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Abstract

The quality of the representations learned by neural networks depends on several factors,
including the loss function, learning algorithm, and model architecture. In this work, we use
information geometric measures to assess the representation quality in a principled manner.
We demonstrate that the sensitivity of learned representations to input perturbations,
measured by the spectral norm of the feature Jacobian, provides valuable information
about downstream generalization. On the other hand, measuring the coefficient of spectral
decay observed in the eigenspectrum of feature covariance provides insights into the global
representation geometry. First, we empirically establish an equivalence between these notions
of representation quality and show that they are inversely correlated. Second, our analysis
reveals the varying roles that overparameterization plays in improving generalization. Unlike
supervised learning, we observe that increasing model width leads to higher discriminability
and less smoothness in the self-supervised regime. Furthermore, we report that there is no
observable double descent phenomenon in SSL with non-contrastive objectives for commonly
used parameterization regimes, which opens up new opportunities for tight asymptotic
analysis. Taken together, our results provide a loss-aware characterization of the different
role of overparameterization in supervised and self-supervised learning.

1. Introduction

Self-supervised learning (SSL) models learn representations from large unlabeled datasets by
promoting local self-consistency of the learned model function while avoiding trivial constant
solutions (Zbontar et al., 2021; Chen et al., 2020; Grill et al., 2020). State-of-the-art SSL
algorithms are able to learn generic features that can match the performance of supervised
learning (Abbasi Koohpayegani et al., 2020). The quality of SSL representations is typically
assessed via their generalization performance on downstream tasks, requiring linear probes
to be trained on top of these features using labeled datasets. At present, developing a direct
understanding of how the structure of SSL features affects downstream generalization is an
important open problem (Agrawal et al., 2022), drawing direct parallels to understanding
biological representations in the brain (Chung and Abbott, 2021).

We propose a simple information geometric framework to explore the structure of
the learned representations, and their smoothness properties. In particular, for given
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Figure 1: (Left to right) Test error (solid) and train error (dashed) for ResNet18s of
increasing base width trained on CIFAR-10 as well as noisy CIFAR-10; Input Jacobian
norm of features fg learned via standard supervised learning; Spectral decay coefficient.
As model size increases, the test error (left) undergoes double descent, mirrored by the feature
Jacobian norm (middle). Intriguingly, the spectral decay coefficient inversely correlates with
the feature Jacobian trend, decreasing until the interpolation threshold and then increasing
again for overparameterized models.

(centered) features fg : X — R?, we are interested in the structure of the sample covariance
YN = %>, fo(xn) fo(xn)T. Recent works (Agrawal et al., 2022; He and Ozay, 2022),
demonstrate that the eigenspectrum of Xy, A(Xy) = {M > A2 > ... > A4}, can be
approximated by a power law distribution where \; o i7% for ¢ = 1,...,d and a > 0.
Intuitively, the spectral-decay coefficient «, offers a label-free measure of representation
quality, where v — oo suggests dimensionality collapse or o — 0 suggests whitening (He
and Ozay, 2022). Notably, a is a good proxy for measuring the extent of heavy-tailed nature
in the eigenspectrum distribution, which in turn provides insights into how the signal and
noise are distributed among the available d ambient dimensions. Although « is indicative
of representation manifold smoothness in asymptotic regime (Stringer et al., 2019), it is
unclear whether this correspondence holds in finite-dimensional settings.

In concurrent work, Gamba et al. (2023, 2022b,a) studied the role of overparameterization
on the input sensitivity of neural networks’ model functions, thereby quantifying the
relationship between ambient dimensionality and smoothness of the learned feature space in
supervised learning settings. In this work, we experimentally connect « to input sensitivity
of the features fg, by studying the expected spectral norm of the input Jacobian J =
+ SN IVxfoll2, on the training dataset D = {x,}_;.

Recent advances in understanding generalization of models trained with supervised
learning show that deep models exhibit double descent under overparameterization (Belkin
et al., 2018). As model size increase a neural network increases, the test error follows the
classical bias-variance U-shaped curve (Geman et al., 1992) until a model is large enough to
interpolate the training set. Then, as model size increases further, the test error improves
again, providing a model for the remarkable generalization ability of overparameterized
models (Belkin et al., 2019; Geiger et al., 2019).

Contributions We empirically explore how the geometry of learned features, under a power
law assumption on their covariance eigenspectrum, relates to generalization via sensitivity of
the learned representation to input perturbations. We establish a strong inverse correlation
between « and input sensitivity on the training data of the underlying network function fy,
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and connect « to generalization performance. Our experimental contribution is two-fold: (1)
in supervised learning, we report that overparameterization controls a non-monotonically
and that spectral decay inversely correlates with model function sensitivity. (2) In the SSL
setting, we show that the eigenspectrum of overparameterized features is characterized by
lower spectral decay, corresponding to heavier eigenspectrum tails.

2. Related work

Multi-View Self-Supervised Learning has emerged as a promising approach to learning
meaningful feature representations from unlabeled data Chen et al. (2020); Zbontar et al.
(2021). A key aspect of these algorithms is to leverage multiple views of the same data
sample by encouraging the network to learn invariant and discriminative features that can
be utilized for downstream tasks. Such algorithms have broadly been studied under the
umbrella of contrastive and non-contrastive learning. Notably, non-contrastive learning
algorithms, only require positively related samples. For instance, Barlow Twins (Zbontar
et al., 2021), aims to enforce orthogonality among the learned features (to avoid collapse) in
addition to learning to map similar images to nearby points in feature space. On the other
hand, BYOL (Grill et al., 2020) employs a bootstrapped teacher-student approach. Here an
online network is trained to predict the target network’s output given the same input, with
the target network being an exponential moving average of the online network’s weights.
Smooth Interpolation has been thought to underlie generalization performance in
deep neural networks. Specifically, large overparameterized models are known to learn
smooth representations, thereby impacting their consistency of predictions across small input
perturbations and their ability to generalize to unseen data (Gamba et al., 2023, 2022b;
Novak et al., 2018). Smooth interpolation has also been shown to reconcile the classical
bias-variance tradeoff understanding of double descent (Belkin et al., 2018). Furthermore,
Arora et al. (2019) demonstrated that overparameterized neural networks can learn to fit
noiseless data with a small number of gradient descent steps and achieve good generalization
performance, implying that smoothness in the learned features plays a crucial role in the
generalization capabilities of these models. Additionally, techniques like data augmentation
Cubuk et al. (2018) and regularization methods such as dropout Srivastava et al. (2014) have
been employed to encourage feature space smoothness, leading to improved generalization.

3. Experiments

Across our experiments, we seek to explore the role of overparameterization as we keep
the optimizer fixed, but change the learning objective (i.e. supervised vs self-supervised
objective). We compare the learned representations obtained with end-to-end supervised
training, to SSL representations. As our backbones, we use convolutional networks with
residual connections (ResNet18), which can be easily trained with both pipelines, following
common practice. To control model size, following Nakkiran et al. (2019), we scale model
capacity by varying the base-width of each residual block {1,...,64}, with experiments
on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and STL-10 (Coates et al., 2011).
For learning objectives, we consider supervised learning as the baseline, and compare
learning dynamics to Barlow Twins (Zbontar et al., 2021), BYOL (Grill et al., 2020) with 2
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Figure 2: (Left to right) Test error for linear probes trained on SSL features with
ResNet18 encoder; Input Jacobian norm of SSL features fy; Spectral decay coefficient.

augmentations. Experimental details are provided in appendix A. In line with prior work,
we consider the noisy-label regime to test the sensitivity and quality of features (Neyshabur
et al., 2017). To measure information geometry of the learned mappings, we approximate «
and the Jacobian spectral norm, per protocols elucidated in Appendix B. We also present
additional results on purely convolutional models in the Appendix C.

Self-Supervised Learning A core focus of our work is understanding the scaling
behaviors on pretraining with SSL objectives in the overparameterized regime. To this effect,
we train Resnet-18 backbones with varying base widths using Barlow-Twins and track the loss
on training/test sets. Simultaneously, we measure o and the feature Jacobian-spectral-norm.

In Figure 2 we strikingly observe that, unlike the supervised setting, there is no observable
double descent in SSL for the range of parameterizations considered. Particularly, increasing
model width monotonically improves both train and test loss. We report similar observations
on STL10, and with BYOL as the pretraining objective in the Appendix C.

Equivalence of information-geometric metrics Previous works have established
that faster eigenspectrum decay is indicative of a transition from discontinuous to smooth
representation manifolds in infinite-dimensional settings (Stringer et al., 2019). However,
it is unclear whether higher « values are indicative of smooth representations in finite-
dimensional settings. Our results, both in the supervised and SSL settings, establish a strong
anti-correlation between « and the spectral norm of Jacobian (Table 1). Notably, computing
« takes significantly lower compute and time, compared to estimating the Jacobian, thereby
offering practical computational benefits in quantifying smoothness of representations.

Overparameterization and Denoising To ground our understanding of representation
quality as quantified by the information geometric metrics, in this section, we evaluate

Supervised learning setting SSL setting

CIFAR-10 CIFAR-100

label noise 0%  10% 20% 0% 10% 20%
ConvNet -0.61 -0.56 -0.53 -0.53 -0.73 -0.72
ResNetl8 -0.62 -0.75 -0.64 -0.26 -0.13 -0.05

CIFAR-10 STL-10

Barlow Twins -0.99 -0.89
BYOL -0.99 -0.83

Table 1: Spearman rank correlation p between « and the input Jacobian norm in the
supervised learning (left) and SSL (right) setting.
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Figure 3: Downstream generalization performance on CIFAR-10 with increasing ratio
of noisy labels for linear probes trained on top of frozen Barlow Twins CIFAR-10 with
ResNet18 encoder features. (Left) Test accuracy for each linear probe. (Mid-left to right)
We break down the training accuracy of each linear probe into accuracy on the training
samples with uncorrupted labels (mid-left), and those with corrupted labels (mid-right).
Finally, we assess the generality of SSL features by measuring their ability of denoise the
corrupted training targets (right panel). We report for comparison analogous performance
metrics for ResNet18s trained with end-to-end supervised learning on CIFAR-10 with 20%
training labels randomly perturbed (green line plots).

downstream generalization on classification. In particular, we take backbones pretrained
with Barlow-Twins and evaluate a linear probe on these frozen features with different levels
of label-noise. We compare this to corresponding supervised learning baselines trained
end-to-end with 20% training labels corrupted.

Seeking a fine-grained analysis in the overparameterized regime, in Figure 3 we breakdown
the training accuracy into three components (i) on samples with uncorrupted labels (ii)
samples with corrupted labels (iii) samples with corrupted labels, evaluated on the ground
truth label (Stephenson et al., 2020). Strikingly, we observe that even with noise levels
as high as 80%, the SSL pretrained models can recover up to 60% of the corrupted labels.
Importantly, the supervised baseline interpolates both clean and noisy training samples,
losing any label-correction ability in the overparameterized regime (base width w > 9).

4. Conclusion

Summary Our analysis reveals the different roles of overparameterization under the influence
of learning objectives. In particular, we show that in SSL, the worst-case sensitivity of
the model to inputs monotonically increases with overparameterization in conjunction
with the emergence of heavier tails in the feature eigenspectrum, without any observable
double descent phenomenon, in the range of parameterizations considered, corresponding
to commonly used backbones. In contrast, overparameterized supervised features present
relatively weaker tails, resulting in stronger worst-case sensitivity regularization.

Limitations Our analysis is primarily empirical in its current scope, and as such
doesn’t theoretically establish the absence of double-descent in SSL pretraining. Asymptotic
characterizations and theoretical foundations of this learning dynamics are an exciting
direction for future research.
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Appendix A. Experimental setup

A.1. Supervised training

We train a family of ConvNets composed of 4 convolutional stages — each corresponding to a
[Conv, ReLU] block followed by maxpooling with stride 2 — and 1 dense classification layer.
We also train a family of ResNet18s (He et al., 2015) without batch normalization layers.
Both network architectures are composed of 4 convolutional stages, in which each spatial
dimension is reduced by factor of 2 and the number of learned feature maps doubles. More
precisely, the convolutional stages respectively follow the progression [w, 2w, 4w, 8w], where
w is the base width of the network, i.e. the number of feature maps learned at the first layer.

In our experiments, following Nakkiran et al. (2019), we vary the base width in the range
w =1,...,64. By controlling the network size through the network width, we produce a range
of models presenting model-wise double descent in the test error, which captures the essence
of the benign overfitting phenomenon(Bartlett et al., 2020) observed for large interpolating
networks, while also presenting malign overfitting for models near the interpolation threshold.
Furthermore, controlling model size through base width allows us to keep the network depth
fixed, and focus our study on effective complexity of fixed-depth networks, for two network
architecture families (ConvNets and ResNets).

To tune hyperparameters, we take a random validation split of size 1000 from each
CIFAR training set. We train all networks with SGD with momentum 0.9, batch size 128,
and fixed learning rate, set at 7 = 5e — 3 for the ConvNets and n = le — 4 for the ResNets.
We train all networks for 1000 epochs. To stabilize prolonged training, we use learning rate
warmup over the first 5 epochs of training, starting from a learning rate 79 = 10~ x 7.

A.2. SSL training

For our SSL experiments, we use a standard ResNet18 backbone with batch normalization
layers as the feature encoder. Similarly to the supervised experiments, we control model size
by varying the base width w = 1,...,64. Accordingly, the embedding dimensionality varies
from dimension d = 32 to 2048. To ensure good performance, a non-linear projector head
consisting of one hidden MLP layer with batch normalization and ReLLU activations, with
width matching the embedding dimensionality of the encoder.

SSL features are learned on CIFAR-10 by using Barlow Twins (Zbontar et al., 2021) and
BYOL (Grill et al., 2020). At the end of SSL training, the projection layer is discarded, and
the ResNet18 encoder is used to generate features fg(x).

For both Barlow Twins and BYOL, SSL learning is carried out using the Adam opti-
mizer (Kingma and Ba, 2014), with starting learning rate 0.001, and weight decay coefficients
le — 5 (Barlow Twins) and le — 6 (BYOL), for 100 epochs (Barlow Twins) and 300 epochs
(BYOL). The lambda parameter of Barlow Twins is set to A = 0.005. The momentum
parameter for BYOL is set to 7 = 0.99.

Once SSL features are learned, linear probes are trained for 200 epochs with SGD
with base learning rate 0.1, decayed by a multiplicative factor v = 0.95 at every epoch.
The linear probes are trained without weight decay. The chosen learning rate schedule is
meant to ensure that training can accommodate for fitting corrupted as well as clean labels,
following Zhang et al. (2018).
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A.3. Hardware specifications

Our codebase is implemented in Pytorch version 1.11, running on a local cluster equipped
with NVIDIA A100 GPUs with 40GB onboard memory. Our experiments involve training
64 ConvNets and ResNets (each corresponding to a base width w) for 1000 epochs. We
use 3 random seeds, controlling network initialization and the shuffling and sampling of
mini-batches from the training set. We use a dedicated random seed for generating the
validation split used for hyperparameter tuning, fixed for all networks, as well as a fixed
seed for corrupting the CIFAR training labels.

Appendix B. Computing the feature Jacobian spectral norm

For linear operators A : (R™, | - ||,) — (R% || - ||5), the operator norm is defined as

|| Ax||
JAllop == sup  12xle,
x:||x]||p#£0 [3]P

(1)

where the norms || - ||, and || - ||, are respectively taken in input and feature space. Crucially,
if p = q = 2, the operator norm can be estimated by computing the largest singular value of
A.

Computing the spectral norm Computing the spectral norm of Vi fg € R¥™ entails
two steps. First, computing the gradient Vy fg|x=x (via automatic differentiation), and
then estimating its largest singular value. To perform the latter, we use a standard power
method. Starting at iteration ¢ = 0 with randomly initialized vectors @9 € R%, vy € R™,
and corresponding normalized vectors ug = 0 ﬁﬁOOHq’ Vo = {f; OHp’ at step t we compute

u; < Vxfo vio1
Vi < Vi fo (2)
Ot < utTfo o Vi
with o, storing the largest singular value at convergence, defined based on a relative tolerance
le — 6 on the size of the increments of g;. For large input spaces and large models fg, where

instantiating the gradient might require too much memory, the power method algorithm can
be efficiently computed via iterated Jacobian-vector products.

Appendix C. Additional experiments

10
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Figure 4: (Left to right) Test error (solid) and train error (dashed) for ConvNets of increasing
base width trained on CIFAR-10 as well as noisy CIFAR-10; Input Jacobian norm of features
fo learned via standard supervised learning; Spectral decay coefficient. As model size
increases, the test error (left) undergoes double descent, mirrored by the feature Jacobian
norm (middle). Intriguingly, the spectral decay coefficient inversely correlates with the
feature Jacobian trend, decreasing until the interpolation threshold and then increasing
again for overparameterized models.
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Figure 5: (Left to right) Test error (solid) and train error (dashed) for ConvNets of increasing
base width trained on CIFAR-100 as well as noisy CIFAR-100; Input Jacobian norm of
features fg learned via standard supervised learning; Spectral decay coefficient. As model
size increases, the test error (left) undergoes double descent, mirrored by the feature Jacobian
norm (middle). Intriguingly, the spectral decay coefficient inversely correlates with the
feature Jacobian trend, decreasing until the interpolation threshold and then increasing
again for overparameterized models.
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Figure 6: (Left to right) Test error (solid) and train error (dashed) for ResNet18s of increasing
base width trained on CIFAR-100 as well as noisy CIFAR-100; Input Jacobian norm of
features fg learned via standard supervised learning; Spectral decay coefficient. As model
size increases, the test error (left) undergoes double descent, mirrored by the feature Jacobian
norm (middle). Intriguingly, the spectral decay coefficient inversely correlates with the
feature Jacobian trend, decreasing until the interpolation threshold and then increasing
again for overparameterized models.
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Figure 7: Downstream generalization performance on STL-10 with increasing ratio of noisy
labels, for linear probes trained on top of frozen Barlow Twins STL-10 with ResNet18
encoder features. (Left) Test accuracy for each linear probe. (Mid-left to right) We break
down the training accuracy of each linear probe into accuracy on the training samples with
uncorrupted labels (mid-left), those with corrupted labels (mid-right). Finally, we assess
the generality of SSL features by measuring their ability of denoising the corrupted training
targets (right panel).
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Figure 8: Downstream generalization performance on CIFAR-10 with increasing ratio of
noisy labels, for linear probes trained on top of frozen BYOL CIFAR-10 with ResNet18
encoder features. (Left) Test accuracy for each linear probe. (Mid-left to right) We break
down the training accuracy of each linear probe into accuracy on the training samples
with uncorrupted labels (mid-left), those with corrupted labels (mid-right). Finally, we
assess the generality of SSL features by measuring their ability of denoising the corrupted
training targets (right panel). We report for comparison analogous performance metrics
for ResNet18s trained with end-to-end supervised learning on CIFAR-10 with 20% training
labels randomly perturbed (green line plots).
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Figure 9: Downstream generalization performance on STL-10 with increasing ratio of noisy
labels, for linear probes trained on top of frozen BYOL STL-10 with ResNet18 encoder
features. (Left) Test accuracy for each linear probe. (Mid-left to right) We break down the
training accuracy of each linear probe into accuracy on the training samples with uncorrupted
labels (mid-left), those with corrupted labels (mid-right). Finally, we assess the generality of
SSL features by measuring their ability of denoising the corrupted training targets (right
panel).
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