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Abstract
Massive parameters of LLMs have made infer-001
ence latency a fundamental bottleneck. Specu-002
lative decoding represents a lossless approach003
to accelerate inference through a guess-and-004
verify paradigm. Some methods rely on addi-005
tional architectures to guess draft tokens, which006
need extra training before use. Alternatively,007
retrieval-based training-free techniques build li-008
braries from pre-existing corpora or by n-gram009
generation. However, they face challenges like010
large storage requirements, time-consuming re-011
trieval, and limited adaptability. Observing that012
candidate tokens generated during the decod-013
ing process are likely to reoccur in future se-014
quences, we propose Token Recycling. It stores015
candidate tokens in an adjacency matrix and016
employs a breadth-first-search (BFS)-like algo-017
rithm to construct a draft tree, which is then018
validated through tree attention. New candi-019
date tokens from the decoding process are then020
used to update the matrix. Token Recycling re-021
quires <2MB of additional storage and achieves022
approximately 2x speedup across all sizes of023
LLMs. It significantly outperforms existing024
train-free methods by 30% and even a widely025
recognized training method by 25%.026

1 Introduction027

Large Language Models (LLMs) (Brown et al.,028

2020; Gemini Team et al., 2023; Touvron et al.,029

2023; Meta, 2024) have becoming the foundation030

of numerous applications such as chatbots, code031

assistants, and agents (OpenAI, 2023; Chen et al.,032

2021; Wang et al., 2024a). However, due to the033

auto-regressive decoding strategy, LLMs can only034

generate a single token at each decoding step, lead-035

ing to high inference latency (Brown et al., 2020).036

The latency mainly comes from transferring bil-037

lions of parameters from high bandwidth mem-038

ory to the accelerator cache at each decoding step,039

rather than arithmetic computations (Kim et al.,040

2024; Shazeer, 2019; Cai et al., 2024).041
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Figure 1: A comparison of typical speculative decoding
and Token Recycling (TR). Typical methods draft some
tokens and verify them in parallel in one decoding step.
Unlike other methods that discard candidate tokens, TR
stores them in an adjacency matrix. In future genera-
tions, draft tokens are retrieved from the matrix which
is updated with new candidate tokens. TR effectively
recycles tokens in the decoding process.

Many approaches (Xu et al., 2024; Frantar and 042

Alistarh, 2023; Dao, 2024; DeepSeek-AI, 2024) 043

seek to reduce the latency, with speculative decod- 044

ing as a key lossless technique. This approach em- 045

ploys a guess and verify process to obtain multiple 046

tokens during a single decoding step (Chen et al., 047

2023; Leviathan et al., 2023; Miao et al., 2024; Xia 048

et al., 2023). It first speculates several subsequent 049

draft tokens and then verifies them using the origi- 050

nal LLMs. The time cost of verification on multi- 051

ple tokens is comparable to that of generating one 052

token due to the high parallelism of accelerators. 053

Once some draft tokens are correct, the decoding 054
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steps is significantly shortened without sacrificing055

quality. To fully utilize the parallelism of accel-056

erators, tree attention slightly adjust the attention057

mask to verify multiple token sequences in one058

model forward (Cai et al., 2024; Miao et al., 2024).059

For effective acceleration, speculative decoding060

must ensure accurate draft predictions while keep-061

ing speculation overhead low. Additional model062

architectures are constructed to guess the draft to-063

kens, including small draft models (Leviathan et al.,064

2023; Chen et al., 2023) and parameter-efficient065

structures (Cai et al., 2024; Lin et al., 2024). How-066

ever, these approaches require resources for ad-067

ditional training on each LLM. The typical ap-068

proach to achieve train-free speculative decoding069

is retrieve-based. In this case, a retrieval library is070

pre-defined to obtain tokens following the suffix of071

current content as draft tokens. Several methods072

have been proposed in this category, each with its073

trade-offs: (i) REST (He et al., 2023) transforms074

existing corpora into a retrieval library, but the stor-075

age is large, retrieval is time-consuming, and the076

library lacks flexibility as it’s static to any queries.077

(ii) PLD (Saxena, 2023) only retrieves the previ-078

ous content with minimal cost. However, it can079

not predict new tokens or new token combinations.080

(iii) Lookhead (Fu et al., 2024) construct and up-081

date an n-gram library by decoding n times with082

LLMs. However, LLMs have to generate n-grams083

while in inference, causing low efficiency.084

Furthermore, all speculative decoding ap-085

proaches fail to fully utilize candidate tokens,086

which are multiple possible next tokens generated087

by LLMs at each decoding step. In greedy decod-088

ing, only the top-1 candidate token of accepted to-089

kens is selected as the output, while other candidate090

tokens, including all candidate tokens from rejected091

tokens, are discarded, such as ‘k’ and ‘keys’ in Fig-092

ure 1. However, we observe that when current093

input tokens reappear in future generations, the094

following tokens could be candidate tokens gen-095

erated several steps prior. Based on the observa-096

tion, we propose Token Recycling (TR), which uti-097

lizes candidate tokens as draft tokens. It stores can-098

didate tokens in an adjacency matrix. Before each099

decoding step, a BFS-like approach retrieves a draft100

tree from the matrix, which is then verified using101

tree attention. Once verified, the newly generated102

candidate tokens update the matrix. (i) The matrix103

provides a flexible retrieval library that is tailored104

to each query and offers low retrieval costs due to105

its small size (<2MB). (ii) Compared to using the106

previous content solely, candidate tokens naturally 107

include more tokens, providing many possible con- 108

tinuations. (iii) The construction and update of our 109

library (matrix) utilize the ‘trash’ tokens without 110

requiring any additional generation. 111

We conduct comprehensive experiments on gen- 112

eral benchmark SpecBench (Xia et al., 2024), and 113

specialized dataset on code domain, MBPP (Chen 114

et al., 2021) with Vicuna (Zheng et al., 2023) and 115

Code Llama (Roziere et al., 2023) . The results 116

show that TR greatly exceeds previous train-free ap- 117

proaches, and improves more than 30% on all sizes 118

(7b, 13b, 33b/34b). The speed-up ratio even ex- 119

ceeds the widely used training approach–Medusa, 120

demonstrating its high efficiency. 121

Our contributions are summarized below: 122

• A plug-and-play speculative decoding method, 123

Token Recycling is proposed. It firstly recog- 124

nizes the value of ‘trash’ tokens and converts 125

them into ‘treasure’ tokens for acceleration. 126

• TR requires minimal storage space (<2MB) 127

with a low retrieval cost and covers many new 128

tokens. Continuously updating provides a dy- 129

namic retrieval space. 130

• TR achieves approximately 2x speedup on all 131

sizes of LLMs. It achieves a new SOTA with 132

an improvement greater than 31% compared 133

to previous train-free approaches and even 134

exceeding a training approach. 135

2 Background 136

In this section, we overview the speculative decod- 137

ing. We first define auto-regressive (AR) decoding 138

formally, then discuss speculative decoding, focus- 139

ing on two key strategies: guess-and-verify and 140

tree attention. 141

2.1 Auto-Regressive Decoding 142

AR is the default decoding strategy of LLMs. At
each step t, LLMs calculate the probability distri-
bution of the next token given the current content
s = (x0, x1, · · · , xt) which xi ∈ V:

pt+1 = P (x|s; θ).

Here V is the vocabulary and θ denotes LLM pa-
rameters. The next token is selected from pt+1

based on the sampling method. Followed Kou et al.
(2024), we focus on greedy decoding in this paper,
where the next token is:

xt+1 = argmax pt+1.
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Candidate tokens are the top-k tokens with the high-
est probabilities

(x0t+1, x
1
t+1, . . . , x

k−1
t+1 ) = argtopk(pt+1)

where k is the number of candidate tokens,143

argtopk(·) returns the indices of the top-k highest144

values in pt+1 and x0t+1 = xt+1.145

2.2 Speculative Decoding146

Guess and Verify Speculative decoding effec-147

tively utilizes the parallel capability of acceler-148

ators. Given s, it first guesses n subsequent149

draft tokens (x̃t+1, · · · , x̃t+n). The combination150

(s, x̃t+1, · · · , x̃t+n) is then sent to LLMs for one151

forward pass, resulting in:152

pt+1 = P (x | s; θ),153

p̃t+i = P (x | s, x̃t+1, . . . , x̃t+i−1; θ), i = 2, . . . , n.154

pt+1 is the same as AR decoding so the ground
truth xt+1 is determinable. If the draft token x̃t+1

matches xt+1, then p̃t+2 is assumed to identical
to pt+2. Thus, the next ground truth is selected:
xt+2 = argmax p̃t+2. This verification process
continues until the draft token does not match the
ground truth, indicated by:

xt+j = argmax p̃t+j ̸= x̃t+j .

Ultimately, j new tokens are confirmed in one for-155

ward pass. The time cost of one forward pass with156

(s, x̃t+1, · · · , x̃t+n) is nearly the same as with s157

due to the high parallel performance of accelera-158

tors. Figure 1 shows an example. The draft tokens159

are [‘i’, ‘in’, ‘range’, ‘(’] and the output tokens160

are [‘i’, ‘in’, ‘zip’, ‘(’, ‘xs’] after the forward pass.161

Though ‘zip’ fails to match ‘range’, three tokens162

[‘i’, ‘in’, ‘zip’] are confirmed in one forward pass.163

Tree Attention Traditional causal attention164

masks are designed for linear sequences, which165

restricts speculative decoding to verifying one se-166

quence at a time. However, as the sequence length-167

ens during draft token generation, the number of168

potential continuations increases. For example, in169

the draft tree in Figure 2, the token following ‘guest’170

could be ‘speaker’ or ‘speak’. Tree attention mod-171

ifies the attention mask to verify multiple draft172

sequences simultaneously. It compresses multiple173

sequences into a single merged sequence, such as174

[‘guest’, ‘speaker’, ‘speak’], while preserving the175

tree structure through tree attention mask. Each176

child node attends only to its parent nodes, prevent- 177

ing sibling tokens from interfering with each other. 178

After the LLM processes the merged sequence, all 179

possible sequences such as ‘guest speaker’ and 180

‘guest speak’, along with their corresponding out- 181

put tokens are extracted based on the tree structure 182

and verified in parallel. The longest correct se- 183

quence is selected as the final output. In rare cases, 184

when tokens have identical probabilities, tree atten- 185

tion and AR decoding may select different tokens, 186

but this affects the response quality minimally. The 187

detailed explanation is in Appendix A.1. 188

In summary, speculative decoding, through 189

guess and verify and tree attention, improves the 190

inference latency robustly and efficiently. 191

3 Methodology 192

Figure 2 provides an overview of Token Recycling 193

(TR). It leverages a hot-start adjacency matrix to 194

store candidate tokens and employs a BFS-like al- 195

gorithm to construct a draft tree. It utilizes tree at- 196

tention to verify draft sequences and continuously 197

updates the matrix with new candidate tokens gen- 198

erated during the decoding process. 199

3.1 Adjacency Matrix Initialization 200

The adjacency matrix M is a key component in 201

TR, used to store top-k candidate tokens for each 202

token in the vocabulary: 203

M∈ V |V|×k 204

where k is a user-defined hyperparameter. Each 205

elementM[i, j] indicates that the token VM [i,j] is 206

the j-th candidate token associated with Vi. The 207

use of matrix format, as opposed to other struc- 208

tures like tries, enables efficient parallel processing 209

of candidate tokens, which is crucial for reducing 210

retrieval and update times. 211

Initially, all elements are set to zero, meaning 212

that a token must appear in draft tokens before 213

it has valid candidate tokens. This initialization 214

leads to the matrix starting with limited predic- 215

tive capability, potentially causing inefficiencies 216

during the early stages of inference. To mitigate 217

this limitation, we implement a hot start strategy. 218

This involves continuing to use the existing ma- 219

trix, thereby leveraging prior knowledge. Even 220

if queries differ in the domain, candidate tokens 221

often include common expressions and patterns 222

that frequently appear across various queries. Con- 223

sequently, hot start ensures that the matrix has a 224
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Figure 2: An overview of Token Recycling (TR). The adjacency matrix, initialized by the existing matrix, stores
candidate tokens. TR first retrieves a draft tree from the matrix which is then verified through tree attention. After
add the longest correct sequence to the content, the new top-k candidate tokens update the matrix.

broader starting point, covering a wide range of225

potential continuations.226

3.2 Draft Tree Retrieval227

The adjacency matrixM stores candidate tokens,228

which can be used as draft tokens when their cor-229

responding tokens appear later. Directly using the230

matrix could only determine the immediate next231

token, such as finding ‘speaker’ following ‘guest’232

(see Figure 2). Even if ‘speaker’ is correct, it only233

slightly improves upon AR decoding, adding just234

one additional token. In fact, the matrix also holds235

possible continuations for these candidate tokens,236

suggesting subsequent tokens like ‘at’ following237

‘speaker’. Extending the sequence step by step al-238

lows for longer draft sequences. Furthermore, by239

storing top-k candidate tokens, multiple potential240

continuations can be explored in parallel for each241

token, such as ‘at’ and ‘for’ following ‘speaker’.242

This BFS process enables the construction of a243

draft tree with only the adjacency matrix, which244

can be directly applied to tree attention.245

Unlike a complete BFS, we use heuristic rules246

to define a static and imbalanced tree structure.247

This tree structure and its construction process are248

detailed in the Appendix A.2. Static: The num-249

ber of children for each node remains constant250

across all decoding steps, which facilitates pre- 251

processing and enables efficient parallel operations 252

during layer traversal. Avoiding the need to tra- 253

verse each node individually significantly reduces 254

retrieval time. Imbalance: Nodes positioned ear- 255

lier in each layer have more children and extend 256

deeper. This allocates computational resources to 257

the most probable continuations since candidate 258

tokens are ordered by probabilities in the matrix. 259

The BFS-like approach for retrieving the draft 260

tree begins with the matrixM and the tree structure 261

Tree. The root is the last token of current content, 262

like ‘guest’ in Figure 2. As the root forms the first 263

layer, all candidate tokens for ‘guest’ are extracted 264

from M, resulting in [‘speaker’, ‘speak’, ‘Spe’]. 265

According to Tree, the first layer allows each to- 266

ken to have two children, Therefore, ‘speaker’ and 267

‘speak’, which have the top-2 probabilities, are 268

added to the second layer. The process then pro- 269

ceeds to expand a new layer. All candidate tokens 270

of the second layer are retrieved in parallel, result- 271

ing in [‘at’, ‘for’, ‘is’] and [‘ings’, ‘in’, ‘ers’]. Tree 272

specifies that the first node (‘speaker’) can have two 273

children, while the subsequent node (‘speak’) can 274

only have one child. Consequently, the new layer 275

tokens are [‘at’, ‘for’], and [‘ings’]. This process 276

repeats until the specified depth is reached. The 277
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detailed Algorithm 1 is provided in Appendix A.2.278

This retrieval method constructs a draft tree ef-279

fectively and efficiently with the desired length and280

variety, which can later be verified by tree attention.281

3.3 Verification and Update282

The verification of the draft tree aligns with Sec-283

tion 2.2. Merged sequence S is constructed through284

traversing the draft tree by layers. All potential285

draft sequences are then verified and the longest286

correct sequence is selected.287

Following verification, the adjacency matrixM288

is updated in parallel based on the output distribu-289

tions p̃i+1 of each draft token xi ∈ S:290

M[x̃i] = argtopk(p̃i+1).291

Since multiple preceding tokens may have the292

same candidate token, duplicates may appear in293

S, and their output distributions are likely to dif-294

fer. When performing updates in parallel, CUDA295

operations may merge these updates, leading to296

variations in the final result. For example, if xi297

appears twice and has two different top-2 out-298

put tokens, [y0, y1], [z0, z1], thenM[xi] could be299

updated to exactly one of the following results:300

[y0, z1], [y0, y1], [z0, z1] or [z0, y1]. We do not re-301

solve this merging, as adding controls reduces over-302

all performance, as discussed later in Section 5.2.303

The update process directly overwrites the pre-304

vious candidate tokens and leverages the new ones305

as draft tokens for subsequent decoding steps. This306

allows the retrieval space to dynamically adapt to307

the current content, focusing on the most relevant308

and probable continuations. It also eliminates the309

necessity for extra operations beyond the standard310

decoding to update the retrieval space.311

In summary, TR capitalizes on the ‘trash’ present312

in speculative decoding by implementing a cycling313

process between candidate and draft tokens. It ac-314

celerates inference without the need for additional315

model structures or training, making it highly adapt-316

able and seamlessly integrated with any architec-317

ture or model size.318

4 Experiment319

4.1 Experimental Setup320

Align with previous work (Kou et al., 2024), we fo-321

cus on common computational redundancy scenar-322

ios, specifically greedy decoding with a batch size323

of one. The following evaluation metrics are used:324

Mean Accepted Token (MAT) (Xia et al., 2024)325

represents the average number of tokens confirmed 326

in a single decoding step; Tokens per Second 327

(Ts/s) measures the number of tokens processed per 328

second; Speedup ratio compares the performance 329

relative to HuggingFace’s implementation of AR 330

decoding. We set k = 8 forM (<2MB storage in 331

sum) and the draft tree structure is shown in Ap- 332

pendix A.2. All experiments are conducted using 333

Pytorch 2.3 with a single A100-80GB GPU and 334

128 CPUs under CUDA 12.2. 335

Datasets and LLMs We conduct experiments on 336

SpecBench (Xia et al., 2024) and MBPP (Austin 337

et al., 2021). SpecBench is a comprehensive bench- 338

mark encompassing diverse scenarios including 339

Multi-turn Conversation (MT), Translation (Trans), 340

Summarization (Sum), Question Answering (QA), 341

Mathematical Reasoning (Math), and Retrieval- 342

Augmented Generation (RAG). MBPP is a widely 343

used dataset in code generation, which has a 344

growing demand for efficient generation. These 345

datasets enable a comparative analysis with prior 346

work across both general and specialized domains. 347

We follow the standard practice of utilizing Vi- 348

cuna (Chiang et al., 2023) for SpecBench and Code 349

Llama (Roziere et al., 2023) for MBPP across three 350

different scales: 7B, 13B, and 33B1. 351

Baseline We compare TR with three train-free 352

retrieval-based methods. Lookahead (Lade) con- 353

structs an n-gram retrieval library through addi- 354

tional n-gram generation during decoding, con- 355

suming significant computational resources. PLD 356

treats previous content as the retrieval library, 357

which is constrained and cannot introduce new to- 358

kens or new token combinations. REST builds 359

the retrieval library from existing training datasets, 360

requiring large storage and considerable retrieval 361

time. The static nature of the library also prevents it 362

from adapting to individual queries. Furthermore, 363

we also include a train-need baseline for border 364

comparison. Medusa adds multiple additional LM 365

heads in the final layer to predict draft tokens. We 366

focus on losses Medusa-1 since Medusa-2 is lossy. 367

All baselines use their default hyperparameters. 368

4.2 Main Results 369

Table 1 shows the performance of TR compared to 370

other methods. On SpecBench, it achieves more 371

than a 2x speedup on the 7B model, nearly 30% 372

higher than the previous train-free methods. Even 373

1The largest model of Code Llama is 34B, for consistency
and convenience in our comparisons, we refer to it as 33B.
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#Para Method SpecBench MBPP

MT Trans Sum QA Math RAG MAT Ts/s Speed MAT Ts/s Speed

7B

AR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 54.30 1.00 1.00 56.15 1.00
Lade 1.42 1.12 1.21 1.21 1.52 1.13 1.64 69.03 1.27 1.66 79.16 1.41
PLD 1.53 0.98 2.36 1.10 1.50 1.74 1.75 83.30 1.53 1.39 66.65 1.19

REST 1.37 1.05 1.12 1.42 1.06 1.30 1.84 66.29 1.22 2.08 87.08 1.55
Medusa 1.90 1.57 1.48 1.58 1.87 1.45 2.31 89.41 1.65 - - -

TR 2.17 1.90 1.94 1.95 2.40 1.78 2.70 110.06 2.03 2.93 131.20 2.34

13B

AR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 39.41 1.00 1.00 41.31 1.00
Lade 1.29 1.06 1.16 1.12 1.48 1.09 1.63 47.50 1.21 1.73 56.87 1.38
PLD 1.45 1.01 2.10 1.02 1.55 1.65 1.67 57.01 1.45 1.48 52.20 1.26

REST 1.51 1.14 1.31 1.50 1.17 1.50 1.82 53.34 1.35 2.05 70.13 1.70
Medusa 1.94 1.66 1.57 1.62 1.98 1.53 2.39 67.92 1.72 - - -

TR 1.98 1.77 1.89 1.75 2.21 1.73 2.72 74.57 1.89 3.08 93.42 2.26

33B

AR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 18.44 1.00 1.00 19.44 1.00
Lade 1.32 1.09 1.20 1.17 1.55 1.14 1.61 23.03 1.25 1.70 29.22 1.50
PLD 1.43 1.06 1.94 1.08 1.55 1.41 1.55 25.89 1.40 1.41 25.89 1.33

REST 1.63 1.27 1.42 1.61 1.29 1.57 1.81 26.99 1.46 2.10 36.85 1.90
Medusa 1.98 1.75 1.63 1.68 2.09 1.61 2.32 33.11 1.80 - - -

TR 1.95 1.75 1.92 1.77 2.24 1.78 2.63 35.16 1.91 3.05 45.43 2.34

Table 1: Performance of different methods on SpecBench (Vicuna) and on MBPP (Code Llama) across all parameter
sizes. Speed is the displayed metric for categories of SpecBench. MBPP results exclude Medusa as it lacks a Code
Llama variant. Medusa involves training while others are training-free. Bold represents the highest performance.

Method Memory (MB) Speed

Lade 105 1.27
PLD 0 1.53

REST 465 1.22
Medusa >800 1.65

TR 1.95 2.03

Table 2: The additional memory costs for all methods.
Medusa adds extra LM heads to the model, so the mem-
ory usage depends on the hidden size and the precision.
800MB is based on a 7B LLM and fp16 precision.

compared to tuning Medusa, it shows an improve-374

ment of almost 25%. For the 13B and 33B models,375

it consistently provides nearly 2x speedup, main-376

taining the 30% acceleration advantage. These377

results demonstrate that TR is the most effective378

train-free method on SpecBench, offering substan-379

tial and consistent speedup across all model sizes.380

Notably, TR achieves the best speedup across381

most sub-tasks as well, except it slightly trails PLD382

on Sum. This may be due to this task often in-383

volves many repetitions of previous content. How-384

ever, the performance gap between TR and PLD385

narrows as the model size increases, reaching only386

a 1% difference with the 33B model. This is due387

to larger models tending to generate new tokens388

rather than repeat previous content. In other tasks389

such as MT, Trans, QA, and Math, TR shows a390

significant improvement of about 40%~70% for391

the 7B model. This demonstrates the strong gen-392

eralization of our method across various scenarios. 393

Although the improvement on RAG is less than 3% 394

for the 7B model, it increases with model size, ex- 395

ceeding 10% for the 33B one. This improvement is 396

consistent with the preference of larger models for 397

new tokens. Compared to the general domain, all 398

methods achieve greater acceleration on the code 399

domain due to its higher content redundancy. TR 400

provides approximately 2.3x speedup across all 401

model scales, achieving the SOTA performance. 402

Furthermore, performances on Trans show the 403

advantages of our method compared to PLD and 404

REST. While PLD shows negligible speedup (close 405

to 1x) and REST achieves its lowest speedup across 406

tasks, TR consistently delivers over 1.75x speedup 407

across all model sizes. Notably, on the 7B model, 408

PLD results in a slowdown, and REST achieves 409

just 1.05x, whereas TR reaches 1.9x. Trans re- 410

quires generating new tokens continuously, involv- 411

ing minimal repetition of previous content. Addi- 412

tionally, it is highly context-sensitive, making it 413

challenging to find exact matches from any pre- 414

existing database. These pose challenges for PLD 415

and REST. In contrast, the adaptive and diverse re- 416

trieval space of TR leads to superior performance. 417

In addition to Speed, TR achieves the highest MAT 418

across both benchmarks. This is attributed to its 419

shorter retrieval times and the avoidance of addi- 420

tional generations like Lade. This allows for deeper 421

and wider draft trees, enabling more tokens to be 422
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Figure 3: Effects of tree breadth, depth and updating strategies on MAT and Tokens/s are in (a), (b), and (c).

accepted in a single decoding step.423

Tokens/s Speed

AR 54.98 1.00
Random 95.07 1.73

Zero 102.68 1.87
Fixed 117.43 2.12

Shuffle 118.78 2.16
TR 119.56 2.17

Table 3: The impact of different initialization strategies
of the adjacency matrix. Random means randomly se-
lected from the vocabulary, Zero means all set to zero,
Fixed means inherited from a fixed matrix and Shuffle
means shuffle the test set.

Table 2 summarizes the GPU memory require-424

ment for all methods. Compared to REST and425

Lade, TR achieves higher speedup with far less426

memory. While PLD requires no additional mem-427

ory, its speedup is limited. Unlike Medusa, our428

approach is training-free, requires minimal mem-429

ory, and still achieves superior performance.430

TR demonstrates significant improvements431

across all scenarios, highlighting its efficiency and432

broad applicability. Importantly, TR is train-free433

and self-drafting, allowing for an approximate434

2x speedup that can be seamlessly applied as a435

‘free lunch’ to any existing LLM.436

5 Analysis437

5.1 Tree Structure438

As previously outlined in Section 3.2, our tree struc-439

ture is static and imbalanced. The tree size is a440

crucial factor to accelerate. A larger tree allows441

more tokens confirmed in one decoding step but442

also introduces more computational overhead, in-443

creasing the time required for each decoding step.444

To investigate the impact of tree size, specifically445

its depth and breadth, experiments are conducted446

on MT-Bench using Vicuna-7B.447

Breadth Increasing the breadth of the tree allows 448

for covering more possibilities. In Figure 3(a), the 449

breadth is expanded by adding nodes while keeping 450

the depth fixed at six layers. This leads to a con- 451

sistent improvement in MAT. However, when the 452

breadth exceeds 80, Tokens/s begins to decrease. 453

The additional computational overhead eventually 454

outweighs the benefits of a higher MAT. 455

Depth Increasing the depth of the tree allows 456

for accepting longer sequences during decoding. 457

In Figure 3(b), with the number of nodes fixed 458

at 80, the depth is gradually increased. MAT ini- 459

tially rises rapidly but eventually shows minimal 460

improvement, while Tokens/s noticeably fluctuates. 461

Because the matrix stores candidate tokens for only 462

adjacent steps, longer sequences weaken the con- 463

nections between distant tokens. This limitation 464

reduces the effectiveness of increased depth, caus- 465

ing Tokens/s to fluctuate. 466

5.2 Ablation Study 467

Hot Start In TR, the adjacency matrix inherits 468

from the previous one. In Table 3, we explore the 469

impact of different initialization strategies. Ran- 470

dom means randomly selecting tokens from the 471

vocabulary, while Zero sets all matrix elements 472

to zero. Fixed selects 100 queries from AlpacaE- 473

val (Li et al., 2023) (unrelated to the test set), ex- 474

ecutes them, and stores the resulting matrix. This 475

matrix is then used to initialize each query in the 476

test set. Shuffle refers to shuffling the test set. Com- 477

pared to the Zero, the irrelevant noise introduced by 478

Random leads to a sharp decrease in performance. 479

Fixed, Shuffle and TR show significant improve- 480

ments over Zero, suggesting that the prior matrix 481

may capture common patterns that effectively assist 482

subsequent queries. The relatively small difference 483

among them indicates that these patterns are gener- 484

alizable and not tied to specific tasks or content. 485
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SpecBench MBPP

Only Accepted 1.63 1.99
All Draft 2.69 2.93

Table 4: Mean Accepted Token (MAT) for updating
candidate tokens from only accepted or all draft tokens.

Update Strategies Section 3.1 discuss duplicate486

tokens in the merged sequence during matrix up-487

dates. We compare three updating strategies: using488

candidate tokens from the first occurrence, from489

the last occurrence, and the current method (merg-490

ing via parallel CUDA operations). Figure 3(c)491

indicates that using the last occurrence yields the492

highest MAT, which may benefit from more contex-493

tual information. However, the differences among494

different strategies in MAT are minimal. In terms of495

Tokens/s, the current approach significantly outper-496

forms the other two, as it avoids the additional pro-497

cessing required to manage token positions, thereby498

reducing delays. Speculative decoding is highly499

sensitive to latency, any extra operation must pro-500

vide substantial benefits to outweigh its time cost.501

Effect of Rejected Tokens During the update,502

we refresh the candidate tokens for all draft tokens,503

including both accepted and rejected tokens. To fur-504

ther illustrate the significant effect of trash tokens,505

we compare two settings: updating only the candi-506

dates of accepted tokens versus of all draft tokens.507

As shown in Table 4, including candidates of re-508

jected tokens significantly improves the MAT. This509

indicates that rejected tokens also carry valuable in-510

formation necessary for subsequent decoding. We511

include a case study in Appendix A.6.512

6 Related Work513

Efficient inference is crucial for real-time appli-514

cations and low-resource scenarios. Many strate-515

gies have been developed to reduce latency (Zhou516

et al., 2024b). Among these, speculative decod-517

ing (Chen et al., 2023; Leviathan et al., 2023; Miao518

et al., 2024; Xia et al., 2023) is a losses tech-519

nique that predicts multiple possible continuations520

simultaneously. It reduces the number of decod-521

ing steps needed without compromising accuracy.522

Some speculative decoding methods rely on addi-523

tional draft models to guess draft tokens. These524

typically involve using smaller models from the525

same series (Zhao et al., 2024; Spector and Re;526

Sun et al., 2023; Liu et al., 2024b; Yuan et al.,527

2024; Gong et al., 2024) or training new models528

with a shared vocabulary (Leviathan et al., 2023; 529

Chen et al., 2023; Zhou et al., 2024a; Li et al., 530

2024). It is worth noting that Zhao et al. (2024) 531

also uses rejected tokens but does not include can- 532

didate tokens. Additionally, Kou et al. (2024); 533

Wang et al. (2024b) propose training the original 534

LLMs to enable non-aggressive decoding. While 535

effective, these approaches require managing or 536

training multiple models, which can be non-trivial 537

and resource-intensive. Other methods focus on 538

parameter-efficient structures. These approaches 539

minimize the need for complete retraining but still 540

require model-specific training and adaptation, lim- 541

iting their scalability and general applicability (Lin 542

et al., 2024; Liu et al., 2024a). 543

Train-free methods construct retrieval libraries 544

to obtain draft tokens (Yang et al., 2023). Looka- 545

head (Fu et al., 2024) generates n-grams through 546

multiple decodings, building a retrieval library that 547

can hit multiple tokens in one step. However, 548

it requires the LLM to generate n-grams while 549

responding to queries, which reduces efficiency. 550

PLD (Saxena, 2023) retrieves only from previous 551

content, resulting in minimal overhead and signif- 552

icant speedup in high-redundancy tasks like sum- 553

marization. However, it provides little acceleration 554

for tasks requiring the generation of new content, 555

like translation. REST (He et al., 2023) constructs 556

retrieval libraries using existing corpora and per- 557

forms well in common scenarios. However, this 558

approach requires large storage, time-consuming 559

retrieval, and cannot adapt to each query. 560

Token Recycling is a train-free, retrieval-based 561

method. It requires no additional generation, cov- 562

ers a broader range of possible continuations, and 563

demands minimal storage with low retrieval costs. 564

The update process ensures the retrieval space re- 565

mains adaptable. 566

7 Conclusion 567

In this work, we introduce Token Recycling, a spec- 568

ulative decoding method for accelerating the in- 569

ference of LLMs. It utilizes an adjacency matrix 570

to store candidate tokens and retrieve a draft tree, 571

which is then verified with tree attention. The ma- 572

trix is updated with new candidate tokens generated 573

during decoding. Token Recycling could be inte- 574

grated seamlessly with existing LLMs and tasks. 575

As a train-free approach, it achieves a speedup of 576

nearly 2x with <2MB of storage, improving over 577

31% compared to previous train-free approaches. 578
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Limitations579

Our study is comprehensive, but has certain limita-580

tions that we plan to address in future research. In581

constructing the draft tree, we use a static tree struc-582

ture. However, a dynamic tree could be employed583

instead. While dynamic trees introduce additional584

complexity, they allow for better adaptation to each585

decoding step, potentially improving performance586

by tailoring the tree structure to the specific require-587

ments of each query.588

Ethical Considerations589

The data for the proposed methods is drawn solely590

from publicly accessible project resources on rep-591

utable websites, ensuring that no sensitive informa-592

tion is included. Moreover, all datasets and baseline593

models used in our experiments are also available594

to the public. We have taken care to acknowledge595

the original authors by properly citing their work.596
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A Appendix845

A.1 Identical Probability Tokens846

Method MT-Bench GSM8K

AR Decoding 6.17 35.2
Tree Attention 6.23 35.2

Table 5: Quality/Accuracy comparison of AR-Decoding
and Tree Attention on MT-Bench and GSM8K. MT-
Bench results are taken from Cai et al. (2024). It shows
that Tree Attention has minimal impact on both answer
accuracy and quality.

Floating-point representation in the computer847

has precision errors, commonly known as ‘floating-848

point rounding errors’. Specifically, the precision849

of floating-point numbers is determined by the850

number of bits in the mantissa. In the IEEE 754851

standard, the float32 type has a 23-bit mantissa,852

meaning the smallest representable difference is853

2−23, approximately 1.19×10−7. The float16 type,854

with a 10-bit mantissa, can represent differences855

as small as 2−10, or about 9.77× 10−4. If the dif-856

ference between two token probabilities is smaller857

than the precision limit of floating-point represen-858

tation, these two probabilities will be rounded to859

the same value, and these tokens will be treated as860

having identical probabilities during sampling.861

AR Decoding uses ‘torch.argmax’ to return the862

token with the highest probability. When the prob-863

abilities are the same, ‘torch.argmax’ defaults to864

returning the one with the smallest index. In Tree865

Attention, the number of mask tokens is increased866

compared to AR Decoding, and the attention score867

of the mask tokens after the softmax operation is868

not strictly zero, but rather a very small value close869

to zero. These tiny non-zero values perturb the hid-870

den representations, causing tokens that originally871

had identical probabilities to now differ slightly,872

resulting in a different argmax outcome compared873

to AR Decoding.874

Nevertheless, as shown in Table 5, due to the875

extremely rare occurrence of this issue and the876

affected probabilities being so close to each other,877

the impact on experimental accuracy and model878

performance is negligible.879

A.2 Draft Tree Algorithm and Structure880

Utilizing tree attention (Miao et al., 2024) to881

extend the path in the verification phase has become882

a widely adopted strategy for speculative decoding883

Algorithm 1 Static Tree Based BFS
Require: Adjacency matrixM, Static tree struc-

ture Tree, the last prompt token xt
Ensure: Merged Sequence S

1: Initialize S ← ∅
2: Initialize root← xt
3: Initialize the current layer L← (root)
4: Initialize the current depth d← 0
5: while d < Tree.depth do
6: Initialize next layer Lnext ← ∅
7: Get all candidate tokens of L from M in

parallel
8: xs = M [L]
9: Extract next layer tokens from xs with Tree

10: Lnext = xs[Tree[d].index]
11: Concatenate S and L
12: S ← (S;L)
13: L← Lnext
14: end while
15: return S

methods. 884

In Token Recycling, we also use a heuristically 885

constructed token tree to perform the verification. 886

As shown in Figure 5, we construct a static and 887

unbalanced tree inspired by Cai et al. (2024). The 888

number k on a node indicates that it is the k-th can- 889

didate token for its parent node. The construction 890

process is below. We begin with a fully balanced 891

10-branch tree and use an independent validation 892

set to identify the top k nodes that most frequently 893

yield correct tokens. These top k nodes and their 894

children are retained to form a new tree, and the 895

process is repeated to identify the next set of top k 896

nodes. This iterative process continues until perfor- 897

mance no longer shows significant improvement. 898

The final tree is determined, and the k is set to 899

consider the maximum number of children across 900

all nodes and the memory requirement. While em- 901

pirical, this iterative approach has proven to be 902

effective. Further details on tuning the n are pro- 903

vided in Section 5.1. Overall, the tree we construct 904

contains 80 nodes (including the root node) in 6 905

layers. This means that each forward requires an 906

additional draft input of 79 tokens with a maximum 907

acceptance length of 6. 908

Building on the tree structure described above, 909

we construct a draft tree for the current content by 910

a BFS-like algorithm in the inference phase. As 911

described in Algorithm 1, we infill the child nodes 912

12



of each layer in turn according to the matrix. At913

last, the merged sequence S is returned and sent to914

tree attention with Tree.915

A.3 Time Allocation916

Preprocess (1.6%)
Retrieval (1.6%)

Update (1.5%)

Verify (5.2%)

Model Forward (90.1%)

Figure 4: Time allocation for each operation when
LLMs respond to a query.

For speculative decoding to be effective, it is es-917

sential to maintain a high hit rate while minimizing918

the time spent on additional operations. We divide919

each decoding step into several components: pre-920

processing , retrieving draft tokens, model forward921

pass, verifying draft sequences, and updating the922

matrix, input tokens, and key-value cache. The923

average time spent on each component is shown in924

Figure 4. The results indicate that the majority of925

the time is consumed by the model forward pass.926

The verification process also takes a significant927

amount of time due to the need to extract and ver-928

ify all feasible paths. Retrieving draft tokens and929

updating operations take roughly the same amount930

of time.931

A.4 Compare With Eagle932

TR is Self-Draft and Train-Free, and fair com-933

parisons with other speculative decoding methods934

that do not require training (e.g., Lookahead, PLD,935

REST) have already been conducted in section 4.2.936

However, due to the effectiveness of our approach,937

our performance significantly exceeds that of these938

baselines. As a result, we became curious about939

comparing our method with training-dependent ap-940

proaches, such as representively, Medusa. The941

comparison results show that our method even out-942

performs it a lot. Approaches like Eagle (Li et al.,943

2024), which rely on additional architectures to944

generate drafts, may achieve higher performance,945

but they require collecting datasets for training the946

small model, and during deployment, they also947

need extra memory. In contrast, TR only requires 948

<2MB of storage, is train-free, and can be directly 949

applied to all LLMs, achieving nearly a 2x speedup 950

across various model sizes. In Table ??, we com- 951

pare the performance of Token Recycling and Ea- 952

gle on the vicuna-7b-v1.3 model using SpecBench. 953

In comparison, our method uses only 0.39% of 954

the memory required by Eagle, while achieving 955

88.65% of its speedup performance. 956

Memory Cost Speed Ratio

Eagle 500MB 2.29
TR <2MB 2.03

Table 6: Compare Token Recycling with Eagle.

A.5 Reuse Mechanism Analysis 957

The output of LLM is context-dependent, it makes 958

us curious why reusing candidate tokens from pre- 959

vious generations works. Xiao et al. (2024) ana- 960

lyzed the distribution of attention logits in Trans- 961

formers and found that the first two layers focus 962

more on ‘local’ patterns, with recent tokens receiv- 963

ing much more attention. In later layers, the model 964

shifts its focus to the tokens at the beginning of the 965

sequence. To accelerate, candidate tokens need to 966

satisfy both local semantics and long-range depen- 967

dencies. As shown in Figure 1, draft tokens are di- 968

vided into accepted and rejected tokens. Accepted 969

tokens are those that appear in the previous query 970

response. In Token Recycling, candidate tokens for 971

all draft tokens are stored, not only accepted ones. 972

Each decoding step involves 79 draft tokens, mean- 973

ing 79 tokens receive/update their candidate tokens 974

at each step. The quantity of rejected tokens is 975

far more than accepted tokens, and their candidate 976

tokens are also stored in the matrix. In other words, 977

previous generations actually provide a large num- 978

ber of common patterns stored in the matrix, and 979

these patterns often meet local semantic needs. 980

From two perspectives, the reuse of these com- 981

mon patterns is justified: 982

For scenarios like sentence transitions, verb col- 983

locations, punctuation, or words split into multiple 984

tokens, there is often no need for long-range depen- 985

dencies. The common patterns stored in the matrix 986

can significantly accelerate the decoding process. 987

Rejected tokens may not satisfy the long-range 988

dependencies of the previous, but this does not 989

mean they do not meet the long-range dependencies 990

of the current. These tokens may be accepted in 991
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the future. As shown in Table 4, the performance992

gain from the candidate tokens of rejected tokens is993

significantly greater than the gain from using only994

the accepted tokens in the SpecBench experiments.995

We also include a case study in A.6.996

A.6 Case Study997

Below, we present a real example from MT-Bench,998

illustrating how accepted tokens and rejected to-999

kens contribute to the acceleration of Token Recy-1000

cling. First Round:1001

• Prefix last token: [’guest’]1002

• Merged sequence with draft tokens: [’guest’,1003

’speaker’, ’</s>’, ’speak’, ’<0x0A>’, ’Spe’,1004

’lect’, ’speaking’, ’spe’, ’at’, ’for’, ’</s>’,1005

’is’, ’could’, ’can’, ’would’, ’<0x0A>’, ’<s>’,1006

’sime’, ’multicol’, ’bolds’, ’</s>’, ’ings’,1007

’in’, ’<0x0A>’, ’a’, ’aking’, ’ures’, ’en-1008

gag’, ’aking’, ’a’, ’an’, ’the’, ’[’, ’our’, ’lo-1009

cal’, ’</s>’, ’up’, ’a’, ’an’, ’</s>’, ’<s>’,1010

’sime’, ’a’, ’be’, ’help’, ’like’, ’<0x0A>’,1011

’The’, ’Home’, ’guest’, ’<s>’, ’<0x0A>’, ’op-1012

portunity’, ’</s>’, ’local’, ’nearby’, ’guest’,1013

’up’, ’public’, ’guest’, ’</s>’, ’guest’, ’pub-1014

lic’, ’local’, ’local’, ’The’, ’first’, ’The’,1015

’<0x0A>’, ’event’, ’community’, ’Toast’,1016

’Buddh’, ’speaker’, ’speaker’, ’event’, ’time’,1017

’.’, ’,’, ’ism’]1018

• Accepted sequence: [’guest’, ’speaker’, ’at’,1019

’a’, ’local’, ’event’, ’could’]1020

Key observations:1021

• Rejected tokens still receive candidate to-1022

kens: For example, [’be’] was not directly1023

accepted, but its candidate tokens were stored.1024

• Candidate tokens of accepted tokens are1025

stored: [’local’] for [’a’] was chosen in this1026

round, but other candidate tokens were also1027

retained.1028

At this point, the adjacency matrix stores:1029

• ’be’: [’able’, ’onto’, ’mistaken’, ’wrong’,1030

’the’, ’interested’, ’persu’, ’a’]1031

• ’a’: [’local’, ’time’, ’personal’, ’professional’,1032

’few’, ’unique’, ’great’, ’low’]1033

Second Round:1034

• Current prefix last token: [’could’]1035

• Merged sequence with draft tokens: [’could’, 1036

’be’, ’provide’, ’</s>’, ’help’, ’offer’, 1037

’present’, ’not’, ’actually’, ’a’, ’an’, ’the’, 1038

’</s>’, ’just’, ’one’, ’benef’, ’both’, ’,’, 1039

"’", ’you’, ’for’, ’<s>’, ’sime’, ’multicol’, 1040

’you’, ’overcome’, ’some’, ’</s>’, ’public’, 1041

’<unk>’, ’great’, ’fant’, ’wonderful’, ’valu- 1042

able’, ’unique’, ’perfect’, ’</s>’, ’ter’, ’up’, 1043

’event’, ’local’, ’up’, ’local’, ’<s>’, ’not’, ’of’, 1044

’ited’, ’models’, ’such’, ’like’, ’my’, ’The’, 1045

’as’, ’comp’, ’<s>’, ’opportunity’, ’guest’, 1046

’</s>’, ’speaker’, ’way’, ’astic’, ’asy’, ’bl’, 1047

’ins’, ’guest’, ’coming’, ’coming’, ’as’, ’first’, 1048

’a’, ’at’, ’is’, ’would’, ’event’, ’<s>’, ’natural’, 1049

’public’, ’a’, ’a’, ’an’, ’could’] 1050

• Accepted sequence: [’could’, ’be’, ’a’, 1051

’great’] 1052

At this point: 1053

• Candidate tokens from rejected tokens are 1054

matched: ’be’ correctly predicted ’a’. 1055

• Candidate tokens from accepted tokens are 1056

matched: ’a’ successfully predicted ’great’. 1057
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Figure 5: The static tree used in Token Recycling.
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