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ABSTRACT

The canonical formulation of federated learning treats it as a distributed optimiza-
tion problem where the model parameters are optimized against a global loss func-
tion that decomposes across client loss functions. A recent alternative formulation
instead treats federated learning as a distributed inference problem, where the goal
is to infer a global posterior from partitioned client data (Al-Shedivat et al., 2021).
This paper extends the inference view and describes a variational inference formu-
lation of federated learning where the goal is to find a global variational posterior
that well-approximates the true posterior. This naturally motivates an expecta-
tion propagation approach to federated learning (FedEP), where approximations to
the global posterior are iteratively refined through probabilistic message-passing
between the central server and the clients. We conduct an extensive empirical
study across various algorithmic considerations and describe practical strategies
for scaling up expectation propagation to the modern federated setting. We ap-
ply FedEP on standard federated learning benchmarks and find that it outperforms
strong baselines in terms of both convergence speed and accuracy.1

1 INTRODUCTION AND BACKGROUND

Many applications of machine learning require training a centralized model over decentralized, het-
erogeneous, and potentially private datasets. For example, hospitals may be interested in collabora-
tively training a model for predictive healthcare, but privacy rules might require each hospital’s data
to remain local. Federated Learning (FL, McMahan et al., 2017; Kairouz et al., 2021; Wang et al.,
2021) has emerged as a privacy-preserving training paradigm that does not require clients’ private
data to leave their local devices. FL introduces new challenges on top of classic distributed learning:
expensive communication, statistical/hardware heterogeneity, and data privacy (Li et al., 2020a).

The canonical formulation of FL treats it as a distributed optimization problem where the model
parameters θ are trained on K (potentially private) datasets D =

⋃
k∈[K]Dk,

θ = arg minθ L(θ), where L(θ) = ∑k∈[K]− log p(Dk | θ).

Standard distributed optimization algorithms (e.g., data-parallel SGD) are too communication-
intensive to be practical under the FL setup. Federated Averaging (FedAvg, McMahan et al., 2017)
reduces communication costs by allowing clients to perform multiple local SGD steps/epochs be-
fore the parameter updates are sent back to the central server and aggregated. However, due to client
data heterogeneity, more local computations could lead to stale or biased client updates, and hence
sub-optimal behavior (Charles & Konečnỳ, 2020; Woodworth et al., 2020; Wang et al., 2020a).

An alternative approach is to consider a Bayesian formulation of the FL problem (Al-Shedivat et al.,
2021). Here, we are interested in estimating the posterior of parameters p(θ | D) given a prior p(θ)
(such as an improper uniform or a Gaussian prior) and a collection of client likelihoods p(Dk | θ)
that are independent given the model parameters,

p(θ | D) ∝ p(θ)∏k∈[K] p(Dk | θ).

In this case the posterior naturally factorizes across partitioned client data, wherein the global pos-
terior equates to a multiplicative aggregate of local factors (and the prior). However, exact posterior
inference is in general intractable for even modestly-sized models and datasets and requires approx-

1Code: https://github.com/HanGuo97/expectation-propagation. This work was completed while
Han Guo was a visiting student at MIT.

1

https://github.com/HanGuo97/expectation-propagation


Published as a conference paper at ICLR 2023

imate inference techniques. In this paper we turn to variational inference, in effect transforming
the federated optimization problem into a distributed inference problem. Concretely, we view the
solution of federated learning as the mode of a variational (posterior) distribution q ∈ Q with some
divergence function D(·∥·) (e.g., KL-divergence),

θ = arg maxθ q(θ), where q(θ) = arg minq∈Q D (p (θ | D) ∥ q (θ)) . (1)

Under this approach, clients use local computation to perform posterior inference (instead of pa-
rameter/gradient estimation) in parallel. In exchange, possibly fewer lockstep synchronization and
communication steps are required between clients and servers.

One way to operationalize Eq. 1 is through federated posterior averaging (FedPA, Al-Shedivat et al.,
2021), where each client independently runs an approximate inference procedure and then sends
the local posterior parameters to the server to be multiplicatively aggregated. However, there is no
guarantee that independent approximations to local posteriors will lead to a good global approxi-
mate posterior. Motivated by the rich line of work on variational inference on streaming/partitioned
data (Broderick et al., 2013; Vehtari et al., 2020), this work instead considers an expectation prop-
agation (EP, Minka, 2001) approach to FL. In EP, each partition of the data maintains its own local
contribution to the global posterior that is iteratively refined through probabilistic message-passing.
When applied to FL, this results in an intuitive training scheme where at each round, each client
(1) receives the current approximation to the global posterior from the centralized server, (2) carries
out local inference to update its local approximation, and (3) sends the refined approximation to the
server to be aggregated. Conceptually, this federated learning with expectation propagation (FedEP)
approach extends FedPA by taking into account the current global approximation in step (2).

However, scaling up classic expectation propagation to the modern federated setting is challeng-
ing due to the high dimensionality of model parameters and the large number of clients. Indeed,
while there is some existing work on expectation propagation-based federated learning (Corinzia
et al., 2019; Kassab & Simeone, 2022; Ashman et al., 2022), they typically focus on small mod-
els (fewer than 100K parameters) and few clients (at most 100 clients). In this paper we conduct an
extensive empirical study across various algorithmic considerations to scale up expectation propaga-
tion to contemporary benchmarks (e.g., models with many millions of parameters and datasets with
hundreds of thousands of clients). When applied on top of modern FL benchmarks, our approach
outperforms strong FedAvg and FedPA baselines.

2 FEDERATED LEARNING WITH EXPECTATION PROPAGATION

The probabilistic view from Eq. 1 motivates an alternative formulation of federated learning based
on variational inference. First observe that the global posterior p (θ | D) given a collection of
datasets D =

⋃
k∈[K]Dk factorizes as,

p (θ | D) ∝ p(θ)
K

∏
k=1

p(Dk | θ) =
K

∏
k=0

pk(θ),

where for convenience we define p0(θ) := p(θ) to be the prior and further use pk(θ) := p(Dk | θ)
to refer to the local likelihood associated with k-th data partition. To simplify notation we hereon
refer to the global posterior as pglobal(θ) and drop the conditioning on D. Now consider an
approximating global posterior qglobal(θ) that admits the same factorization as the above, i.e.,
qglobal(θ) ∝ ∏K

k=0 qk(θ). Plugging in these terms into Eq. 1 gives the following objective,

arg max
θ

K

∏
k=0

qk(θ), where {qk(θ)}K
k=0 = arg min

qk∈Q
D
( K

∏
k=0

pk(θ) ∥
K

∏
k=0

qk(θ)

)
. (2)

Here Q is the variational family, which is assumed to be the same for all clients. This global objec-
tive is in general intractable; evaluating ∏k pk(θ) requires accessing all clients’ data and violates
the standard FL assumption. This section presents a probabilistic message-passing algorithm based
on expectation propagation (EP, Minka, 2001).

2.1 EXPECTATION PROPAGATION

EP is an iterative algorithm in which an intractable target density pglobal(θ) is approximated by a
tractable density qglobal(θ) using a collection of localized inference procedures. In EP, each local
inference problem is a function of just pk and the current global estimate, making it appropriate for
the FL setting.
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Algorithm 1 Federated Learning as Inference
1: for round t = 1, . . . , T do
2: Sample a subset of clients K.
3: Broadcast qglobal(θ) to the selected clients.
4: for each client k ∈ K in parallel do
5: ∆qk(θ)← ClientInfer(qglobal(θ))

6: end for
7: Collect ∆qk(θ) from the selected clients.
8: qglobal(θ)← ServerInfer({∆qk(θ)}k)

9: end for
10: Return µglobal.

Algorithm 2 Approximate Inference: MCMC

1: Input: q\k(θ;Dk,η−k, Λ−k)

2: Sk ← {}
3: for i = 1, . . . , N do
4: θ

(i)
k ← SGDEpoch(− log q\k, θ

(i−1)
k )

5: Sk ← Sk ∪ θ
(i)
k

6: end for
7: η\k, Λ\k ← EstimateMoments(Sk)

8: Output: q̂\k(θ;η\k, Λ\k)

Algorithm 3 Gaussian EP: Server Inference

1: Receive: {∆qk(θ; ∆ηk, ∆Λk)}k
2: qnew

global ∝ qglobal ∏k (∆qk)
δ // Sec. 2.2.3

ηglobal ← ηglobal + δ ServerOptim(∑k ∆ηk)

Λglobal ← Λglobal + δ ServerOptim(∑k ∆Λk)

3: Send: qglobal(θ;ηglobal, Λglobal)

Algorithm 4 Gaussian EP: Client Inference

1: Receive: qglobal(θ;ηglobal, Λglobal)
2: q−k ∝ qglobal/qk // cavity distribution

η−k ← ηglobal − ηk, Λ−k ← Λglobal −Λk

3: q̂\k ≈ q\k ∝ pk q−k // tilted inference (Sec. 2.2.2)

η\k, Λ\k ← ApproxInference(q\k ∝ pk q−k)

4: ∆qk ∝ q̂\k/qglobal // client deltas (Sec. A.1)

∆ηk ← η\k − ηglobal, ∆Λk ← Λ\k −Λglobal

5: qnew
k ∝ qk (∆qk)

δ // local update (Sec. 2.2.3)

ηk ← ηk + δ ClientOptim(∆ηk)

Λk ← Λk + δ ClientOptim(∆Λk)

6: Send: ∆qk(θ; ∆ηk, ∆Λk)

Concretely, EP iteratively solves the following problem (either in sequence or parallel),

qnew
k (θ) = arg min

q∈Q
D
(

pk(θ) q−k(θ)︸ ︷︷ ︸
∝ q\k(θ)

∥ q(θ) q−k(θ)︸ ︷︷ ︸
∝ q̂\k(θ)

)
, where q−k(θ) ∝

qglobal(θ)

qk(θ)
. (3)

Here qglobal(θ) and qk(θ) are the global/local distributions from the current iteration. (See Sec. A.2
for further details). In the EP literature, q−k(θ) is referred to as the cavity distribution and q\k(θ)
and q̂\k(θ) are referred to as the target/approximate tilted distributions. EP then uses qnew

k (θ) to
derive qnew

global(θ). While the theoretical properties of EP are still not well understood (Minka, 2001;
Dehaene & Barthelmé, 2015; 2018), it has empirically been shown to produce good posterior ap-
proximations in many cases (Li et al., 2015; Vehtari et al., 2020). When applied to FL, the central
server initiates the update by sending the parameters of the current global approximation qglobal(θ)
as messages to the subset of clients K. Upon receiving these messages, each client updates the re-
spective local approximation qnew

k (θ) and sends back the changes in parameters as messages, which
is then aggregated by the server. Algorithms 1-4 illustrate the probabilistic message passing with
the Gaussian variational family in more detail.

Remark. Consider the case where we set q−k(θ) ∝ 1 (i.e., an improper uniform distribu-
tion that ignores the current estimate of the global parameters). Then Eq. 3 reduces to fed-
erated learning with posterior averaging (FedPA) from Al-Shedivat et al. (2021), qnew

k (θ) =
arg minq∈Q D (pk(θ) ∥ q(θ)). Hence, FedEP improves upon FedPA by taking into account the
global parameters and the previous local estimate while deriving the local posterior.2

2.2 SCALABLE EXPECTATION PROPAGATION

While federated learning with expectation propagation is conceptually straightforward, scaling up
FedEP to modern models and datasets is challenging. For one, the high dimensionality of the param-
eter space of contemporary models can make local inference difficult even with simple mean-field
Gaussian variational families. This is compounded by the fact that classic expectation propaga-
tion is stateful and therefore requires that each client always maintains its local contribution to the
global posterior. These factors make classic EP potentially an unideal approach in settings where

2When the parameters of qglobal(θ) and qk(θ)’s are initialized as improper uniform distributions, the first
round (but only the first round) of FedEP and FedPA is identical.
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the clients may be resource-constrained and/or the number of clients is large enough that each client
is updated only a few times during the course of training. This section discusses various algorithmic
consideration when scaling up FedEP to contemporary federated learning benchmarks.
2.2.1 VARIATIONAL FAMILY

Following prior work on variational inference in high-dimensional parameter space (Graves, 2011;
Blundell et al., 2015; Zhang et al., 2019; Osawa et al., 2019), we use the mean-field Gaussian
variational family for Q, which corresponds to multivariate Gaussian distributions with diago-
nal covariance. Although non-diagonal extensions are possible (e.g., through shrinkage estima-
tors (Ledoit & Wolf, 2004)), we empirically found the diagonal to work well while being simple and
communication-efficient. For notational simplicity, we use the following two parameterizations of a
Gaussian distribution interchangeably,

q(θ) = N (θ;µ, Σ) = N (θ;η, Λ) , where Λ := Σ−1,η := Σ−1µ.
Conveniently, both products and quotients of Gaussian distributions—operations commonly used in
EP—result in another Gaussian distribution, which simplifies the calculation of the cavity distribu-
tion q−k(θ) and the global distribution qglobal(θ).3

2.2.2 CLIENT INFERENCE

At each round of training, each client must estimate q̂\k(θ), its own approximation to the tilted
distribution q\k(θ) in Eq. 3. We study various approaches for this estimation procedure.

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC). SG-MCMC (Welling & Teh,
2011; Ma et al., 2015) uses stochastic gradients to approximately sample from local posteriors. We
follow Al-Shedivat et al. (2021) and use a simple variant of SGD-based SG-MCMC, where we
collect a single sample per epoch to obtain a set of samples Sk = {θ(1)k , . . . ,θ(N)

k }.4 The SGD
objective in this case is the unnormalized tilted distribution,

−∑z∈Dk
log p(z | θ)︸ ︷︷ ︸

− log pk(θ)

+
1
2
θ⊤Λ−kθ− η⊤−kθ︸ ︷︷ ︸
− log q−k(θ)

,

which is simply the client negative log likelihood (− log pk(θ)) plus a regularizer that penalizes
parameters that have low probability under the cavity distribution (− log q−k(θ)). This connection
makes it clear that the additional client computation compared to FedAvg (which just minimizes
the client negative log-likelihood) is negligible. Given a set of samples Sk from SG-MCMC, we
estimate the parameters of the tilted distribution q\k(θ) with moment matching, i.e.,

q\k(θ) = N (θ;µ\k, Σ\k) where µ\k, Σ\k ← MomentEstimator(Sk).

While the mean obtained from Sk via averaging empirically worked well, the covariance estimation
was sometimes unstable. We next discuss three alternative techniques for estimating the covariance.

SG-MCMC with Scaled Identity Covariance. Our simplest approach approximates the covari-
ance as a scaled identity matrix with a tunable hyper-parameter αcov, i.e., Σ\k ← αcovI . This cuts
down the communication cost in half since we no longer have to send messages for the covariance
parameters. While extremely simple, we found scaled identity covariance to work well in practice.

Laplace Approximation. Laplace’s method approximates the covariance as the inverse Hessian
of the negative log-likelihood at the (possibly approximate) MAP estimate. Since the exact inverse
Hessian is intractable, we follow common practice and approximate it with the diagonal Fisher,

Σ\k ←
(
Hk + Σ−1

−k

)−1
, where Hk ≈ diag

(
Ex∼Dk , y∼p(y|x,θ)

[(
∇θ log p(y | θ, x)

)2
])

︸ ︷︷ ︸
diagonal Fisher approximation

.

(4)
3Specifically, we have the following identities,

N (θ;η1, Λ1)N (θ;η2, Λ2) ∝ N (θ;η1 + η2, Λ1 + Λ2) ,
N (θ;η1, Λ1)

N (θ;η2, Λ2)
∝ N (θ;η1 − η2, Λ1 −Λ2) .

4Unlike Al-Shedivat et al. (2021), we do not apply Polyak averaging (Mandt et al., 2017; Maddox et al.,
2019) as we did not find it to improve results in our case.
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This approach samples the input x from the data Dk and the output y from the current model p(y |
x,θ), as recommended by Kunstner et al. (2019). The Fisher approximation requires additional
epochs of backpropagation on top of usual SGD (usually 5 in our case), which requires additional
client compute.

Natural Gradient Variational Inference. Our final approach uses natural-gradient variational
inference (NGVI, Zhang et al., 2018; Khan et al., 2018; Osawa et al., 2019), which incorporates
the geometry of the distribution to enable faster convergence. Most existing work on NGVI assume
a zero-mean isotropic Gaussian prior. We extend NGVI to work with arbitrary Gaussian priors—
necessary for regularizing towards the cavity distribution in FedEP. Specifically, NGVI iteratively
computes the following for t = 1 . . . TNGVI and learning rate βNGVI,

Σ\k,t ←
(
|Dk|st + Σ−1

−k

)−1
, where st ← βNGVIst−1 + (1− βNGVI)Eθ∼q\k,t−1

[
1
|Dk|

Fisher(θ)
]

.

Here Fisher(·) is the diagonal Fisher approximation in Eq. 4 but evaluated at a sample of parameters
from q\k,t(θ), the approximate posterior using the current estimate of Σ\k,t. We give the exact
NGVI update (which is algorithmically similar to the Adam optimizer (Kingma & Ba, 2015)) in
Algorithm 5 in the appendix.

2.2.3 ADAPTIVE OPTIMIZATION AS DAMPING

Given the approximate tilted distribution q̂\k(θ) and the corresponding parameters µ\k, Σ\k, we can
in principle follow the update equation in Eq. 2 to estimate qnew

global(θ). However, adaptive optimizers
have been shown to be crucial for scaling federated learning to practical settings (Reddi et al., 2020),
and the vanilla EP update does not immediately lend itself to adaptive updates. This section describes
an adaptive extension to EP based on damping, in which we to re-interpret a damped EP update as a
gradient update on the natural parameters, which allows for the use of adaptive optimizers.

Damping performs client updates only partially with step size δ and is commonly used in parallel EP
settings (Minka & Lafferty, 2002; Vehtari et al., 2020). Letting ∆qk(θ) ∝ q̂\k(θ)/qglobal(θ) denote
the client “update” distribution, we can simplify the update and arrive at the following intuitive
form (Vehtari et al., 2020) (see Sec. A.1 for derivation),

Client: qnew
k (θ) ∝ qk(θ)

(
∆qk(θ)

)δ
, Server: qnew

global(θ) ∝ qglobal(θ)∏
k

(
∆qk(θ)

)δ
.

Recalling that products of Gaussian distributions yields another Gaussian distribution that simply
sums the natural parameters, the damped update for η is given by,
Client: ηk ← ηk + δ∆ηk, Server: ηglobal ← ηglobal + δ ∑

k∈K
∆ηk.

(The update on the precision Λ is analogous.) By re-interpreting the update distribution
∆qk(θ; ∆ηk, ∆Λk) as a “gradient”, we can apply off-the-shelf adaptive optimizers ,

Client: ηk ← ηk + δ optim(∆ηk), Server: ηglobal ← ηglobal + δ optim( ∑
k∈K

∆ηk).

All our FedEP experiments (and the FedAvg and FedPA baselines) employ adaptive optimization.

2.2.4 STOCHASTIC EXPECTATION PROPAGATION FOR STATELESS CLIENTS

Clients are typically assumed to be stateful in the classic formulations of expectation propagation.
However, there are scenarios in which stateful clients are infeasible (e.g., memory constraints) or
even undesirable (e.g., large number of clients who only participate in a few update rounds, leading
to stale messages). We thus additionally experiment with a stateless version of FedEP via stochastic
expectation propagation (SEP, Li et al., 2015). SEP employs direct iterative refinement of a global
approximation comprising the prior p(θ) and K copies of a single approximating factor qk(θ),

qglobal(θ) ∝ p(θ)
(

qk(θ)

)K

.

That is, clients are assumed to capture the average effect. In practice, FedSEP is implemented in
Algorithm 4 via replacing the cavity update (step 2) with q−k(θ) ∝ qglobal(θ)/qk(θ) and removing
the local update (step 5).
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Dataset Model Model size Clients (train/test) Examples per client (train/test)

CIFAR-100 ResNet-18 11.2M 500 / 100 100±0 / 100±0
StackOverflow Linear 5.0M 342,477 / 204,088 397±1279 / 81±301
EMNIST-62 CNN 1.2M 3,400 / 3,400 198±77 / 23±9

Table 1: Model and dataset statistics. The ± in “Examples per client” client denotes standard deviation.

3 EXPERIMENTS

We empirically study FedEP across various benchmarks. We start with a toy setting in Sec. 3.1 where
we examine cases where federated posterior average (FedPA, Al-Shedivat et al., 2021), which does
not take into account global and other clients’ approximations during client inference, performs
sub-optimally. We then turn to realistic federated learning benchmarks in Sec. 3.2, where both the
size of the model and the number of clients are much larger than had been previously considered in
prior EP-based approaches to federated learning (Corinzia et al., 2019; Kassab & Simeone, 2022).
Here, we resort to the techniques discussed in Sec. 2.2: approximate inference of the tilted distribu-
tions, adaptive optimization, and possibly stateless clients. Finally, we conclude in Sec. 3.3 with an
analysis of some of the observations from the benchmark experiments.

3.1 TOY EXPERIMENTS

We start with a simple toy setting to illustrate the differences between FedPA and FedEP. Here
the task is to infer the global mean from two clients, each of which is parameterized as a two-
dimensional Gaussian, pk(θ) = N (θ;µk, Σk) for k ∈ {1, 2}. Assuming an improper uniform
prior, the global distribution is then also a Gaussian with its posterior mode coinciding with the
global mean. We perform exact inference via analytically solving DKL(q\k∥q̂\k), but restrict the
variational family to Gaussians with diagonal covariance (i.e., mean-field family). In this case both
the FedAvg and FedPA solution can be derived in “one-shot”. Fig. 1 illustrates a simple case where
posterior averaging performs sub-optimally. On the other hand, expectation propagation iteratively
refines the approximations toward the globally optimal estimation.

Client 1

Client 2

Global
(Target)

Posterior
Averaging

Federated
Averaging

Expection
Propagation
(Trajectory)

Figure 1: FedAvg, FedPA, and FedEP
on a toy two dimensional dataset with
two clients.

We study this phenomena more systematically by sampling
random client distributions, where the client parameters are
sampled from the normal-inverse-Wishart (NIW) distribution,

µk ∼ N
(
µ | µ0,

1
λ

Σk

)
, Σk ∼ W−1(Σ | Ψ, ν).

Here we set the hyper-prior mean µ0 = 0, degrees of freedom
ν = 7, scale λ = 0.2, and sample a random symmetric posi-
tive definite matrix for Ψ. Table 4 shows the average Euclidean
distances between the estimated and target global mean for
FedAvg, FedPA, and FedEP averaged over 200 random sam-
ples of client distributions. Experimental results demonstrate
that iterative message passing in FedEP consistently improves
upon the sub-optimal solution from posterior averaging.

3.2 BENCHMARKS EXPERIMENTS

We next conduct experiments on a suite of realistic benchmark tasks introduced by Reddi et al.
(2020). Table 1 summarizes the model and raw dataset statistics, which is the same as in Al-Shedivat
et al. (2021). We use the dataset preprocessing provided in TensorFlow Federated (TFF, Authors,
2018), and implement the models in Jax (Bradbury et al., 2018; Hennigan et al., 2020; Ro et al.,
2021). We compare against both FedAvg with adaptive optimizers and FedPA.5 As in FedPA, we
run a few rounds of FedAvg as burn-in before switching to FedEP. We refer the reader to the appendix
for the exact experimental setup.

For evaluation we consider both convergence speed and final performance. On CIFAR-100 and
EMNIST-62, we measure the (1) number of rounds to reach certain accuracy thresholds (based on
10-round running averages), and (2) the best accuracy attained within specific rounds (based on
100-round running averages). For StackOverflow, we measure the best precision, recall, micro- and

5Reddi et al. (2020) refer to federated averaging with adaptive server optimizers as FedAdam etc. We refer
to this as FedAvg for simplicity.
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Accuracy (%, ↑) Rounds (#, ↓)
Method 1000R 1500R 45% 50%

FedPA 45.8 48.4 811 −
FedAvg 44.7(0.2) 46.2(0.2) 911(86) −

FedEP (I) 48.7(0.4) 50.7(0.4) 473(17) 1167(107)

FedEP (M) 48.8(0.4) 50.4(0.5) 461(13) 1240†
(133)

FedEP (L) 46.5(0.4) 47.7(0.3) 523(28) −
FedEP (V) 47.8(0.5) 49.6(0.6) 487(24) 1290‡

(−)

FedSEP (I) 48.2(0.4) 48.9(0.4) 438(9) −
FedSEP (M) 48.2(0.4) 48.9(0.4) 438(9) −
FedSEP (L) 47.2(0.4) 47.8(0.4) 442(10) −
FedSEP (V) 47.8(0.4) 48.5(0.5) 440(10) −

Table 2: CIFAR-100 Experiments. Statistics shown
are the averages and standard deviations (subscript in
brackets) aggregated over 5 seeds. We measure the
number of rounds to reach certain accuracy thresh-
olds (based on 10-round running averages) and the
best accuracy attained within specific rounds (based on
100-round running averages). FedEP and FedSEP re-
fer to the stateful EP and stateless stochastic EP. We
use I (Scaled Identity Covariance), M (MCMC), L
(Laplace), and V (NGVI) to refer to different inference
techniques. †One seed does not reach the threshold.
‡Only one seed reaches the threshold.

Method prec. recall mi-F1 ma-F1

FedPA 74.66 19.94 30.78 11.63
FedAvg 75.20(0.18) 13.88(0.27) 23.32(0.41) 8.02(0.26)

FedSEP (I) 71.32(0.20) 25.10(0.22) 37.04(0.25) 13.61(0.15)
FedSEP (M) 58.31(18.04) 8.70(1.14) 14.29(2.20) 2.70(0.33)
FedSEP (L) 70.98(0.18) 25.88(0.30) 37.80(0.29) 13.97(0.19)
FedSEP (V) 69.51(0.35) 28.02(0.20) 39.78(0.25) 15.32(0.08)

Table 3: StackOverflow Experiments. Statistics shown
are the averages and standard deviations (subscript in
brackets) aggregated over 5 seeds. We measure the
best precision (prec.), recall, micro- and macro-F1
(mi/ma-F1) attained by round 1500 (based on 100-
round running averages).

Method Euclidean Distance

FedAvg 5.4× 10−1 ± 4.7× 10−1

FedPA 2.6× 10−1 ± 2.6× 10−1

FedEP 1.1× 10−7 ± 9.8× 10−8

Table 4: Toy Experiments. Statistics shown are the av-
erages and standard deviations of Euclidean distances
between the estimated and target global mean aggre-
gated over 200 random samples of client distributions.

macro-F1 attained by round 1500 (based on 100-round running averages).6 Due to the size of this
dataset, the performance at each round is evaluated on a 10K subsample. The evaluation setup is al-
most exactly the same as in prior work (Reddi et al., 2020; Al-Shedivat et al., 2021). Due to space we
mainly discuss the CIFAR-100 (“CIFAR”) and StackOverflow Tag Prediction (“StackOverflow”) re-
sults in this section and defer the EMNIST-62 (“EMNIST”) results (which are qualitatively similar)
to the appendix (Sec. A.3).

CIFAR. In Table 2 and Fig. 2 (left, mid), we compare FedAvg, FedPA, and FedEP with various
approaches for approximating the clients’ tilted distributions (Sec. 2.2.2). A notable observation is
the switch from FedAvg to FedPA/FedEP at the 400th round, where observe significant increases
in performance. Somewhat surprisingly, we find that scaled identity is a simple yet strong base-
line. (We conduct further experiments in Sec. 3.3 to analyze this phenomena in greater detail). We
next experiment with stochastic EP (FedSEP, Sec. 2.2.4), a stateless version of FedEP that is more
memory-efficient. We find that FedSEP can almost match the performance of full EP despite being
much simpler (Fig. 2, right).

StackOverflow. Experiments on CIFAR study the challenges when scaling FedEP to richly pa-
rameterized neural models with millions of parameters. Our StackOverflow experiments are on
the other hand intended to investigate whether FedEP can scale to regimes with a large number of
clients (hundreds of thousands). Under this setup the number of clients is large enough that the
average client will likely only ever participate in a single update round, which renders the stateful
version of FedEP meaningless. We thus mainly experiment with the stateless version of FedEP.7
Table 3 and Fig. 3 (full figure available in the appendix Fig. 5) show the results comparing the same
set of approximate client inference techniques. These experiments demonstrate the scalability of EP
to a large number of clients even when we assume clients are stateless.

3.3 ANALYSIS AND DISCUSSION

The Effectiveness of Scaled Identity. Why does the scaled identity approximation work so well?
We investigate this question in the same toy setting as in Sec. 3.1. Fig. 4 (left) compares the scaled-
identity EP with FedEP, FedPA, and FedAvg. Unsurprisingly, this restriction leads to worse perfor-
mance initially. However, as clients pass messages between each other, scaled-identity EP eventually
converges to nearly the same approximation as diagonal EP.

The toy experiments demonstrate the effectiveness of scaled identity in terms of the final solution.
However, this does not fully explain the benchmark experiments where we observed scaled iden-

6TFF by default considers a threshold-based precision and top-5 recall. Our early experiments found that
threshold-based metrics correlate better with loss, and use them in StackOverflow experiments.

7This was also due to the practical difficulty of storing all the clients’ distributions.
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Figure 2: CIFAR-100 Experiments. Left and Middle: loss and accuracy of the server as a function of rounds
for FedAvg, FedPA, and (stateful) FedEP with various inference techniques. Right: accuracy as a function of
rounds for FedAvg, FedPA, and (stateless) FedSEP. The transitions from FedAvg to FedPA, FedEP, and FedSEP
happen at round 400. Lines and shaded regions refer to the averages and 2 standard deviations over 5 runs, resp.
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Figure 3: StackOverflow Experiments. Curves represent loss, micro-F1, and macro-F1 of the global parameter
estimation as a function of rounds for FedAvg, FedPA, and (stateless) FedSEP with various inference tech-
niques. The transitions from FedAvg to FedPA and FedSEP happen at round 800. Lines and shaded regions
refer to the averages and 2 standard deviations over 5 runs, resp.

tity EP to match more involved variants in terms of convergence speed. We hypothesize that as
models grow more complex, the gap between scaled identity and other techniques might decrease
due to the difficulty of obtaining credible estimates of (even diagonal) covariance in high dimen-
sional settings. To test this, we revisit the CIFAR-100 task and compare the following two settings:
“small” setting which uses a smaller linear model on the PCA’ed features and has 10.1K parame-
ters, and a “large” setting that uses a linear model on the raw features and has 172.9K parameters.
For each setting, we conduct experiments with EP using scaled-identity and NGVI and plot the
results in Fig. 4 (right). We observe that under the “small” setting, a more advanced approximate
inference technique converges faster than scaled-identity EP, consistent with the toy experiments.
As we increase the model size however (“large” setting), the gap between these two approaches
disappears. This indicates that as the model gets more complex, the convergence benefits of more
advanced approximate inference decline due to covariance estimation’s becoming more difficult.

Accuracy (%, ↑) ECE-15 (%, ↓)
Method Point Est. Marg. Point Est. Marg.

FedPA 48.1 − 13.6 −
FedAvg 46.6(0.7) − 19.5(0.4) −

FedEP (I) 50.8(0.4) 49.6(0.6) 4.9(0.3) 7.9(0.2)
FedEP (M) 50.5(0.5) 50.2(0.4) 5.9(0.5) 4.6(0.4)
FedEP (L) 47.7(0.5) 47.8(0.5) 8.8(0.4) 6.6(0.4)
FedEP (V) 49.7(0.5) 49.5(0.3) 5.9(0.4) 2.2(0.5)

FedSEP (I) 49.0(0.4) 48.5(0.4) 10.0(0.4) 3.4(0.3)
FedSEP (M) 48.9(0.4) 48.6(0.4) 10.1(0.4) 3.5(0.3)
FedSEP (L) 47.7(0.5) 47.8(0.5) 9.6(0.6) 7.2(0.6)
FedSEP (V) 48.5(0.4) 48.7(0.4) 9.3(0.4) 3.7(0.4)

Table 5: CIFAR-100 Calibration Experiments.
FedEP and FedSEP refer to the stateful EP and
stateless stochastic EP. We use I (Scaled Iden-
tity Covariance), M (MCMC), L (Laplace), and V
(NGVI) to refer to different inference techniques.

Uncertainty Quantification. One motivation for
a Bayesian approach is uncertainty quantification.
We thus explore whether a Bayesian treatment of
federated learning results in models that have bet-
ter expected calibration error (ECE, Naeini et al.,
2015; Guo et al., 2017), which is defined as
ECE = ∑Nbins

i bi
∣∣accuracyi − confidencei

∣∣ . Here
accuracyi is the top-1 prediction accuracy in i-th
bin, confidencei is the average confidence of pre-
dictions in i-th bin, and bi is the fraction of data
points in i-th bin. Bins are constructed in a uniform
way in the [0, 1] range.8 We consider accuracy and
calibration from the resulting approximate posterior
in two ways: (1) point estimation, which uses the fi-
nal model (i.e., MAP estimate from the approximate
posterior) to obtain the output probabilities for each
data point, and (2) marginalized estimation, which samples 10 models from the approximate pos-
terior and averages the output probabilities to obtain the final prediction probability. In Table 5,

8We also experimented with an alternative binning method which puts an equal number of data points in
each bin and observed qualitatively similar results.
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Euclidean
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FedAvg
FedPA (Diagonal)

Accuracy (small) Accuracy (large)

FedEP (NGVI)
FedEP (Scaled Identity)

FedEP (NGVI)
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Figure 4: Analysis Experiments. Left: the average Euclidean distances between the estimated and target
global mean as a function of rounds in the toy setting. Middle and Right: accuracy as a function of rounds in
the CIFAR-100 setting, with either a (relatively) small model (middle) or large model (right).

we observe that FedEP/FedSEP improves both the accuracy (higher is better) as well as expected
calibration error (lower is better), with marginalization sometimes helping.

Hyperparameters. Table 8 shows the robustness of FedEP w.r.t. various hyperparameters.

Limitations. While FedEP outperforms strong baselines in terms of convergence speed and final
accuracy, it has several limitations. The stateful variant requires clients to maintain its current con-
tribution to the global posterior, which increases the clients’ memory requirements. The non-scaled-
identity approaches also impose additional communication overhead due to the need to communi-
cate the diagonal covariance vector. Further, while SG-MCMC/Scaled-Identity approaches have the
same compute cost as FedAvg on the client side, Laplace/NGVI approaches require more compute
to estimate the Fisher term. Finally, from a theoretical perspective, while the convergence properties
of FedAvg under various assumptions have been extensively studied (Li et al., 2018; 2020b), such
guarantees for expectation propagation-based approaches remains an open problem.

4 RELATED WORK
Federated Learning. FL is a paradigm for collaborative learning with decentralized private
data (Konečnỳ et al., 2016; McMahan et al., 2017; Li et al., 2020a; Kairouz et al., 2021; Wang et al.,
2021). Standard approach to FL tackles it as a distributed optimization problem where the global
objective is defined by a weighted combination of clients’ local objectives (Mohri et al., 2019; Li
et al., 2020a; Reddi et al., 2020; Wang et al., 2020b). Theoretical analysis has demonstrated that
federated optimization exhibits convergence guarantees but only under certain conditions, such as a
bounded number of local epochs (Li et al., 2020b). Other work has tried to improve the averaging-
based aggregations Yurochkin et al. (2019); Wang et al. (2020a). Techniques such as secure ag-
gregation (Bonawitz et al., 2017; 2019; He et al., 2020) and differential privacy (Sun et al., 2019;
McMahan et al., 2018) have been widely adopted to further improve privacy in FL (Fredrikson et al.,
2015). Our proposed method is compatible with secure aggregation because it conducts server-side
reductions over ∆ηk, ∆Λk.
Expectation Propagation and Approximate Inference. This work considers EP as a general tech-
nique for passing messages between clients and servers on partitioned data. Here, the cavity distri-
bution “summarizes” the effect of inferences from all other partitions and can be used as a prior in
the client’s local inference. Historically, EP usually refers to a specific choice of divergence func-
tion DKL(p∥q) (Minka, 2001). This is also known as Variational Message Passing (VMP, Winn
et al., 2005) when DKL(q∥p) is used instead, and Laplace propagation (LP, Smola et al., 2003)
when Laplace approximation is used. There have been works that formulate federated learning as a
probabilistic inference problem. Most notably, Al-Shedivat et al. (2021) formulate FL as a posterior
inference problem. Achituve et al. (2021) apply Gaussian processes with deep kernel learning (Wil-
son et al., 2016) to personalized FL. Finally, some prior works also consider applying EP to federated
learning (Corinzia et al., 2019; Kassab & Simeone, 2022; Ashman et al., 2022), but mostly on rela-
tively small-scale tasks. In this work, we instead discuss and empirically study various algorithmic
considerations to scale up expectation propagation to contemporary benchmarks.

5 CONCLUSION

This work introduces a probabilistic message-passing algorithm for federated learning based on
expectation propagation (FedEP). Messages (probability distributions) are passed to and from clients
to iteratively refine global approximations. To scale up classic expectation propagation to the modern
FL setting, we discuss and empirically study various algorithmic considerations, such as choice of
variational family, approximate inference techniques, adaptive optimization, and stateful/stateless
clients. These enable practical EP algorithms for modern-scale federated learning models and data.
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Reproducibility Statement. For experiment details such as the dataset, model, and hyperparame-
ters, we provide detailed descriptions in Sec. 3 as well as Sec. A.4. We also include in the Appendix
additional derivations related to adaptive optimization and damping (Sec. A.1).
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A APPENDIX

A.1 DAMPED CLIENT AND SERVER UPDATES

To simplify the notations, observe that Eq. 3 could be re-written in the following way,

qnew
k (θ) ∝

q̂\k(θ)
q−k(θ)

, where q̂\k(θ) = arg min
q̂\k∈Q

D
(

pk(θ) q−k(θ) ∥ q̂\k(θ)
)

.

A partially damped client update could be carried out by,

Client: qnew
k (θ) ∝

(
qk(θ)

)1−δ( q̂\k(θ)
q−k(θ)

)δ

∝
(

qk(θ)

)1−δ( q̂\k(θ)
qglobal(θ)/qk(θ)

)δ

∝
(

qk(θ)

)1−δ(
qk(θ)

)δ( q̂\k(θ)
qglobal(θ)

)δ

∝ qk(θ)

( q̂\k(θ)
qglobal(θ)

)δ

∝ qk(θ)

(
∆qk(θ)

)δ

,

where we define ∆qk(θ) ∝
q̂\k(θ)

qglobal(θ)
.

Similarly, (damped) server updates could be written as the following,

Server: qnew
global(θ) ∝ ∏

k
qnew

k (θ)

∝ ∏
k

qk(θ)

(
∆qk(θ)

)δ

∝
[

∏
k

qk(θ)

][
∏

k

(
∆qk(θ)

)δ ]

∝ qglobal(θ)∏
k

(
∆qk(θ)

)δ

.

A.2 EXPECTATION PROPAGATION (EXTENDED)

Expectation propagation (EP) Minka (2001); Vehtari et al. (2020) constructs a posterior approxima-
tion through iterating local computations that refine factors that approximate the posterior contribu-
tion from each client. In this spirit, we would ideally like to solve the following localized version of
Eq. 2, where we replace one of the factors with its corresponding approximating factor,

qnew
k (θ) = arg min

q∈Q
D
(

pk(θ) p−k(θ) ∥ q(θ) p−k(θ)

)
, where p−k(θ) ∝

pglobal(θ)

pk(θ)
.

Unfortunately, the right-hand side of the divergence is the intractable posterior we would like to
approximate in the first place. Instead, EP solves the following problem (Eq. 3),

qnew
k (θ) = arg min

q∈Q
D
(

pk(θ) q−k(θ) ∥ q(θ) q−k(θ)

)
, where q−k(θ) ∝

qglobal(θ)

qk(θ)
.

A.3 ADDITIONAL EXPERIMENTS AND DETAILS

StackOverflow. Please see Fig. 5 for additional visualizations.
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Figure 5: Extended StackOverflow Visualizations.
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FedEP (Scaled Identity)
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Figure 6: Accuracy as a function of rounds, and number of NGVI epochs (TNGVI) in the CIFAR-100 setting,
with a (relatively) small model.

EMNIST. Please see Fig. 7 and Table 6 for experimental results.

Analysis. This section extends the experiments (the “small” setting) in Sec. 3.3. It looks at the
performance as we increase the complexity (a proxy of quality) of approximate inference techniques.
We vary the number of iterations in NGVI from 1 (cheap) to 10 (expensive) epochs. We can observe
in Fig. 6 that as we increase NGVI’s computations, the performance improves.

A.4 HYPERPARAMETERS

Please see Table 7 for hyperparameter details. In Table 8, we also conduct experiments to understand
their influence on the different algorithms.
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Loss Accuracy

FedPA
FedAvg
FedSEP (Scaled Identity)
FedSEP (SG-MCMC)
FedSEP (Laplace)
FedSEP (NGVI)

FedPA
FedAvg
FedSEP (Scaled Identity)
FedSEP (SG-MCMC)
FedSEP (Laplace)
FedSEP (NGVI)

Figure 7: EMNIST-62 Experiments. Figures show the loss and accuracy of the global parameter estimation
as a function of rounds for FedAvg, FedPA, and (stateless) FedSEP with various inference techniques. The
transitions from FedAvg to FedPA and FedSEP happen at round 200.

accuracy (%, ↑) rounds (#, ↓)
Method 300R 500R 86% 86.5%

FedPA 85.9 86.5 246 398
FedAvg 85.3 85.8 465 −
FedSEP (I) 86.1 86.6 228 399
FedSEP (M) 86.1 86.6 228 399
FedSEP (L) 86.1 86.6 228 364
FedSEP (V) 86.1 86.6 228 382

Table 6: EMNIST-62 Experiments. We measure the number of rounds to reach certain accuracy thresholds
(based on 10-round running averages) and the best accuracy attained within specific rounds (based on 100-
round running averages). We use I (Scaled Identity Covariance), M (MCMC), L (Laplace), and V (NGVI) to
refer to different inference techniques.

Algorithm 5 Approximate Inference: NGVI
1: Input: Dk,µ\k, Σ−k, TNGVI, NNGVI, βNGVI

2: Initialize s0, Σ\k,0

3: for t = 1, . . . , TNGVI do

4: F ← {}

5: for i = 1, . . . , NNGVI do

6: θ ∼ N
(
θ;µ\k, Σ\k,t−1

)
7: F ← F ∪ 1

|Dk |
Fisher(θ,Dk).

8: end for

9: F ← Average(F )

10: st ← βNGVIst−1 + (1− β)F

11: Σ\k,t ←
(
|Dk|st + Σ−1

−k

)−1

12: end for

13: Output: Σ\k,TNGVI
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Hyperparameter CIFAR-100 StackOverflow EMNIST-62

Task Hyperparameters from Al-Shedivat et al. (2021)

Server Optimizer SGD (m = 0.9) Adagrad (τ = 10−5) SGD (m = 0.9)
Client Optimizer† SGD (m = 0.9) SGD (m = 0.9) SGD (m = 0.9)
Clients Per Round 20 10 100
Server Learning Rate 0.5 5.0 0.5
Client Learning Rate 0.01 50.0 0.01
Client Epochs 10 5 20
Burn In 400 800 200

Client Inference Hyperparameters

Scale αcov
‡ 5× 10−2 1× 10−8 5× 10−3

MCMC Shrinkage 1× 10−4 1× 10−6 1× 10−4

Laplace Epochs 5⋆ 5 5
NGVI Epochs 5 10 5
NGVI Samples 5 10 5
NGVI βNGVI 0.99 0.99 0.99

Client Inference Hyperparameters Search Space

Scale αcov {1, 2, 5, 10} × 10−2 1× {10−7, 10−8, 10−9} {1, 5} × {10−2, 10−3, 10−4}
MCMC Shrinkage 1× {10−3, 10−4, 10−5, 10−6}
Laplace Epochs {5, 10}
NGVI Epochs {5, 10}
NGVI Samples {5, 10}
NGVI βNGVI {0.9, 0.99}

Table 7: Hyperparameters. †Client has two separate optimizers, one used in local optimization (SG-MCMC),
and one used in local state updates (for stateful FedEP). When applied, the client state optimizer reuses the
same configuration as the server optimizer. ‡This is a per-data-point scale, and is also used in other approximate
inference techniques. ⋆The (stateful) FedEP uses 10 Laplace epochs.

Accuracy (%, ↑) Rounds (#, ↓)
Method Hyperparameter 1000R 1500R 45% 50%

FedEP (I) Scale αcov

4× 10−2 49.1 50.3 457 1081
5× 10−2 48.9 50.5 464 1105
6× 10−2 48.8 50.5 474 1206

FedEP (M) MCMC Shrinkage
5× 10−5 47.8 48.8 482 −
1× 10−4 48.9 50.5 456 1179
5× 10−4 49.2 49.2 436 −

FedEP (L) Laplace Epochs 5 46.7 47.9 513 −
10 46.7 47.9 514 −

FedEP (V) NGVI Epochs 5 47.9 49.6 478 −
10 46.6 48.5 523 −

FedSEP (I) Scale αcov

4× 10−2 48.2 48.7 431 −
5× 10−2 48.3 49.0 431 −
6× 10−2 48.3 49.1 433 −

FedSEP (M) MCMC Shrinkage
5× 10−5 48.3 48.9 431 −
1× 10−4 48.3 49.0 432 −
5× 10−4 48.4 49.0 431 −

FedSEP (L) Laplace Epochs 5 47.2 47.9 437 −
10 47.2 47.9 439 −

FedSEP (V) NGVI Epochs 5 47.9 48.8 432 −
10 47.8 48.6 432 −

Table 8: CIFAR-100 Hyperparameter Analysis Experiments. FedEP and FedSEP refer to the stateful EP and
stateless stochastic EP. We use I (Scaled Identity Covariance), M (MCMC), L (Laplace), and V (NGVI) to
refer to different inference techniques.
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