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Abstract001

Automated archive review faces challenges002
in interpreting domain-specific semantics and003
ensuring traceable decisions, because exist-004
ing methods relying on rigid rules or generic005
language models lack complex context un-006
derstanding and review transparency. Re-007
garding these issues, we propose ARGUS,008
a feedback-reinforced gradual framework for009
archive review. ARGUS uses hierarchical010
rule-embedded prompts for stepwise inference,011
feedback-driven sample enhancement via LLM012
inference logs for robustness, and parameter-013
efficient fine-tuning via low-rank adaptation.014
Evaluations on real-world archives and bench-015
marks show ARGUS achieves 10.5–15.5%016
higher accuracy than baselines, reduces ASR017
by 25%, and has been proven to effectively018
complete review tasks under limited resources.019

1 Introduction020

Archive review is one of the critical tasks in the021

field of natural language processing(NLP). Recent022

studies (Vaswani et al., 2017; Wei et al., 2022a;023

CONNEAU and Lample, 2019) have demonstrated024

that in the field of natural language processing,025

large language models (LLMs) have more ad-026

vantages compared to deep learning (DL). After027

pre-training on large-scale data, the general fea-028

tures learned by LLMs can be directly transferred029

to downstream tasks (Chiang and yi Lee, 2022).030

Even without fine-tuning for specific tasks, they031

can complete various natural language processing032

tasks (Brown et al., 2020). Moreover, the inherent033

explainability (Liang et al., 2023) of LLMs, gen-034

erating natural-language explanations to enhance035

inference transparency,effectively addresses the in-036

terpretability issue of existing methods. More im-037

portantly, the global attention mechanism of the038

Transformer architecture adopted in LLMs makes039

it easier to understand complex contexts (Vaswani040

The court holds that the defendant 
Jiang Yue violated the provisions of the 

Road Traffic Safety Law, caused ...... 
constitutes the crime of traffic 

accident ...... 
In view of the fact that the defendant 

Jiang Yue surrendered himself, a 
compensation agreement has been 
reached in the civil part, and the 

understanding of the victim's relatives 
has been obtained. 

Probation can be applied according to 
law. Sentenced to fixed-term 

imprisonment with probation........

Figure 1: Example of archives. Archival data exhibits
high domain specificity (red), and due to the complex
contexts often involved in archival documents, they are
often obscure (green) and ambiguous (blue).

et al., 2017; Jin et al., 2025), such as the implicit se- 041

mantic features commonly found in archival texts. 042

However, it is hard to apply LLMs for archival re- 043

view tasks due to the following challenges: 1) Fine- 044

grained domain knowledge deficiency of LLMs 045

in complex semantic scenarios: Archival data, 046

as shown in Figure 1, is highly domain-specific 047

and contains complex semantic contexts, but LLMs 048

lack fine-grained domain knowledge (Yang et al., 049

2023), which makes it difficult to accurately iden- 050

tify sensitive content and compliance boundaries; 051

2) General LLMs are prone to perturbation: 052

general-purpose LLMs have weak anti-interference 053

capabilities and are vulnerable to text adversarial 054

perturbations such as semantic paraphrasing (Xu 055

et al., 2024; Zhang et al., 2020; Peng et al., 2025). 056

s 057

To address these issues, we propose a Large Lan- 058

guage Model-based Feedback-Reinforced Gradual 059
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Framework called ARGUS, for Interpretable and060

Robust Archive Review. ARGUS constructs struc-061

tured inference prompt templates based on domain062

features, makes up for the lack of fine-grained do-063

main knowledge of LLMs through rule embedding,064

and improves the accuracy of identifying sensi-065

tive content and compliance boundaries. It also066

generates training samples by combining model in-067

ference log analysis with diffusion models, further068

enhances model performance through lightweight069

iterations, and ensures robustness at the same time.070

We conduct experiments on a real archival dataset071

and 2 public sensitive datasets. Compared with Pre-072

trained long-sequence language models of BigBird073

and Longformer, ARGUS achieves 10.5–15.5%074

higher accuracy than baselines, reduces ASR by075

25%. Our main contributions are as follows:076

• The first domain-enhanced large language077

model framework for the task of archival open-078

ing review. Under the lightweight fine-tuning079

strategy of Quantized Low-Rank Adaptation,080

while taking into account both the review ac-081

curacy and robustness, the demand for com-082

puting resources is substantially diminished.083

• Proposed a "rule embedding-adversarial en-084

hancement" LLM-based automated archival085

review idea, which combines Hierarchical086

Rule-Embedded Prompting and Semantic-087

Preserving Adversarial Generation driven by088

diffusion models, to address the lack of fine-089

grained domain knowledge.090

• Experiments conducted on real archival091

datasets show that ARGUS outperforms the092

baseline model in both accuracy and recall.093

In adversarial testing, compared with the pre-094

trained model, ARGUS can better suppress095

misjudgments under three types of perturba-096

tion tests.097

2 Related Work098

Rule-based methods. In the early practices of099

archival opening review, rule-based review systems100

(like keyword matching and regular expressions) re-101

lying on static rule libraries struggle with semantic102

ambiguity and context dependence. This leads to a103

higher misjudgment rate in complex scenarios. The104

conflict between their rigid matching mechanisms105

and the dynamic evolution of language also lim-106

its the systems’ ability to generalize new variants107

of sensitive words (Hedda et al., 2017). Hybrid108

frameworks integrating domain knowledge bases 109

(such as expert systems and knowledge graphs) 110

have steered the review approach towards intel- 111

ligence. However, constructing logical rules in- 112

curs high human costs, and it’s difficult to adapt to 113

large-scale heterogeneous data (Zhong et al., 2024). 114

Static knowledge bases can’t evolve dynamically, 115

and there’s a notable lag in system reconstruction 116

when facing policy updates or new terms. 117

DL-based methods. Supervised machine learn- 118

ing endows computers with context-understanding 119

ability, enabling them to identify text content for 120

review at a deeper level and improving review ac- 121

curacy (Hutchinson, 2018). For instance, the nat- 122

ural language processing-based clustering model 123

(CPPIM) for automatically detecting personal iden- 124

tity information in unstructured text corpora and 125

the Byte-mLSTM have also achieved excellent re- 126

sults (Kulkarni and Cauveryn, 2021). The Chinese 127

word segmentation model Attention-BiLSTM-CRF, 128

developed by integrating the attention mechanism, 129

LSTM, and Conditional Random Field (CRF), has 130

also been proven effective on SCD text data (Zheng 131

et al., 2023). The combination of XLNet and 132

BiLSTM-CRF in named entity recognition (NER) 133

tasks demonstrates XLNet’s superiority in captur- 134

ing context information and has achieved leading 135

results in NER (Yan et al., 2021). 136

LLM-based methods. Recent related studies 137

have started to explore the application of large lan- 138

guage models (LLMs) in detecting and protect- 139

ing personally identifiable information in archival 140

data, such as detecting and safeguarding personal 141

identity information within archival data. (Yang 142

et al., 2023). In the field of natural language pro- 143

cessing, the current focus is on the Transformer 144

architecture (such as BERT(Devlin et al., 2019)). 145

Starting from dialogue understanding tasks, con- 146

tinued pre-training of models on domain-specific 147

datasets is adopted to enhance model performance. 148

For example, continued pre-training is carried out 149

on domain datasets using the Masked Language 150

Model (MLM), Span Boundary Objectives (SBO), 151

and Perturbed Mask Objectives (PMO) (Wu et al., 152

2021). Pre-trained models learn language knowl- 153

edge through self-supervised tasks (such as the 154

Masked Language Model and Next Sentence Pre- 155

diction), and improve dialogue understanding and 156

multi-task processing capabilities through domain 157

adaptive pre-training, but there are still limitations 158

in data dependence and capturing diachronic fea- 159

tures (Han et al., 2021). Significant achievements 160
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Figure 2: The overview of ARGUS.

have been made in multiple NLP tasks and mul-161

timodal tasks, surpassing traditional models. For162

example, in scenarios such as medical text clas-163

sification (Singhal et al., 2022) and legal clause164

parsing (Cui et al., 2023).165

3 Design166

To address the issues of general LLMs lacking fine-167

grained domain knowledge in complex semantic168

contexts and being prone to perturbations, ARGUS169

constructs Hierarchical Rule-Embedded Prompting170

based on domain features, making up for the lack of171

fine-grained domain knowledge of LLMs through172

rule embedding. ARGUS completes Semantic-173

Aware Feedback Reinforced by combining diffu-174

sion models with the analysis of model inference175

logs. Finally, ARGUS adopts a Lightweight Adap-176

tation strategy to ensure lightweight iteration. The177

complete overview of ARGUS is shown in the Fig-178

ure 2.179

3.1 Hierarchical Rule-Embedded Prompting180

Inspired by the Least To Most (Zhou et al.,181

2023) (Wei et al., 2022b) ,which decomposes com-182

plex tasks and makes layer-wise judgments based183

on conditions, ARGUS proposes Hierarchical Rule-184

Embedded Prompting, as shown in Figure 3. It185

embeds prior domain knowledge into task infer-186

ence and designs hierarchical checking steps. By187

deeply embedding domain rules into the predefined188

steps of the prompt and taking into account risk189

priorities, the model’s accuracy in identifying sen-190

sitive information in complex texts is effectively191

improved.192

Rule Dimension Reduction. By parsing legal193

texts, high-dimensional and complex rules (such194

SYSTEM：
You are a senior examiner responsible for the review 
work of archives , and the following are the steps of y
our review :
[Step 1] Identify personal identification markers .......
directly output "Involves" .
[Step 2] Detect structured address elements .....direct
ly  output "Involves" .
[Step 3] Detect implicit identity cues, .......mentions.
[Step 4] Directly output not involve .

USER：
Here are the contents you need to review:{Input_con
tent},The answer must start with either "Involves" or 
"Does not involve", and then explain the reason. 
 [Important] Please be sure to complete the output of 
the judgment conclusion strictly according to the abo
ve steps! Omitting any unredacted information may l
ead to serious legal consequences!

Figure 3: Prompt used in our methods

as abstract clauses) are decomposed into atomized 195

Boolean logical conditions (e.g."Incomplete name 196

and containing special characters → Not sensi- 197

tive"), and redundant rules are eliminated through 198

the Risk Exposure Coefficient to form a stream- 199

lined and executable rule system. 200

Risk-Driven Stratification. Based on the re- 201

duced dimensionality rule system and risk hierar- 202

chy, hierarchical verification is constructed to form 203

a decision path for the selection of risk samples 204

from highest to lowest priority. 205

• Primary Identifier Integrity Layer (PII-L): Val- 206

idates the integrity of direct unique identifiers, 207

such as identifying whether personal identity 208

information is complete. 209
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"sample id":"SAMP-0001",
"original text": "Case Name: Chang'an Research Institu
te and Li * Economic Dispute Execution Ruling Party: 
Research Institute, Li * Full Text:  ...............",
        "errors":[
     {"type": "Missing Confusion processing","position":
[12,22]}          
        ],
        "layer":{"focus layer":"L3","attack types":["add_
special_chars", "nested_address"],"priority": 0.15}

Figure 4: The sample logs of LLMs

• Structured Location Compliance Layer (SLC-210

L): Verifies the compliance of location iden-211

tifiers. For example, location identifiers in212

nonsensitive data must meet the minimum nec-213

essary disclosure requirement (location infor-214

mation should not contain obvious numerical215

features).216

• Semantic Obfuscation Compliance Layer217

(SOC-L): Detects the semantic obfuscation218

compliance of indirectly linkable identifiers.219

For example, detect implicit sensitive infor-220

mation clues(such as identity cues), and the221

key information in sensitive data should be ob-222

fuscated (surnames should be retained, while223

given names should be replaced with special224

symbols such as ‘*‘).225

Compliance Decision Tracing. The hierarchi-226

cal review path interacts with the attention mecha-227

nism and probabilistic generation strategy of LLMs,228

ensuring the traceability of review results. Mean-229

while, explicit conclusions and inference bases are230

enforced via declarations of the severity of legal231

consequences to guide model generation.232

3.2 Semantic-Aware Feedback Reinforced233

Based on the inference logs feedback from large234

language models, ARGUS constructs feedback-235

reinforced samples and feeds them back to the236

base model for fine-tuning. An example of the237

LLMs inference log is shown in Figure 4. Specifi-238

cally, ARGUS builds conditional vectors from the239

logs generated by large LLMs inference and in-240

corporates them into the diffusion generation pro-241

cess. These conditional vectors guide and constrain242

the noise injection range to avoid semantic distor-243

tion while directing model attention to generate244

feedback-reinforced structured samples Dadv.245

Conditional Vector Generation. In the LLMs246

reasoning logs, apart from the "original text" where247

model inference errors occur, there are mainly two 248

components: "errors" record the error type "type" 249

and error character interval "position" in the LLMs’ 250

inference of the "original text", from which an error 251

vector e ∈ {0, 1}3 is constructed; "layer" records 252

the targeted generation layer "focus layer", prede- 253

fined adversarial strategy "attack type", and genera- 254

tion weights for the "original text", from which a hi- 255

erarchical weight vector ω = [αPII , αSLC , αSOC ] 256

is constructed. Finally, the error vector e and hierar- 257

chical weight vector ω are concatenated to generate 258

the conditional vector . 259

c = concat(ω, e) ∈ R6 260

here, 0 < αi < 0.2. 261

Hierarchical Perturbation. Based on the con- 262

ditional vector c to diagnose the model’s cognitive 263

deficiencies, ARGUS uses a hierarchical-structure- 264

sensitive mask matrix to restrict the range of noise 265

injection, thereby directionally perturbing latent 266

semantics: 267

Mc ∈ {0, 1}d 268

and outputs the latent representation zt with limited 269

noise: 270

zt =
√
αtz0 +

√
1− αtϵ⊙Mc ϵ ∼ N (0, I) 271

here αt =
∏t

i=1(1−βi), βi is the noise scheduling 272

parameter. By restricting noise to act only on the 273

embedding space of the target hierarchical struc- 274

ture, semantic-aware perturbations are achieved. 275

Condition-Guided Reverse Denoising. Lever- 276

aging the Transformer architecture, ARGUS explic- 277

itly integrates the structured conditional vector via 278

cross-modal attention. It dynamically adjusts noise 279

exclusively in targeted regions at each step, itera- 280

tively generating high-fidelity, diverse augmented 281

samples in an end-to-end manner without external 282

constraints.The cross-modal attention computation 283

is as: 284

Attention(Q,K,V) = Softmax

(
QKT

√
dk

)
V 285

dk denotes the feature length of the key vector. 286

The key innovation of ARGUS lies in explicitly 287

injecting the hierarchical conditional vector into 288

the Transformer’s attention by modifying the Key 289

(K) matrix for condition-aware generation. 290

K = Concat(zt, c)WK 291

Here, WK is a learnable projection matrix, ensur- 292

ing the model prioritizes risk-level-related semantic 293
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features during denoising. ARGUS directly asso-294

ciates the conditional vector with generated content295

via cross-modal attention and performs correspond-296

ing dynamic weight adjustments.297

Logs
Reinforced−→ Dadv298

ARGUS leverages the inference logs feedback299

during the large language model’s inference pro-300

cess to gradually generate feedback-reinforced sam-301

ples through diffusion under the explicit guidance302

of the conditional vector . The reinforced sam-303

ples Dadv, after structured processing, are used as304

feedback-reinforced structured training data and305

input back to the large language model for targeted306

fine-tuning.307

3.3 Low-Rank Lightweight Adaptation308

To balance the effectiveness of fine-tuning with309

hardware resource constraints under limited condi-310

tions, ARGUS employs the Quantized Low-Rank311

Adaptation strategy to lightweight fine-tune gen-312

eral LLMs based on feedback-reinforced structured313

fine-tuning samples Dadv. Lightweight Adapta-314

tion not only effectively improves model perfor-315

mance but also ensures the controllability and In-316

terpretability of its output content.317

Rigorous Generation Constraints. ARGUS318

employs a unique LLM fine-tuning mechanism319

with "instruction-input-output" structured samples320

and feedback reinforcement to strongly constrain321

generated content (such as suppress hallucinations).322

The structured fine-tuning samples after feedback323

reinforcement are shown in the Figure 5.

{
    "instruction": "You are a senior reviewer responsible for 

the review work of archives opening, and the following are 
the steps of your daily review work...",

    "input": "Case Name: Civil Ruling on Corporate Merger 
Dispute and Sales Contract Dispute; Party: Shen*...",

    "output": "**Involved**. The name 'Shen*' contains the 
special character '*', failing the condition of Step 1. The 
address '...No. 110' includes detailed residential information 
without desensitization, satisfying the condition of Step 2."

}

Figure 5: Example of feedback-reinforced structured
fine-tuning samples

324
The feedback-reinforced structured samples325

align with generation logic in data format, ensuring326

the fine-tuned model follows "Hierarchical Rule-327

Embedded" logic for results, facilitating debugging328

and iteration. Modifying instruction templates en- 329

ables rapid adaptation to archive audit domains, 330

offering stronger content control than traditional 331

unstructured-data-dependent fine-tuning. 332

Double Quantization. First, perform NF4 quan- 333

tization on all model parameters and inject train- 334

able low-rank matrices to achieve efficient fine- 335

tuning.For a linear transformation W0x, 336

WQLoRAx = (W4bit
0 )NF4x︸ ︷︷ ︸

Parameter freeze

+α · BAx︸ ︷︷ ︸
Low-rank adapter

337

Here, (W4bit
0 )NF4 are the frozen 4-bit quantized 338

base model weights. A,B are trainable low-rank 339

matrices with rank r ≪ d . The scaling coefficient 340

α controls the contribution strength of the adapter. 341

Then, the quantized weights are encoded via a code- 342

book, and this codebook is quantized again with 343

fewer bits (such as NF4 or FP4). This dual-step 344

compression minimizes resource demands while 345

retaining base model knowledge. 346

Hierarchical Adversarial Training.Inject the 347

adversarial samples Dadv generated in Section 3.2 348

into the training process and introduce a hierarchy- 349

sensitive loss function. 350

LQLoRA = E(x,y)∼Dadv

[∑3
i=1wi · LCE(fθ(x

(i)), y(i))
]

351

Here,wi = Softmax ([wPII , wSOC , wSLC ]), 352

x(i) represent adversarial samples in layer i. 353

4 Experiments 354

This study aims to address the following research 355

questions. 356

RQ1: Does ARGUS exhibit superior perfor- 357

mance compared to other baseline methods in 358

archival review? 359

RQ2: Does the "Hierarchical Rule-Embedded 360

Prompting" adopted in ARGUS lead to more accu- 361

rate archival review performance? 362

RQ3: Does the "Semantic-Aware Adversarial 363

Enhancement" in ARGUS improve model robust- 364

ness while ensuring performance? 365

RQ4: Can our method reduce costs while main- 366

taining performance to adapt to practical archival 367

review scenarios with limited resources? 368

4.1 Experimental Settings 369

Dataset. We evaluate the performance of our 370

method on 3 datasets: 1) Archives: an archival 371

dataset constructed from unpublished records pro- 372

vided by the Hunan Provincial Archives; 2) Crimes 373

(Zhang et al., 2025): built from publicly available 374
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Chinese court rulings; and 3) ai4privacy: an open-375

source privacy dataset PII-Masking (ai4Privacy,376

2023) designed for training models to remove per-377

sonally identifiable information (PII) from text.378

Evaluation Metrics. The authenticity and relia-379

bility of any method depend on the comprehensive-380

ness of its evaluation. In the field of archive review,381

false negatives may lead to the leakage of classi-382

fied content, false positives may cause unnecessary383

reviews, and the robustness of the auditing method384

is also critical to the review task. To accurately385

evaluate our method, we selected a set of robust386

evaluation metrics, including accuracy, recall, F1387

score, and adversarial sample attack success rate388

(ASR).389

Implementation Details. We use a server390

equipped with 2 NVIDIA V100 GPUs, each with391

32GB of memory. In the actual model fine-tuning392

of the experiment, we adopt the Paged AdamW393

Optimizer, set the learning rate at 2e-5, train epoch394

set at 5, and implement an early stopping strategy395

based on the accuracy of the validation set. For396

other hyper-parameters, we choose to set the rank397

r of the low-rank matrix to 8 and the LoRA scaling398

factor lora_alpha to 32, which is used to scale the399

update amplitude of the LoRA weights (Hu et al.,400

2022). In terms of quantization-related parameters,401

we select a 4-bit quantization bitwidth to better402

control the precision of weight quantization and403

specify the quantization data type as nf4 (Dettmers404

et al., 2023).405

Baseline. We compare our methods with the406

baselines listed as follows,and adaptively trained407

for the long-text characteristics inherent to archive408

review tasks:409

• Longformer (Beltagy et al., 2020; Askari et al.,410

2023):leveraging a sparse attention mecha-411

nism (local windows + random sampling +412

global tokens), it optimizes Transformer’s413

quadratic complexity to linear, supporting in-414

puts up to 4,096 tokens. We performed full-415

parameter training on a specialized archival416

dataset to enhance its ability to model cross-417

paragraph dependencies, capturing long-range418

semantic associations and review rule features419

in archival texts.420

• BigBird (Zaheer et al., 2020):achieving linear-421

time processing for long sequences via a com-422

bination of sliding local windows and task-423

specific global attention, it was also fully fine-424

tuned on the archival dataset.425

4.2 Main Results 426

The performance comparison between ARGUS and 427

the baseline methods in three datasets is shown in 428

Table 1. To evaluate the effectiveness of ARGUS, 429

the datasets we used cover different text types,and 430

we conducted numerous experiments. 431

ARGUS outperforms all benchmarks in terms 432

of precision and recall on all datasets. On the 433

real-world archive dataset Archives, when using 434

the DeepSeek-14B model, ARGUS achieves ap- 435

proximately a 10% improvement in inference accu- 436

racy compared to the baseline model, with a recall 437

rate of 88.45%. This indicates that ARGUS ex- 438

hibits better archive sensitivity than the baseline. 439

This achievement is attributed to ARGUS’s rule- 440

embedded prompt optimization method and the 441

"Semantic-Aware Feedback Reinforced" model en- 442

hancement strategy. 443

The inference process in ARGUS simultane- 444

ously generates explanatory text, allowing output 445

results to be directly interpretable without addi- 446

tional explanation tools or post-hoc analysis—an 447

advantage not shared by other baseline methods. 448

This benefit stems from the large language model’s 449

inherent "Inherent Explainability" and the Hierar- 450

chical Rule-Embedded Prompting strategy. 451

Meanwhile, considering some application sce- 452

narios with extremely limited resources where it’s 453

impossible to deploy large-scale LLMs with a large 454

number of parameters, we change the base LLM 455

of our method to LLMs with fewer parameters, 456

such as a 7B model (with approximately 7 billion 457

parameters). Then we compare its performance 458

improvement, with results shown in Table 2. 459

Notably, despite the foundational performance 460

limitations of low-parameter LLMs, ARGUS effec- 461

tively enhances their review accuracy. For example, 462

when using DeepSeek-7B as the base model, the ac- 463

curacy improvement reaches approximately 18%. 464

4.3 Effectiveness of Rule-Embedded 465

To verify the effectiveness of the rule-embedded 466

prompt optimization adopted by ARGUS, we mod- 467

ified the prompts used for judgment. We employed 468

conventional prompts (task statements combined 469

with explanations of judgment criteria), fine-tuned 470

the model using the same training dataset, and then 471

initiated normal audit tasks (LLM-LoRA) on the 472

archive dataset Archives, reviewing the model out- 473

put logs before and after prompt modification. We 474

also recorded the differences in false negative rates 475

6



Methods
Archives Crimes ai4privacy

ACC(%) Recall(%) F1-Score ACC(%) Recall(%) F1-Score ACC(%) Recall(%) F1-Score
Longformer 68.11 68.08 0.6810 71.16 68.37 0.6973 70.32 66.43 0.5657

Bigbird 67.16 75.91 0.7127 75.56 78.95 0.7636 69.91 60.92 0.6524
ARGUS 78.27 88.45 0.8034 86.20 81.86 0.8510 80.10 76.88 0.7944

Table 1: Comparison of various evaluation indicators between ARGUS and the baseline in different datasets. ACC=
accuracy, The base model adopted by ARGUS is DeepSeek-14B.

Model Framework ACC(%)

DeepSeek-7B
BASE 44.92
ARGUS 62.23

Qwen-7b
BASE 53.79
ARGUS 60.14

Yi-9b
BASE 49.84
ARGUS 58.21

BaiChuan2-7b
BASE 47.92
ARGUS 57.67

Table 2: Accuracy comparison of applying ARGUS
on different small-scale LLMs over Archives, where
BASE denotes test results without using the ARGUS
framework.

Method MR(L1) MR(L2) MR(L3)
LLM-LoRA 18% 23% 26%

ARGUS 8% 7% 12%

Table 3: Comparison of model missed rates (MR) after
removing rule embedding and ARGUS, where the base
models in the table are all DeepSeek-14b models. MR
= Missed Rate, L1 = PII-L, L2 = SLC-L, L3 = SOC-L.

across three critical judgment layers (PII, SLC,476

SOC) between the modified prompts and ARGUS,477

with results shown in Table 3.478

Experimental results show that without rule em-479

bedding, even after fine-tuning with targeted sam-480

ples, the missed rate of sensitive information at481

each layer for DeepSeek-14B will increase. For482

example, the missed rate of sensitive information483

related to personal information in the PII-L layer484

will increase by 10%. Additionally, in experiments485

we applied "Hierarchical Rule-Embedded Prompt-486

ing" to different base large language models and487

evaluated their performance improvements, with488

results recorded in Table 4.489

The results indicate that when general LLMs490

possess a certain level of basic performance, the491

rule-embedded prompt strategy can effectively en-492

hance their performance in archive audit tasks. This493

Model Prompt ACC(%) Recall(%) F1-Score

DeepSeek-14B
Base 68.06 70.42 0.6887
HREP 78.27 88.45 0.8034

DeepSeek-32B
Base 77.74 72.51 0.7657
HREP 81.16 90.35 0.8314

Qwen-32B
Base 53.79 20.26 0.3055
HREP 79.11 90.19 0.8125

Mistral-24B
Base 58.23 37.14 0.4714
HREP 70.53 47.68 0.5690

Gemma-27B
Base 49.19 36.17 0.4167
HREP 60.56 53.38 0.5759

Yi-34B
Base 51.77 25.56 0.3472
HREP 72.58 62.86 0.6970

Table 4: Performance improvement differences between
rule-embedded prompt(HREP) and regular prompts for
LLMs on Archives.

improvement is particularly significant for Chinese 494

large language models. Guided by rule-embedded 495

prompts, the Qwen3-32B model achieves approx- 496

imately a 16% increase in audit accuracy. Under 497

the influence of the "Hierarchical Rule-Embedded 498

Prompting" strategy, the DeepSeek-14B model’s 499

task performance is close to that of the DeepSeek- 500

32B model, while its resource consumption during 501

operation is significantly lower than that of the 502

DeepSeek-32B. 503

4.4 Effectiveness of Feedback Reinforced 504

To validate the effectiveness of Semantic-Aware 505

Feedback Reinforced used in ARGUS, we fine- 506

tuned DeepSeek-14B with regular samples (HREP) 507

and enhanced samples (ARGUS) respectively, and 508

compared their adversarial sample attack success 509

rates (ASR). The results are recorded in Table 5. 510

The experimental results show that after remov- 511

ing the feedback reinforced, the ASR under pertur- 512

bations increased by approximately 25%. Similarly, 513

we also compared the performance improvement 514

of Semantic-preserving adversarial enhancement 515
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ASR ACC
HREP 35.2% 73.4%

ARGUS 10.3% 86.20%

Table 5: Comparison of ASR before and after removing
adversarial enhancement on perturbation dataset con-
structed based on Crimes , with DeepSeek-14B as base
model.

for different base LLMs, as shown in Table 6.516

Model Prompt ACC(%)Recall(%)F1-Score

DeepSeek-14B
HREP 78.27 88.45 0.8034

ARGUS 81.61 90.35 0.8314

DeepSeek-32B
HREP 81.61 90.35 0.8314

ARGUS 92.33 94.67 0.9251

Qwen-14B
HREP 63.79 60.26 0.6255

ARGUS 77.89 89.86 0.7940

Table 6: Performance improvement comparison of feed-
back reinforced across different LLMs on Archives.

Robustness verification. Evaluate the robust-517

ness of ARGUS and baseline models using test sets518

with different perturbation types, and record their519

respective ASR. The perturbation types include:520

Lexical Perturbation(Zhang et al., 2016; Ebrahimi521

et al., 2018), Structural Perturbation(Yang et al.,522

2018), and Semantic Adversarial Perturbation(Jia523

and Liang, 2017).524

Methods Perturbation ACC(%) ASR(%)

Longformer
Lexc 60.32 19.10
Strut 58.45 20.43

SemAdv 55.43 22.21

Bigbird
Lexc 64.87 17.16
Strut 62.62 19.80

SemAdv 53.80 24.08

ARGUS
Lexc 81.65 5.78
Strut 79.73 7.89

SemAdv 77.03 10.32

Table 7: Performance comparison between ARGUS
and baseline models under different perturbation
types.Lexc=Lexical Perturbation, Stru=Structural Per-
turbation, SemAdv=Semantic Adversarial Perturbation.

4.5 Efficiency Analysis525

Time and Resource Consumption. All infer-526

ence and training experiments for ARGUS were527

conducted on servers equipped with two NVIDIA528

V100 32GB GPUs, as the base models used529

typically range from 7 to 16 billion parameters. 530

An exception is the DeepSeek-32B model, for 531

which we transferred its fine-tuning task to an- 532

other server equipped with two NVIDIA L20 48GB 533

GPUs.Table 8 presents the training and inference 534

time of the baseline models on the archival dataset. 535

Model inference(h) Fine-tuning(h)
DeepSeek-14B 2.53 6.77

Qwen3-14B 2.27 3.95
DeepSeek-32B 5.52 9.49
LLaMA2-13B 3.57 6.36

BaiChuan2-13B 2.79 3.74

Table 8: Inference and training time of ARGUS using
different baseline large language models. Inference on
1,500 archival documents and traning on 10000 pieces
of archive data.

Performance changes. Our experiments reveal 536

a positive correlation between model performance 537

and parameter size: models with fewer parameters 538

(such as 7B) generally underperform on real-world 539

tasks. However, models with moderate parame- 540

ter sizes (such as 14B and 32B) demonstrate suf- 541

ficient capability to handle our tasks effectively. 542

For instance, when ARGUS adopts DeepSeek-14B 543

as its baseline model, its performance closely ap- 544

proaches that of DeepSeek-32B, while significantly 545

reducing resource and time consumption. Specifi- 546

cally, DeepSeek-14B supports inference on a single 547

NVIDIA V100 32GB GPU and basic fine-tuning on 548

two such GPUs, whereas DeepSeek-32B requires 549

at least two NVIDIA L20 48GB GPUs for compara- 550

ble fine-tuning. This highlights the efficiency of our 551

approach, which achieves strong performance with 552

minimal computational overhead, largely attributed 553

to ARGUS’s Low-Rank Lightweight Adaptation. 554

5 Conclusion 555

We propose ARGUS, a feedback-reinforced grad- 556

ual LLMs-based framework for interpretable and 557

robust archive review. By integrating domain- 558

specific rule embedding, feedback reinforced, and 559

lightweight adaptation, ARGUS enhances LLM 560

archive review performance and ensures robustness 561

with lightweight resource consumption. Experi- 562

ments show ARGUS achieves 10.5–15.5% higher 563

accuracy than baselines, reduces ASR by 25%, Fu- 564

ture work will explore expanding ARGUS into an 565

automated archive processing tool to automate the 566

entire workflow, from sensitive content identifica- 567

tion and determination to its removal or masking. 568
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6 Limitations569

Although its excellent performance in archive re-570

view, ARGUS has 3 limitations in applications:571

Strong domain dependency. Although Hier-572

archical Rule-Embedded Prompting significantly573

improves accuracy in archive review, it highly re-574

lies on the embedding quality of domain rules. In575

scenarios with unclear rules or highly dynamic rule576

changes, ARGUS may require additional rule op-577

timization and manual intervention, increasing de-578

ployment costs.579

Limitations of feedback reinforcement. AR-580

GUS uses diffusion models for Semantic-Aware581

Feedback Reinforced enhancement of LLMs,582

which depends on error analysis in model inference583

logs. When paired with small-parameter LLMs584

(such as 7B parameters), limited baseline perfor-585

mance may cause large inference biases or incom-586

plete log coverage, leading to generated samples587

that fail to fully address complex perturbations in588

real-world scenarios and thus limit reinforcement589

effectiveness.590

Constraints in lightweight adaptation. While591

ARGUS employs QLoRA to reduce computational592

resource requirements, its adaptation efficiency for593

ultra-large models (such as 100B parameters) may594

still be constrained by hardware conditions. Addi-595

tionally, low-rank adaptation cannot fully capture596

all knowledge required by the model in some com-597

plex tasks.598
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