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Abstract

Automated archive review faces challenges
in interpreting domain-specific semantics and
ensuring traceable decisions, because exist-
ing methods relying on rigid rules or generic
language models lack complex context un-
derstanding and review transparency. Re-
garding these issues, we propose ARGUS,
a feedback-reinforced gradual framework for
archive review. ARGUS uses hierarchical
rule-embedded prompts for stepwise inference,
feedback-driven sample enhancement via LLM
inference logs for robustness, and parameter-
efficient fine-tuning via low-rank adaptation.
Evaluations on real-world archives and bench-
marks show ARGUS achieves 10.5-15.5%
higher accuracy than baselines, reduces ASR
by 25%, and has been proven to effectively
complete review tasks under limited resources.

1 Introduction

Archive review is one of the critical tasks in the
field of natural language processing(NLP). Recent
studies (Vaswani et al., 2017; Wei et al., 2022a;
CONNEAU and Lample, 2019) have demonstrated
that in the field of natural language processing,
large language models (LLMs) have more ad-
vantages compared to deep learning (DL). After
pre-training on large-scale data, the general fea-
tures learned by LLMs can be directly transferred
to downstream tasks (Chiang and yi Lee, 2022).
Even without fine-tuning for specific tasks, they
can complete various natural language processing
tasks (Brown et al., 2020). Moreover, the inherent
explainability (Liang et al., 2023) of LLMs, gen-
erating natural-language explanations to enhance
inference transparency,effectively addresses the in-
terpretability issue of existing methods. More im-
portantly, the global attention mechanism of the
Transformer architecture adopted in LLMs makes
it easier to understand complex contexts (Vaswani
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The court holds that the defendant

Jiang Yue violated the provisions of the
Road Traffic Safety Law, caused ......
constitutes the crime of traffic
accident ......

In view of the fact that the defendant
Jiang Yue surrendered himself, a
compensation agreement has been
reached in the civil part, and the
understanding of the victim's relatives
has been obtained.
Probation can be applied according to
law. Sentenced to fixed-term
imprisonment with probation........

S )

Figure 1: Example of archives. Archival data exhibits
high domain specificity (red), and due to the complex
contexts often involved in archival documents, they are
often obscure (green) and ambiguous (blue).

et al., 2017; Jin et al., 2025), such as the implicit se-
mantic features commonly found in archival texts.

However, it is hard to apply LLMs for archival re-
view tasks due to the following challenges: 1) Fine-
grained domain knowledge deficiency of LLMs
in complex semantic scenarios: Archival data,
as shown in Figure 1, is highly domain-specific
and contains complex semantic contexts, but LLMs
lack fine-grained domain knowledge (Yang et al.,
2023), which makes it difficult to accurately iden-
tify sensitive content and compliance boundaries;
2) General LLLMs are prone to perturbation:
general-purpose LLMs have weak anti-interference
capabilities and are vulnerable to text adversarial
perturbations such as semantic paraphrasing (Xu
et al., 2024; Zhang et al., 2020; Peng et al., 2025).
S

To address these issues, we propose a Large Lan-
guage Model-based Feedback-Reinforced Gradual



Framework called ARGUS, for Interpretable and
Robust Archive Review. ARGUS constructs struc-
tured inference prompt templates based on domain
features, makes up for the lack of fine-grained do-
main knowledge of LLMs through rule embedding,
and improves the accuracy of identifying sensi-
tive content and compliance boundaries. It also
generates training samples by combining model in-
ference log analysis with diffusion models, further
enhances model performance through lightweight
iterations, and ensures robustness at the same time.
We conduct experiments on a real archival dataset
and 2 public sensitive datasets. Compared with Pre-
trained long-sequence language models of BigBird
and Longformer, ARGUS achieves 10.5-15.5%
higher accuracy than baselines, reduces ASR by
25%. Our main contributions are as follows:

* The first domain-enhanced large language
model framework for the task of archival open-
ing review. Under the lightweight fine-tuning
strategy of Quantized Low-Rank Adaptation,
while taking into account both the review ac-
curacy and robustness, the demand for com-
puting resources is substantially diminished.

* Proposed a "rule embedding-adversarial en-
hancement" LLM-based automated archival
review idea, which combines Hierarchical
Rule-Embedded Prompting and Semantic-
Preserving Adversarial Generation driven by
diffusion models, to address the lack of fine-
grained domain knowledge.

* Experiments conducted on real archival
datasets show that ARGUS outperforms the
baseline model in both accuracy and recall.
In adversarial testing, compared with the pre-
trained model, ARGUS can better suppress
misjudgments under three types of perturba-
tion tests.

2 Related Work

Rule-based methods. In the early practices of
archival opening review, rule-based review systems
(like keyword matching and regular expressions) re-
lying on static rule libraries struggle with semantic
ambiguity and context dependence. This leads to a
higher misjudgment rate in complex scenarios. The
conflict between their rigid matching mechanisms
and the dynamic evolution of language also lim-
its the systems’ ability to generalize new variants
of sensitive words (Hedda et al., 2017). Hybrid

frameworks integrating domain knowledge bases
(such as expert systems and knowledge graphs)
have steered the review approach towards intel-
ligence. However, constructing logical rules in-
curs high human costs, and it’s difficult to adapt to
large-scale heterogeneous data (Zhong et al., 2024).
Static knowledge bases can’t evolve dynamically,
and there’s a notable lag in system reconstruction
when facing policy updates or new terms.

DL-based methods. Supervised machine learn-
ing endows computers with context-understanding
ability, enabling them to identify text content for
review at a deeper level and improving review ac-
curacy (Hutchinson, 2018). For instance, the nat-
ural language processing-based clustering model
(CPPIM) for automatically detecting personal iden-
tity information in unstructured text corpora and
the Byte-mLSTM have also achieved excellent re-
sults (Kulkarni and Cauveryn, 2021). The Chinese
word segmentation model Attention-BiLSTM-CRE,
developed by integrating the attention mechanism,
LSTM, and Conditional Random Field (CRF), has
also been proven effective on SCD text data (Zheng
et al., 2023). The combination of XIL.Net and
BiLSTM-CREF in named entity recognition (NER)
tasks demonstrates XLNet’s superiority in captur-
ing context information and has achieved leading
results in NER (Yan et al., 2021).

LLM-based methods. Recent related studies
have started to explore the application of large lan-
guage models (LLMs) in detecting and protect-
ing personally identifiable information in archival
data, such as detecting and safeguarding personal
identity information within archival data. (Yang
et al., 2023). In the field of natural language pro-
cessing, the current focus is on the Transformer
architecture (such as BERT(Devlin et al., 2019)).
Starting from dialogue understanding tasks, con-
tinued pre-training of models on domain-specific
datasets is adopted to enhance model performance.
For example, continued pre-training is carried out
on domain datasets using the Masked Language
Model (MLM), Span Boundary Objectives (SBO),
and Perturbed Mask Objectives (PMO) (Wu et al.,
2021). Pre-trained models learn language knowl-
edge through self-supervised tasks (such as the
Masked Language Model and Next Sentence Pre-
diction), and improve dialogue understanding and
multi-task processing capabilities through domain
adaptive pre-training, but there are still limitations
in data dependence and capturing diachronic fea-
tures (Han et al., 2021). Significant achievements



—_——————eeee - — o,

A

I_*_I

| @ Hierarchical Rule- | () Semantic-Aware : (3 Lightweight
| Embedded Prompting | Feedback Reinforced : Adaptation
Dimension Perturbation b Reverse | Double Model
Reduction erturbation : Quantization Fine-Tune
|
|
|

Risk-Driven

Conditional Vector

|
|
|
|
|
Denoising i
|
|
|
|
|
|

Fay

|
|
|
|
|
|
|
|
|
Low-Rank Adapter :
:
|
|
|
|
|
|
|
|

. . Generation Samples
Stratification | —
LLM Logs T | | Training T

ﬁ —D{ LLM Inference ‘
Prompt | | |
Compliance Decision | ) I |

Tracing : Archive Data : : LLM Inference Results
L fY—m—//———_ l _e———— _ ] e

Figure 2: The overview of ARGUS.

have been made in multiple NLP tasks and mul-
timodal tasks, surpassing traditional models. For
example, in scenarios such as medical text clas-
sification (Singhal et al., 2022) and legal clause
parsing (Cui et al., 2023).

3 Design

To address the issues of general LLLMs lacking fine-
grained domain knowledge in complex semantic
contexts and being prone to perturbations, ARGUS
constructs Hierarchical Rule-Embedded Prompting
based on domain features, making up for the lack of
fine-grained domain knowledge of LLMs through
rule embedding. ARGUS completes Semantic-
Aware Feedback Reinforced by combining diffu-
sion models with the analysis of model inference
logs. Finally, ARGUS adopts a Lightweight Adap-
tation strategy to ensure lightweight iteration. The
complete overview of ARGUS is shown in the Fig-
ure 2.

3.1 Hierarchical Rule-Embedded Prompting

Inspired by the Least To Most (Zhou et al.,
2023) (Wei et al., 2022b) ,which decomposes com-
plex tasks and makes layer-wise judgments based
on conditions, ARGUS proposes Hierarchical Rule-
Embedded Prompting, as shown in Figure 3. It
embeds prior domain knowledge into task infer-
ence and designs hierarchical checking steps. By
deeply embedding domain rules into the predefined
steps of the prompt and taking into account risk
priorities, the model’s accuracy in identifying sen-
sitive information in complex texts is effectively
improved.

Rule Dimension Reduction. By parsing legal
texts, high-dimensional and complex rules (such

SYSTEM:

You are a senior examiner responsible for the review
work of archives , and the following are the steps of y
our review :

[Step 1] Identify personal identification markers .......
directly output "Involves" .

[Step 2] Detect structured address elements .....direct
ly output "Involves" .

[Step 3] Detect implicit identity cues, ....... mentions.
[Step 4] Directly output not involve .

USER:
Here are the contents you need to review: {Input_con
tent}, The answer must start with either "Involves" or
"Does not involve", and then explain the reason.
[Important] Please be sure to complete the output of
the judgment conclusion strictly according to the abo
ve steps! Omitting any unredacted information may 1
ead to serious legal consequences!

Figure 3: Prompt used in our methods

as abstract clauses) are decomposed into atomized
Boolean logical conditions (e.g."Incomplete name
and containing special characters — Not sensi-
tive"), and redundant rules are eliminated through
the Risk Exposure Coefficient to form a stream-
lined and executable rule system.

Risk-Driven Stratification. Based on the re-
duced dimensionality rule system and risk hierar-
chy, hierarchical verification is constructed to form
a decision path for the selection of risk samples
from highest to lowest priority.

* Primary Identifier Integrity Layer (PII-L): Val-
idates the integrity of direct unique identifiers,
such as identifying whether personal identity
information is complete.



"sample id":"SAMP-0001",
"original text": "Case Name: Chang'an Research Institu
te and Li * Economic Dispute Execution Ruling Party:
Research Institute, Li * Full Text: ............... "

"errors":[

{"type": "Missing Confusion processing","position":

[12,22]}

]

layer": {"focus layer":"L3","attack types":["add

special_chars", "nested address"],"priority": 0.15}

Figure 4: The sample logs of LLMs

* Structured Location Compliance Layer (SLC-
L): Verifies the compliance of location iden-
tifiers. For example, location identifiers in
nonsensitive data must meet the minimum nec-
essary disclosure requirement (location infor-
mation should not contain obvious numerical
features).

* Semantic Obfuscation Compliance Layer
(SOC-L): Detects the semantic obfuscation
compliance of indirectly linkable identifiers.
For example, detect implicit sensitive infor-
mation clues(such as identity cues), and the
key information in sensitive data should be ob-
fuscated (surnames should be retained, while
given names should be replaced with special
symbols such as *°).

Compliance Decision Tracing. The hierarchi-
cal review path interacts with the attention mecha-
nism and probabilistic generation strategy of LLMs,
ensuring the traceability of review results. Mean-
while, explicit conclusions and inference bases are
enforced via declarations of the severity of legal
consequences to guide model generation.

3.2 Semantic-Aware Feedback Reinforced

Based on the inference logs feedback from large
language models, ARGUS constructs feedback-
reinforced samples and feeds them back to the
base model for fine-tuning. An example of the
LLMs inference log is shown in Figure 4. Specifi-
cally, ARGUS builds conditional vectors from the
logs generated by large LLMs inference and in-
corporates them into the diffusion generation pro-
cess. These conditional vectors guide and constrain
the noise injection range to avoid semantic distor-
tion while directing model attention to generate
feedback-reinforced structured samples D, ;.
Conditional Vector Generation. In the LLMs
reasoning logs, apart from the "original text" where

model inference errors occur, there are mainly two
components: "errors" record the error type "type"
and error character interval "position" in the LLMs’
inference of the "original text", from which an error
vector e € {0, 1}3 is constructed; "layer" records
the targeted generation layer "focus layer", prede-
fined adversarial strategy "attack type", and genera-
tion weights for the "original text", from which a hi-
erarchical weight vector w = [aprr, asrc, asoc]
is constructed. Finally, the error vector e and hierar-
chical weight vector w are concatenated to generate
the conditional vector .

¢ = concat(w,e) € RS

here, 0 < a; < 0.2.

Hierarchical Perturbation. Based on the con-
ditional vector c to diagnose the model’s cognitive
deficiencies, ARGUS uses a hierarchical-structure-
sensitive mask matrix to restrict the range of noise
injection, thereby directionally perturbing latent
semantics:

M, € {0,1}¢

and outputs the latent representation z; with limited
noise:

Zy = \/ QZo + \/]. —ﬁte@Mc

here @; = [[:_,(1— B;), B; is the noise scheduling
parameter. By restricting noise to act only on the
embedding space of the target hierarchical struc-
ture, semantic-aware perturbations are achieved.

Condition-Guided Reverse Denoising. Lever-
aging the Transformer architecture, ARGUS explic-
itly integrates the structured conditional vector via
cross-modal attention. It dynamically adjusts noise
exclusively in targeted regions at each step, itera-
tively generating high-fidelity, diverse augmented
samples in an end-to-end manner without external
constraints.The cross-modal attention computation
is as:

e ~N(0,I)

Attention(Q, K, V) = Soft <QKT> v
ention(Q,K,V) = Softmaxr | ——
Vi

dy, denotes the feature length of the key vector.
The key innovation of ARGUS lies in explicitly

injecting the hierarchical conditional vector into

the Transformer’s attention by modifying the Key

(K) matrix for condition-aware generation.

K = Concat(z:, c)Wg

Here, W is a learnable projection matrix, ensur-
ing the model prioritizes risk-level-related semantic



features during denoising. ARGUS directly asso-
ciates the conditional vector with generated content
via cross-modal attention and performs correspond-
ing dynamic weight adjustments.

Reinforced
—

Logs Day

ARGUS leverages the inference logs feedback
during the large language model’s inference pro-
cess to gradually generate feedback-reinforced sam-
ples through diffusion under the explicit guidance
of the conditional vector . The reinforced sam-
ples D4y, after structured processing, are used as
feedback-reinforced structured training data and
input back to the large language model for targeted
fine-tuning.

3.3 Low-Rank Lightweight Adaptation

To balance the effectiveness of fine-tuning with
hardware resource constraints under limited condi-
tions, ARGUS employs the Quantized Low-Rank
Adaptation strategy to lightweight fine-tune gen-
eral LLMs based on feedback-reinforced structured
fine-tuning samples D,q,. Lightweight Adapta-
tion not only effectively improves model perfor-
mance but also ensures the controllability and In-
terpretability of its output content.

Rigorous Generation Constraints. ARGUS
employs a unique LLM fine-tuning mechanism
with "instruction-input-output” structured samples
and feedback reinforcement to strongly constrain
generated content (such as suppress hallucinations).
The structured fine-tuning samples after feedback
reinforcement are shown in the Figure 5.

{

"instruction": "You are a senior reviewer responsible for
the review work of archives opening, and the following are
the steps of your daily review work...",

"input": "Case Name: Civil Ruling on Corporate Merger
Dispute and Sales Contract Dispute; Party: Shen*...",

"output": "**Involved**. The name 'Shen*' contains the
special character '*', failing the condition of Step 1. The
address '...No. 110" includes detailed residential information
without desensitization, satisfying the condition of Step 2."

}

Figure 5: Example of feedback-reinforced structured
fine-tuning samples

The feedback-reinforced structured samples
align with generation logic in data format, ensuring
the fine-tuned model follows "Hierarchical Rule-
Embedded" logic for results, facilitating debugging

and iteration. Modifying instruction templates en-
ables rapid adaptation to archive audit domains,
offering stronger content control than traditional
unstructured-data-dependent fine-tuning.

Double Quantization. First, perform NF4 quan-
tization on all model parameters and inject train-
able low-rank matrices to achieve efficient fine-
tuning.For a linear transformation Wz,

bi
WQLORAQJ = (VVB1 lt)NF4(I: o - BAz

Parameter freeze Low-rank adapter

Here, (Wébit)Nm are the frozen 4-bit quantized
base model weights. A, B are trainable low-rank
matrices with rank r < d . The scaling coefficient
« controls the contribution strength of the adapter.
Then, the quantized weights are encoded via a code-
book, and this codebook is quantized again with
fewer bits (such as NF4 or FP4). This dual-step
compression minimizes resource demands while
retaining base model knowledge.

Hierarchical Adversarial Training.Inject the
adversarial samples D4, generated in Section 3.2
into the training process and introduce a hierarchy-
sensitive loss function.

Lqrora = Ey)p,u, {ZL wg - LCE(f@(I(i))»y(i))}

Here,w; = Softmaz ([wpir, wsoc,wsrel),
2 represent adversarial samples in layer i.

4 Experiments

This study aims to address the following research
questions.

RQ1: Does ARGUS exhibit superior perfor-
mance compared to other baseline methods in
archival review?

RQ2: Does the "Hierarchical Rule-Embedded
Prompting" adopted in ARGUS lead to more accu-
rate archival review performance?

RQ3: Does the "Semantic-Aware Adversarial
Enhancement" in ARGUS improve model robust-
ness while ensuring performance?

RQ4: Can our method reduce costs while main-
taining performance to adapt to practical archival
review scenarios with limited resources?

4.1 Experimental Settings

Dataset. We evaluate the performance of our
method on 3 datasets: 1) Archives: an archival
dataset constructed from unpublished records pro-
vided by the Hunan Provincial Archives; 2) Crimes
(Zhang et al., 2025): built from publicly available



Chinese court rulings; and 3) ai4privacy: an open-
source privacy dataset PII-Masking (ai4Privacy,
2023) designed for training models to remove per-
sonally identifiable information (PII) from text.

Evaluation Metrics. The authenticity and relia-
bility of any method depend on the comprehensive-
ness of its evaluation. In the field of archive review,
false negatives may lead to the leakage of classi-
fied content, false positives may cause unnecessary
reviews, and the robustness of the auditing method
is also critical to the review task. To accurately
evaluate our method, we selected a set of robust
evaluation metrics, including accuracy, recall, F1
score, and adversarial sample attack success rate
(ASR).

Implementation Details. We use a server
equipped with 2 NVIDIA V100 GPUs, each with
32GB of memory. In the actual model fine-tuning
of the experiment, we adopt the Paged AdamW
Optimizer, set the learning rate at 2e-5, train epoch
set at 5, and implement an early stopping strategy
based on the accuracy of the validation set. For
other hyper-parameters, we choose to set the rank
r of the low-rank matrix to 8 and the LoRA scaling
factor lora_alpha to 32, which is used to scale the
update amplitude of the LoRA weights (Hu et al.,
2022). In terms of quantization-related parameters,
we select a 4-bit quantization bitwidth to better
control the precision of weight quantization and
specify the quantization data type as nf4 (Dettmers
et al., 2023).

Baseline. We compare our methods with the
baselines listed as follows,and adaptively trained
for the long-text characteristics inherent to archive
review tasks:

* Longformer (Beltagy et al., 2020; Askari et al.,
2023):leveraging a sparse attention mecha-
nism (local windows + random sampling +
global tokens), it optimizes Transformer’s
quadratic complexity to linear, supporting in-
puts up to 4,096 tokens. We performed full-
parameter training on a specialized archival
dataset to enhance its ability to model cross-
paragraph dependencies, capturing long-range
semantic associations and review rule features
in archival texts.

* BigBird (Zaheer et al., 2020):achieving linear-
time processing for long sequences via a com-
bination of sliding local windows and task-
specific global attention, it was also fully fine-
tuned on the archival dataset.

4.2 Main Results

The performance comparison between ARGUS and
the baseline methods in three datasets is shown in
Table 1. To evaluate the effectiveness of ARGUS,
the datasets we used cover different text types,and
we conducted numerous experiments.

ARGUS outperforms all benchmarks in terms
of precision and recall on all datasets. On the
real-world archive dataset Archives, when using
the DeepSeek-14B model, ARGUS achieves ap-
proximately a 10% improvement in inference accu-
racy compared to the baseline model, with a recall
rate of 88.45%. This indicates that ARGUS ex-
hibits better archive sensitivity than the baseline.
This achievement is attributed to ARGUS’s rule-
embedded prompt optimization method and the
"Semantic-Aware Feedback Reinforced" model en-
hancement strategy.

The inference process in ARGUS simultane-
ously generates explanatory text, allowing output
results to be directly interpretable without addi-
tional explanation tools or post-hoc analysis—an
advantage not shared by other baseline methods.
This benefit stems from the large language model’s
inherent "Inherent Explainability” and the Hierar-
chical Rule-Embedded Prompting strategy.

Meanwhile, considering some application sce-
narios with extremely limited resources where it’s
impossible to deploy large-scale LLMs with a large
number of parameters, we change the base LLM
of our method to LLMs with fewer parameters,
such as a 7B model (with approximately 7 billion
parameters). Then we compare its performance
improvement, with results shown in Table 2.

Notably, despite the foundational performance
limitations of low-parameter LLMs, ARGUS effec-
tively enhances their review accuracy. For example,
when using DeepSeek-7B as the base model, the ac-
curacy improvement reaches approximately 18%.

4.3 Effectiveness of Rule-Embedded

To verify the effectiveness of the rule-embedded
prompt optimization adopted by ARGUS, we mod-
ified the prompts used for judgment. We employed
conventional prompts (task statements combined
with explanations of judgment criteria), fine-tuned
the model using the same training dataset, and then
initiated normal audit tasks (LLM-LoRA) on the
archive dataset Archives, reviewing the model out-
put logs before and after prompt modification. We
also recorded the differences in false negative rates



Archives

Crimes aidprivacy

ACC(%) Recall(%) F1-Score| ACC(%) Recall(%) F1-Score| ACC(%) Recall(%) F1-Score

Methods

Longformer| 68.11 68.08  0.6810 | 71.16
Bigbird 67.16 7591  0.7127 | 75.56
ARGUS | 78.27 88.45  0.8034 | 86.20

68.37  0.6973 | 70.32 66.43  0.5657
78.95  0.7636 | 69.91 60.92  0.6524
81.86 0.8510 | 80.10 76.88  0.7944

Table 1: Comparison of various evaluation indicators between ARGUS and the baseline in different datasets. ACC=
accuracy, The base model adopted by ARGUS is DeepSeek-14B.

Model Framework  ACC(%) Model Prompt ACC(%) Recall(%) F1-Score
BASE 44.92 Base 68.06 7042  0.6887
DeepSeek-7B -\ rGUs 62.23 DeepSeek-14B 1 pEp 7827 8845  0.8034
BASE 53.79 Base 77.74 7251  0.7657
Qwen-7b ARGUS 60.14 DeepSeck-32B yrEp 8116 9035  0.8314
. BASE 49.84 Base 53.79 2026  0.3055
Yi-9b ARGUS 58.21 Qwen-32B L REP 7911 90.19  0.8125
. BASE 47.92 . Base 5823 37.14 04714
BaiChuan2-7b £ sus 57.67 Mistral-24B - | pEp 7053 4768 0.5690
Base 49.19 36.17 04167
Table 2: Accuracy comparison of applying ARGUS Gemma-27B HREP 60.56 53.38 0.5759

on different small-scale LLMs over Archives, where : : :

BASE denotes test results without using the ARGUS Yi-34B Base  51.77 25.56 0.3472
HREP 72.58 62.86  0.6970

framework.

Method MR(L1) MR(L2) MR(L3)
LLM-LoRA 18% 23% 26%
ARGUS 8% 7% 12%

Table 3: Comparison of model missed rates (MR) after
removing rule embedding and ARGUS, where the base
models in the table are all DeepSeek-14b models. MR
= Missed Rate, L1 = PII-L, L2 = SLC-L, L3 = SOC-L.

across three critical judgment layers (PII, SLC,
SOC) between the modified prompts and ARGUS,
with results shown in Table 3.

Experimental results show that without rule em-
bedding, even after fine-tuning with targeted sam-
ples, the missed rate of sensitive information at
each layer for DeepSeek-14B will increase. For
example, the missed rate of sensitive information
related to personal information in the PII-L layer
will increase by 10%. Additionally, in experiments
we applied "Hierarchical Rule-Embedded Prompt-
ing" to different base large language models and
evaluated their performance improvements, with
results recorded in Table 4.

The results indicate that when general LLMs
possess a certain level of basic performance, the
rule-embedded prompt strategy can effectively en-
hance their performance in archive audit tasks. This

Table 4: Performance improvement differences between
rule-embedded prompt(HREP) and regular prompts for
LLM:s on Archives.

improvement is particularly significant for Chinese
large language models. Guided by rule-embedded
prompts, the Qwen3-32B model achieves approx-
imately a 16% increase in audit accuracy. Under
the influence of the "Hierarchical Rule-Embedded
Prompting" strategy, the DeepSeek-14B model’s
task performance is close to that of the DeepSeek-
32B model, while its resource consumption during
operation is significantly lower than that of the
DeepSeek-32B.

4.4 Effectiveness of Feedback Reinforced

To validate the effectiveness of Semantic-Aware
Feedback Reinforced used in ARGUS, we fine-
tuned DeepSeek-14B with regular samples (HREP)
and enhanced samples (ARGUS) respectively, and
compared their adversarial sample attack success
rates (ASR). The results are recorded in Table 5.
The experimental results show that after remov-
ing the feedback reinforced, the ASR under pertur-
bations increased by approximately 25%. Similarly,
we also compared the performance improvement
of Semantic-preserving adversarial enhancement



ASR ACC
HREP 35.2% 73.4%
ARGUS 10.3% 86.20%

Table 5: Comparison of ASR before and after removing
adversarial enhancement on perturbation dataset con-
structed based on Crimes , with DeepSeek-14B as base
model.

for different base LLLMs, as shown in Table 6.

Model Prompt ACC(%)Recall(%)F1-Score
HREP 7827 8845 0.8034
DeepSeek-14B \ pGUs 8161 9035  0.8314
HREP 8161 9035 08314
DeepSeck-32B \ pGus 9233 94.67  0.9251
Qwen-145  HREP 63796026 06255
ARGUS 77.89 89.86  0.7940

Table 6: Performance improvement comparison of feed-
back reinforced across different LLMs on Archives.

Robustness verification. Evaluate the robust-
ness of ARGUS and baseline models using test sets
with different perturbation types, and record their
respective ASR. The perturbation types include:
Lexical Perturbation(Zhang et al., 2016; Ebrahimi
et al., 2018), Structural Perturbation(Yang et al.,
2018), and Semantic Adversarial Perturbation(Jia
and Liang, 2017).

Methods Perturbation ACC(%) ASR(%)
Lexc 60.32 19.10
Longformer Strut 58.45 20.43
SemAdv 55.43 22.21
Lexc 64.87 17.16
Bigbird Strut 62.62 19.80
SemAdv 53.80 24.08
Lexc 81.65 5.78
ARGUS Strut 79.73 7.89
SemAdv 77.03 10.32

Table 7: Performance comparison between ARGUS
and baseline models under different perturbation
types.Lexc=Lexical Perturbation, Stru=Structural Per-
turbation, SemAdv=Semantic Adversarial Perturbation.

4.5 Efficiency Analysis

Time and Resource Consumption. All infer-
ence and training experiments for ARGUS were
conducted on servers equipped with two NVIDIA
V100 32GB GPUs, as the base models used

typically range from 7 to 16 billion parameters.
An exception is the DeepSeek-32B model, for
which we transferred its fine-tuning task to an-
other server equipped with two NVIDIA L.20 48GB
GPUs.Table 8 presents the training and inference
time of the baseline models on the archival dataset.

Model inference(h) Fine-tuning(h)
DeepSeek-14B 2.53 6.77
Qwen3-14B 2.27 3.95
DeepSeek-32B 5.52 9.49
LLaMA2-13B 3.57 6.36
BaiChuan2-13B 2.79 3.74

Table 8: Inference and training time of ARGUS using
different baseline large language models. Inference on
1,500 archival documents and traning on 10000 pieces
of archive data.

Performance changes. Our experiments reveal
a positive correlation between model performance
and parameter size: models with fewer parameters
(such as 7B) generally underperform on real-world
tasks. However, models with moderate parame-
ter sizes (such as 14B and 32B) demonstrate suf-
ficient capability to handle our tasks effectively.
For instance, when ARGUS adopts DeepSeek-14B
as its baseline model, its performance closely ap-
proaches that of DeepSeek-32B, while significantly
reducing resource and time consumption. Specifi-
cally, DeepSeek-14B supports inference on a single
NVIDIA V100 32GB GPU and basic fine-tuning on
two such GPUs, whereas DeepSeek-32B requires
at least two NVIDIA L20 48GB GPUs for compara-
ble fine-tuning. This highlights the efficiency of our
approach, which achieves strong performance with
minimal computational overhead, largely attributed
to ARGUS’s Low-Rank Lightweight Adaptation.

5 Conclusion

We propose ARGUS, a feedback-reinforced grad-
ual LL.Ms-based framework for interpretable and
robust archive review. By integrating domain-
specific rule embedding, feedback reinforced, and
lightweight adaptation, ARGUS enhances LLM
archive review performance and ensures robustness
with lightweight resource consumption. Experi-
ments show ARGUS achieves 10.5-15.5% higher
accuracy than baselines, reduces ASR by 25%, Fu-
ture work will explore expanding ARGUS into an
automated archive processing tool to automate the
entire workflow, from sensitive content identifica-
tion and determination to its removal or masking.



6 Limitations

Although its excellent performance in archive re-
view, ARGUS has 3 limitations in applications:

Strong domain dependency. Although Hier-
archical Rule-Embedded Prompting significantly
improves accuracy in archive review, it highly re-
lies on the embedding quality of domain rules. In
scenarios with unclear rules or highly dynamic rule
changes, ARGUS may require additional rule op-
timization and manual intervention, increasing de-
ployment costs.

Limitations of feedback reinforcement. AR-
GUS uses diffusion models for Semantic-Aware
Feedback Reinforced enhancement of LLMs,
which depends on error analysis in model inference
logs. When paired with small-parameter LLMs
(such as 7B parameters), limited baseline perfor-
mance may cause large inference biases or incom-
plete log coverage, leading to generated samples
that fail to fully address complex perturbations in
real-world scenarios and thus limit reinforcement
effectiveness.

Constraints in lightweight adaptation. While
ARGUS employs QLoRA to reduce computational
resource requirements, its adaptation efficiency for
ultra-large models (such as 100B parameters) may
still be constrained by hardware conditions. Addi-
tionally, low-rank adaptation cannot fully capture
all knowledge required by the model in some com-
plex tasks.
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