
Epistemic Neural Networks

Ian Osband∗, Zheng Wen, Seyed Mohammad Asghari,
Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy

Google DeepMind, Efficient Agent Team, Mountain View
{ian.osband, m.ibrahimi}@gmail.com

{zhengwen,smasghari,vikranthd,lxlu,benvanroy}@google.com

Abstract

Intelligent agents need to know what they don’t know, and this capability can
be evaluated through the quality of joint predictions. In principle, ensemble
methods can produce effective joint predictions, but the compute costs are
prohibitive for large models. We introduce the epinet: an architecture that
can supplement any conventional neural network, including large pretrained
models, and can be trained with modest incremental computation to estimate
uncertainty. With an epinet, conventional neural networks outperform large
ensembles of hundreds or more particles, and use orders of magnitude less
computation. The epinet does not fit the traditional framework of Bayesian
neural networks, so we introduce the epistemic neural network (ENN) as a
general interface for models that generate joint predictions.

1 Introduction

Consider a conventional neural network trained to predict whether a random person would
classify a drawing as a ‘rabbit’ or a ‘duck’. As illustrated in Figure 1, given a single drawing,
the network outputs a marginal prediction that assigns probabilities to the two classes. If
the probabilities are each 0.5, it remains unclear whether this is because labels sampled from
random people are equally likely, or whether the neural network would learn a single class if
trained on more data. Conventional neural networks do not distinguish these cases, even
though it can be critical for decision making systems to know what they do not know. This
capability can be assessed through the quality of joint predictions (Wen et al., 2022).
The two tables to the right of Figure 1 represent possible joint predictions that are each
consistent with the network’s uniform marginal prediction. These joint predictions are over
pairs of labels for the same image, (y1,y2)∈{R,D}×{R,D}. For any such joint prediction,
Bayes’ rule defines a conditional prediction for y2 given y1. The first table indicates inevitable
uncertainty that would not be resolved through training on additional data; conditioning on
the first label does not alter the prediction for the second. The second table indicates that
additional training should resolve uncertainty; conditioned on the first label, the prediction
for the second label assigns all probability to the same outcome as the first.
Figure 1 presents the toy problem of predictions across two identical images as a simple
illustration of these types of uncertainty. The observation that joint distributions express
whether uncertainty is resolvable extends more generally to practical cases, where the inputs
differ, or where there are more than two simultaneous predictions (Osband et al., 2022a).
Bayesian neural networks (BNNs) offer a statistically-principled way to make effective joint
predictions, by maintaining an approximate posterior over the weights of a base neural
network. Assymptotically these can recover the exact posterior, but the computational costs

∗Contact ian.osband@gmail.com

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Conventional neural nets generate marginal predictions, which do not distinguish
genuine ambiguity from insufficiency of data. Joint predictions can make this distinction.

are prohibitive for large models (Welling and Teh, 2011). Ensemble-based BNNs offer a
more practical approach by approximating the posterior distribution with an ensemble of
statistically plausible networks that we call particles (Osband and Van Roy, 2015; Lakshmi-
narayanan et al., 2017). While the quality of joint predictions improves with more particles,
practical implementations are often limited to at most tens of particles due to computational
constraints.
In this paper, we introduce an approach that outperforms ensembles of hundreds of
particles at a computational cost less than that of two particles. Our key innovation
is the epinet: a network architecture that can be added to any conventional neural network
to estimate uncertainty. Figure 2 offers a preview of results presented in Section 6, where we
compare these approaches on ImageNet. The quality of the ResNet’s marginal predictions –
measured by classification error or marginal log-loss – does not change much if supplemented
with an epinet. However the epinet-enhanced ResNet dramatically improves the quality
of joint predictions, as measured by the joint log-loss, outperforming the ensemble of 100
particles, with total parameters less than 2 particles. Prior work has shown the importance
of joint predictions in driving effective decisions for a broad class of problems, including
combinatorial decision problems and sequential decision problems (Wen et al., 2022; Osband
et al., 2022a).

3e7 1e8 3e8 1e9 3e9

0.21

0.22

0.23

lo
ss

classification error

enn
resnet

ensemble

epinet

3e7 1e8 3e8 1e9 3e9

0.80

0.85

0.90

marginal log-loss

3e7 1e8 3e8 1e9 3e9
model size (number of parameters)

4

5

7

joint log-loss

Figure 2: Quality of marginal and joint predictions across models on ImageNet (Section 6).
The epinet does not fit into the traditional framework of BNNs. In particular, it does not
represent a distribution over base neural network parameters. To accommodate development
of the epinet and other approaches that do not fit the BNN framework, we introduce the
concept of epistemic neural networks (ENNs). We establish that all BNNs are ENNs, but
there are useful ENNs such as the epinet, that are not BNNs.

2 Related work
Our research builds on the literature in Bayesian deep learning (Hinton and Van Camp,
1993; Neal, 2012). BNNs represents epistemic uncertainty via approximating the posterior
distribution over parameters of a base neural network (Der Kiureghian and Ditlevsen, 2009;
Kendall and Gal, 2017). A challenge is the computational cost of posterior inference,
which becomes intractable even for small networks (MacKay, 1992), and even approximate
SGMCMC becomes prohibitive for large scale models (Welling and Teh, 2011).
Tractable methods for approximate inference has renewed interest in BNNs. Variational
approaches such as Bayes by backprop (Blundell et al., 2015) use an evidence-based lower
bound (ELBO) to approximate the posterior distribution, and related approaches use the
same objective with more expressive weight distributions (Louizos and Welling, 2017). One

2

influential line of work claims that MC dropout can be viewed as one such approach (Gal
and Ghahramani, 2016), although subsequent papers have noted that the quality of this
approximation can be very poor (Osband, 2016; Hron et al., 2017). As of 2022, perhaps
the most popular approach is ensemble-based, with an ensemble of models, each referred to
as a particle, trained in parallel so that they together approximate a posterior distribution
(Osband and Van Roy, 2015; Lakshminarayanan et al., 2017).
Ensemble-based BNNs train multiple particles independently. This incurs computational
cost that scales with the number of particles. A thriving literature has emerged that seeks
the benefits of large ensembles at lower computational cost. Some approaches only ensemble
parts of the network, rather than the whole (Osband et al., 2019; Havasi et al., 2020). Others
introduce new architectures to directly incorporate uncertainty estimates, often inspired by
connections to Gaussian processes (Malinin and Gales, 2018; Charpentier et al., 2020; Liu
et al., 2020; van Amersfoort et al., 2021). Others perform Bayesian inference more directly
in the function space in order to sidestep issues relating to overparameterization (Sun et al.,
2019).
In general, research in Bayesian deep learning has focused more on developing methodology
than unified evaluation (Osband et al., 2022a). Perhaps because the potential benefits of
BNNs are so far-reaching, different papers have emphasized improvements in classification
accuracy (Wilson, 2020), expected calibration error (Ovadia et al., 2019), OOD performance
(Hendrycks and Dietterich, 2019), active learning (Gal et al., 2017) and decision making
(Osband et al., 2019). However, in each of these settings it generally is possible to obtain
improvements via methods that do not aim to approximate posterior distributions. Perhaps
for this reason, there has been a recent effort to refocus evaluation on how well methods
actually approximate ‘gold standard’ Bayes posteriors (Izmailov et al., 2021).
Our work on ENNs is motivated by the importance of joint predictions in driving decision,
exploration, and adaptation (Wang et al., 2021; Wen et al., 2022; Osband et al., 2022a). This
line of research, which we build on in Section 3.1, establishes a sense in which joint predictions
are both necessary and sufficient to drive decisions. Effectiveness of ENN designs can be
assessed through the quality of joint predictions. This perspective allows us to consider
approaches beyond those accommodated by the BNN framework. As we will demonstrate,
this can lead to significant improvements in performance.

3 Epistemic neural networks

A conventional neural network is specified by a parameterized function class f , which
produces a vector-valued output fθ(x) given parameters θ and an input x. The output fθ(x)
assigns a corresponding probability P̂ (y) = exp ((fθ(x))y) /

∑
y′ exp ((fθ(x))y′) to each class

y. For shorthand, we write such class probabilities as P̂ (y) = softmax(fθ(x))y. We refer to a
predictive class distribution P̂ produced in this way as a marginal prediction, as it pertains
to a single input x.
An ENN architecture, on the other hand, is specified by a pair: a parameterized function class
f and a reference distribution PZ . The vector-valued output fθ(x, z) of an ENN depends
additionally on an epistemic index z, which takes values in the support of PZ . Typical
choices of the reference distribution PZ include a uniform distribution over a finite set or a
standard Gaussian over a vector space. The index z is used to express epistemic uncertainty.
In particular, variation of the network output with z indicates uncertainty that might be
resolved by future data. As we will see, the introduction of an epistemic index allows us to
represent the kind of uncertainty required to generate useful joint predictions.

Given inputs x1,...,xτ , a joint prediction assigns a probability P̂1:τ (y1:τ) to each class
combination y1,...,yτ . While conventional neural networks are not designed to provide joint
predictions, joint predictions can be produced by multiplying marginal predictions:

P̂ NN
1:τ (y1:τ) =

τ∏
t=1

softmax(fθ(xt))yt
. (1)

However, this representation models each outcome y1:τ as independent and so fails to
distinguish ambiguity from insufficiency of data. ENNs address this by enabling more

3

expressive joint predictions through integrating over epistemic indices:

P̂ ENN
1:τ (y1:τ) =

∫
z

PZ(dz)
τ∏

t=1
softmax(fθ(xt,z))yt

. (2)

This integration introduces dependencies so that joint predictions are not necessarily just
the product of marginals. Figure 3 provides a simple example of how two different ENNs
can use the epistemic index to distinguish the sorts of uncertainty described in Figure 1.
In Figure 3(a) the ENN makes marginal predictions that do not vary with z, and so the
resultant joint predictions are simply the independent product of marginals. This corresponds
to an ‘aleatoric’ or ‘irreducible’ form of uncertainty that cannot be resolved with data. On
the other hand, Figure 3(b) shows an ENN that makes predictions depending on the sign
of the epistemic index. This corresponds to ‘epistemic’ or ‘reducible’ uncertainty that can
be resolved with data. In this case, integrating the 2x2 matrix over z produces a diagonal
matrix with 0.5 in each diagonal entry. As such, Figure 3 shows how an ENN can use the
epistemic index to distinguish the two joint distributions of Figure 1.

(a) An ENN indicating an ambiguous image. (b) An ENN indicating insufficient data.

Figure 3: An ENN can incorporate the epistemic index z ∼ PZ into its joint predictions.
This allows an ENN to differentiate inevitable ambiguity from data insufficiency.

3.1 Evaluating ENN performance

Marginal log loss (also known as cross-entropy loss) is perhaps the most widely used evaluation
metric in machine learning. For a single input x, if a neural network generates a prediction
P̂ and the label turns out to be y, then the sample log loss is the form − ln P̂ (y). We say
that this is a marginal loss because it only looks at the quality of a prediction over a single
(input, output) pair. As we will discuss, minimizing marginal log loss does not generally lead
to performant downstream decisions. Good decisions often require good joint predictions.
To formulate a generic decision problem, consider a reward function r that maps an action
a ∈ A and τ labels y1:τ to a reward r(a, y1:τ) ∈ [0, 1]. Given an exact posterior predictive
P1:τ , consider as an objective maximization of the expected reward

∑
y1:τ

P1:τ (y1:τ)r(a, y1:τ).
The optimal decision can be approximated based on an ENN’s prediction P̂1:τ by choosing
an action a that maximizes

∑
y1:τ

P̂1:τ (y1:τ)r(a, y1:τ). The following theorem is formalized
and proved in Appendix B.
Theorem 1. [informal] There exists a decision problem and an ENN that attains small
expected marginal log loss such that actions generated using the ENN perform no better than
random guessing.

Theorem 1 indicates that minimizing marginal log loss does not suffice to support effective
decisions. The key to this insight is that marginal predictions do not distinguish ambiguity
from insufficiency of data. However, this can can be addressed by instead considering the
joint log loss. Given τ data pairs and a joint prediction P̂1:τ , we can consider the joint log
loss − ln P̂1:τ (y1:τ) in exactly the same way that we looked at the marginal log loss. We
formalize our next result in Appendix B.
Theorem 2. [informal] For any decision problem, any ENN that attains small expected joint
log loss leads to actions that attain near optimal expected reward.

Theorems 1 and 2 highlight the importance of joint predictions in driving decisions. Since
we want machine learning systems to drive effective decisions, we will assess the performance

4

of ENNs by comparing their joint log loss.2 It is important to note that we will consider this
joint loss as a method for assessing quality of a trained ENN. We have not yet discussed how
particular forms of ENNs are trained, which will generally be up to the algorithm designer.
Section 4 provides further detail on the specific architecture and training loss for the epinet
ENN we develop in this paper.

3.2 ENNs versus BNNs

A base neural network f defines a class of functions. Each element fθ of this class is identified
by a vector θ of parameters, which specify weights and biases. An ENN or BNN is designed
with respect to a specific base network, and seek to express uncertainty while learning a
function in this class. We will formally define what it means for an ENN or BNN to be
defined with respect to a base network. We will then establish results which indicate that,
with respect to any base network, all BNNs can be expressed as ENNs but not vice versa.
Consider a base neural network f which, given parameters θ and input x, produces an output
fθ(x). A typical BNN is specified by a pair: a base network f and a parameterized sampling
distribution p. Given parameters ν, a sample θ̂ can be drawn from the distribution pν to
generate a function fθ̂. Approaches such as stochastic gradient MCMC, deep ensembles,
and dropout can all be framed in this way. For example, with a deep ensemble, θ̂ comprises
parameters of an ensemble particle and pν is the distribution represented by the ensemble,
which assigns probability to a finite set of vectors, each associated with one ensemble particle.
For any inputs x1, . . . , xτ , by sampling many functions (fθ̂k : k = 1, . . . , K), a BNN can be
used to approximate the corresponding joint distribution over labels y1, . . . , yτ , according to
P̂ (y1:τ) = 1

K

∑K
k=1 1((fθ̂k (x1), . . . , fθ̂k (xτ)) = y1:τ).

We say the BNN (f, p) is defined with respect to its base network f . We say an ENN (f ′, PZ)
is defined with respect to a base network f if, for any base network parameters θ, there exist
ENN parameters θ′ such that f ′

θ′(·, z) = fθ almost surely with respect to PZ . Intuitively,
being defined with respect to a particular base network means that the BNN or ENN is
designed to learn any function within the class characterized by the base network.
We say that a BNN (f, p) is expressed as an ENN (f ′, PZ) if, for all ν, τ , and inputs x1:τ ,
there exists θ′ such that for θ̂ ∼ pν , z ∼ Pz,

(fθ̂(x1), . . . , fθ̂(xτ)) d= (f ′
θ′(x1, z), . . . , f ′

θ′(xτ , z)). (3)

This condition means that the ENN and BNN make the same joint predictive distributions
at all inputs.
We say that an ENN (f ′, PZ) is expressed as a BNN if, for all θ′, τ , and inputs x1, . . . , xτ ,
there exists a posterior distribution ν such that (3) holds. Intuitively, one architecture is
expressed as the other if the latter can represent the same distributions over functions. The
following result, established in Appendix C, asserts that any BNN can be expressed as an
ENN but not every ENN can be expressed as a BNN.
Theorem 3. For all base networks f , any BNN defined with respect to f can be expressed as
an ENN defined with respect to f . However, there exists a base network f and ENN defined
with respect to f that can not be expressed as a BNN defined with respect to f .

In supervised learning, de Finetti’s Theorem implies that if a sequence of data pairs is
exchangeable then they are i.i.d. conditioned on a latent random object (de Finetti, 1929).
BNNs use base network parameters θ as the object, while ENNs focus on the function g∗ itself,
without concerning the underlying parameters. ENNs serve as computational mechanisms to
approximate the posterior distribution of g∗, allowing functions beyond the base network class
to represent uncertainty and allowing better trade-offs between computation and prediction
quality. The epinet is an example of an ENN that cannot be expressed as a BNN with the
same base network, and showcases the benefits of the ENN interface beyond BNNs.

2In problems with high-dimensional inputs, the number of inputs x1, .., xτ sampled uniformly
from the input distribution, may have to be very large to distinguish ENNs in ways marginal log
loss does not (Osband et al., 2022b). To sidestep prohibitive computational costs we use dyadic
sampling in our empirical evaluation and review these details in Appendix F.

5

4 The epinet

This section introduces the epinet, which can supplement any conventional neural network
to make a new kind of ENN architecture. Our approach reuses standard deep learning
components and training algorithms, as outlined in Algorithm 1. As we will see, it is
straightforward to add an epinet to any existing model, even one that has been pretrained.
The key to successful application of the epinet comes in the design of the network architecture
and loss functions.

Algorithm 1 ENN training via SGD
Inputs:

dataset training examples D= {(xi,yi,i)}N
i=1

ENN network f , reference PZ , initialization θ0
loss ℓ evaluates example (xi,yi,i) for index z
batch size data samples nB , index samples nZ

optimizer update rule and number of iterations T
Returns:

θT parameter estimates for the ENN.
1: for t in 0,...,T −1 do
2: sample data Ĩ = i1,..,inB ∼Unif({1,..,N}).
3: sample indices Z̃ = z1,..,znZ ∼PZ .
4: compute grad←∇θ|θ=θt

∑
z∈Z̃

∑
i∈Ĩ ℓ(θ,z,xi,yi,i).

5: update θt+1← optimizer(θt,grad) Figure 4: Epinet network architecture.

4.1 Architecture

Consider a conventional neural network as the base network. Given base parameters ζ and
an input x, the output is µζ(x). For a classification model, the class probabilities would be
softmax(µζ(x)). An epinet is a neural network with privileged access to inputs and outputs
of activation units in the base network. A subset of these inputs and outputs, which we
call features ϕζ(x), are taken as input to the epinet along with an epistemic index z. For
example, these features might be the last hidden layer in a ResNet. The epistemic index is
sampled from a standard Gaussian distribution in dimension DZ . For epinet parameters η,
the epinet outputs ση(ϕζ(x), z). To produce an ENN, the output of the epinet is added to
that of the base network, though with a “stop gradient”:3

fθ(x, z)︸ ︷︷ ︸
ENN

= µζ(x)︸ ︷︷ ︸
base net

+ ση(sg[ϕζ(x)], z)︸ ︷︷ ︸
epinet

. (4)

We find that with this stop gradient, training dynamics more reliably produce models that
perform well out of sample. The ENN parameters θ = (ζ, η) include those of the base network
ζ and epinet η. Due to the additive structure of the epinet, multiple samples of the ENN
can be obtained with only one forward pass of the base network. Where the epinet is much
smaller than the base network this can lead to significant computational savings.
Before training, variation of the ENN output fθ(x, z) as a function of z reflects prior
uncertainty in predictions. Since the base network does not depend on z, this variation
must derive from the epinet. In our experiments, we induce this initial variation using prior
networks (Osband et al., 2018). In particular, for x̃ := sg[ϕζ(x)], our epinets take the form

ση(x̃, z)︸ ︷︷ ︸
epinet

= σL
η (x̃, z)︸ ︷︷ ︸

learnable

+ σP (x̃, z)︸ ︷︷ ︸
prior net

. (5)

The prior network σP represents prior uncertainty and has no trainable parameters. The
learnable network σL

η is typically initialized to output values close to zero, but is then trained
so that the resultant sum ση produces statistically plausible predictions for all probable
values of z. Variations of a prediction ση = σL

η + σP at an input x as a function of z indicate
predictive epistemic uncertainty, just like the example from Figure 3(b).
Epinet architectures can be designed to encode inductive biases that are appropriate for the
application at hand. In this paper we focus on a particularly simple form of architecture

3The “stop gradient” notation sg[·] indicates the argument is treated as fixed when computing a
gradient. For example, ∇θfθ(x, z) = [∇ζµζ(x),∇ηση(ϕζ(x), z)].

6

for σL
η based around standard multi-layered perceptron (MLP) with Glorot initialization

(Glorot and Bengio, 2010):
σL

η (x̃, z) := mlpη([x̃, z])⊤z ∈ RC , (6)

where mlpη is an MLP with outputs in RDZ ×C and [x̃, z] is a flattened concatenation of x̃

and z. Depending on the choice of hidden units, σL
η can represent highly nonlinear functions

in x̃, z and thus allow for expressive joint predictions in high level features. The design,
initialization and scaling the prior network σP allows an algorithm designer to encode prior
beliefs, and is essential for good performance in learning tasks. Typical choices might include
σP sampled from the same architecture as σL but with different parameters.

4.2 Training loss function

While the epinet’s novelty primarily lies in its architecture, the choice of loss function for
training can also play a role in its performance. In many classification problems, the standard
regularized log loss suffices:

ℓXENT
λ (θ, z, xi, yi, i) := − ln (softmax(fθ(xi, z))yi

) + λ∥θ∥2
2. (7)

Here, λ is a regularization penalty hyperparameter, while other notation are as defined in
Sections 3 and 4.1. This is the loss function we use for the experiments with the Neural
Testbed (Section 5) and ImageNet (Section 6).
Image classification benchmarks often exhibit a very high signal-to-noise ratio (SNR); identical
images are almost always assigned the same label. As demonstrated by Dwaracherla et al.
(2022), when the SNR is not so high and varies significantly across inputs, it can be beneficial
to randomly perturb the loss function via versions of the statistical bootstrap (Efron and
Tibshirani, 1994). For example, a Bernoulli bootstrap omits each data pair with probability
p ∈ [0, 1], giving rise to a perturbed loss function:

ℓXENT
p,λ (θ, z, xi, yi, i) :=

{
ℓXENT

λ (θ, z, xi, yi, i) if cT
i z > Φ−1(p)

0 otherwise, (8)

where each ci is an independent random vector sampled uniformly from the unit sphere, and
Φ(·) is the cumulative distribution function of the standard normal distribution N(0, 1).
Note that the loss functions defined in equation 7 and 8 only explicitly state the loss for
a single input-label pair (xi, yi) and a single epistemic index z. To compute a stochastic
gradient, one needs to sample a batch of input-label pairs and a batch of epistemic indices,
average the losses defined above, and then compute the gradient.

4.3 How can this work?

The epinet is designed to produce effective joint predictions. As such, one might expect the
training loss to explicitly reflect this and be surprised that we use standard marginal loss
functions such as ℓXENT

λ . Recall that a prediction fθ(x, z) produced by an epinet is given
by a trainable component µζ(x) + σL

η (x̃, z) perturbed by the prior function σP (x̃, z), which
has no trainable parameters. Minimizing ℓXENT

λ can therefore be viewed as optimizing the
learnable component µζ(x) + σL

η (x̃, z) with a perturbed loss function. Previous work has
established that learning with prior functions can induce effective joint predictions (Osband
et al., 2018; He et al., 2020; Dwaracherla et al., 2020, 2022), we extend this to the epinet.
To show this marginal loss function can lead to effective joint predictions, Theorem 4 proves
that this epinet training procedure can mimic exact Bayesian linear regression. Although this
paper focuses on classification, in this subsection we consider a regression problem because
its analytical tractability facilitates understanding. To establish this result, we introduce a
regularized squared loss perturbed by Gaussian bootstrapping:

ℓLSG
σ,λ (θ, z, xi, yi, i) := (fζ,η(xi, z) − y − σcT

i z)2 + λ
(
∥ζ∥2

2 + ∥η∥2
2
)

. (9)

Here, each ci is a context vector sampled uniformly from the unit sphere in DZ dimensions,
in the same manner as ℓXENT

p,λ (8).

7

We say that a dataset D is generated by a linear-Gaussian model if gν∗(x) = ν⊤
∗ x, ν∗ ∼

N(0, σ2
0I), and each data pair (xi, yi) ∈ D satisfies yi = gν∗(xi) + ϵi where ϵ1:N are i.i.d.

according to N(0, σ2). We say an ENN is a linear-Gaussian epinet with parameters θ = (ζ, η)
if its trainable component is comprised of a linearly parameterized functions µζ(x) = ζT x
and σL

η (x̃, z) = zT ηx̃, with epinet input x̃ = x, the prior function takes the form σP (x, z) =
σ0zT P0x, where each column of the matrix P0 is independently sampled uniformly from the
unit sphere, and the reference distribution is taken to be Pz ∼ N(0, IDZ

).
Theorem 4. Let data D={(xi,yi,i)}N

i=1 be generated by a linear-Gaussian model and f

be a linear-Gaussian epinet. Let θ̂∈argminθ

∑N
i=1
∫

z
PZ(dz)ℓLSG

σ,λ (θ,z,xi,yi,i) with parameter
λ=σ2/(Nσ2

0). Then, conditioned on (D,c1:N ,P0), fθ̂(·,z) converges in distribution to gν∗ as
DZ grows, almost surely.

This result, proved in Appendix D, serves as a ‘sanity check’ that an epinet trained with
a standard loss function can approach optimal joint predictions as the epistemic index
dimension grows. Although our analysis is limited to linear-Gaussian models, the loss
function applies more broadly. Indeed, we next demonstrate that epinets and standard loss
functions scale effectively to large and complex models.

Table 1: Summary of benchmark agents, full details in Appendix G.
agent description hyperparameters
mlp vanilla MLP L2 decay
ensemble deep ensembles (Lakshminarayanan et al., 2017) L2 decay, ensemble size
dropout Dropout (Gal and Ghahramani, 2016) L2 decay, network, dropout rate
bbb Bayes by backprop (Blundell et al., 2015) prior mixture, network, early stopping
hypermodel hypermodel (Dwaracherla et al., 2020) L2 decay, prior, bootstrap, index dimension
ensemble+ ensemble + prior functions (Osband et al., 2018) L2 decay, ensemble size, prior scale, bootstrap
sgmcmc stochastic gradient MCMC (Welling and Teh, 2011) learning rate, prior, momentum
epinet MLP + MLP epinet (this paper) L2 decay, network, prior, index dimension

5 The neural testbed
The Neural Testbed is an open-source benchmark that evaluates the quality of joint predictions
in classification problems using synthetic data produced by neural-network-based generative
models (Osband et al., 2022a). We use this as a unit test to sanity-check learning algorithms
in a controlled environment and compare the epinet against benchmark approaches.
Table 1 lists the agents that we study as well as hyperparameters that we tune via grid search.
For our epinet agent, we use base network µζ(x) that matches the baseline mlp agent. We
take the features ϕ(x) to be a concatenation of the input x and the last hidden layer of the
base network. We initialize the learnable epinet σL according to (6) with 2 hidden layers of
15 hidden units. The prior network σP is initialized as an ensemble of DZ = 8 networks each
with 2 hidden layers of 5 hidden units in each layer, and combine the output by dot-product
with index z. We push the details, together with open source code, to Appendix G.
Figure 5 examines the trade-offs between statistical loss and computational cost for epinet
against benchmark agents. The bars indicate standard error, estimated over the testbed’s
random seeds. After tuning, all agents perform similarly in marginal prediction, but the
epinet is able to provide better joint predictions at lower computational cost. We first
compare the performance of the epinet (blue) against that of an ensemble (red) as we grow
the number of particles. We show the epinet is able to perform much better than
an ensemble with 100 particles, with a model less than twice the size of a single
particle. These results are still compelling when we compare against ensemble+, which
includes prior functions, and which is necessary for good performance in low data regimes
included in testbed evaluation. Included in this plot are the other agents bbb, dropout
and hypermodel agents. The dashed line indicates performance of sgmcmc agent, which can
asymptotically obtain the Bayes optimal solution, but at a much higher computational cost.

6 ImageNet
Benefits of the epinet scale up to more complex datasets and, in fact, become more
substantial. This section focuses on experiments involving the ImageNet dataset (Deng

8

1e4 1e5 1e6
0.20

0.21

0.22

0.23

0.24

lo
ss

classification error
enn

ensemble

ensemble+

epinet

bbb

dropout

hypermodel
1e4 1e5 1e6

0.13

0.14

0.15

0.16

marginal log-loss

1e4 1e5 1e6
model size (number of parameters)

0.6

0.8

1

1.2

1.4

1.6
joint log-loss

Figure 5: Quality of marginal and joint predictions across models on the Neural Testbed.

et al., 2009); qualitatively similar results for both CIFAR-10 and CIFAR-100 are presented
in Appendix H. We compare our epinet agent against ensemble approaches as well as the
uncertainty baselines of Nado et al. (2021). Even after tuning to optimize joint log-loss,
none of these agents match epinet performance. We assess joint log-loss via dyadic sampling
(Osband et al., 2022b), as explained in Appendix F.
For our experiments, we first train several baseline ResNet architectures on ImageNet. We
train each of the ResNet-L architectures for L ∈ {50, 101, 152, 200} in the Jaxline framework
(Babuschkin et al., 2020). We tune the learning rate, weight decay and temperature rescaling
(Wenzel et al., 2020) on ResNet-50 and apply those settings to other ResNets. The ensemble
agent only uses the ResNet-50 architecture. After tuning hyperparameters, we independently
initialize and train 100 ResNet-50 models to serve as ensemble particles. These models are
then used to form ensembles of sizes 1, 3, 10, 30, and 100.
The epinet takes a pretrained ResNet as the base network with frozen weights. We fix the
index dimension DZ = 30 and let the features ϕ be the last hidden layer of the ResNet. We
use a 1-layer MLP with 50 hidden units for the learnable network (6). The fixed prior σP

consists of a network with the same architecture and initialization as σL
η , together with an

ensemble of small random convolutional networks that directly take the image as inputs. We
push details on hyperparameters and evaluation, with open-source code, to Appendix H.

3e7 1e8 3e8 1e9 3e9

0.21

0.22

0.23

lo
ss

classification error
enn

resnet

ensemble

epinet

mimo

dropout

sngp

het
3e7 1e8 3e8 1e9 3e9

0.80

0.85

0.90

marginal log-loss

3e7 1e8 3e8 1e9 3e9
model size (number of parameters)

4

6

8

joint log-loss

Figure 6: Marginal and joint predictions on ImageNet.

Figure 2 presents our key result of this paper: relative to large ensembles,
epinets greatly improve joint predictions at orders of magnitude lower compute
cost. The figure plots performance of three agents with respect to three notions of loss
as a function of model size in the spirit of Kaplan et al. (2020). The first two plots assess
marginal prediction performance in terms of classification error and log-loss. Performance
of the ResNet scales similarly whether or not supplemented with the epinet. Performance
of the ensemble does not scale as well as that of the ResNet. The third plot pertains to
performance of joint predictions and exhibits dramatic benefits afforded by the epinet. While
joint log-loss incurred by the ensemble agent improves with model size more so than the
ResNet, the epinet agent outperforms both alternatives by an enormous margin.
Figure 6 adds evaluation for the best single-model agents from uncertainty
baselines (Nado et al., 2021): epinet also outperforms all of these methods. We
tuned each uncertainty baseline agent to minimize joint log-loss, subject to the constraint

9

that their marginal log-loss does not degrade relative to published numbers. We can see
that the epinet offers substantial improvements in joint prediction compared to sngp (Liu
et al., 2020), dropout (Gal and Ghahramani, 2016), mimo (Havasi et al., 2020) and het
(Collier et al., 2020). As demonstrated in Appendix H, these qualitative observations remain
unchanged under alternative measures of computational cost, such as FLOPs.

7 Conclusion
This paper introduces ENNs as a new interface for uncertainty modeling in deep learning.
We do this to facilitate the design of new approaches and the evaluation of joint predictions.
Unlike BNNs, which focus on inferring unknown network parameters, ENNs focus on
uncertainty that matters in the predictions. The epinet is a novel ENN architecture that
cannot be expressed as a BNN and significantly improves the tradeoffs in prediction quality
and computation. For large models, the epinet enables joint predictions that outperform
ensembles consisting of hundreds of particles at a computational cost only slightly more than
one particle. Importantly, you can add an epinet to large pretrained models with modest
incremental computation.
ENNs enable agents to know what they do not know, thereby unlocking intelligent decision
making capabilities. Specifically, ENNs allow agents to employ sophisticated exploration
schemes, such as information-directed sampling (Russo and Van Roy, 2014), when tackling
complex online learning and reinforcement learning problems. A recent paper (Osband et al.,
2023) has demonstrated efficacy of the epinet in several benchmark bandit and reinforcement
learning problems. While ENNs can also be integrated into large language models, we defer
this to future work.

References
Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai,

T., Clark, A., Danihelka, I., Fantacci, C., Godwin, J., Jones, C., Hennigan, T., Hessel, M.,
Kapturowski, S., Keck, T., Kemaev, I., King, M., Martens, L., Mikulik, V., Norman, T., Quan,
J., Papamakarios, G., Ring, R., Ruiz, F., Sanchez, A., Schneider, R., Sezener, E., Spencer, S.,
Srinivasan, S., Stokowiec, W., and Viola, F. (2020). The DeepMind JAX Ecosystem.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural
networks. In International Conference on Machine Learning, pages 1613–1622. PMLR.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable
transformations of Python+NumPy programs.

Charpentier, B., Zügner, D., and Günnemann, S. (2020). Posterior network: Uncertainty estimation
without ood samples via density-based pseudo-counts. Advances in Neural Information Processing
Systems, 33:1356–1367.

Collier, M., Mustafa, B., Kokiopoulou, E., Jenatton, R., and Berent, J. (2020). A simple probabilistic
method for deep classification under input-dependent label noise. arXiv preprint arXiv:2003.06778.

Collier, M., Mustafa, B., Kokiopoulou, E., Jenatton, R., and Berent, J. (2021). Correlated input-
dependent label noise in large-scale image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1551–1560.

de Finetti, B. (1929). Funzione caratteristica di un fenomeno aleatorio. Atti del Congresso
Internazionale dei Matematici: Bologna, (1):1979 – 190.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee.

Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural
safety, 31(2):105–112.

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen, Z., and Van Roy, B. (2020). Hypermodels
for exploration. In International Conference on Learning Representations.

10

Dwaracherla, V., Wen, Z., Osband, I., Lu, X., Asghari, S. M., and Van Roy, B. (2022). Ensem-
bles for uncertainty estimation: Benefits of prior functions and bootstrapping. arXiv preprint
arXiv:2206.03633.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep Bayesian active learning with image data. In
International Conference on Machine Learning, pages 1183–1192. PMLR.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th international conference on artificial intelligence and statistics,
pages 249–256.

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Lakshminarayanan, B., Dai, A. M., and
Tran, D. (2020). Training independent subnetworks for robust prediction. CoRR, abs/2010.06610.

He, B., Lakshminarayanan, B., and Teh, Y. W. (2020). Bayesian deep ensembles via the neural
tangent kernel. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 1010–1022. Curran Associates,
Inc.

Hendrycks, D. and Dietterich, T. (2019). Benchmarking neural network robustness to common
corruptions and perturbations.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pages 5–13.

Hron, J., Matthews, A. G. d. G., and Ghahramani, Z. (2017). Variational Gaussian dropout is not
Bayesian. arXiv preprint arXiv:1711.02989.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. (2021). What are Bayesian neural
network posteriors really like? arXiv preprint arXiv:2104.14421.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford,
A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361.

Kendall, A. and Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for
computer vision? In Advances in Neural Information Processing Systems, volume 30.

Knothe, H. (1957). Contributions to the theory of convex bodies. Michigan Mathematical Journal,
4(1):39 – 52.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical Report 0,
University of Toronto, Toronto, Ontario.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pages 6405–6416.

Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T., and Lakshminarayanan, B. (2020). Simple
and principled uncertainty estimation with deterministic deep learning via distance awareness.
Advances in Neural Information Processing Systems, 33:7498–7512.

Louizos, C. and Welling, M. (2017). Multiplicative normalizing flows for variational Bayesian neural
networks. In International Conference on Machine Learning, pages 2218–2227. PMLR.

Lu, X. and Van Roy, B. (2017). Ensemble sampling. In Advances in Neural Information Processing
Systems, pages 3260–3268.

MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472.

Malinin, A. and Gales, M. (2018). Predictive uncertainty estimation via prior networks. Advances
in neural information processing systems, 31.

11

Minka, T. (2000). Bayesian linear regression. Technical report, Citeseer.

Nado, Z., Band, N., Collier, M., Djolonga, J., Dusenberry, M., Farquhar, S., Filos, A., Havasi, M.,
Jenatton, R., Jerfel, G., Liu, J., Mariet, Z., Nixon, J., Padhy, S., Ren, J., Rudner, T., Wen, Y.,
Wenzel, F., Murphy, K., Sculley, D., Lakshminarayanan, B., Snoek, J., Gal, Y., and Tran, D.
(2021). Uncertainty Baselines: Benchmarks for uncertainty & robustness in deep learning. arXiv
preprint arXiv:2106.04015.

Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer Science & Business
Media.

Osband, I. (2016). Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout. In NIPS Workshop on Bayesian Deep Learning, volume 192.

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized prior functions for deep reinforcement
learning. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Advances in Neural Information Processing Systems 31, pages 8617–8629. Curran
Associates, Inc.

Osband, I. and Van Roy, B. (2015). Bootstrapped Thompson sampling and deep exploration. arXiv
preprint arXiv:1507.00300.

Osband, I., Van Roy, B., Russo, D. J., and Wen, Z. (2019). Deep exploration via randomized value
functions. Journal of Machine Learning Research, 20(124):1–62.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V., Hao, B., Ibrahimi, M., Lawson, D., Lu, X.,
O’Donoghue, B., and Van Roy, B. (2022a). The neural testbed: Evaluating joint predictions. In
Advances in Neural Information Processing Systems, volume 35. Curran Associates, Inc.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V., Ibrahimi, M., Lu, X., and Van Roy, B. (2023).
Approximate Thompson sampling via epistemic neural networks. In Evans, R. J. and Shpitser,
I., editors, Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
volume 216 of Proceedings of Machine Learning Research, pages 1586–1595. PMLR.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V., Lu, X., and Van Roy, B. (2022b). Evaluating
high-order predictive distributions in deep learning. In The 38th Conference on Uncertainty in
Artificial Intelligence.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Lakshminarayanan,
B., and Snoek, J. (2019). Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. arXiv preprint arXiv:1906.02530.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical
Statistics, 23(3):470–472.

Russo, D. and Van Roy, B. (2014). Learning to optimize via information-directed sampling. Advances
in Neural Information Processing Systems, 27.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Sun, S., Zhang, G., Shi, J., and Grosse, R. (2019). Functional variational Bayesian neural networks.
arXiv preprint arXiv:1903.05779.

van Amersfoort, J., Smith, L., Jesson, A., Key, O., and Gal, Y. (2021). On feature collapse and
deep kernel learning for single forward pass uncertainty. arXiv preprint arXiv:2102.11409.

Wang, C., Sun, S., and Grosse, R. (2021). Beyond marginal uncertainty: How accurately can Bayesian
regression models estimate posterior predictive correlations? In International Conference on
Artificial Intelligence and Statistics, pages 2476–2484. PMLR.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.
Citeseer.

Wen, Z., Osband, I., Qin, C., Lu, X., Ibrahimi, M., Dwaracherla, V., Asghari, M., and Van Roy, B.
(2022). From predictions to decisions: The importance of joint predictive distributions.

12

Wenzel, F., Roth, K., Veeling, B. S., Światkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans, T.,
Jenatton, R., and Nowozin, S. (2020). How good is the Bayes posterior in deep neural networks
really? arXiv preprint arXiv:2002.02405.

Wilson, A. G. (2020). The case for Bayesian deep learning. arXiv preprint arXiv:2001.10995.

13

A Open source code

Two related github repositories complement this paper:

1. enn: https://anonymous.4open.science/r/enn-55BC
2. neural_testbed: https://anonymous.4open.science/r/neural_testbed-8961

These libraries contain the code necessary to reproduce the key results in our paper, divided
into repositories based on focus. Together with each repository, we include several ‘tutorial
colabs’ – Jupyter notebooks that can be run in a browser without requiring any local
installation. Each of these libraries is written in Python, and relies heavily on JAX for
scientific computing (Bradbury et al., 2018). We view this open-source effort as a major
contribution of our paper.
The first library, enn, focuses on the design of epistemic neural networks and their training.
This includes all of our network definitions and loss functions. Our library is built around
Haiku (Babuschkin et al., 2020). The library provides the basis for all of the computational
work reported in this paper.
The second library, neural_testbed, was introduced as part of The Neural Testbed (Osband
et al., 2022a). We add the epinet agent, suitable for comparison with the existing agent
implementations in that library.

B From predictions to decisions

Suppose a neural network has been trained on a dataset D and, then, for a random input
x with label y generates a distributional prediction P̂ . The expected marginal log loss is
−E[ln P̂ (y)|D]. Note that this expectation is over x, y, and P̂ . Results we establish point out
that, while minimizing this produces optimal marginal predictions, that does not generally
lead to performant downstream decisions.
To formulate a generic decision problem, consider a reward function r that maps an action
a ∈ A and τ labels y1:τ to a reward r(a, y1:τ) ∈ [0, 1]. Conditioned on training data D and
random inputs x1:τ , an action a generates expected reward

E [r(a, y1:τ)|D, x1:τ] =
∑
y1:τ

P1:τ (y1:τ)r(a, y1:τ),

where P1:τ (y1:τ) = P(y1:τ = ·|D, x1:τ) is the posterior predictive distribution. An optimal
action a∗ can be determined by maximizing this conditional expectation. If an approximation
P̂1:τ is used instead of P1:τ then the objective becomes

∑
y1:τ

P̂1:τ (y1:τ)r(a, y1:τ).

Let Pt = P(yt = ·|D, xt) =
∑

y1:t−1,yt+1,τ
P1:τ (y1:τ) be the marginal posterior predictive. Let

P̂t =
∑

y1:t−1,yt+1,τ
P̂1:τ (y1:τ) be the approximate marginal. A joint prediction P̂1:τ minimizes

marginal cross-entropy when P̂t = Pt for t = 1, . . . , τ . The following result establishes that
such predictions that minimize marginal log loss can result in decisions no better than
random guesses. Note that when it is clear from context, we use notation for a set, like A, to
express cardinality of the set. The exchangeability requirement – that the distribution of any
set of data pairs be exchangeable – ensures that we are in a standard supervised learning
setting.
Theorem 1. [formal] For all τ , there exists an action set A with |A| = 2τ , an ex-
changeable data distribution, and a reward function r with range [0, 1] such that if
P̂1:τ (y1:τ) =

∏τ
t=1P(yt|D, x1:τ) and â ∼ unif(arg maxa∈A

∑
y1:τ

P̂1:τ (y1:τ)r(a, y1:τ)) then

max
a∈A

E[r(a, y1:τ)|D, x1:τ] = 1 and E[r(â, y1:τ)|D, x1:τ] ≤ E[r(ã, y1:τ)|D, x1:τ] < 1,

where, conditioned on D and x1:τ , ã ∼ unif(A).

Proof. Let τ be even; extending our argument to odd τ is straightforward. Without loss of
generality, let the input space be a singleton. Hence, P(y1:τ = ·|D, x1:τ) = P(y1:τ = ·|D).

14

 https://anonymous.4open.science/r/enn-55BC
https://anonymous.4open.science/r/neural_testbed-8961

Let labels yt be in {−1, 1} so that y1:τ ∈ {−1, 1}τ . Let A = {−1, 1}τ . Let r(a, y1:τ) =
1 − (

∑τ
t=1 atyt/τ)2. Let P(y1 = · · · = yτ |D) = 1 and, for all t, P(yt = 1|D) = 1/2. Clearly,

this data distribution is exchangeable, with uniform marginals. Hence, for any a ∈ A,

∑
y1:τ

P̂1:τ (y1:τ)r(a, y1:τ) =
∑
y1:τ

P̂1:τ (y1:τ)

1 −

(
1
τ

τ∑
t=1

atyt

)2


=1 −
∑
y1:τ

P̂1:τ (y1:τ)
(

1
τ

τ∑
t=1

yt

)2

=1 − 1
τ2

(
τ∑

t=1

∑
y1:τ

P̂t(yt)y2
t

)
=1 − 1/τ.

It follows that any action â maximizes
∑

y1:τ
P̂1:τ (y1:τ)r(a, y1:τ), and therefore, selecting

randomly from this set results in expected reward E[r(â, y1:τ)|D, x1:τ] = 1 − 1/τ . Hence,
E[r(â, y1:τ)|D, x1:τ] =E[r(ã, y1:τ)|D, x1:τ]

=1 − E

(1
τ

τ∑
t=1

ãtyt

)2 ∣∣∣D, x1:τ


=1 − E

(1
τ

τ∑
t=1

ãt

)2


=1 − 1
τ2

τ∑
t=1

E[ã2
t]

=1 − 1/τ.

For any action a such that
∑τ

t=1 at = 0,

E[r(a, y1:τ)|D, x1:τ] =P(y1:τ = −1⃗|D)

1 −

(
1
τ

τ∑
t=1

−at

)2


+ P(y1:τ = 1⃗|D)

1 −

(
1
τ

τ∑
t=1

at

)2


=1.

The result follows.

The first displayed equation of this theorem asserts that the optimal expected reward is one,
while the second asserts that an action selected based on P̂1:τ , which minimizes marginal
log loss, does no better than an action chosen uniformly at random, which earns expected
reward less than one.
While optimizing marginal predictions does not necessarily lead to performant downstream
decisions, minimizing joint log loss does. Our next result formalizes this by bounding
performance shortfall by a function of the KL-divergence:

dKL(P1:τ ∥P̂1:τ) =
∑
y1:τ

P1:τ (y1:τ) ln P1:τ (y1:τ) −
∑
y1:τ

P1:τ (y1:τ) ln P̂1:τ (y1:τ).

Only the final term depends on the prediction P̂ . Its conditional expectation −E[ln P̂ (y1:τ)|D]
is the log loss. Hence, minimizing expected KL divergence is equivalent to minimizing log
loss. This result follows almost immediately from Pinsker’s and Jensen’s inequalities. A
proof can be found in (Wen et al., 2022).

15

Theorem 2. [formal] For all data distributions, reward functions r with range [0, 1], and
actions â ∈ arg maxa

∑
y1:τ

P̂1:τ (y1:τ)r(a, y1:τ),

E[r(â, y1:τ)|D, x1:τ] ≥ max
a∈A

E[r(a, y1:τ)|D, x1:τ] −
√

2E[dKL(P1:τ ∥P̂1:τ)|D, x1:τ].

The KL-divergence is the difference between the log loss attained by P̂1:τ and that attained
by an optimal prediction P1:τ . The shortfall of action â is hence bounded by a measure of
joint prediction error. If this error is small, P̂1:τ leads to good decisions regardless of the
reward function.

C ENNs versus BNNs

In this appendix, we provide a proof of Theorem 3.
Theorem 3. For all base networks f , any BNN defined with respect to f can be expressed as
an ENN defined with respect to f . However, there exists a base network f and ENN defined
with respect to f that can not be expressed as a BNN defined with respect to f .

Proof. Consider a BNN (f, p). Without loss of generality, take the parameter space of f
to be Rd. Let PZ be an absolutely continuous reference distribution over Rd. Via Knothe-
Rosenblatt rearrangement (Knothe, 1957; Rosenblatt, 1952), for each ν ∈ Rd, there exists a
transport map from PZ to pν . For each epistemic index z ∈ Rd and BNN parameter vector
ν, let θ̂ν,z be the corresponding base network parameters generated by this transport map.
Let f ′

ν(x, z) = fθ̂ν,z
(x). It is easy to see that the ENN (f ′, PZ) is defined with respect to f

and expresses the BNN (f, p).
For the second part of the theorem, consider a linear base network fθ(x) = θ⊤x, a standard
Gaussian epistemic index reference distribution, and an ENN

f ′
θ′(x, z) = fθ(x) + θ′′z,

where θ′ = (θ, θ′′). Clearly, there are ENN parameters θ′ and an epistemic index z such that
no θ̂ satisfies f ′

θ′(x, z) = fθ̂(x). If follows that no BNN defined with respect to f can express
the ENN.

D Bayesian linear regression

In this appendix, we provide a proof of Theorem 4. First, we state without proof a standard
result on Bayesian linear regression (Minka, 2000).
Lemma 1. Let D ={(xi,yi,i)}N

i=1 be generated by a linear-Gaussian model. Conditioned on
D, ν∗ is Gaussian and

E[ν∗ |D]=
(

1
σ2

N∑
i=1

xix
⊤
i + 1

σ2
0

I

)−1(
1
σ2

N∑
i=1

xiyi

)
, Cov[ν∗ |D]=

(
1
σ2

N∑
i=1

xix
⊤
i + 1

σ2
0

I

)−1

.

(10)

Next, we prove a result on the near-orthogonality of vectors sampled uniformly from a unit
sphere. Note that a.s. abbreviates almost surely.
Lemma 2. Let bn and cn be independent vectors sampled uniformly from the n-dimensional
unit sphere. Then,

lim
n→∞

b⊤
n cn

a.s.= 0.

Proof. Note that unit random vectors generated by sampling normal vectors from N(0, I)
and normalizing are uniformly distributed over the Rd unit sphere.
Let αn and βn be independent samples from a chi-squared distribution with n degrees of
freedom. Let un = α

1/2
n bn and vn = β

1/2
n cn. Clearly the distribution of both un and vn is

16

isotropic, and since αn and βn are distributed chi-squared with n degrees of freedom (which
is that of the length of n-dimensional standard normal), un and vn are independent standard
normal random vectors. Further, bn = un/∥un∥2 and cn = vn/∥vn∥2.
For any n,

b⊤
n cn =

∑n
i=1 uivi√∑n

i=1 u2
i

∑n
i=1 v2

i

=

∑n

i=1
uivi

n√∑n

i=1
u2

i

n

∑n

i=1
v2

i

n

Since {ui}n
i=1 and {vi}n

i=1 are i.i.d N(0, 1), by the strong law of large numbers,

lim
n→∞

∑n
i=1 uivi

n

a.s.= E[uivi] = 0,

lim
n→∞

∑n
i=1 u2

i

n

a.s.= E[u2
i] = 1,

lim
n→∞

∑n
i=1 v2

i

n

a.s.= E[v2
i] = 1.

Hence, by the continuous mapping theorem,

lim
n→∞

b⊤
n cn

a.s.= 0.

Theorem 4. Let data D = {(xi, yi, i)}N
i=1 be generated by a linear-Gaussian model and f be

a linear-Gaussian epinet. Let θ̂ ∈ arg minθ

∑N
i=1
∫

z
PZ(dz)ℓLSG

σ,λ (θ, z, xi, yi, i) with parameter
λ = σ2/(Nσ2

0). Then, conditioned on (D, c1:N , P0), fθ̂(·, z) converges in distribution to gν∗
as DZ grows, almost surely.

Proof. The statement that, conditioned on (D, c1:N , P0), fθ̂(·, z) converges in distribution to
gν∗ as DZ grows can be restated as

P (gν∗ ∈ F |D) a.s.= lim
DZ →∞

P(fθ̂(·, z) ∈ F |D, c1:N , P0), (11)

for all measurable sets F of functions mapping RD to ℜ.
Note that

θ̂ = (ζ̂, η̂) ∈ arg min
ζ,η

N∑
i=1

∫
z

PZ(dz)(fζ,η(xi, z) − y − σcT
i z)2 + σ2

σ2
0

(
∥ζ∥2

2 + ∥η∥2
2
)

.

Since the optimization problem is strictly convex in θ, θ̂ is the unique minimizer of this
expression. Some simple algebra establishes that

ζ̂ = Σ̂
(

1
σ2

N∑
i=1

xiyi

)
and η̂ =

(
1
σ

N∑
i=1

cix
⊤
i + 1

σ0
P0

)
Σ̂ − P0, (12)

where Σ̂ =
(

1
σ2

N∑
i=1

xix
⊤
i + 1

σ2
0

I

)−1

.

For any x ∈ RD and z ∈ RDZ , fζ̂,η̂(x, z) =
(

ζ̂ + z⊤(η̂ + P0)
)⊤

x and gν∗(x) = ν⊤
∗ x. Hence,

(11) holds if and only if ζ̂ + z⊤(η + P0) converges in distribution to ν∗, conditioned on
(D, {ci}N

i=1, P0), almost surely. Since ν∗ and ζ̂ + z⊤(η + P0) are Gaussian, it is sufficient to
show that

lim
DZ →∞

ζ̂ = E[ν∗|D] and lim
DZ →∞

(η + P0)⊤(η + P0) = Cov(ν∗|D).

17

Based on (10) and (12), η̂ = E[ν∗|D] for any DZ . Hence, in order to prove the theorem, it is
sufficient to show

lim
DZ →∞

(η + P0)⊤(η + P0) = Cov(ν∗|D). (13)

For any DZ ,

(η + P0)⊤(η + P0) = Σ̂
(

1
σ

N∑
i=1

cix
⊤
i + 1

σ0
P0

)⊤(
1
σ

N∑
i=1

cix
⊤
i + 1

σ0
P0

)
Σ̂

= Σ̂
(

1
σ2

N∑
i=1

xix
⊤
i + 1

σ2
0

I

)
Σ̂ + Σ̂

(
1
σ2

0

(
P ⊤

0 P0 − I
))

Σ̂

+ Σ̂

 1
σ2

N∑
i=1,j=1,i̸=j

c⊤
i cjxix

⊤
j + 1

σσ0

N∑
i=1

(xic
⊤
i P0 + P ⊤

0 cix
⊤
i)

 Σ̂

Recall that {ci}N
i=1 and columns of P0 are all sampled i.i.d and uniformly from unit sphere

in RDZ , by Lemma 2,

lim
DZ→∞

c⊤
i cj

a.s.= 0∀i ̸= j,

lim
DZ →∞

P ⊤
0 ci

a.s.= 0∀i

lim
DZ →∞

P ⊤
0 P0

a.s.= I.

Hence,

lim
DZ →∞

(η + P0)⊤ (η + P0)Σ̂ a.s.= Σ̂
(

1
σ2

N∑
i=1

xix
⊤
i + 1

σ2
0

I

)
= Σ̂.

E Didactic examples

To offer some intuition for how epinets work and what they accomplish, we present a
simple example specialized to a linear base model. A linear base model produces an output
µζ(x) = ζT x given an input x and model parameters ζ. It is natural to add to this a linear
epinet ση(ϕζ(x), z) = zT ηx. The combined architecture is equivalent to a linear hypermodel
(Dwaracherla et al., 2020). To see this, note that,

fθ(x, z) = µζ(x) + ση(ϕζ(x), z) = ζT x + zT ηx = (ζ + ηT z)T x = µζ+ηT z(x). (14)
As such, properties of linear hypermodels, such as their ability to implement exact Bayesian
linear regression, carry over to such epinets.
Figures 7 illustrates predictive uncertainty estimates produced by linear epinets. In this figure,
posterior credible intervals of an epinet are compared against exact Bayesian inference. Data
is generated by a one-dimensional linear regression model with a Gaussian prior distribution
and Gaussian noise. The loss function for this epinet follows prior work by includes Gaussian
bootstrapping in regression (Lu and Van Roy, 2017; Dwaracherla et al., 2020),

ℓ(θ, xi, yi, z) = (fθ(xi, z) − yi + σcT
i z)2.

Here ci is a random signature drawn from the unit sphere in DZ generated independently
for each training example (xi, yi) and σ is the scale of the additive bootstrap noise. This
figure indicates that the epinet outputs well-calibrated marginal predictive distributions.
We next consider classification with a two-dimensional input and two classes. Data is
generated by a standard logistic regression model with parameters drawn from a Gaussian
prior. Figure 8 presents standard deviations of marginal predictive distributions across the
input space. We supplement a standard logistic regression model with a linear epinet. The

18

plots compare results against those generated via SGMCMC, which we expect in this case to
closely approximate exact Bayesian inference. While these figures bear qualitative similarities,
significant differences arise because the linear epinet architecture imposes symmetries that
are not respected by exact posterior distributions. In particular, this epinet can be thought
of as representing parameter uncertainty as Gaussian. While our data generating process
assumes a Gaussian prior distribution, the posterior distributions, which are conditioned
on binary outcomes, are not Gaussian. More complex, nonlinear, epinets should be able to
more accurately represent the posterior distribution over classifiers.

Figure 7: Epinet predictions in Gaussian
linear regression.

Figure 8: Epinet predictions in Logistic
regression.

F Dyadic sampling

To evaluate the quality of joint predictions, we sample batches of inputs (x1, . . . , xτ) and
assess log-loss with respect to corresponding labels (y1, . . . , yτ). With a high-dimensional
input space, labels of inputs sampled uniformly at random are typically nearly independent.
Hence, a large batch size τ is required to distinguish joint predictions that effectively reflect
interdependencies among labels. However, this becomes impractical because computational
requirements for testing grow exponentially in τ . Dyadic sampling serves as a practical
heuristic that samples inputs more strategically so that effective agents are distinguished with
a manageable batch size τ (Osband et al., 2022b) even when inputs are high-dimensional.

F.1 Basic version

The basic version of dyadic sampling, for each batch, first samples two independent random
anchor points, x̃1 and x̃2, from the input distribution. Then, to form a batch of size τ ,
sample τ points independently and with equal probability from these two anchor points
{x̃1, x̃2}. To assess an agent, its joint prediction of labels is evaluated for this batch of size τ .
Even with a moderate value of τ = 10, a batch produced by dyadic sampling gives rise to
labels that are likely to correlate – in particular, labels assigned to the same anchor point.
Osband et al. (2022b) demonstrate that, across many problems, this sampling heuristic is
effective in distinguishing the quality of joint predictions with modest computation.
On the Neural Testbed, the input distribution is standard normal. Thus, for each test batch,
we sample anchor points x1, x2 ∼ N(0, I) and then re-sample τ = 10 points from these two
anchor points to form a batch.
On ImageNet, for faster evaluation, rather than sampling anchor points from the evaluation
set, we split the evaluation set into batches of size 2. We then iterate over these batches of
size 2, re-sample τ = 10 points from each input pair, and evaluate the log-loss of an agent’s
joint predictions on these batches of size τ = 10. Finally, we take the average of all the joint
log-losses.
Figure 9(a) shows a few examples of these dyadic input batches of size τ = 10. It may seem
unsatisfactory that images are repeated exactly within a batch. Even though we view this
metric as a unit test that an intelligent agent pass, it is conceivable to design a ‘cheating’
agent that takes advantage of this repeating structure. In the following section, we will
consider a more robust version of dyadic sampling, where instead of repeating images exactly,

19

(a) Examples of input batches generated by basic dyadic sampling. Each row is a batch of size 10, on
which the joint log-loss is evaluated.

(b) Examples of input batches generated using augmented dyadic sampling. Compared to Figure 9(a),
each image is randomly cropped and flipped, introducing more diversity to the batch.

Figure 9: Examples of input batches used for evaluating joint predictions. Figure 9(a) is
generated through dyadic sampling and Figure 9(b) includes additional perturbations.

we perturb images using standard data augmentation techniques to introduce more diversity
within a dyadic batch.

F.2 Augmented dyadic sampling

In vanilla dyadic sampling, each dyadic batch has two unique elements (the anchor points),
which are repeated multiple times within the batch. To make the metric more robust at
distinguishing agents, we independently perturb each input in a dyadic batch using standard
data augmentation techniques, so each input within a batch differs from others. For ImageNet,
the perturbation takes the form of random cropping and flipping. We take the label of each
perturbed image to be the label of its original image. Effective joint predictions indicate
that images perturbed from the same anchor image are likely to be the same. Joint log-loss
penalizes agents that do not recognize this. We call this sampling scheme augmented dyadic
sampling. Figure 9(b) presents a few examples of augmented dyadic batches for Imagenet.
We evaluate our trained ResNet, ensemble, and epinet agents in Section 6 using augmented
dyadic sampling, and we compare the joint log-loss with that obtained from basic dyadic
sampling. In Figure 10, we see that the results from using these two sampling schemes
are qualitatively similar. While the overall joint log-loss is higher for augmented dyadic
sampling due to added perturbations, all agents benefit from increasing the model size. The
joint log-loss of the ensemble agent improves more so than the ResNet agent with increasing
model size. More importantly, the epinet agent outperforms both baselines by a huge margin
under both sampling schemes. These results give us further confidence in the quality of joint
predictions produced by the epinet agent.

20

3e7 1e8 3e8 1e9 3e9

5

7

10

jo
in

t l
og

-lo
ss

dyadic sampling

enn
resnet

ensemble

epinet

3e7 1e8 3e8 1e9 3e9
model size (number of parameters)

dyadic+ sampling

Figure 10: An agent’s joint log-loss under dyadic (left) and augmented dyadic sampling
(right).

21

G Testbed experiments

This section provides details about the Neural Testbed experiments in Section 5. We begin
with a review of the neural testbed as a benchmark problem, and the associated generative
models. We then give an overview of the baseline agents we compare against in our evaluation.
Next, we provide supplementary details for the hyperparameters and implementation details
for the epinet agent as outlined in Section 5. Finally, we investigate the sensitivity our
hyperparameter choices when evaluated across the testbed.

G.1 Neural testbed

The Neural Testbed (Osband et al., 2022a) is a collection of neural-network-based, synthetic
classification problems that evaluate the quality of an agent’s predictive distributions. We
make use of the open-source code at https://github.com/deepmind/neural_testbed. The
Testbed problems use random 2-layer MLPs with width 50 to generate training and testing
data. The specific version we test our agents on entails binary classification, input dimension
D ∈ {2, 10, 100}, number of training samples T = λD for λ ∈ {1, 10, 100, 1000}, temperature
ρ ∈ {0.01, 0.1, 0.5} for controlling the signal-to-noise ratio, and 5 random seeds for generating
different problems in each setting. The performance metrics are averaged across problems to
give the final performance scores.

G.2 Benchmark agents

We follow Osband et al. (2022a) and consider the benchmark agents as in Table 1. We
use the open-source implementation and hyperparameter sweeps at https://anonymous.
4open.science/r/neural_testbed-8961/agents/factories. According to Osband et al.
(2022a), the benchmark agents are carefully tuned on the Testbed problems, so we do not
further tune these agents.

G.3 Epinet

We take the reference distribution of the epistemic index to be a standard Gaussian with
dimension DZ = 8. The base network µζ has the same architecture as the baseline mlp
agent, which is a 2-layer MLP with ReLU activation and 50 units in each hidden layer.
The learnable part of the epinet σL

η takes ϕζ(x) and index z as inputs, where ϕζ(x) is the
concatenation of x and the last-layer features of the base network. The learnable network
has the form σL

η (ϕζ(x), z) = gη([ϕζ(x), z])T z where [ϕζ(x), z] is the concatenation of ϕζ(x)
and z, and gη(·) is a 2-layer MLP with hidden width 15, ReLU activation, and outputs in
RDZ ×C for number of classes C = 2.
For the fixed prior σP , we consider an ensemble of DZ networks. Each member of the
ensemble is a small MLP with 2 hidden layers and 5 units in each hidden layer. Each MLP
takes x as input and returns logits for the two classes. Let pi(x) ∈ RC denote the output
of the ith member of the ensemble. We combine the outputs of the ensemble members by
taking the weighted sum,

∑DZ

i=1 pi(x)zi and multiplying the sum by a tunable scaling factor
α. Thus, we can write the prior function σP (ϕζ(x), z) = α

∑DZ

i=1 pi(x)zi.
We combine the base network and the epinet by adding their outputs and applying a
stop-gradient operation on ϕζ(x),

fθ(x, z) = µζ(x) + σL
η (sg[ϕζ(x)], z) + σP (sg[ϕζ(x)], z) ,

where θ = (ζ, η) denotes all the parameters of the base net and epinet. We train the
parameters ζ and η jointly. The training loss takes the form as specified in (7), where we
use log loss for the data loss and ridge regularization. We update θ using Algorithm 1, with
a batch size of 100 and number of epistemic index samples equal to the index dimension.
We use Adam optimizer with learning rate 1e-3. The L2 weight decay and prior scaling
factor α are roughly adjusted for different problem settings, taking in account the number of
training samples and SNR.

22

https://github.com/deepmind/neural_testbed
https://anonymous.4open.science/r/neural_testbed-8961
https://anonymous.4open.science/r/neural_testbed-8961

Our implementation of the epinet agent can be found under the path /agents/factories/
epinet.py in the anonymized neural testbed github.

G.4 Ablation studies

We run ablation experiments on the epinet agent that is trained simultaneously along with
the base network. We sweep over various values for the index dimension, the number of
hidden layers in the trainable epinet, the width of hidden layers of epinet, the ensemble
prior’s prior scale, the width of the hidden layers in the prior network, and L2 weight decay.
We keep all other hyperparameters fixed to the open-sourced default configuration while
sweeping over one hyperparameter.
Our results are summarized in Figure 11. We see that a larger index dimension improves
both joint and marginal kl estimates. The epinet performance is not sensitive to the number
of hidden layers. We suspect that this is due to similar number of parameters across epinets
with different number of hidden layers. We observe that epinet performance is not sensitive
to width of the epinet hidden layers once the width is large enough. Performs of epinet seems
sensitive to the prior scales. Smaller prior scale leads to better marginal kl, too small or too
large prior scale degrades the joint kl. Increasing the width of the models in the ensemble
prior network improves the epinet performance. However, the improvement seems marginal
after a point. The epinet seems to be sensitive to L2 weight decay. A very small or large
weight decay degrades the performance of epinet.

23

4.0 6.0 8.0 10.0 12.0
0.36

0.38

0.40

lo
ss

marginal kl

4.0 6.0 8.0 10.0 12.0
index dimension

0.16

0.17

0.18

0.19

0.20
joint kl

0 1 2 3

0.37

0.38

0.39

0.40

0.41

lo
ss

marginal kl

0 1 2 3
number of hidden layers

0.17

0.18

joint kl

5.0 10.0 15.0 20.0 30.0 50.0

0.37

0.38

0.39

0.40

0.41

lo
ss

marginal kl

5.0 10.0 15.0 20.0 30.0 50.0
width of epinet hidden layers

0.165

0.170

0.175

0.180

0.185
joint kl

0.03 0.1 0.3 1.0 3.0
0.35

0.40

0.45

0.50

lo
ss

marginal kl

0.03 0.1 0.3 1.0 3.0
ensemble prior scale

0.2

0.3

0.4

joint kl

2.0 3.0 5.0 10.0 20.0 30.0 50.0
0.36

0.38

0.40

0.42

lo
ss

marginal kl

2.0 3.0 5.0 10.0 20.0 30.0 50.0
width of prior networks

0.17

0.19

0.21

joint kl

0.0 0.02 0.05 0.1 0.2 0.5 1.0 2.0

0.5

1

1.5

2

lo
ss

marginal kl

0.0 0.02 0.05 0.1 0.2 0.5 1.0 2.0
L2 weight decay

0.5

1

1.5

joint kl

Figure 11: Ablation studies of epinet with 2-layer mlp base model on the neural testbed.

24

H Image classification

This section gives an overview of our experiments on image classification problems outlined
in Section 6. We begin with a review of the hyperparameter choices and design details for the
agents as implemented in our experiments. Then, we include a comparison of these agents to
benchmark implementations in the field as embodied by ‘uncertainty baselines’ (Nado et al.,
2021). Next, we present results for an evaluation on both CIFAR-10 and CIFAR-100, and
find that the overall results match that on ImageNet. We complement these results with an
analysis of the computational cost in terms of FLOPs as well as memory on modern TPU
architectures. Finally, we perform a suite of ablations to investigate the sensitivity of our
results across ImageNet.

H.1 Epinet details

We train one epinet for each ResNet-L baseline for L ∈ {50, 101, 152, 200}. The ResNet
baselines are open sourced in the ENN library under the path /networks/resnet/, and the
checkpoints are available under /checkpoints/imagenet.py. For each epinet agent, we take
the pre-trained ResNet as the base network. We do not update the base network during epinet
training. The epinet network architecture together with checkpoint weights can be found in
the ENN library under the paths /networks/epinet/ and /checkpoints/imagenet.py.
As discussed in Section 6, we choose the reference distribution of the epistemic index to be a
standard Gaussian with dimension DZ = 30. The input to the learnable part of the epinet
σL

η includes the last-layer features of the base ResNet and the epistemic index z. Let C
denote the number of classes. For last-layer features ϕ and epistemic index z, the learnable
network takes the form σL

η (ϕ, z) = gη([ϕ, z])T z, where [ϕ, z] is the concatenation of ϕ and z,
and gη(·) is a 1-layer MLP with 50 hidden units, ReLU activation, and output ∈ RDZ ×C .

The fixed prior σP is made up of two components. The outputs of the two parts are summed
together to produce the prior output. In general, we could have tunable scaling factors
(which we refer to as ‘prior scales’ in the ablation studies) for the output of each component
before we add them together. However, for ImageNet, we find that scaling factors of 1
already work well. The first component of the prior is a network with the same architecture
and initialization as the learnable network σL

η . The second component is an ensemble of
small convolutional networks that act directly on the input images. The number of networks
in the ensemble is equal to the index dimension. Each convolutional network has the number
of channels (4, 8, 8), kernel shapes (10 × 10, 10 × 10, 3 × 3), and strides (5, 5, 2). The outputs
are flattened and taken through a linear layer to give a vector of dimension C. For input
image x, let pi(x) ∈ RC denote the output of the ith member of the ensemble. We combine
the outputs of the ensemble members by taking the weighted sum

∑DZ

i=1 pi(x)zi.
The ResNet baselines are trained using log loss and ridge regularization. We optimize using
SGD with a learning rate 0.1, a cosine learning rate decay schecule, and Nesterov momentum.
We apply L2 weight decay of strength 1e-4. We also incorporate label smoothing into the
loss, where instead of one-hot labels, the incorrect classes receive a small weight of 0.1/C.
We train the ResNet agents for 90 epochs on 4 × 4 TPUs with a per-device batch size of 128.
We train the epinet using loss of the form (7) with log loss with ridge regularization. Similar to
ResNet training, we apply L2 weight decay of strength 1e-4 and incorporate label smoothing
into the loss. We draw 5 epistemic index samples for each gradient step. We optimize the
loss using SGD with a learning rate 0.1, Nesterov momentum and decay 0.9. The epinet is
trained on the same hardware with the same batch size for 9 epochs.

H.2 Uncertainty baselines

In this section we compare our results to the open source ‘uncertainty baselines’, which
provides a reference implementation for much work on uncertainty estimation in Bayesian
deep learning (Nado et al., 2021). As part of our development, we upstream an optimized
method for calculating joint log-loss, and contribute this to the community. We benchmark
a few popular approaches to uncertainty estimation in terms of both marginal and joint
predictions, and compare their results to ours. At a high level, our results mirror our own

25

results of Figure 2. After tuning, most of the agents appear on a roughly similar tradeoff in
terms of marginal quality. However, the approachs are widely separated in terms of their
quality on joint prediction, and here epinet performs much better than the alternatives.
Figure 6 repeats Figure 2 but adding a few new agents from uncertainty baselines, which we

• mimo: Multi-input Mulit-output ensemble (Havasi et al., 2020). This method appears
to perform better than a baseline resnet in terms of marginal statistics, but provide
no additional benefit to modeling joints. Note that the independent product of
better marginals automatically does improve joints.

• dropout: Dropout as posterior approximation (Srivastava et al., 2014; Gal and
Ghahramani, 2016). This approach seems to provide a slight improvement in
marginal log-loss and a noticeable improvement in joint log-loss. However although
dropout has a low computational cost in terms of parameters, these results required
10 forward passes of the network, and so actually underperfom relative to an ensemble
of similar inference cost (see Appendix H.4).

• sngp: Spectral-normalized Neural Gaussian Process (Liu et al., 2020). For this agent
we introduced an additional temperature parameter rescaling logit samples, which
we found was able to significantly improve joint log-loss without degrading marginal
prediction quality. However, even with this tuning the quality of joint predictions
cannot match ensemble of size 10. The classification accuracy of SNGP also appears
to be significantly worse than other approaches benchmarked here.

• het: Heteroscedastic loss (Collier et al., 2020, 2021). This approach performs well in
terms of joint log-loss, and achieves performance close to the ensemble of size=100.
Although the results are still significantly worse than those of our epinet, it is
interesting to note that the functional form of the resultant heteroscedastic agent
can actually be written as a particular form of epinet. In future work, we would
like to understand better the commonalities between these two approaches, and see
if/when the algorithms can borrow from each others’ strengths.

H.3 CIFAR-10 and CIFAR-100

In this section we reproduce a similar analysis to Section 6 applied to the CIFAR-10 and
CIFAR-100 datasets. We find that, at a high level, our results mirror those when applying
ResNet to ImageNet. In particular, we are able to produce results similar to Figure 2 for
both CIFAR-10 and CIFAR-100. Relative to large ensembles, epinets greatly improve joint
predictions at orders of magnitude lower computational cost.
For the experiments in this section, we mirror the ImageNet experiments but using the
smaller ResNet architectures. The ResNet baselines are open sourced in the ENN library
under the path /networks/resnet/, and the checkpoints are available under /checkpoints/
cifar10.py and /checkpoints/cifar100.py. In particular, we tune ResNet-L for L ∈
{18, 32, 44, 56, 110} over learning rate and weight decay. We did not include temperature
rescaling in these sweeps, although this could further improve performance for all agents.
After tuning hyperparameters we independently initialize and train 100 ResNet-18 models
to serve as ensemble particles. These models are then used to form ensembles of size 1, 3, 10,
30, and 100.
For the epinet agent we take the pretrained ResNet as the base network and fix its weights.
We then follow the same methodology as for ImageNet, described in Appendix H.1, but with
a slightly smaller network. We use index dimension DZ = 20 and alter the convolutional
prior to have channels (4, 8, 4) each with kernel size 5 × 5 and stride 2 on account of the
smaller image sizes in CIFAR-10 and CIFAR-100 (Krizhevsky, 2009).
The epinet network architecture together with checkpoint weights can be found in
the ENN library under the paths /networks/epinet/, /checkpoints/cifar10.py, and
/checkpoints/cifar100.py.
Figures 12 and 13 reproduce our scaling results for ImageNet when applied to these other
datasets. At a high level, the key observations remain unchanged across datasets. We see
that across all statistical losses the larger models generally perform better. When looking

26

at classification and marginal log-loss, epinets do not offer any particular advantage over
baseline ResNets. However, when we look at the joint log-loss we can see that epinets offer
huge improvements in performance, even when measured against very large ensembles.

3e5 1e6 3e6 1e7

0.05

0.06

0.07

lo
ss

classification error

enn
resnet

ensemble

epinet

3e5 1e6 3e6 1e7
0.16

0.18

0.20

0.22

0.24
marginal log-loss

3e5 1e6 3e6 1e7
model size (number of parameters)

0.5

1

2

joint log-loss

Figure 12: Quality of marginal and joint predictions across models on CIFAR-10.

3e5 1e6 3e6 1e7

0.250

0.275

0.300

0.325

lo
ss

classification error

enn
resnet

ensemble

epinet

3e5 1e6 3e6 1e7

0.9

1

1.1

marginal log-loss

3e5 1e6 3e6 1e7
model size (number of parameters)

5

7

10

joint log-loss

Figure 13: Quality of marginal and joint predictions across models on CIFAR-100.

H.4 Computational cost

This paper highlights a key tension in neural network development: balancing statistical
loss against computational cost. Our main results on ImageNet (Figure 2) use ‘memory’
as a proxy for computational cost in large deep neural networks, for which this is often a
hardware bottleneck (Kaplan et al., 2020). However, in the case of these models, the results
are similar for many alternative measures.
Figure 14 reproduces the results of Figure 2 but with computational cost measured in total
floating point operations at inference. This plot includes the total costs of one thousand
forwards of the epinet. Even with these additional FLOPs, the overall cost of each epinet is
still less than 50% of the total network, and the outperformance of the epinet in terms of
joint log-loss is still remarkable. Further, on large modern TPU architectures these epinet
operations can often be performed in parallel. This means that, in some cases, these extra
FLOPs may require no extra time to forward on the device.
The results of Figure 14 hide an extra hyperparameter in epinet development: the number
of independent samples of the index z, which we will call M . All of the results presented in
this paper focus on the case M = 1000, however an agent designer may choose to vary this
depending on their tradeoff between statistical loss and computational cost. Figure 15 shows
this empirical tradeoff over M ∈ {10, 30, 100, 300, 1000, 3000} for each of the resnet variants.
Once again, we see that in terms of marginal statistics, there is really no benefit to using
an epinet. However, once you look at joint log-loss even a small number of epinet samples
improves over the ResNet. Interestingly, these results continue to improve for M > 1000 but
at a higher computational cost.

H.5 Epinet ablations

We run ablation experiments on the epinet agent that builds on the pre-trained ResNet-50
base network. We sweep over various values for the index dimension, the number of hidden

27

3e9 1e10 3e10 1e11 3e11

0.21

0.22

0.23

lo
ss

classification error

enn
resnet

ensemble

epinet

3e9 1e10 3e10 1e11 3e11

0.80

0.85

0.90

marginal log-loss

3e9 1e10 3e10 1e11 3e11
computational cost (FLOPs)

4

5

7

joint log-loss

Figure 14: Quality of marginal and joint predictions across models on ImageNet. Reproduces
the results of Figure 2 but using inference FLOPs as measure of computation.

0 5 10 15 20 25

0.21

0.22

0.23

lo
ss

classification error

enn
epinet
resnet

resnet_variant
50
101
152
200

0 5 10 15 20 25

0.85

0.9

0.95

1

marginal log-loss

0 5 10 15 20 25
computational cost (gFLOPs)

4

5

7

joint log-loss

Figure 15: Comparing base ResNet against epinet for differing numbers of sampled indices z.

layers in the trainable epinet, the prior scale for the matched epinet prior, the prior scale
for the ensemble of convolutional networks, L2 weight decay, the number of index samples
drawn for each gradient step, label smoothing, and temperature re-scaling post-training.
We keep all other hyperparameters fixed to the open-sourced default configuration while
sweeping over one hyperparameter.
Our results are summarized in Figure 16. We see that a larger index dimension improves the
joint loss-loss, but does not necessarily improve the marginal log-loss and classification error.
Adding another hidden layer to the trainable epinet makes the marginal and joint los-loss
worse, but we suspect that the performance could be improved with more tuning. The epinet
performance seems sensitive to the prior scales. In the third and fourth rows, we see that
the performance degrades quickly when the prior scales become too large. The epinet seems
relatively robust to different values of L2 weight decay. A large weight decay improves the
joint log-loss but slightly worsens the marginal log-loss. The number of index samples and
degree of label smoothing do not seem to affect the performance of epinet. Interestingly,
we find that using a cold temperature < 1 to re-scale the ENN output logits post-training
improves the agent’s performance during evaluation (Wenzel et al., 2020). The improvement
is most dramatic in the joint log-loss.

28

10 20 30 40

0.220

0.225

0.230

0.235

0.240

lo
ss

classification error

10 20 30 40
0.88

0.92

0.96

1

1.04
marginal log-loss

10 20 30 40
index dimension

4

5

6

joint log-loss

1 2

0.220

0.225

0.230

0.235

0.240
lo

ss
classification error

1 2

0.900

0.925

0.950

0.975

1
marginal log-loss

1 2
number of hidden layers

4.5

5

5.5
joint log-loss

0.0 0.1 0.3 0.5 1.0 2.0 4.0
0.22

0.23

0.24

0.25

0.26

0.27

lo
ss

classification error

0.0 0.1 0.3 0.5 1.0 2.0 4.0

1.2

1.6

2

2.4
marginal log-loss

0.0 0.1 0.3 0.5 1.0 2.0 4.0
matched epinet prior scale

4

5

6

7

8
joint log-loss

0.0 0.1 0.3 0.5 1.0 2.0 4.0

0.22

0.23

0.24

lo
ss

classification error

0.0 0.1 0.3 0.5 1.0 2.0 4.0

1

1.2

1.4

marginal log-loss

0.0 0.1 0.3 0.5 1.0 2.0 4.0
ensemble of conv nets prior scale

3.75

4

4.25

4.50

4.75

5
joint log-loss

0 1e-05 1e-04 1e-03 1e-02

0.220

0.225

0.230

0.235

0.240

lo
ss

classification error

0 1e-05 1e-04 1e-03 1e-02

0.900

0.925

0.950

0.975

1
marginal log-loss

0 1e-05 1e-04 1e-03 1e-02
L2 weight decay

3.8

4

4.2

4.4

4.6
joint log-loss

1 2 4 8 16

0.220

0.225

0.230

0.235

0.240

lo
ss

classification error

1 2 4 8 16

0.90

0.92

0.94

0.96

0.98
marginal log-loss

1 2 4 8 16
number of index samples

4.1

4.2

4.3

4.4

4.5
joint log-loss

0.0 0.01 0.03 0.1

0.220

0.225

0.230

0.235

0.240

lo
ss

classification error

0.0 0.01 0.03 0.1

0.90

0.92

0.94

0.96

0.98
marginal log-loss

0.0 0.01 0.03 0.1
label smoothing

4.1

4.2

4.3

4.4

4.5
joint log-loss

0.5 0.6 0.7 0.8 0.9 1.0

0.220

0.225

0.230

0.235

0.240

lo
ss

classification error

0.5 0.6 0.7 0.8 0.9 1.0
0.88

0.92

0.96

1

marginal log-loss

0.5 0.6 0.7 0.8 0.9 1.0
temperature rescaling

4

4.5

5

joint log-loss

Figure 16: Ablation studies of epinet with ResNet-50 base model on ImageNet.

29

	Introduction
	Related work
	Epistemic neural networks
	Evaluating ENN performance
	ENNs versus BNNs

	The epinet
	Architecture
	Training loss function
	How can this work?

	The neural testbed
	ImageNet
	Conclusion
	Open source code
	From predictions to decisions
	ENNs versus BNNs
	Bayesian linear regression
	Didactic examples
	Dyadic sampling
	Basic version
	Augmented dyadic sampling

	Testbed experiments
	Neural testbed
	Benchmark agents
	Epinet
	Ablation studies

	Image classification
	Epinet details
	Uncertainty baselines
	CIFAR-10 and CIFAR-100
	Computational cost
	Epinet ablations

