of inference-time compute.82

Given the high economic cost of raising inference-time compute to such levels, this o1-v result of83

Figure 2 suggests that inference-time compute may be a prohibitively expensive defense strategy.84

Indeed, these images are affected only by static black-box attacks optimized for a separate model85

[Dong et al., 2023] – white-box vision attacks on o1-v itself would be much more difficult to defend86

against and could pose an insurmountable financial burden if addressed via reasoning. Moreover,87

Zaremba et al. [2025] leaves unclear whether reasoning can even defend against white-box vision88

attacks (studying only black-box vision attacks) and notes that enhancing robustness to vision89

adversarial attacks remains an important area for future research.90

In this paper, we aim to clarify whether inference-time compute scaling can be a cost-effective91

defense to attacks of various strengths, and (further) how such scaling might be improved. Our92

experiments focus on vision attacks and thus multimodal reasoning. Our initial testing in Figure 293

shows that Delta2LLaVA-v1.5 Wang et al. [2025] – a highly adversarially robust model (RM) – does94

not require any inference-time compute scaling to outperform the robustness of o1-v at its highest95

inference-time compute level (see Section 3.2 for experiment details). This further calls into question96

whether inference-compute scaling as a defense is worth its price.97

Interestingly, we also see that non-robust models (LLaVA-v1.5 in Figure 2) may fail to benefit from98

scaling of inference-compute on attacked data, even when they receive benefits on clean data. This99

negative result may not be surprising, as attacks may leverage a model’s inability to operate correctly100

on data outside its training distribution, and it is not clear that adding more reasoning would be101

able to facilitate the removal of such an attack’s effects. In other words, while the noise-like pattern102

such attacks have may be negligible to a human – see Figure 3 for an example of an adversarial103

Attack-Bard image that humans can understand – it could nonetheless represent a significant shift104

away from the training distribution of the model. Corroborating this, Figure 3 shows that LLaVA-v1.5105

produces an image description that is completely unrelated to the target (“American Coot”), which106

will prevent reasoning from providing a benefit regardless of the inference-time compute level.107

Finally, it is necessary to consider the potential ability of inference-time compute scaling as a defense108

on a class of vision adversarial attacks that recent literature has highlighted for its effectiveness against109

models with state-of-the-art robustness. These attacks do not appear as noisy versions of their base110

images; i.e., they depart from the pattern in Figure 3. Rather than producing data that appears outside111
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Figure 3: Example model behavior under black-box attack. We show models’ image descriptions
and associated predictions for an attacked image of an “American Coot” from the Attack-Bard dataset
[Dong et al., 2023].

the training distribution, these attacks produce semantically interpretable features in the attacked112

images [Gaziv et al., 2023, Bartoldson et al., 2024, Wang et al., 2025, Fort and Lakshminarayanan,113

2024]. Prior work shows that such adversarial images are produced when attacking sufficiently robust114

networks: intuitively, if a robustified model cannot be attacked through subtle perturbations, then115

visually instantiating the attacker’s target can become a less-difficult path towards attack success. We116

reproduce this finding in Figure 4, constructing a version of these attacks that is novel to the best of117

our knowledge.118

Specifically, Figure 4 shows for the first time that, not only can this type of attack alter a shape from119

spherical to cuboid, but the extent of the alteration needed for attack success is increased by the120

addition of scaled inference-time compute. This attack setup is analogous to real world settings, which121

include following safety specifications regardless of adversarially persuasive user inputs [Zaremba122

et al., 2025], and self-driving of vehicles using multimodal systems that must understand the need123

to prioritize specific modalities (e.g., a human driver’s command to stop should override a model’s124

potentially hijacked understanding of the visual scene). See Figure 9 for an illustration of an attack125

we produce in a setting directly relevant to self-driving vehicles.126

Critical to our work, the aforementioned interpretable-attack strategy suggests that, when adversar-127

ially attacking robust models, the attacked data may not go outside (or as far outside) the training128

distribution as it does when attacking less-robust models. Instead, attacks on robust models may rely129

on their ability to produce responses based on an accurate understanding of the attacked data. If this130

is the case, then reasoning may become more relevant as a defense. In other words, robust models131

may ease the problem of applying safety specifications to attacked inputs [Zaremba et al., 2025] by132

making reasoning about the relationship of those inputs to the specifications easier. In sum, robust133

models may reduce the problem of providing a robust response to one that is solvable by reasoning of134

the type that the model was trained to do, whereas it’s unclear that reasoning on out-of-distribution135

representations from non-robust models has a chance to succeed.136

These exploratory findings and subsequent analyses motivate the following hypothesis, which we137

validate via rigorous testing in the remainder of this work.138

The Robustness from Inference Compute Hypothesis. Inference-time compute is most effective as
a defense when attacks are forced into in-distribution regimes understandable by the model.139
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Figure 4: Attacking highly robust models, especially when they have scaled inference-time
compute, causes visual instantiation of an instance of the attacker’s target text in the attacked
image. The image is modified by the attacker until the target text “Cube” is output by the model. We
show the attacked images and model attention maps. When K >= 1, the prompt text in brown is
included, and the portion in braces is repeated K times to naively increase inference-time compute.

3 Methodology140

We study how inference-time compute provides robustness to adversarial visual jailbreaks by testing141

VLMs with varying robustness levels (low, medium, and high): LLaVA-v1.5 [Liu et al., 2024], FARE-142

LLaVA-v1.5 [Schlarmann et al., 2024], and Delta2LLaVA-v1.5 [Wang et al., 2025]. While Zaremba143

et al. [2025] consider a non-robust reasoning model, our approach makes explicit the potential effect144

of robust vision representations, or the lack thereof, on measuring the benefits of reasoning defenses.145

We adopt LLaVA-v1.5 as our baseline VLM. While this model operates with a strong connection146

between the visual and text domains, due to its visual-instruction tuning, it is not robust to adver-147

sarial image attacks as neither its image encoder nor its language model experienced adversarial148

training. Contrast this with FARE-LLaVA-v1.5 which replaces the frozen CLIP image encoder149

with a robust version achieved through unsupervised adversarial finetuning on ImageNet. Finally,150

Delta2LLaVA-v1.5 adds two levels of defense: full, web-scale adversarial contrastive CLIP pretrain-151

ing and adversarial visual instruction tuning. Increased adversarial training yields strong benefits152

to performance. For example,Wang et al. [2025] report that when comparing LLaVAs on a task153

requiring visual reasoning like VQAv2 [Goyal et al., 2017], Delta2LLaVA-v1.5 achieves 59.5%154

accuracy under a ℓ∞ ε = 4/255 attack while FARE-LLaVA-v1.5 reaches 31% and non-robust155

LLaVA-v1.5 obtains 0%. For our FARE-LLaVA-v1.5 experiments, we use the FARE-CLIP encoder156

finetuned with ε = 2/255 under the ℓ∞ norm.157

3.1 White-box PGD Attack158

We evaluate VLM robustness under a novel white-box adversarial attack. Our attack creates a conflict159

between modalities by providing correct information in the text input (e.g., mentioning that a soccer160

ball is “round” as shown in Figure 4) while simultaneously applying a PGD attack on the image input161

that targets an incorrect model output (e.g., "Cube").162
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Inference-time Compute Scaling To investigate how additional inference-time compute affects163

robustness, we use textual repetition to raise computational effort. Specifically, we repeat the correct164

text description K times in the instruction prompt, and we explicitly instruct the model to defer to165

the text modality when the text and vision inputs conflict. Higher K represents increased levels of166

inference-time compute. Notably, this is not the same inference-time compute scaling performed by167

reasoning models like o1, but it allows us to investigate how naively scaling inference-time compute168

affects robustness. While our black-box experiments provide closer proxies for prior work with closed169

models on scaling reasoning for robustness [Zaremba et al., 2025] – see Section 4.4 – we expect170

our novel white-box methodology to provide a strong test of inference-time compute’s robustness171

benefits. In particular, scaling K may make the model more inclined to defer to the answer given in172

the text input; i.e., the probability of the model calling a ball “red” is expected to increase with the173

number of in-context statements describing the ball with this color, consistent with patterns found in174

the model’s training data. This increased evidence for choosing a particular value through scaling K175

can be seen as proxying for the ability of state-of-the-art reasoning systems to produce increasing176

amounts of evidence for choosing a particular value through a reasoning trace.177

Attack Details For each attack instance, we run a PGD attack with step size 0.1 for 100 iterations,178

using a perturbation budget ε ∈ {16/255, 64/255}. At each step, we track both the cross-entropy179

loss of the target tokens and whether the model generates the target response. We record the minimum180

number of PGD steps required for successful attack (lower values indicate lower robustness). The181

attack is considered failed if the model does not generate the target response after all 100 steps.182

Experiments were conducted using a single NVIDIA 80GB H100 GPU.183

3.2 Black-Box Transfer Attacks184

We also test RICH on a dataset of transferred, black-box adversarial examples using an image185

classification task. Attack-Bard consists of 200 images generated from a white-box adversarial attack186

on an ensemble of surrogate models [Dong et al., 2023]. These images were optimized for transfer187

to Bard and GPT-4V with ε = 16/255 under the ℓ∞ norm. The clean counterparts to these 200188

images are used to measure the baseline strength of each model’s visual perception and the benefits189

of adaptive inference-time compute on classifying natural images.190

Attack-Bard with Augmented Reasoning We evaluate each VLM for its classification accuracy191

on Attack-Bard, under low and high inference-time compute settings. We apply each model to predict192

the class label of an input image using its multimodal context —the image pixels and the instruction193

prompt. As the VLMs surveyed have moderate instruction-following capabilities and struggle on194

their own to classify an image when prompted with the full label set, we augment each VLM with195

adaptive inference-time compute and predict the label in two stages. First, we prompt the VLM to196

provide a description for each image. Then using this description, we apply Claude 3.7 Sonnet to197

judge which label best matches the generated description [Anthropic, 2025]. Using the "extended198

thinking" feature of the judge, we create low and high inference-time compute settings. Both the low199

and high inference-time compute settings use a temperature of 1 and set the max number of tokens200

generated to 20,000. The high inference-time compute setting uses a budget of 16,000 thinking201

tokens. Details on the Claude prompts used can be found in Appendix B.1.202

Attack-Bard with Chain of Thought Additionally, we leverage Attack-Bard to examine black-box203

attack success when the VLM’s intrinsic reasoning capabilities are invoked through chain of Thought204

(CoT) prompting techniques [Wei et al., 2022, Kojima et al., 2022, Wang et al., 2022]. This setup205

does not use an external judge and instead asks the model to classify the image with varying degrees206

of intermediate reasoning. For each image, we construct a multiple choice question including the207

true label and 29 other answers chosen from the label set at random. We devise a low inference-time208

compute, no CoT, setting where the model is prompted to select the correct label from the provided209

choices. In the high inference compute regime, we apply CoT reasoning to elicit classification from210

step-by-step thinking. Image labels were generated from the VLM using greedy sampling with 0211

temperature generating a maximum of 5 and 500 tokens for the low and high respective settings.212

Details on the CoT prompts can be found in B.1. Experiments were conducted using a single 80GB213

Nvidia H100 GPU.214
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Figure 5: When ε is sufficiently high at 64/255, only the most robust model benefits significantly
from inference-time compute. Robustness increases from LLaVA-v1.5 to FARE-LLaVA-v1.5 to
Delta2LLaVA-v1.5.

4 Experiments215

4.1 Does Inference-Compute Scaling Help All Models Equally?216

As Zaremba et al. [2025] only studied one model, it’s unclear if scaling inference-compute provides217

the same benefits regardless of the base model (and its robustness). E.g., a constant benefit might218

be expected if reasoning aids defense by making attack optimization more complex. Alternatively,219

RICH suggests that reasoning’s robustness benefits depend on the base model’s robustness.220

To test this, we use white-box PGD attacks on models with increasing levels of adversarial robustness.221

If RICH is correct, we would expect to see robust models are harder to attack at a given inference-222

time compute level, relative to less robust models. Alternatively, if the benefits of scaling inference223

compute are unrelated to the model, we would expect that there’s no relationship between a base224

model’s robustness and the benefits it obtains from scaling inference compute.225

Figure 5 shows the PGD attack loss curves for VLMs with increasing inference-compute levels226

when ε = 64/255. It is found that the loss for the most robust model (Delta2LLaVA-v1.5) has a227

substantial rise when the compute level rises, leading to substantially increased numbers of PGD228

steps to break the model. In contrast, models with lower robustness do not exhibit such changes. This229

observation is consistent with RICH. Specifically, the benefits of scaling inference compute depend230

on the robustness of the model.231

Does Inference-Compute Scaling Help All Models Equally? No, we find that inference-
compute scaling benefits robustness more when the model is initially more robust.

232

4.2 Can Inference-Compute Scaling Only Benefit Robustness in Select Models?233

We have seen that the benefits of scaling inference-time compute depend on the model. However, it234

remains unclear why this is the case. One possibility is that only Delta2-LLaVA-1.5 benefits notably235

because it was visually instruction tuned while under adversarial attacks [Wang et al., 2025]. Indeed,236

FARE had comparatively light adversarial training that only fine-tuned the vision embedding model237

[Schlarmann et al., 2024]. Thus, we may expect that only Delta2-LLaVA-1.5 can significantly benefit238

from inference-time compute scaling in our setup because it was the only model trained to perform239

multimodal reasoning when under attack.240

Alternatively, reasoning may be able to support robustness as long as the data being reasoned241

about is close enough to being in-distribution. We might expect this to be the case if, for example,242

inference-time compute scaling boosts defenses by enhancing the model’s ability to perform correct243

classification given an accurate representation of the image, and if less robust models are capable of244

providing accurate representations of attacked images as long as the perturbation is small enough.245

To test this, we used a smaller perturbation budget ε = 16/255, bringing the attacked images closer246

to the distribution the model was trained on. If reasoning relies on in-distribution data to provide247

benefits, we would expect to see scaling providing benefits to less adversarially trained models as ε248
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Figure 6: Robust models benefits from inference-compute scaling when attacked image is in-
distribution. PGD steps required for successful attacks with increasing inference-time compute
levels and variations in perturbation strength. Failed attacks are marked by black circles.

Table 1: PGD steps required for a successful attack across models, perturbation budget ε, and
inference-compute levels K. Mean (standard error) computed on three attack variations of an image.

ε K LLaVA-v1.5 FARE-LLaVA-v1.5 Delta2LLaVA-v1.5

16/255
0 4.3 (0.7) 8.0 (2.2) Attack Failed
1 5.3 (1.5) 20.0 (6.1) Attack Failed
3 6.3 (1.2) 23.3 (8.5) Attack Failed

64/255
0 5.7 (1.4) 7.7 (3.0) 13.7 (5.9)
1 6.0 (1.6) 7.3 (1.5) 60.3 (18.4)
3 6.7 (1.0) 9.7 (2.6) 67.0 (13.8)

decreases. Alternatively, if adversarial visual instruction tuning [Wang et al., 2025] is critical, we249

would expect no benefits from reasoning when ε is reduced.250

In Figure 6, we observe that inference-compute scaling benefits robustness in our setup, even if these251

models were not explicitly trained to perform multimodal reasoning when under attack. This supports252

the hypothesis that inference-time compute benefits defenses when the attacks are in-distribution.253

Can Inference-Compute Scaling Only Benefit Robustness in Select Models? No. Our
experiments suggest that, provided the attacked data is sufficiently close to the model’s
training distribution, inference-compute scaling can benefit robustness.

254

4.3 Is the Robustness from Inference Compute Hypothesis Supported Across General Attack255

Targets and Images?256

To verify our findings, we explored a series of attacks that target different image aspects and base257

image. We designed variations of our white-box attack setup for color, shape, and material attacks,258

for the example image and others that include traffic/driving imagery as an example of high safety259

risk situations. Table 1 shows averaged PGD steps required for successful attacks across these260

experiments. We observe that increasing compute level K consistently increase the required PGD261

steps across all models, with the effect most pronounced in robust models and when attacks are262

in-distribution at lower ε = 16/255. Delta2LLaVA-v1.5 demonstrates strong improvements under263

high ε = 64/255 attacks when more compute is added: mean PGD attack steps increase from 13.7 at264

k = 0 to 67.0 at k = 3, nearly a 5× improvement. Results for each attack can be found in Appendix265

C. These results provide strong evidence that inference-time compute acts as an effective defense266

multiplier, especially when models are robust and attacks remain within the training distribution.267

Is the RICH Supported Across General Attack Targets and Images? Yes, we corroborate
our central hypothesis in experiments across general images and attack targets.

268
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4.4 Does Chain-of-Thought Provide Improved Defenses in Robust Models?269

Prior experiments left two things unclear: (1) is the RICH supported by black-box attacks? It’s270

important to know this because frontier models often do not provide white-box access. (2) What271

happens when using more traditional reasoning approaches? In particular, earlier experiments do not272

match traditional inference-time compute scaling approaches with reasoning, using a novel context273

scaling approach (e.g., see Figure 1) or a separate model for reasoning (i.e., see Figure 2).274

Evaluation Model No CoT CoT

Clean LLaVA-v1.5 68.5 68.5
Delta2LLaVA-v1.5 57.5 60.5

Adv. LLaVA-v1.5 36.5 37.0
Delta2LLaVA-v1.5 55.0 59.5

Table 2: Classification accuracy on Attack-Bard black-
box transfer attacks for multiple-choice questions and
CoT inference-compute scaling

Here, we test the dependence of our re-275

sults on all of the above factors by using276

our black-box CoT experiment setup. If277

our white-box attacks are critical to our278

findings, we would not expect to see sup-279

port for the Robustness from Inference280

Compute Hypothesis here. Similarly, if281

the reasoning must be done by a frontier282

model or the k-scaling experiment setup283

is important to our result, we would not284

expect to find support for RICH. Alter-285

natively, if the Robustness from Inference Compute Hypothesis is applicable to various inference-286

compute scaling approaches and adversarial attack settings, we would expect to see that switching287

from short answers to CoT-based answers provides a benefit primarily to robustified models.288

Table 2 shows that our results are consistent with the Robustness from Inference Compute Hypothesis.289

In particular, when shifting to a setting that more closely proxies for the original inference-compute-290

scaling-for-robustness setup of Zaremba et al. [2025], we still find that the robustness benefits of291

inference-time compute scaling improve with base model robustness.292

Does Chain-of-Thought Provide Improved Defenses in Robust Models? Yes, the RICH is
broadly observed regardless of how inference-time compute is scaled.

293

5 Discussion294

Scaling inference-time compute has been shown to provide many benefits that even extend to increased295

robustness. Enhancing robustness and other model safety/security capabilities is key to obtaining296

the trust needed for widespread use and benefits of frontier AI. Prior work found that this robustness297

benefit of increasing inference-time compute was limited when adversaries used vision attacks. We298

proposed a hypothesis to explain this limitation as well as how to ensure robustness benefits from299

inference-time compute scaling in cost-effective manner. Our hypothesis, the Robustness from300

Inference Compute Hypothesis, was validated through a variety of experiments that include novel301

white-box and previously explored black-box attacks.302

In Appendix A, we discuss additional related work on out of distribution (OOD) robustness, adversar-303

ial attacks, and adversarial training.304

Limitations We explored a phenomenon first uncovered in a large-scale reasoning model (o1)305

using experiments at a comparatively much smaller scale. While our model scale facilitates tests of306

the most adversarially robust VLMs that we know of [Wang et al., 2025], it is necessary to validate307

our findings at larger scales, which see widespread deployment of models and which pose the largest308

potential harm when attacks are successful. Towards this, future work could adversarially train larger309

(possibly frontier-scale) models to test our core hypothesis more broadly.310

Broader Impact As LLM capabilities improve, studying defenses against adversarial attacks that311

lower their safety guardrails can potentially enhance trust in and benefits of LLM deployment in vari-312

ous settings. However, automated defenses like scaling inference compute should be complemented313

by attentive and responsible evaluation/monitoring.314
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A Additional Related Work434

Model performance degrades when data is adversarially perturbed by attacks that humans are robust435

to [Szegedy et al., 2013]. Adversarial training [Goodfellow et al., 2014, Madry et al., 2017] can help436

improve model robustness. However, according to RobustBench [Croce et al., 2020], the robustness437

problem is still unsolved on toy datasets like CIFAR-10. Recent work predicts that an alternative438

paradigm is needed, as scaling adversarial training may be a computationally infeasible solution439

[Bartoldson et al., 2024].440

Additionally, Bartoldson et al. [2024] showed that attacking a robustified network by altering an441

image of a horse would lead to the labeling of the image as a dog by the robustified network and442

by humans; i.e., the image was altered to resemble a dog rather than affected by noise-like patterns443

that humans can ignore. Additional corroboration in Fort [2025] is shown for a model that was not444

directly adversarially trained, suggesting that robustness itself rather than a means of achieving it445

might be directly linked to interpretability.446

We show that this phenomenon plays a major role in how inference-time attacks and defenses play447

out for multimodal reasoning models. Specifically, we find that PGD attacks [Madry et al., 2017]448

on VLMs like LLaVA 1.5 [Liu et al., 2024] proceed by generating noise-like patterns and quickly449

achieve their targeted output [Bailey et al., 2023]. However, attacks on robustified VLMs like450

Delta2LLaVA-v1.5 [Wang et al., 2025] produce semantically interpretable features and struggle to451

successfully achieve the targeted model output. An example of this is shown in Figure 4.452

This suggests that, while adversarial attacks are typically seen as producing out-of-distribution (OOD)453

data, this is not necessarily the case (especially in robust models). Our core hypothesis (RICH)454

suggests that reasoning can provide larger robustness benefits when model attacks are not OOD.455

In this work, we explored the concept of adversarially robust models’ ability to keep adversarial456

attacks in distribution, but our hypothesis may relate to other ways in which OOD can arise. However,457

while OOD robustness can be enhanced by scaling Fort et al. [2021], even the most robust near-OOD458

detectors are still brittle to targeted adversarial attacks [Fort, 2022], accenting that robustness against459

distribution shifts and robustness against active attacks might be different kinds of phenomena.460

Importantly, Howe et al. [2024] found that larger LLMs tend to be more robust, despite not being461

adversarially trained. Thus, it’s possible that the relatively strong defensive benefit of scaling462

inference-time compute on text input attacks is consistent with the Robustness from Inference463

Compute Hypothesis. Specifically, inference-time compute may have benefitted LLM robustness in464

Zaremba et al. [2025] because the frontier-scale model being tested was already somewhat robust to465

the text attacks considered, even though that model had no explicit training to encourage robustness466

to attacks.467
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B Experiment Details468

B.1 Vision Language Model Instructions469

All image classification requests to Claude 3.7 Sonnet use the image description generated by the470

queried VLM and take the following form:471

Claude 3.7 Sonnet Image Classification

The following is an image description: {Image description from VLM}
please tell me the category that best applies to the image description.
You must pick from the following categories, and return to me just one
category from this list (e.g., just reply “yurt”). I want you to respond
with only the category so i can paste your response into a CSV column
to check to see if it matches a ground truth.
categories: african crocodile, airliner, alp, american alligator, american
coot, analog clock, ant, bagel, bakery, bald eagle, ballplayer, bannis-
ter, barbell, barn, basenji, basketball, beach wagon, bearskin, bee, beer
glass, bell cote, bobsled, bow tie, brass, bubble, buckeye, buckle, burrito,
cab, candle, cannon, canoe, car mirror, car wheel, carbonara, carousel,
carton, cash machine, castle, category, centipede, cheeseburger, church,
cinema, cliff, container ship, convertible, coral reef, cornet, crane, crash
helmet, crock pot, dishrag, dome, dough, drake, dung beetle, dutch oven,
espresso, fire engine, fly, football helmet, freight car, garter snake, gas-
mask, gazelle, geyser, giant panda, gondola, gorilla, grand piano, granny
smith, grasshopper, greenhouse, grille, grocery store, groom, hog, hum-
mingbird, indian elephant, ipod, jackolantern, jay, jeep, jellyfish, kelpie,
lampshade, library, loggerhead, longhorned beetle, lorikeet, lycaenid,
mailbox, manhole cover, mantis, marmot, matchstick, megalith, menu,
military uniform, minivan, monarch, monastery, mountain tent, organ,
ostrich, otter, palace, parachute, park bench, payphone, pedestal, pier,
pizza, plate, pole, pot, prison, racket, rapeseed, redbacked sandpiper, red-
shank, reflex camera, refrigerator, restaurant, rugby ball, running shoe,
sarong, scabbard, seashore, seat belt, slug, snail, soccer ball, soup bowl,
speedboat, spider web, stage, steel arch bridge, stone wall, street sign,
suspension bridge, tank, thatch, theater curtain, throne, tile roof, toaster,
toyshop, trench coat, triumphal arch, trombone, turnstile, umbrella, up-
right, vulture, wallet, washer, water buffalo, weevil, wool, worm fence,
yurt"

472
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Example low inference-time compute prompt with multiple-choice question for the giant panda473

image. The model is instructed to make a classification directly without additional reasoning.474

Low Inference-Time Compute (No CoT)

The image is described by one of the following labels:
(1) giant panda
(2) basenji
(3) mantis
(4) dome
(5) organ
(6) car wheel
(7) carbonara
(8) upright
(9) buckle
(10) container ship
(11) barbell
(12) thatch
(13) football helmet
(14) snail
(15) cornet
(16) freight car
(17) hog
(18) Dutch oven
(19) bubble
(20) bald eagle
(21) restaurant
(22) bannister
(23) Crock Pot
(24) spider web
(25) mailbox
(26) turnstile
(27) toyshop
(28) scabbard
(29) lampshade
(30) tank
Please respond with the number of the label that best describes the image.
Your response must be a single number and nothing else.

475
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Example high inference-time compute prompt with multiple-choice question for the giant panda476

image. The model is instructed to make a classification using careful, step-by-step reasoning.477

High Inference-Time Compute (With CoT)

The image is described by one of the following labels:
(1) giant panda
(2) basenji
(3) mantis
(4) dome
(5) organ
(6) car wheel
(7) carbonara
(8) upright
(9) buckle
(10) container ship
(11) barbell
(12) thatch
(13) football helmet
(14) snail
(15) cornet
(16) freight car
(17) hog
(18) Dutch oven
(19) bubble
(20) bald eagle
(21) restaurant
(22) bannister
(23) Crock Pot
(24) spider web
(25) mailbox
(26) turnstile
(27) toyshop
(28) scabbard
(29) lampshade
(30) tank
Please reflect on the image contents, then provide the number of the label
that you think best describes the image.

478
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C Additional Results479

Figure 7: PGD attack on color of the red soccer ball. Target: Gold.

Figure 8: PGD attack on material of the soccer ball. Target: Wood.
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Figure 9: PGD attack on color of the yellow traffic light. Target: Green.

Figure 10: PGD attack on color of the red traffic light. Target: Green.
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NeurIPS Paper Checklist480

1. Claims481

Question: Do the main claims made in the abstract and introduction accurately reflect the482

paper’s contributions and scope?483

Answer: [Yes]484

Justification: The claims made in the abstract and introduction are consistent with the485

contributions and scope of the paper. We clearly state our main contributions, and these are486

supported with experimental results.487

Guidelines:488

• The answer NA means that the abstract and introduction do not include the claims489

made in the paper.490

• The abstract and/or introduction should clearly state the claims made, including the491

contributions made in the paper and important assumptions and limitations. A No or492

NA answer to this question will not be perceived well by the reviewers.493

• The claims made should match theoretical and experimental results, and reflect how494

much the results can be expected to generalize to other settings.495

• It is fine to include aspirational goals as motivation as long as it is clear that these goals496

are not attained by the paper.497

2. Limitations498

Question: Does the paper discuss the limitations of the work performed by the authors?499

Answer: [Yes]500

Justification: The limitations are discussed in Section 5 Limitations.501

Guidelines:502

• The answer NA means that the paper has no limitation while the answer No means that503

the paper has limitations, but those are not discussed in the paper.504

• The authors are encouraged to create a separate "Limitations" section in their paper.505

• The paper should point out any strong assumptions and how robust the results are to506

violations of these assumptions (e.g., independence assumptions, noiseless settings,507

model well-specification, asymptotic approximations only holding locally). The authors508

should reflect on how these assumptions might be violated in practice and what the509

implications would be.510

• The authors should reflect on the scope of the claims made, e.g., if the approach was511

only tested on a few datasets or with a few runs. In general, empirical results often512

depend on implicit assumptions, which should be articulated.513

• The authors should reflect on the factors that influence the performance of the approach.514

For example, a facial recognition algorithm may perform poorly when image resolution515

is low or images are taken in low lighting. Or a speech-to-text system might not be516

used reliably to provide closed captions for online lectures because it fails to handle517

technical jargon.518

• The authors should discuss the computational efficiency of the proposed algorithms519

and how they scale with dataset size.520

• If applicable, the authors should discuss possible limitations of their approach to521

address problems of privacy and fairness.522

• While the authors might fear that complete honesty about limitations might be used by523

reviewers as grounds for rejection, a worse outcome might be that reviewers discover524

limitations that aren’t acknowledged in the paper. The authors should use their best525

judgment and recognize that individual actions in favor of transparency play an impor-526

tant role in developing norms that preserve the integrity of the community. Reviewers527

will be specifically instructed to not penalize honesty concerning limitations.528

3. Theory assumptions and proofs529

Question: For each theoretical result, does the paper provide the full set of assumptions and530

a complete (and correct) proof?531
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Answer: [NA]532

Justification: The paper does not propose any theoretical results.533

Guidelines:534

• The answer NA means that the paper does not include theoretical results.535

• All the theorems, formulas, and proofs in the paper should be numbered and cross-536

referenced.537

• All assumptions should be clearly stated or referenced in the statement of any theorems.538

• The proofs can either appear in the main paper or the supplemental material, but if539

they appear in the supplemental material, the authors are encouraged to provide a short540

proof sketch to provide intuition.541

• Inversely, any informal proof provided in the core of the paper should be complemented542

by formal proofs provided in appendix or supplemental material.543

• Theorems and Lemmas that the proof relies upon should be properly referenced.544

4. Experimental result reproducibility545

Question: Does the paper fully disclose all the information needed to reproduce the main ex-546

perimental results of the paper to the extent that it affects the main claims and/or conclusions547

of the paper (regardless of whether the code and data are provided or not)?548

Answer: [Yes]549

Justification: We provide detailed descriptions of the methodology and experimental setup550

in Section 3 and in Appendix B.1. This will ensure our experiments are reproducible.551

Guidelines:552

• The answer NA means that the paper does not include experiments.553

• If the paper includes experiments, a No answer to this question will not be perceived554

well by the reviewers: Making the paper reproducible is important, regardless of555

whether the code and data are provided or not.556

• If the contribution is a dataset and/or model, the authors should describe the steps taken557

to make their results reproducible or verifiable.558

• Depending on the contribution, reproducibility can be accomplished in various ways.559

For example, if the contribution is a novel architecture, describing the architecture fully560

might suffice, or if the contribution is a specific model and empirical evaluation, it may561

be necessary to either make it possible for others to replicate the model with the same562

dataset, or provide access to the model. In general. releasing code and data is often563

one good way to accomplish this, but reproducibility can also be provided via detailed564

instructions for how to replicate the results, access to a hosted model (e.g., in the case565

of a large language model), releasing of a model checkpoint, or other means that are566

appropriate to the research performed.567

• While NeurIPS does not require releasing code, the conference does require all submis-568

sions to provide some reasonable avenue for reproducibility, which may depend on the569

nature of the contribution. For example570

(a) If the contribution is primarily a new algorithm, the paper should make it clear how571

to reproduce that algorithm.572

(b) If the contribution is primarily a new model architecture, the paper should describe573

the architecture clearly and fully.574

(c) If the contribution is a new model (e.g., a large language model), then there should575

either be a way to access this model for reproducing the results or a way to reproduce576

the model (e.g., with an open-source dataset or instructions for how to construct577

the dataset).578

(d) We recognize that reproducibility may be tricky in some cases, in which case579

authors are welcome to describe the particular way they provide for reproducibility.580

In the case of closed-source models, it may be that access to the model is limited in581

some way (e.g., to registered users), but it should be possible for other researchers582

to have some path to reproducing or verifying the results.583

5. Open access to data and code584
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Question: Does the paper provide open access to the data and code, with sufficient instruc-585

tions to faithfully reproduce the main experimental results, as described in supplemental586

material?587

Answer: [Yes]588

Justification: We will provide the code and data used to open source it.589

Guidelines:590

• The answer NA means that paper does not include experiments requiring code.591

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/592

public/guides/CodeSubmissionPolicy) for more details.593

• While we encourage the release of code and data, we understand that this might not be594

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not595

including code, unless this is central to the contribution (e.g., for a new open-source596

benchmark).597

• The instructions should contain the exact command and environment needed to run to598

reproduce the results. See the NeurIPS code and data submission guidelines (https:599

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.600

• The authors should provide instructions on data access and preparation, including how601

to access the raw data, preprocessed data, intermediate data, and generated data, etc.602

• The authors should provide scripts to reproduce all experimental results for the new603

proposed method and baselines. If only a subset of experiments are reproducible, they604

should state which ones are omitted from the script and why.605

• At submission time, to preserve anonymity, the authors should release anonymized606

versions (if applicable).607

• Providing as much information as possible in supplemental material (appended to the608

paper) is recommended, but including URLs to data and code is permitted.609

6. Experimental setting/details610

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-611

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the612

results?613

Answer: [Yes]614

Justification: We provide detailed descriptions of the approach, experimental setup and615

hyperparameters in Section 3 and in Appendix B.1.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• The experimental setting should be presented in the core of the paper to a level of detail619

that is necessary to appreciate the results and make sense of them.620

• The full details can be provided either with the code, in appendix, or as supplemental621

material.622

7. Experiment statistical significance623

Question: Does the paper report error bars suitably and correctly defined or other appropriate624

information about the statistical significance of the experiments?625

Answer: [Yes]626

Justification: We provide error bar for results in Figure 2. We report mean and standard627

error for results presented (Table 1).628

Guidelines:629

• The answer NA means that the paper does not include experiments.630

• The authors should answer "Yes" if the results are accompanied by error bars, confi-631

dence intervals, or statistical significance tests, at least for the experiments that support632

the main claims of the paper.633

• The factors of variability that the error bars are capturing should be clearly stated (for634

example, train/test split, initialization, random drawing of some parameter, or overall635

run with given experimental conditions).636
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• The method for calculating the error bars should be explained (closed form formula,637

call to a library function, bootstrap, etc.)638

• The assumptions made should be given (e.g., Normally distributed errors).639

• It should be clear whether the error bar is the standard deviation or the standard error640

of the mean.641

• It is OK to report 1-sigma error bars, but one should state it. The authors should642

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis643

of Normality of errors is not verified.644

• For asymmetric distributions, the authors should be careful not to show in tables or645

figures symmetric error bars that would yield results that are out of range (e.g. negative646

error rates).647

• If error bars are reported in tables or plots, The authors should explain in the text how648

they were calculated and reference the corresponding figures or tables in the text.649

8. Experiments compute resources650

Question: For each experiment, does the paper provide sufficient information on the com-651

puter resources (type of compute workers, memory, time of execution) needed to reproduce652

the experiments?653

Answer: [Yes]654

Justification: The paper clarifies the specific GPU type and quantity used in Section 3.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,658

or cloud provider, including relevant memory and storage.659

• The paper should provide the amount of compute required for each of the individual660

experimental runs as well as estimate the total compute.661

• The paper should disclose whether the full research project required more compute662

than the experiments reported in the paper (e.g., preliminary or failed experiments that663

didn’t make it into the paper).664

9. Code of ethics665

Question: Does the research conducted in the paper conform, in every respect, with the666

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?667

Answer: [Yes]668

Justification: The research conducted in this paper conforms with the NeurIPS Code of669

Ethics.670

Guidelines:671

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.672

• If the authors answer No, they should explain the special circumstances that require a673

deviation from the Code of Ethics.674

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-675

eration due to laws or regulations in their jurisdiction).676

10. Broader impacts677

Question: Does the paper discuss both potential positive societal impacts and negative678

societal impacts of the work performed?679

Answer: [Yes]680

Justification: We discuss the broader impact of the work in Section 5.681

Guidelines:682

• The answer NA means that there is no societal impact of the work performed.683

• If the authors answer NA or No, they should explain why their work has no societal684

impact or why the paper does not address societal impact.685
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• Examples of negative societal impacts include potential malicious or unintended uses686

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations687

(e.g., deployment of technologies that could make decisions that unfairly impact specific688

groups), privacy considerations, and security considerations.689

• The conference expects that many papers will be foundational research and not tied690

to particular applications, let alone deployments. However, if there is a direct path to691

any negative applications, the authors should point it out. For example, it is legitimate692

to point out that an improvement in the quality of generative models could be used to693

generate deepfakes for disinformation. On the other hand, it is not needed to point out694

that a generic algorithm for optimizing neural networks could enable people to train695

models that generate Deepfakes faster.696

• The authors should consider possible harms that could arise when the technology is697

being used as intended and functioning correctly, harms that could arise when the698

technology is being used as intended but gives incorrect results, and harms following699

from (intentional or unintentional) misuse of the technology.700

• If there are negative societal impacts, the authors could also discuss possible mitigation701

strategies (e.g., gated release of models, providing defenses in addition to attacks,702

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from703

feedback over time, improving the efficiency and accessibility of ML).704

11. Safeguards705

Question: Does the paper describe safeguards that have been put in place for responsible706

release of data or models that have a high risk for misuse (e.g., pretrained language models,707

image generators, or scraped datasets)?708

Answer: [Yes]709

Justification: The experiments in the paper use open-source models and data. We do not710

release any trained models or new datasets.711

Guidelines:712

• The answer NA means that the paper poses no such risks.713

• Released models that have a high risk for misuse or dual-use should be released with714

necessary safeguards to allow for controlled use of the model, for example by requiring715

that users adhere to usage guidelines or restrictions to access the model or implementing716

safety filters.717

• Datasets that have been scraped from the Internet could pose safety risks. The authors718

should describe how they avoided releasing unsafe images.719

• We recognize that providing effective safeguards is challenging, and many papers do720

not require this, but we encourage authors to take this into account and make a best721

faith effort.722

12. Licenses for existing assets723

Question: Are the creators or original owners of assets (e.g., code, data, models), used in724

the paper, properly credited and are the license and terms of use explicitly mentioned and725

properly respected?726

Answer: [Yes]727

Justification: The models used are properly credited in Section 3.728

Guidelines:729

• The answer NA means that the paper does not use existing assets.730

• The authors should cite the original paper that produced the code package or dataset.731

• The authors should state which version of the asset is used and, if possible, include a732

URL.733

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.734

• For scraped data from a particular source (e.g., website), the copyright and terms of735

service of that source should be provided.736
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• If assets are released, the license, copyright information, and terms of use in the737

package should be provided. For popular datasets, paperswithcode.com/datasets738

has curated licenses for some datasets. Their licensing guide can help determine the739

license of a dataset.740

• For existing datasets that are re-packaged, both the original license and the license of741

the derived asset (if it has changed) should be provided.742

• If this information is not available online, the authors are encouraged to reach out to743

the asset’s creators.744

13. New assets745

Question: Are new assets introduced in the paper well documented and is the documentation746

provided alongside the assets?747

Answer: [NA]748

Justification: Our paper uses publicly available datasets and models. It does not currently749

introduce new code, data, or models.750

Guidelines:751

• The answer NA means that the paper does not release new assets.752

• Researchers should communicate the details of the dataset/code/model as part of their753

submissions via structured templates. This includes details about training, license,754

limitations, etc.755

• The paper should discuss whether and how consent was obtained from people whose756

asset is used.757

• At submission time, remember to anonymize your assets (if applicable). You can either758

create an anonymized URL or include an anonymized zip file.759

14. Crowdsourcing and research with human subjects760

Question: For crowdsourcing experiments and research with human subjects, does the paper761

include the full text of instructions given to participants and screenshots, if applicable, as762

well as details about compensation (if any)?763

Answer: [NA]764

Justification: The paper does not involve crowd-sourcing experiments.765

Guidelines:766

• The answer NA means that the paper does not involve crowdsourcing nor research with767

human subjects.768

• Including this information in the supplemental material is fine, but if the main contribu-769

tion of the paper involves human subjects, then as much detail as possible should be770

included in the main paper.771

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,772

or other labor should be paid at least the minimum wage in the country of the data773

collector.774

15. Institutional review board (IRB) approvals or equivalent for research with human775

subjects776

Question: Does the paper describe potential risks incurred by study participants, whether777

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)778

approvals (or an equivalent approval/review based on the requirements of your country or779

institution) were obtained?780

Answer: [NA]781

Justification: The paper does not involve a study with human subjects.782

Guidelines:783

• The answer NA means that the paper does not involve crowdsourcing nor research with784

human subjects.785

• Depending on the country in which research is conducted, IRB approval (or equivalent)786

may be required for any human subjects research. If you obtained IRB approval, you787

should clearly state this in the paper.788
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• We recognize that the procedures for this may vary significantly between institutions789

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the790

guidelines for their institution.791

• For initial submissions, do not include any information that would break anonymity (if792

applicable), such as the institution conducting the review.793

16. Declaration of LLM usage794

Question: Does the paper describe the usage of LLMs if it is an important, original, or795

non-standard component of the core methods in this research? Note that if the LLM is used796

only for writing, editing, or formatting purposes and does not impact the core methodology,797

scientific rigorousness, or originality of the research, declaration is not required.798

Answer: [Yes]799

Justification: Our paper presents findings in robustness of vision language models. The800

models used are described in Section 3.801

Guidelines:802

• The answer NA means that the core method development in this research does not803

involve LLMs as any important, original, or non-standard components.804

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)805

for what should or should not be described.806
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