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Abstract

Recently, aligning diffusion models with human
preferences has emerged as a key focus in text-
to-image generation research. Current state-of-
the-art alignment approaches predominantly rely
on reverse Kullback—Leibler (KL) divergence reg-
ularization, a strategy that both restricts the po-
tential utilization of existing data and introduces
bias. In this work, we propose Diffusion-y"PO, a
novel method that refines the gradient ratio of the
objective function via f,~-regularization, thereby
balancing optimization power between human-
preferred and non-preferred samples. Specifically,
we integrate the likelihood concept of diffusion
models into y2-Preference Optimization (xPO)
and re-express it as a fully differentiable objective
function. Building on this foundation, we gener-
alize to the f,n~-Preference Optimization (x"PO)
framework, which substantially improves the flex-
ibility of implicit reward model design and allevi-
ates the influence of non-preferred samples in con-
flicting data. Furthermore, we provide a thorough
analysis of the impacts of x2 + KL-regularization,
fyn-regularization, and KL-regularization on the
alignment process from the perspective of gradi-
ent fields. Finally, we fine-tune the Stable Dif-
fusion v1.5 model on the Pick-a-Pic preference
dataset using Diffusion-x"PO. Experimental re-
sults demonstrate enhanced alignment with tex-
tual prompts and improved visual quality, confirm-
ing the effectiveness of our proposed framework.

1. Introduction

Diffusion models (Croitoru et al., 2023; Ho et al., 2020;
Rombach et al., 2022a) have demonstrated outstanding per-
formance in generating realistic text-to-image synthesis;
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however, a mismatch exists between their training objec-
tives and real-world application scenarios. Due to a lack
of further guidance, these models may be challenging to
control effectively. Inspired by the successful application
of Reinforcement Learning from Human Feedback (RLHF)
in language models (Christiano et al., 2017; Rafailov et al.,
2024b; Bai et al., 2022; Rafailov et al., 2024a), recent re-
search (Fan et al., 2024; Yang et al., 2024a; Wallace et al.,
2024; Liang et al., 2024; Yang et al., 2024b) has conceptu-
alized diffusion models as a form of policy model. Under
the guidance of explicit or implicit reward models learned
from human-annotated preference data, the expected out-
puts are optimized to align generated results more closely
with human preferences.

Alignment methods such as Reinforcement Learning from
Human Feedback (RLHF) have achieved significant ad-
vancements in enhancing the capabilities of diffusion mod-
els. Methods such as (Clark et al., 2023; Prabhudesai et al.,
2023)adjust diffusion models through pixel-level gradients
derived from self-supervised reward models, while Direct
Preference Optimization (DPO) (Rafailov et al., 2024b)
implicitly estimates the reward model by training generative
models on paired human preference data. These methods
have achieved significant progress in text-to-image synthesis
but remain limited by reward over-optimization. Specifi-
cally, model performance may degrade during training, as
the reward model may not perfectly represent human prefer-
ences, especially in cases where the dataset does not encom-
pass all possible scenarios. Furthermore, we observe that
these methods rely on KL regularization to minimize the
discrepancy between the fine-tuned model and the reference
model. However, this form of regularization has been theo-
retically proven to be suboptimal (Zhu et al., 2023; Song
et al., 2024). Additionally, the KL algorithm, when adjust-
ing the model to reject unsafe prompts, may inadvertently
introduce alignment issues. This can shift probability mass
from the preferred rejection response to harmful responses,
thereby reducing the likelihood of generating preferred an-
swers and leading to over-optimization of the model.

xPO (Huang et al., 2024) improves upon the DPO algorithm
by introducing a x2-divergence term into the log-link func-
tion. Furthermore, by conducting a concentration analysis
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focused on a single policy, it provides a theoretical guar-
antee of strict control over sample complexity. We extend
xPO to diffusion model alignment, where the generative
model is trained on paired human preference data to im-
plicitly estimate the reward model. We derive a simple yet
effective loss function for diffusion models, enabling stable
and efficient preference training, which we term Diffusion-
xPO. Furthermore, we propose a more general framework,
Diffusion-x" PO, which significantly enhances the design
flexibility of implicit reward mode To demonstrate the effec-
tiveness of Diffusion-x"PO, we fine-tuned Stable Diffusion
v1.5 (SD-1.5) (Rombach et al., 2022b). Experimental re-
sults indicate that models fine-tuned with Diffusion-x"PO
achieve more significant improvements across various eval-
uation metrics compared to those fine-tuned with existing
DPO methods.

Our contributions are summarized as follows:

* We adapt the xPO framework to diffusion-based text-
to-image (T2I) models by deriving a simple yet effec-
tive loss function, termed Diffusion-xPO, that enables
stable and efficient preference training.

* We propose a novel f,n~-regularization and present a
more general framework, x" PO, to enhance the design
flexibility and specificity of implicit reward models.

* We analyzed the effects of various regularization con-
straints on the alignment process from the perspective
of gradient ratios and validated the reliability of our
method through experiments involving fine-tuned mod-
els.

2. Related Work

Diffusion models Pre-trained on internet-scale image
datasets, diffusion models (Croitoru et al., 2023; Ho et al.,
2020; Rombach et al., 2022a) have acquired a broad range
of visual concepts and achieved significant results in text-
to-image generation. However, the images generated by
existing text-to-image models may still exhibit quality is-
sues, such as inconsistencies with the input text or failure to
align with human preferences.

Alignment from human preferences Human preferences
for model outputs have been used to guide learning across a
range of tasks, from behavior learning (Lee et al., 2021)to
language modeling (Bai et al., 2022; Glaese et al., 2022;
Ouyang et al., 2022; Liu et al., 2023; Stiennon et al., 2020),
and have also been leveraged to improve the alignment of
text-to-image models(Wu et al., 2023b; Lee et al., 2023).
Typically, the reward model is first trained on human pref-
erence data and then fine-tuned using an online RL algo-
rithm to maximize the scores provided by the reward model,

thereby improving the model’s alignment. Compared to
earlier methods that primarily focused on reward filtering
or reward-weighted supervised learning, recent work has
shifted towards fine-tuning policy models on feedback data
(Dubois et al., 2024), or directly training policy models us-
ing a ranking loss on preference data (Rafailov et al., 2024c;
Tunstall et al., 2023; Yuan et al., 2023). DPO (Rafailov
et al., 2024b) proposes a supervised learning method that
directly optimizes the language model from preference data,
skipping reward model training and avoiding the instability
of RL algorithms. Ches(Razin et al., 2024) found that dur-
ing training, the likelihood of preferred responses tends to
decrease in DPO. To address the bias in DPO’s preference
alignment process, various modifications and simplifica-
tions have been proposed, aimed at improving performance.
DPO Positive (Pal et al., 2024) identified a failure mode in
DPO where the standard DPO loss can decrease the likeli-
hood of preferred responses. To address this, they propose
adding a regularization term to the DPO objective to prevent
this failure mode. xPO (Huang et al., 2024) modifies the
logarithmic link function in the DPO objective by incorpo-
rating y2-divergence. This addition implicitly enforces a
pessimistic principle under uncertainty, thereby effectively
mitigating over-optimization. Our method is inspired by
DPO and xPO, and is specifically designed and adapted for
diffusion models.

Fine-tuning diffusion models on human preferences
Recently, several fine-tuning techniques have been proposed
to adjust pre-trained diffusion models (Li et al., 2023; Eyring
et al., 2024; Zhang et al., 2024b; Yang et al., 2024c; Deng
et al., 2024a; Karthik et al., 2024; Shekhar et al., 2024;
Zhang et al., 2024c), aligning them more closely with hu-
man preferences. DPOK (Fan et al., 2024) combines KL
regularization with the DDPO (Black et al., 2023) loss and
utilizes policy gradients to fine-tune diffusion models for
achieving specific rewards. Diffusion DPO (Wallace et al.,
2024) enhances the alignment of diffusion models by fine-
tuning them using DPO on the Pick-a-Pic dataset, which
consists of image preference pairs. D3PO (Yang et al.,
2024a) proposes generating paired images from the same
prompt and using either a preference model or human eval-
uators to identify the preferred and non-preferred images.
SPO(Liang et al., 2024) improves upon DPO by incorpo-
rating a step-aware preference model and a stepwise resam-
pling scheme. The recent DenseReward method (Yang et al.,
2024b) further enhances the DPO framework by proposing a
time-discounting approach that emphasizes the early denois-
ing steps. PRDP(Deng et al., 2024b) introduces the Reward
Difference Prediction (RDP) objective, which aims to en-
able the diffusion model to predict the reward differences be-
tween pairs of generated images. Diffusion-RPO(Gu et al.,
2024) applies the RPO framework to diffusion-based text-
to-image (T2I) models, simplifying the stepwise denoising
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alignment loss and introducing a multimodal reweighting
factor. While these studies have achieved impressive results
in addressing the challenges of text-to-image alignment(Sun
et al., 2024), they primarily rely on KL regularization to
minimize the discrepancy between the fine-tuned model and
the reference model.

3. Background
3.1. Diffusion Models

In this section, we provide a brief overview of the generative
process employed by denoising diffusion probabilistic mod-
els (DDPMs). Considering a sample from the distribution
q(zo) and a corresponding text prompt ¢ , the text-to-image
model 7y (o) , with parameters 6 , follows a reverse process
in discrete time based on a Markov structure:

T

mo(2o) = /WG(IJCO:T)deT = /Hﬂa(xtq | z¢)dz1.m
t=1

)

xo is the image, and x,.r represent latent variables that
share the same dimensionality as zq ,

770(1}71 | &"t) :N(xtfl;/i%a?l) 2)

is a Gaussian distribution with learnable mean and fixed
covariance.

To generate an image o ~ 7y(zg | ¢) , DDPM employs
ancestral sampling. Given a denoising trajectory xo.7 , its
log-likelihood can be analytically computed as

T
log mo(z0:r) = > logmo(wi—1 | 1)
B [ I? v
1 Ti_1 — g
= 2; p +C

where g = % (z1 — Be/T— @ e (a4, 1))

3.2. \2-Preference Optimization(yPO)

Offline alignment In the offline alignment problem, the
prompt ¢ and the data pairs z and z; come from a static
dataset with human-annotated labels, where xa' is desig-
nated as the ‘winner’ sample and z, as the ‘loser’ sam-
ple, they are then ranked based on the binary preference
P(z$ > xg|c). We assume that the preferences follow
the Bradley-Terry model(Bradley & Terry, 1952), which
stipulates that human preferences can be expressed as:

exp(r(zg, ¢))

exp(r(z ,¢)) + exp(r(zy , c))

Under the Bradley-Terry model, maximum likelihood esti-
mation is employed to learn the loss function of a reward

“

pBT(xg =g |c) =

model parameterized by 7, from pairwise preference data
Jr —
(c,xg, g ).

EBT(QZ)) = _Eg zl, xy [lOgU (T¢(C’ I(J)r) - T¢(C7 ZEO_))}
(5)

where o is the sigmoid function.

Offline RLHF with f, -regularization. To alleviate over-
optimization, PO (Huang et al., 2024) adopts a regulariza-
tion form based on the f, regularization, which imposes
a stricter penalty on deviations from 7. than the KL reg-
ularization. Since the f, regularization more effectively
quantifies uncertainty compared to KL-based regularization,
it helps mitigate over-optimization. By incorporating this
constraint, the RL objective can be reformulated as:

H}%XEC~DC,10~M(10\C) [r(z0,c)] — BDfX (o || Trer) (6)

Where f,(z) = 3(z — 1)? + zlog z , Dy, (7 || mer) =
Eenpe [Dy2 (( | 0)||met(- | €)) + Dx(n(- | ©)|met (- | €))],
the hyperparameter 3 controls regularization.

xPO Objective The link function ¢ in x PO is defined as
oy (2) == [5,(2) = z + log z , which satisfies 0 ¢ dom(f”)
, and therefore, Eq. (6) in (Wang et al., 2024) is reparame-
terized.

r*(z0,a) = Boy <W> + const

7Tref($0|c)

=8 [m(xgc) + log (W"(xmc))] + const

7Tref(xmc) 7Tref($8|c)
)

Asin Eq. (5), r(c, zg) is estimated using maximum likeli-
hood training for binary classification and is expressed as
follows.

Lypo(d) = —E ¢ 4~ [loga<

4. Method
4.1. xPO for Diffusion Models

A consistent dataset Dyer = {(c,z¢,2g)} is utilized,
where every instance includes a prompt ¢ and two corre-
sponding images. Human annotations suggest that zar is
deemed better than x; .Our objective is to train a new model
my that is consistent with human preferences, favoring pre-
ferred generations.
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The regularization in Eq.(6) cannot be computed analytically
because the integral in Eq.(1) is intractable. To address this
issue, we instead maximize the f, regularization, thereby
transforming the equation into the following form:

m;}x IEC"DC7$O:T~779(IO:T lc) [T(Ca xO:T)]
)
_ﬁDfX [71—0 (.’E03T|C) ||7Tref(x0:T|C)]

Where f,(z) := 3(z — 1)> + zlog z ,which satisfies 0 ¢
dom( f"),Through derivationthe(details included in Supp B)
reward function can be rewritten as:

71(5307 C) :BETI'S($1;T|$U,C) {Qﬁx (m)} + const
(10)

According to Eq. (5), we define the reward loss for reverse
diffusion as:

L) =

“Elaf wg)eDtnv01) 1080 BEL ryot1ad),

zy o (T pleg)
{qﬁ (WE(ISTT | C)) — o (WE(I&T K )D
X 7Tref(QUSF:T | c) X Teet (To.p | €) an

Starting from Equation Eq. (11), we substitute the reverse
decompositions for my and s , and apply Jensen’s inequal-
ity alongside the convexity of the function — log o to move
the expectation outward(details included in Supp C). After
simplification, we derive the following bound:

E(e) < _E(mg’ma)"‘Dvmj—l,tNPG( Ty, t|$+) 1OgO.<IBT'|:

tNU(O-,T)»:C;,LtNPG (fl,t_l,f,‘zo )

N e AR G Eate D
X 7Tref(w;rq ‘ x?,c) * Tret(T4_q | 24 5 )

(12)

Be aware that mg(z; | 2¢41) is defined using the same

formula for both preferred and rejected sample pairs. By

substituting Eq.(2) into Eq.(12) (a detailed derivation is

provided in Supp. D), we obtain the final Diffusion-yPO
loss function.

L(0) =-E (zd 5 )~ D, t~U(0,T), log o (

af ~qlaf|ad),2y ~ale; |2g)

—BT [¢X (exp Ace (x;r,t)) — Py (exp Ac (x;,t))})
(13)

— €113 — llewr(z, t) — €13)

(constant in practice (Ho et al., 2020;

where Ae(x;,t) = w(||es(x},t)

Bros—1
and w = s~
w 2(1—ae—1)ot

Kingma et al., 2021)).

Algorithm 1 f, ~»-Preference Optimization(x"PO)

Require: Reference policy 7rr, preference dataset Dpet, fyn-
regularization coefficient 8 > 0.
1: Define:
1 n 1 .
oxn(2) = —(3_ 22" +logz)

n
k=1

2: Optimize f,~-regularized preference optimization objective:

Lynpo(0) = —E_ .+ - [log(’(

poc (FEE) 0w (;r((w)))()]l)

Update model parameters 6 by gradient descent

4.2. f,~-Preference Optimization(x"PO)

Our primary Algorithm 1, denoted as x"PO , updates the
policy parameters 6 by solving the optimization objec-
tive defined in Eq.(18). The objective replaces the term
b (GG = alogld) + 108 7] in the original x
PO target (Eq. (8) ) with a novel link function, which is
defined as follows:

7T9(Z‘0|C {n1<779150|0))k
(bX (Wref(xo | c Z:: k ’/Tref fty) ‘ C) (14)
NNETENF)
Wref(x() | C)

Algorithm derivation We begin with the regularized func-
tion fy(z) := (2 — 1) + zlog 2. To further develop this
function, we incorporate higher-order polynomial terms:

1| 1 k1, L 2
n == —_ —(z—1 1
@)= & |3 g+ 3o 7 s
(15)
where n > 2 .Thus, Eq. (9) can be reformulated as:
EcNDprcf)xONPG(Iolc) [r(z,c)] (16)

_Dfx" [71’9(5(,'()|C) || 7Tref(£0|c)]

The link function d)Xn in X"PO is defined as ¢, (2) =
fin(z) = 2(0Cn_; 12" + log z), which satisfies 0 ¢
dom(f’) , and therefore Eq (16) in (Wang et al., 2024)
is reparameterized

g (2o | ©)
7'rref(xo | C)

(20, ) =By ( ) + const (17)
As shown in Eq.(5), the loss function for r(c, zg) is ex-

pressed in Eq.(18)

Diffusion-x" PO Objective Following the derivation pro-
cess in Sec.4.1 , the final Diffusion-x"PO loss function is
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Inverse link functions

Figure 1. We compared the behavior of the f,n-regularization
link function ¢yn (2) = 2(37_, 22" + log 2) and its inverse
¢;ﬁ (z) with those of the Kullback-Leibler (KL) regularization link
function ¢pro(2) = log(z) and its inverse dppo(2) = exp(2).

expressed as:

LO) = B o) mD im0 (0.1),5f ~alaf 128 )27 ~aar )
log (=BT [pyn (exp Ae(:cj,t)) — ¢y (exp Ae(zy , 1))])
(19)

Here, Ae(x;,t) is defined as w(||€q(x},t)
l€rer(z7, 1) — €713)-

- €l3 -

4.3. Analysis on Gradient Fields of Alignment Process

To explore the characteristics of the x"PO algorithm, we
rewrite the link function formula Eq. (7) into the following
form:

(o)

Z =
7Tref(xo‘c)

= ¢;},((T*(m0, a) — const)/B)  (20)
Here, QS;T} (z) represents the inverse function of the function
¢y~ (2). In Fig. 1, the inverse link function ¢~ (2) for fyn-
regularization closely satisfies gb;nl,(z) ~ zw forz > 1 and
qb;&(z) ~ e*/™ for z < 1, while an increase in the param-
eter n gradually decreases the slope of ¢~1(z), producing
a “flattening” effect. Consequently, During training, this
flattening can help mitigate over-optimization by reducing
the amplification of extreme z values, thereby preventing
excessively aggressive parameter updates or selections in
optimization-based methods.

Furthermore, by abstracting away the specific characteristics
of the link function ¢(-) and focusing on the general form
of the loss function in Eq. (8), we obtain:

Ly(Z1, Z3) = —E[logo (B (4(Z1) — ¢(Z2)))] 2D

po(=qg.7lc)

Py » And

Where, Z; is defined as the training win ratio

Z9 corresponds to the training loss ratio %.Thus,
ref\Tq. 1€

the expression for the gradient ratio of £4(Z1, Z2) when

enhancing the probability of human-preferred responses (

Zy ) versus reducing the probability of human-dispreferred

responses ( Zs ) is given by:

0Ly(Z1,2Z2) ,0Ly(Z1, Z2)
074 0Zs

_ ¢(Z4)
 ¢(2Zy) 22

Table 1. Several link functions and their derivatives.

¢(2) ¢'(2)

DPO log 2z %

1
xPO z+logz 1+
X"PO (30 52" +logz) L (h_o2 ")

According to Table 1,different regularization link function
result in distinct gradient ratios. if the regularization link
function measure is ¢p po, then the gradient ratio becomes
%; if it is the ¢,, the gradient ratio is given by %
Aif it is the ¢, the gradient ratio is given by %
Zk:(} Z2

(details included in Supp E).

Furthermore, as the alignment progresses, the value of Z;
tends to exceed unity, while Z5 tends to fall below unity.
Consequently, for any pairwise preference data, the follow-
ing inequality holds:

2 _D(Zitl) a4 S 4 3
Zy  Z1(Zy+1) S ZE? nzs

This inequality remains valid throughout the alignment pro-
cess. The gradient ratio of DPO is smaller than that of PO
and is less than 1. When the gradient ratio falls below 1, a
smaller ratio causes the probabilities of less preferred im-
ages to decrease faster than those of preferred images. This
rapid decrease can inadvertently lead to misalignment, shift-
ing probability mass from desired rejection responses to
harmful responses. In contrast, the gradient of PO is closer
to 1, enabling reinforcement learning to strike a balance
between reward maximization and constraint satisfaction.
This property effectively alleviates over-optimization and
misalignment issues, while significantly enhancing training
stability and optimization efficiency. As n increases, the
gradient ratio of x"PO not only grows progressively but
also exceeds 1, encouraging fine-tuned diffusion models to
prioritize the optimization of human-preferred images while
reducing the penalization of less preferred behaviors. This
mechanism effectively alleviates inherent conflicts within
human preference data pairs, significantly enhancing the
efficiency of preference objective optimization and acceler-
ating the model training process.

5. Experiments

Detailed implementation and evaluation procedures, along
with our ablation results, are presented. We perform an ex-
tensive quantitative and qualitative evaluation of Diffusion-
X"PO to demonstrate the efficacy of the proposed f,~ regu-
larization in fine-tuning text-to-image diffusion models for
matching preference distributions.The appendix includes a



Submission and Formatting Instructions for ICML 2025

A teddy bear inspired by a sketch of a horse

Vincent van Gogh

A tonalist painting of

expressive big eyes and
visible brushstrokes.
Thomas Kinkade.

SD-1.5

Diffusion-DPO

SPIN-Diffusion

Ours

A painting of a cityscape
crataegus fruit goblins with  with a red cloud shining
light over a sea and bridge, old-fashioned style.
by Greg Rutkowski and

Fine art exhibit in a white
cube by Marcel
Broodthaers.

Heroine portrait with a

Painting of Durdle Door in  An illustration of a futuristic
mysterious and i

Starry Night style. interior hall with various
furniture, sacred geometry,
and a plant in watercolor
gouache style.

Figure 2. Generated images from our method and baseline models, along with their corresponding prompts from the multiple-prompt
experiment, are presented here, with additional examples provided in Appendix G.

detailed comparative of our method against baseline models.
Specifically, Appendix A presents reward model evaluation
scores based on the HPDv2 and Parti datasets, while Ap-
pendix G showcases images generated from prompts. These
results demonstrate that Diffusion x"PO holds promise for
fine-tuning text-to-image diffusion models to accommodate
specific user preferences.The code for this study will be
made publicly available, and the pseudocode for the training
objectives is presented in Appendix F

5.1. Implementation details

We developed Diffusion-x™"PO by building upon the
Diffusion-DPO codebase, adhering to the methodologies
established in Diffusion-DPO research. For all experi-
ments, we utilized Stable Diffusion (SD) v1.5 (Rombach
et al., 2022b) as the pretrained diffusion model and fine-
tuned the complete UNet weights. Large-scale fine-tuning
was performed on the training set of the Pick-a-Pic v2
dataset (Kirstain et al., 2023)(MIT license). using Eq (19),
demonstratingDiffusion-x"PO’s superior generation quality
on complex and previously unseen prompts. We maintained
the parameter settings from Diffusion-DPO, conducting

training on two NVIDIA 4090 GPUs with a local batch
size of one pair and gradient accumulation over 128 steps.
The training protocol included a 25% linear warmup phase,
a learning rate of 1 x 10~®, and fine-tuning SD1.5 with /3
set to 1000.

5.2. Experiment protocol

Evaluation dataset Following (Wallace et al., 2024), we
adopt four benchmark categories from HPDv2 (Wu et al.,
2023a)—animation, concept art, painting, and photogra-
phy—with each category consisting of 800 prompts. In
addition, 1,632 prompts from the PartiPrompts dataset (Yu
et al., 2022b)are included in the evaluation dataset.

Baselines To evaluate the effectiveness of our proposed
method, we compare it with several state-of-the-art tech-
niques for human preference learning. The baseline meth-
ods include Diffusion-DPO (Wallace et al., 2024), Stable
Diffusion 1.5 (Rombach et al., 2022b), SePPO (Zhang
et al., 2024a), SPIN-Diffusion (Chen et al., 2024), Diffusion-
KTO (Li et al., 2024), and SPO (Liang et al., 2024). We
reproduce each of these baselines using the official check-
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Table 2. x"PO Reward score comparison training.Using the
HPSV2 datasets, reward model scores are computed to assess
Diffusion-x"PO and Diffusion-x"PO. As n increases in the x"PO
framework, both speed and quality improve, with the highest score
achieved at n = 6 . However, further increases in n result in a
decline in performance. This can be attributed to the inherent
conflicts in image quality within the Pick-a-Pic V2 dataset, as well
as the specific characteristics of the x"PO algorithm. A detailed
discussion of these aspects can be found in Section 5.3

Method HPSV21 Pick? Aesth CLIP1 ImaR {1
SD v1-5 26.97  20.69 5.46  0.349  0.125
Diffusion-DPO  27.28  21.12 556  0.354  0.315
Diffusion-yPO 27.83 2153  5.64  0.357  0.643
Diffusion-y®PO  27.91  21.63 569 0356  0.678
Diffusion-y?PO  27.92  21.60 5.66  0.356  0.711
Diffusion-y®PO  27.98  21.68 5.68 0.357 0.730
Diffusion-y’PO  27.95  21.70 570  0.355  0.713
Diffusion-y°PO  27.93  21.75 570 0.357  0.698

points available on HuggingFace.

Metrics We use widely recognized metrics to evaluate our
approach, including PickScore (Kirstain et al., 2023) (gen-
eral human preference), HPSV2 (Wu et al., 2023a) (prompt
alignment), ImageReward (Xu et al., 2024) (general human
preference), Aesthetic (Schuhmann, 2022) (visual appeal),
and CLIP (Radford et al., 2021) (image-text alignment per-
formance). Table 4 reports the average scores between
Diffusion-x"PO and the baselines, computed from HPDv2
and Parti (Yu et al., 2022a) validation prompts.

5.3. Effect of f,~» Regularization

During the training of Diffusion-x"PO on a small dataset,
the loss value initially declined sharply but then rapidly re-
bounded, indicating premature overfitting. This pattern led
to repetitive images with pronounced noise artifacts. In con-
trast, when employing the Pick-a-Pic-V2 dataset—which
contains over 800,000 images—this trend was absent. The
dataset’s breadth and diversity likely prevented early over-
fitting and enabled a stable reduction in loss, culminating in
improved image quality over the course of training.

To investigate the impact of the hyperparameter n in
X" PO, we held all other factors constant and tested n €
{1,3,5,6,7,9} in comparison to a baseline model. The re-
ward scores, evaluated on the HPDv2 validation set, are pre-
sented in Table 2, and the evolution of these scores through-
out training is depicted in Fig. 3. Although the optimization
efficiency of Diffusion-yPO remains below expectations,
Diffusion-x"PO achieves enhanced image quality within
fewer training steps as n increases.

We hypothesize that these findings can be attributed to the
inherent conflicts within certain preference pairs in the
Pick-a-Pic-V2 dataset, which impede the balanced opti-

28.0

HPSV2 Score

27.4

0 2000 4000 6000 8000 10000
Steps

Figure 3. The checkpoint was evaluated on the first 100 prompts
in the anime style from the HPv2 dataset, and the reward model
scores for HPSv2 were computed accordingly

mization strategy of xYPO. When the gradient ratio exceeds
1, the penalty for non-preferred behaviors is slightly re-
duced, thereby mitigating interference from non-preferred
samples in conflicting pairs. Consequently, the optimiza-
tion trajectory becomes smoother, leading to notable per-
formance improvements. Among the configurations tested,
Diffusion-x PO offers an optimal balance between prioritiz-
ing preferred samples and curtailing the detrimental impact
of conflicting data. However, further increasing n to 9 (as in
Diffusion-y?PO) disproportionately weakens the penalty on
negative samples, diminishing constraints on non-preferred
behaviors and ultimately degrading overall image quality.

5.4. Main Results

Quantitative results Table 3 presents the win rates of
Diffusion-y®PO-aligned SD v1-5 relative to various base-
line models across multiple automated metrics. The results
demonstrate that Diffusion-y®PO significantly improves the
alignment performance of SD v1-5, outperforming existing
methods in most evaluation metrics. Specifically, Diffusion-
XGPO surpasses Diffusion-DPO, SPO, SePPO, and SPIN-
Diffusion on the HPSV2, PickScore, CLIP, and Image Re-
ward metrics. Notably, it exceeds the performance of SPO
by up to 60% on CLIP, Image Reward, and PickScore. In
addition, Diffusion-x°PO outperforms Diffusion-KTO on
three of the five metrics, with only a slight shortfall on
HPS and Aesthetic. Compared to Diffusion-DPO, these
consistent improvements underscore the effectiveness of
applying f,~ regularization to align SD v1.5. Moreover,
Diffusion-x"PO enables more efficient utilization of the
training data, strengthens image preference learning, and
boosts the model’s performance across multiple evaluation
metrics.
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Table 3. Automatic win rates (%) of Diffusion-x®PO (SD v1-5) compared to existing alignment approaches, utilizing prompts from the
HPDv2 and Parti sets. Generated outputs were evaluated using reward models that assigned scores to each method. The method with the
higher score received 1 point, while ties resulted in both methods receiving 0.5 points each. Bold is used to indicate the win rates that

exceed 50%.

Dataset Method HPSV21 PickScoret Aesthetict CLIPT Image Reward?

vs. SD v1-5 84.31 84.59 69.69 55.66 76.00

HPSV?2 vs. Diffusion-DPO (Wallace et al., 2024) T7.72 73.88 60.62 50.28 69.22

vs. SPO (Liang et al., 2024) 63.80 56.13 44.63 75.41 63.09

vs. Diffusion-KTO (Li et al., 2024) 50.11 67.91 47.09 54.63 50.78

vs. SePPO (Zhang et al., 2024a) 53.97 58.16 40.94 51.97 53.47

vs. SPIN-Diffusion (Chen et al., 2024) 59.62 54.03 30.69 61.72 57.78

vs. SD v1-5 75.29 75.87 69.26 56.28 68.65

PartiPrompts vs. Diffusion-DPO 69.17 66.07 60.56 51.87 63.63

vs. SPO 61.02 58.79 42.80 70.24 60.26

vs. Diffusion-KTO 45.28 64.30 49.05 57.50 53.52

vs. SePPO 51.53 55.05 42.87 54.44 54.75

vs. SPIN-Diffusion 56.92 52.73 33.80 63.63 60.32

Qualitative results Figure 2 compares the images gen-
erated by Diffusion-yPO, SD-1.5, SPO, SPIN-Diffusion,
and SePPO. As shown, Diffusion-x""PO generally achieves
better text-image alignment, producing more vivid images
from both simple prompts and more challenging long-text
prompts, often surpassing the baselines. Specifically, in the
first column, most models fail to generate “a teddy bear
inspired by Vincent van Gogh” as instructed. By contrast,
Diffusion-x"PO accurately captures the essential elements
(i.e., Vincent van Gogh) and produces higher-quality re-
sults compared to Diffusion-DPO. In the second column,
while most models struggle to create images in the specified
sketch style, Diffusion-x"PO successfully incorporates this
key characteristic. Overall, Figure 2 provides further evi-
dence that Diffusion-x"PO not only enhances text-image
alignment but also significantly improves the visual quality
of the generated images.

6. Conclusion

In this paper, we propose Diffusion-x"PO, an extended
alignment framework for text-to-image models. Our method
leverages f,~-regularization to enhance uncertainty quan-
tification and mitigate the risk of over-optimization. Experi-
mental results on the Stable Diffusion 1.5 (SD-1.5) model
demonstrate that Diffusion-y™PO achieves superior post-
fine-tuning performance compared to state-of-the-art ap-
proaches, underscoring its efficacy as a robust alignment
strategy in text-to-image synthesis pipelines.

Limitations

Diffusion-x"PO substantially enhances the alignment per-
formance of text-to-image (T2I) diffusion models, yet cer-

tain limitations remain. Analyzing the gradient ratios for
different values of n indicates that xPO yields a ratio closest
to 1, which is theoretically optimal. Nonetheless, empiri-
cal results suggest that Diffusion-y5PO achieves superior
alignment outcomes in practice. A potential explanation lies
in the nature of the Pick-a-Pic V2 preference dataset used
during training, which comprises user-submitted prompts
alongside images generated by various existing T2I models.
This dataset inevitably introduces inconsistencies: some
negative samples may align well with the text despite be-
ing labeled negatively, whereas some positive samples may
favor inappropriate images. As a result, striking a suitable
balance between positive and negative instances becomes
more challenging. We further hypothesize that the inherent
characteristics of various dataset may influence the optimal
parameter n for the x"PO objective, warranting a deeper
investigation in future research.
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A. Diffusion-y"PO resault

Table 4summarizes the evaluation results for HPSv2 (Apache-2.0 license) and PartiPrompts (Apache-2.0 license). The
findings reveal that Diffusion-x"PO achieves state-of-the-art performance on several metrics for a wide range of prompts,
and remains on par with the current leading approaches for the other metrics.

Table 4. Quantitative Evaluation on HPSv2 and PartiPrompt DatasetsWe conducted a comprehensive evaluation of model performance
on the HPSv2 and PartiPrompt datasets, reporting various quantitative metrics. For each metric, the method achieving the highest average
score is highlighted in bold.

Test Dataset Method HPSV2t  PickScoret Aesthetict CLIPT Image Rewardt
SD v1-5 26.97 20.69 5.46 0.349 0.125
Diffusion-DPO 27.28 21.12 5.56 0.354 0.315
Diffusion-yPO(ours)  27.83 21.53 5.64 0.357 0.643
Diffusion-x3PO(ours) 27.91 21.63 5.69 0.356 0.678

HPSV?2 Diffusion-xy°PO(ours)  27.92 21.60 5.66 0.356 0.711
Diffusion-xPO(ours) 27.98 21.68 5.68 0.357 0.730
Diffusion-y"PO(ours)  27.95 21.70 5.70 0.355 0.713
Diffusion-xy?PO(ours) 27.93 21.75 5.70 0.357 0.698
SPO 27.64 21.50 5.75 0.318 0.320
Diffusion-KTO 27.99 21.32 5.70 0.352 0.689
SPIN-Diffusion 27.76 21.56 5.89 0.341 0.543
SePPO 27.88 21.50 5.76 0.354 0.616
SD v1-5 26.96 21.24 5.26 0.34 0.40
Diffusion-DPO 27.19 21.49 5.34 0.34 0.40
Diffusion-yPO(ours) 27.54 21.75 5.41 0.35 0.64
Diffusion-y*PO(ours)  27.59 21.79 5.45 0.34 0.70

PartiPrompts Diffusion-xy°PO(ours)  27.54 21.75 5.43 0.35 0.70
Diffusion-xPO(ours) 27.66 21.82 5.44 0.35 0.73
Diffusion-y"PO(ours)  27.63 21.83 5.44 0.35 0.70
Diffusion-x?PO(ours)  27.61 21.84 5.43 0.35 0.70
SPO 27.35 21.57 5.52 0.32 0.40
Diffusion-KTO 27.74 21.54 5.47 0.34 0.63
SPIN-Diffusion 27.47 21.70 5.63 0.32 0.43
SePPO 27.61 21.67 5.50 0.35 0.57

Table 5. Per-style metric scores of Diffusion-yx°PO on the HPSv2 test set.

Style HPS1 Pick Scoref  Aesthetict Clip? Image Reward?

anime 28.48 21.920 5.54 0.363 0.838
paintings 27.88 21.459 6.01 0.365 0.792
concept-art  27.76 21.359 5.81 0.357 0.826
photo 27.80 21.973 5.35 0.343 0.465
Average 27.98 21.678 5.68 0.357 0.730

12



Submission and Formatting Instructions for ICML 2025

B. Maximizer of the Lower Bound of RLHF Objective

Lemma 1 Define

If (207 | ¢) > 0 holds for all condition ¢, f(z) is an invertible function and 0 is not in definition domain of function
f'(2), the reward class consistent with Bradley-Terrry model can be reparameterized with the policy preference g (zo.7)
and the reference preferencemer(zo.7 | ¢) as: Assuming 7f(zo.7 | ¢) > 0 for all conditions c, that f'(z) is invertible, and
that O is outside the domain of f’(z), we can reparameterize the Bradley-Terry-based reward class in terms of the policy
preferencemy (zo.1) and the reference preference mrr(zo.1 | ¢) as follows:

r*(zo.1,c) =f¢ <7T§(£E0;T|C)> + const (24)

Tret(Zo:7C)

Proof. Consider the following optimization problem:

Hgn —Ex[r(c,z0.7)] + BDs(mg(z0.7 | €) || Tret(z0.7 | €)) (25)
sty mo(wor | ) = L,mp(zor | €) >0 Vagr. (26)
Zo:T

The link function ¢ is defined as ¢(z) := f/(z) .

Defining the following Lagrange function:

L(m, A\, a) = =Ex[r*(c, xo.7)] + BD¢(mo(zo1 | €) || met(zo:r | €)) (27)
+ A (Z mo(xor | €) — 1) — Z al(xo.r)me(xo.1 | €) (28)

Employing the Karush-Kuhn-Tucker (KKT) conditions for analysis: Firstly, the stationarity condition necessitates that the
gradient of the Lagrangian function with respect to the primal variables should be zero:

Firstly, the stationarity condition requires that the gradient of the Lagrangian with respect to each original variable be zero at
the optimal solution.

Vﬂg(mﬂc)L(w, )\, a) =0 Vl’O:T. (29)
By setting the derivative of the Lagrangian with respect to 7(y | ) to zero and further derivation, we can get:

’/Tref(l'():T | C)

r(c,zo.r) — Bo( )= A+ a(xer)=0 (30)

The primal feasibility condition requires that the solution satisfies all the original constraints.

s.t. Z mo(zo.r | ¢) = 1, mg(xo.r | ¢) >0 Vao.r. (3D

Zo:T
Dual feasibility requires that the Lagrange multipliers corresponding to the inequality constraints must be non-negative

to ensure that the dual problem remains valid and feasible, preventing negative importance from being assigned to any
inequality constraint and maintaining the consistency and correctness of both the primal and dual formulations.

a(ze.r) >0 Vaor (32)
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Complementary slackness requires that for each inequality constraint, either the constraint is satisfied exactly as an equality
or its corresponding Lagrange multiplier is zero, ensuring that only active constraints influence the objective function, while
inactive constraints are effectively excluded from affecting the solution.

a(zor)me(zor | ¢) =0 Vaor (33)

Since 0 ¢ dom(f”) , this ensures that :E?{‘L‘Sz) is always positive. Assuming that the reference policy satisfies the condition

Tret(a | §) > 0, it follows that 7(a | s) must also be greater than 0. Therefore, based on the above analysis, we arrive at the
following conclusion:

Oé(JZQ;T) =0 Vl‘o;T (34)

Incorporating the above conclusion into the stationarity condition results in:

—A=0 35
Tet(@or [©)) 35)

r(c,zo.r) — B
By performing some algebraic manipulations, we obtain:

A 36
Tret(Zo:7 | €) )+ (%)

r(c,zo.r) = f
Substituting this expression into the definition of 7(c, 20) = Er, (2,.1|w0,c) [7(¢, To.:7)], We obtain the following result.

7”(07 ZL‘O) :BETFG(II:T‘IO*C) |:¢(7T f(xO'T | C)

)} 4+ const (37)

We observe that the constant const in the formula is unaffected by x¢.7, ensuring it is canceled out in the Bradley-Terry
model. Hence, the proof is complete.

C. Details of the Primary Derivation

Lemma 2 Starting from Equation Eq. (11),we derive the following:

5(9) = — 10g0 BEIKTNWH(JE?TLT(T), |:¢)( W;(xng | C) ) o ¢( 7T§(37(;T ‘ C) ):|

= = — 71'ref(gj(—)s_;T | C) 7Tr;f(‘r‘c(;T | C)
z o (T rl2g) (38)

a5zt |z, 0) (x| xy,0)
< -—EE, . + logo | BT SR ot U 2 R PPV A Sl S B 2
- ¢ J':r—l,tNQ(-Lt—l,tll(JJr) g (6 |:¢ (Wref(le | $zr7c) ¢ Wref(x;,1 | ,’E;,C)

It—l,th(wtflxdx(T)

Proof. By substituting this reward reparameterization into the maximum likelihood objective of the Bradley-Terry model as
shown in Eq. (4), the partition function cancels for image pairs, resulting in a maximum likelihood objective defined on
diffusion models. Its per-example formula is:

ﬁ(@) — loga B]Efr Nﬂe(xtTlmar), [¢( 7r:9((x(JJF:T | C) ) _ ¢( 7Tg(x(;T ‘ C) )]

IEZNWB(‘L;T‘-LJ) 7T-mf(xO:T | C) 7Tref(QjO:T ‘ C)

mo(zo:7 | €) (WQ(IO:T | c) > mo(zo.r | €) (770(330:T | ) ﬂ
=—logo E ————+1lo — +log | ———=
g7 |/ @ p~mo(rleg). [Wref(CCo:T | ) & Tret(Zo:7 | €) Teet(Zo:T | €) & Tref(Zo.T | €)
. p~me (T |2y )
(39

14
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Where :ca' and x, are drawn from a static dataset.

Since sampling from 7y (z1.7 | 2o) is computationally infeasible, we adopt g(z1.7 | zo) as an approximation.

+ * (™ —
oz c mo(xg. | ¢ mi(xnr | c mo(xy.- |
0= toge (98,5 [22521D. g ez |0 il |y, mtsr 9]
rr~a@irleg Tt (237 | €) Tet(Tg.p | €)  Tret(@g.p | €) Teet(Zg. 1 | €)
:Dl T“"‘I(Zl Tlx )
779(950T | c) 779(368':71 | c) 5 (o7 | ©) o (To.p | ©)
—logo | BE + ~a(ato o) + log T — = — =
LT 1 o ’/Tl'ef(xo T | C) 7Tl'ef(‘CEO:T ‘ C) //Tl’ef(xO:T | C) ﬂ—fef(wO:T | C)
Il qu(xl Tlm )
(x| c) mo(xi 1 | 2/, c)
—loga<BE N + [exp log L + _——
“hr~a(@irled) H 7"'ref(mt 1 |xt ,€) 7Tref(£j—1 | x?,C)

z . p~a(Tplzg)

mo(x,_y | 7y ) mo(x,_1 | 2 ,¢) })
—exp | log — —log|| —————~
( H Tret(xt—i—1 | 27, ¢) H Tret(T;_1 | Ty, C) “0)

xt 1|95t7 mo (x4 | 2, c)
S A CLR (Zl ) —I—Zl Toioy | 7,0)

o p~q(@ypleg) Trref mt 1 ‘ xt 1€ ﬂ-ref(xt 1 | Ty ,C)

T _
exp(ZlOg mo(z; | T, 0) ) Zl mo (T, 1|xt?c):|>

Tret(@t—i—1 |2y, c ﬂ'ref(xt TG

(¢ Ty, C 75 (x) x+,c
loga<BIElz ~a(@tpled) [exp I'E, logM + TE, 1og9(t+1—|t+)
=7 7ref(5ct—1 | NG Teet(Ty_1 | 27, C)
zr~q(zyrlTg)

—exp | TE; logM — TE,;log W])
Wref(mt 1 ‘xt ,C) Fref(xt 1 |;L't 70)

Inserting Eq.(52) into Eq.(40) results in:

5( ?1|$?7C) 775(35?—”1’:’0)

71'ref(ﬂvt KL 70) 71'ref(ﬂﬁf—l | 'rj_vc)

my(w [a,e)  mprig 2,0 D

L1(0)

22

logc;'(ﬁIE + o~q(ety |m+)T]Et{1og
Ty, TN‘I( Lrl®g)
—log — — — — —
Tret(Ty_q | Ty s ¢)  Mer(Ty_1 | 24, €)

e(xf 1 |55t+70) Wg(xttl | w?,C)

loga(BTIEtE T ~aetple {1og
a(alirlg) 7"'ref(xt Kz 70) 71'ref(ﬂtj_—l | 33?70)
ml.TNq(wl.leO ) (41)

T SN Gl

—log - — - — -
Tret(Ty_q | Ty s €)  Meer(Ty_1 | 24, €)

my (g o) | mp(ay |2l 0)

71'ref(ﬂ?:——l | xf,c) 71'ref(gcii_—l | xf,c)

775(1":&_—1 |, ,c) Trg(‘rt_—l | 2, ¢) ])

= —logo (ﬂT BBt | ~atweorilod) {k’

Tfﬂl,thI(It—l,ﬂfﬂar)

—log — — — — —
Tref(Z;_ 1 | 7€) Ter(®i 1 | 7 5 0)
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By Jensen’s inequality, we have

Ll O Iy CI R E )

7Tref(mzr—l ‘ x;r,c) 71'ref(mzr—l ‘ x?»C)

Ti_1,t
xt—l,tNQ(wtflwt‘xg)

Li(0) < —EE + Nq(xtl,txé)log"(w[log

—log 775(3%__—1 |z ,0) 7"5(%__—1|37t__70)}) 42)
Tret (T, 1 | 24 ,¢)  Tret(zi 4 | 2, 0)

my (g |2, 0) m (@ |2y, ¢) D
—E;E 1 T vt vt o=l T
t :thr 1,t Q(It—l,t‘m(;r) 0g0—<ﬂ |:¢ (Wref(«rj__l | xz_’c) ¢’ Wref(l't__l | It_,C)

zt—l,t ~q(@i—1,4la])

Lemma 3 We define the problem under the assumption that two diffusion models mpand ¢ are available, along with
a prompt distribution p(c), a reward function r(z, ¢), and a constant 5 > 0. Starting from Equation (6), we derive the
following:

- ]Ecch,rowﬂg(m0|c) [T("E, C)} + ﬁDfX (7T H ﬂ—l‘ef) (43)
= — Ecnpe 2o~ (zole) [T(6: T0)] + B(Dy2(mo (w0 | €) || met(wo | €)) + Dxr(mo(zo | €) || Tret(zo | €))) (44)
— Ecnpe,momms (@orr|e) (€ To.r)] 4 B(Dyz2 (mo(wo.r | €) || Tret(@o:7 | €)) + Dxo(mo(zo.1 | €) || Tret(wor | €))) (45)

IN

T
m(zolc) = /W(iCO:T‘C) dxi.7 :/ H’IT (1|2, ¢) day.p. (46)
=1

Proof. It suffices to show that for any c,

Dy(m || 7rer) =Dy2(mo(x0:7 | €) || Tret(xo:r | €)) + Dxr(mo(zo.r | €) || Tret(zo:7 | €)) 47)
>Dy2(mo(wo | €) || mret(wo | €)) + Dxr(mo(wo | €) || meet(wo | €)) (48)

This can be proved similarly as the data processing inequality. We provide the proof below.

Dy (7 || 7rer) =Dy2 (mo(o:x | €) || Tret(@oer | €)) + Dyw(o(oer | ) || Tet(zoer | €))
mo (w7 | €) ] { o (0. | ¢) }
=Ery@orie) | T | T Ereenrle) 08— s
o(zo:r|c) [Wref(xoT | C) o(zo.r|c) g mef(x():T | C)
ﬂe(ﬂ?o T|c)
'/Tref(zO T | C)

(o | €) 1 mo(z1.7 | @0, €) }
7Tref(ﬂﬂo | 35070) 7Tref(171;T \ IO,C)

'/Tref(xl:T | Zo, C)

—————dzo.T + Eﬂ'g(x(ﬂc) |:10g

719(1)0 ‘ C)
Wref(xo | C):| o (z0]c) |: wo (1.7 |T0,C) |:Og

77 x &
:/ - ‘ daco 7 + Dxi(mo(20 | ¢) || mer(zo | €))

dIo T+ Eﬂ-e(x0| ) |:10g

+Eﬂ5(mo\c) [DKL(M(QH .1 | 20, ¢) || Teet(21:7 | T, €))]

(49)
For non-negative functions —2 ((z || )) and a subset x(.7 of the domain x( , we have:
72 (zo.r | €) 72(z0 | €)
/Gi'dxm > /eidwo- (50)
7"'re’f(xO:T | C) 7Tref(zO | C)
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Therefore, the inequality holds:

772 X C
Dyl I ) 2 [ T80y Dia(maloo | €) | (o )+ By Dt (mofonr | 0:0) | moslonr | 0.0
Ie

>D,2(mg(xo | ) || Trer(xo | €)) + Dre(mo (o | €) || Trer(z0 | €))
(51)

This concludes our proof.

Lemma 4 Define:
exp (T E;log (R:)) =~ TE; (Ry) (52)

g (ztt—1|zTt,c)

where Ry = —————¢
t mref(z+t—1]z ] ,c)

=1+ 46;, with §; € [0,0.1]
Proof: Expanding log(R;) around R; = 1 using a Taylor series, we have

o0F 0
log(R;) = log(1 + ) %515—?‘4'3—"'

Given that d; is small, higher-order terms beyond the linear term can be neglected, yielding the approximation

log(Ry) ~ 5,

The Taylor series expansion of exp(z) for any real number x is given by

z?
exp(m)=1+x+§+§+~-~

Let E;[6;] = p, where i € [0,0.1] , and substitute
x=TEd] =T p
Given the small magnitude of  , higher-order terms can be neglected, yielding the approximation. E.[§;] = u

exp (T Eyflog(Ry))) ~ exp (TE[5)) ~ 1+ TE[8] + 3 (TEJS) ~ 1+ Tt o (T)?

According to R; = 1 + &, the expected value is:

A rigorous demonstration of the equivalence exp (T E;[log(R:)]) ~ T E;[R;] fundamentally reduces to showing that:

1
1—|—T,u+§(TM)2zT+TM.

where T = 1000,The solution yields ;¢ ~ 0.0447, which lies within the interval [0, 0.1],the original equatio holds approxi-
mately true within the defined range of 1 . we obtain the following result

exp (T'E;log (R:)) ~ TE; (Ry) (53)
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D. Details of the Primary Derivation

This section details the derivation of the Diffusion-yPO loss as shown in Eq.(13) , starting from the loss function in Eq.(12):

* (At + */  — _
£(9) < - E(Ij,mJ)ND,tNU(O,T), logo’(Tﬁ |:<[) <W> -9 <W>:|)

¥ + = =
mef(2,_1 | 2, €) Teef(T,_1 | 27, C)
ffil‘twpe(mﬁl,tlﬂ) =1 ’ =1 ’
m;—l,twpe(x;t—l,t‘mg)

mp(@ | whe) | mp(aly (2o m (@ 2, e)  mprg |2y, 0) D

log + — log —

=— Eloga(BT — — — —
7rref(gcttl | 37?76) Wref(xtt1 | l‘;r,c) Tret(Ty_ 1 | 2y, ¢)  Ter(Ty_ 4 [ 24, 0)

(54)
Following the approach of (Ho et al., 2020), the policies are defined as:

* * * Q1 * Bt *
mo(zi_q | 27) =N <93t—1§ NG (zy — mee(xmt))a(’f)

T — | —— (@ — ——==e(2},1))

1
——————€xXp (—2
(\/27r0t2) 20t

In this context, d signifies the dimensionality of the image vector, and we utilize y; to streamline the notation. The
subsequent derivation using y; applies to both 3" and 3, . We can represent the ground-truth denoising distribution and
posterior mean in the following form:

* * * * Q1 * Bt 2
Jag) = Ny ) 25 @) — ——ey),
q (xtfl | i 370) (71 o CH T-a, €t),07)
* Q1 Bt

N o (zy — T-a, €t)

1 2
(e |
(\/27‘1’0’?) 201 2

E [z} | 2}, 5] = (z =

Here, z{; is sourced from the offline dataset D , and z is obtained by sampling from the forward process q(z} | yg) .

When z;_; is sampled from q(z}_; | =}, xf) , it can be written as:z} = ,/a;—zl (ac’{ - \/fliatef) + o1€,—1 . In this
expression, ¢, is the noise introduced in the forward diffusion process to obtain x; , and €;_; is the Gaussian noise used to
derive z}_; in the reverse diffusion process through the re-parametrization trick. The policy evaluation is then conducted as:
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mo(x} |x*):;ex - i Lar — P €;) + o€
O\l 110 ( 5 Q)d p 203_1 o t mt tCt—1
V2710
2
a1, Bt .
- SR t
o (z} mee(l‘t, ) 2)

(\/QWU?)
l—ay o1 f7

(
1 1
:(\/Tﬁ)de)(p <_2(1—5¢t1)5t o 1-a
(

t Heg(ac:,t) —€ + atef_1|‘§>

1
= ———exp

(vorat)

Bt A1
(1 — Oiétfl) Qg

||69(x;‘,t) —€ + atef_1|’§>

N | =

The log probability is defined as follows:

* * 1 Btatfl * * * 2
log mo(;_y|27) = _5( Heg(xt7t) —€ t+ Ut€t71||2

1 _@t—l)at (55)

d
—3 -log 2w — d - log oy

Inserting Eq. (55) into Eq. (54) results in:

£(o) = Eloga( BT log xt ) —log mo (|, ) I my (s |2 o) B T (x| 75 0) })
Trer(27y |77) Ter(zi_g|7y ) mer(wyy [ 2 €)  mer(ziy |2, 0)

=-K 10g0< pT [log o (2,1 |7) — log mer(z, 4 |2) — ((log (T |7y ) — 10gﬂref($;—1|$;)))
7T(£t1|xt7) 77(5(33;1|$t_ac)]>

7"'ref( L q ‘xt ¢)  Tet(w, g |7y 5 0)

[ Brovg—1

170415 1

= —Eloga( (Hee(xj,t) — € + Utezr—1H§ — ||€ret(@f ) — € + Utej_le
= (|leg(zy t—1) — e + Jte;lHi — || €ty t—1) — € + Jtet1”§)>+

eXP(M(HGg(x?—,t) - Ezr + Ute?_fluz - ||€ref Ty at) Eg_ + O—tej_lnz))

— exp(W(HEQ(xt—,t) —€ + Utet__lH; — Heref(mt_,t) —€ + atet__luz))])

Similarly, by approximating x;_; with the mean of ¢(z_; | 2}, xg) , the policy is assessed as follows:
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mo(E [z}, | 27, 25] |2})

Il
—
N
3
3
8 N
a
@
o]
go]
sy ’ N
Do
Q
- N

1*0%—1)@ ap 1—a

1 1 1-a o1 B7 112
= exp (—2( — ! ||€0($tat) — €5

1 _
ST ealet 0 - €13

1-— atfl) Qi

Once more, the log probability is defined as:

. o x| 1 Brovy 2
log 7o (IE [xtfl ‘ xt’xo] |zy) = D) 11— a1)ay leo(zi.t) — € ll5
N (56)
d
-5 log 2w — d - log oy
Inserting Eq. (56) into Eq. (54) results in:
£(9) = —Elogcr( BT[log xt L2 ag ] | —log mo(E [zy | oy, aq] lay)
Tret (B 'Tt s 7370] |37t ) Tret (E [‘rt_—l | xt_v@"(ﬂ ;)
my (i ‘xt ) _ iGN e 70)]>
7Tref(xj_ 1| If 0 Mer(Ty_y | 2y, 0)
— g~ AT |logmlE e, | o] | o) ~ g oy | o] | )

—log mo(E ['rt nED 75’30] |z ) + log Trer(E [xt_—l |xt_a$(7] |z )

4 770(9%—1 | 70) (T |7 5 0) ])

71'ref(%?_—l | 352_,0) 71'ref(mt_—l |, ,c)

—Eloga( - ﬂT[Qﬁt‘““ (Hee(wtﬂt) &l el 0) — €

(1 — at_l)ozt
leser,t) — e |IF  ||ewt(erst) - e;||§>)

Brov
v (52 eat )~ eI - et 6~
Bro—1

)
-exp(w<uee<x;7t>—ezuz—uem«xz,w—eznb)})
= Btogo( —a1[o (o0 (0 leatet ) — 1 et 0 <1 )

at—l)at

— 0 (e (522 lentor ) — I - llewstar ) - 1)) )]
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E. Further Analysis on the Gradient Fields

Lemma 5 The partial derivatives (gradients) of X; and X resulting from Eq.(21) can be expressed as follows:

a 1 Z
PLolZt) — (1 - 0 (B6(Z1) — B6(22))) &' (21) 57
o )
PR = B(1— 0 (BO(21) — Bo(22))) ¢ (22)
Consequently, the gradient ratio of L4(Z1, Z2) simplifies to:
OLy(Z1,Z) [|OLy(Z1,Z2) _ ¢'(Z1) (58)
07, 0Z ¢'(Z2)
If the regularization link function is ¢ppo, then Eq (57) simplifies to:
Loppo (X1, X2) _ _B Xy
0X1 - X, (X7 +X7) 59
Ly po (X1,X2) 3 x5t (59)
X, TP (xP+X%)
Consequently, the gradient ratio becomes:
8‘C¢DPO(217ZQ) 8‘C¢DPO(Z17ZQ) _ é (60)
821 8Z2 Zl
If the regularization link function is ¢, ., then Eq (57) simplifies to:
0Ly, (Z1,2Z5) Zi+1 B (Zatlog(22))
YA =6 7, eB(Zi+1og(Z1)) 4 B(Za+log(Z2)) 61
6£¢X(21,Z2) . 7 1 6522 . Zzﬁ*l
8Z2 - ﬁ ( 2+ ) ’ eﬁ(Z1+log(Z1)) + 6,3(22+10g(22))
Consequently, the gradient ratio becomes:
8£¢X (Zl, Zz) 8£¢X (Zl, Zz) _ ZQ(Zl =+ 1) (62)
07, 0Z Z1(Zy+ 1
If the regularization link function is ¢,~, then Eq (57) simplifies to:
Ly, (21, Z2) L et ¢k (Tiims £ ZE 408 7))
07, =k ﬁ<kz_0 v Bl ko) #2f+Hlog 1)) 4 oB(5 (3hioy % Z5 +log Z2))
B 63
8£¢Xn (Zl,ZQ) 1 n Zk_l eﬁ(%( b1 %Z§+10gz2)) ©3)
07 =8 E(;O 2 ) BE(Tio, £2E+10g 1)) 1 oB(R(Tie, 25 +log 22))
Consequently, the gradient ratio becomes:
’8£¢X" (Zl, ZQ) /8£¢Xn (Zl7 Z2) _ ZZ:O Zf*l 64
aZl 822 ZZ:O Z§71
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F. Pseudocode for Training Objective

def loss (model, ref_model, x w, x_1, c, beta):
nmmnn
This is an example psuedo-code snippet for calculating the Diffusion-xnpo losson a single
model: Diffusion model that accepts prompt conditioning c and time conditioning t
ref_model: Frozen initialization of model
x_w: Preferred Image (latents in this work)
x_1: Non-Preferred Image (latents in this work)
c: Conditioning (text in this work)
beta: Regularization Parameter
xn: n denotes the exponent of fxn
returns: x " nPO loss value

timestep = torch.randint (0, 1000)
noise = torch.randn_like (x_w)

noisy_x_w = add_noise(x_w, noise, t)

noisy_x_1 add_noise(x_1l, noise, t)

model_w_pred model (noisy_x_w, ¢, t)
model_1_pred = model (noisy_x_1, c, t)

ref_w_pred = ref(noisy_x_w, c, t)

ref_1 pred = ref(noisy_x_1, c, t)

model_w_err = (model_w_pred - noise) .norm() .pow(2)
model_1_err = (model_1_ pred - noise) .norm() .pow(2)
ref_w_err = (ref_w_pred - noise).norm() .pow(2)
ref_1_err = (ref_1l_pred - noise).norm() .pow(2)
weights = [0.5 + 0.5 x i for 1 in range(xn)]

weighted_sum = 0.0

for i, weight in enumerate (weights, start=1l):

exp_w = torch.exp(weight * (model_w_err - ref_w err)) / i
exp_l = torch.exp(weight * (model_1_err - ref_1 err)) / i
weighted_sum += exp_w - exp_1
weighted_sum += 0.5 * (model_w_err - ref_w_err -model_1_err + ref_1_ err)
inside_term = - beta * weighted_sum / len(weights)
loss = -1 % log(sigmoid(inside_term))

return loss
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G. More Images from the Multiple Prompt Experiment

A cottage designed by Folk horror painting of dead An oil painting of a duck by A digital painting of a Painting of Durdle Door in  Portrait of Seiko Matsuda in A surrealistic painting The image is a drawing of a
Salvador Daliis surrounded pines with eerie and creepy Vasily Rabchenko, cartoon shop environment  Starry Night style. the 80's by Sergey Kolesov showing a living room with  skeletal, frail figure driving a
by blooming forest, witha ~atmosphere. surrounded by five fantasy on Art Station. abundant furniture by Jacek chariot pulled by two
nearby stream in spring. environments, with a fat Yerka. skeletal animals.

brush concept sketch by
artist BD Enki Bilal.

SD-15

Diffusion-DPO

SPIN-Diffusion

Ours

14

Figure 4. Additional Prompt Experiment: This experiment evaluates our method against baseline methods by generating images on the
HPSV2 test set prompts under random sampling.

A biblical Noah's Ark floats  Image featuring the A low polygon ice monster A horse and astronaut in  The image is a trippy This is a 3D isometric The image is a highly Cassandra Cain as a

on turbulent waves with  apocalyptic scene fom  depicted in conceptart.  one image. cheeseburger with warm  illustration with studio detailed portrait of an oak in Tekken character portrayed
dark clouds and rain, Final Fantasy. colors, depicted in highly  lighting. GTAV, created using in a realistic style with a
depicted in a beautiful detailed illustration and Unreal Engine and featuring character select portrait in
graphic propaganda poster rendered in octane, created fantasy artwork by various  cg animation

art style from the 1970s. by the award winning studio artists.
4.

SD-15

Diffusion-DPO

SPIN-Diffusion

Ours

Figure 5. Additional Prompt Experiment: This experiment evaluates our method against baseline methods by generating images on the
HPSV2 test set prompts under random sampling.
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Anattractive male ina A beautiful Arabian angel A picturesque medieval A painting of the Macy's A landscape featuringa A dystopian future city with The image features a castle A cyberpunk giant robot
wuxia setting illuminated by wearing a nigab and hobbit home surrounded by Thanksgiving Day Parade. building in the style of Peter a nuclear fallout, created  surrounded by a dreamy  depicted in oil on canvas by
neon lights, depicted ina  adorned with jewelry by lush forest features a bridge Mohrbacher. through a matte painting  garden with roses anda  Simon Stélenhag and
painting by Gaston various arists. over a creek, a chimney with Octane Render. cloudy sky in the Umberto Boccioni.
Bussiere, Craig Mullins, and emitting smoke, a waterfall background.

J.C. Leyendecker. in the background and
flowers.
SD-1.5
Diffusion-DPO
SPO
SPIN-Diffusion
ours

Figure 6. Additional Prompt Experiment: This experiment evaluates our method against baseline methods by generating images on the
HPSV2 test set prompts under random sampling.

There is a secret museum A smiling face made of  The image is of a stylized A painting depicting a A digital painting of a Portrait of a young man with Greg Manchess painted a  Portrait of an ape wearing
of magical items inside a ~ spaghetti and ketchup.  Overwatch building in scenic view of Guangzhou, mockingbird on a branch by scars on his brown skin  portrait of Baby Yoda as an an astronaut helmet.
crystal greenhouse palace watercolor gouache, China as a tourist artists Jacqueline E, Tafy,  wearing a black turtleneck, Overwatch character in an

filied with intricate featuring interesting shapes destination by David and Bo Feng. by Martin Ansin. asymmetrical, organic style

bookshelves, plants, and and forms, located ina ~ Inshaw. with bold shapes and hard

Victorian style decor. desolate landscape with a

edges, resembling street art
food stall in an Asian-style - trending on ArtStation,
alleyway. created with the help of
Huang Guangjian, Gil
Elvgren, and Sachin Teng.

SD-15

Diffusion-DPO

SPIN-Diffusion

Figure 7. Additional Prompt Experiment: This experiment evaluates our method against baseline methods by generating images on the
HPSv2 test set prompts under random sampling.
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An assemblage by Boris A large commercial airliner A detailed watercolor
Vallejo and Squeak silhoetted in the sun. illustration of rabbits.
Carnwath depicts a

blooming orchard in a

stormy Indonesian

landscape.

SD-1.5

Diffusion-DPO

SPO

SPIN-Diffusion

Ours

Portrait of Michael Jordan in A master gouache painting A digital painting of a knight An oil painting of Audrey

intricate digital painting with of ships docked at the
smooth details by Artgerm, harbor by Claude Monet.
Greg Rutkowski, Alphonse

Mucha, and

William-Adolphe

Bouguereau.

sitting by a campfire in a
dark forest.

Hepburn portraying Cersei
Lannister from Game of
Thrones.

The image features an
ancient Chinese landscape
with a mountain, waterfalls,
willow trees, and arch
bridges set against a blue
background.

Figure 8. Additional Prompt Experiment: This experiment evaluates our method against baseline methods by generating images on the

HPSV2 test set prompts under random sampling.
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