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Abstract

Neural combinatorial optimization (NCO) aims at designing problem-independent
and efficient neural network-based strategies for solving combinatorial problems.
The field recently experienced growth by successfully adapting architectures origi-
nally designed for machine translation. Even though the results are promising, a
large gap still exists between NCO models and classic deterministic solvers, both in
terms of accuracy and efficiency. One of the drawbacks of current approaches is the
inefficiency of training on multiple problem sizes. Curriculum learning strategies
have been shown helpful in increasing performance in the multi-task setting. In
this work, we focus on designing a curriculum learning-based training procedure
that can help existing architectures achieve competitive performance on a large
range of problem sizes simultaneously. We provide a systematic investigation of
several training procedures and use the insights gained to motivate application of a
psychologically-inspired approach to improve upon the classic curriculum method.

1 Introduction

Attention and sequence-to-sequence models have recently been shown capable of approximating
solutions to combinatorial problems [3, 19, 28]. However, a large performance gap still exists between
those models and the exact [1] or heuristic [5, 12, 17, 22, 24] solvers. So far, researchers have mostly
focused on training separate models for each problem size. The ability of a model to perform well
across a larger range of sizes simultaneously has been mostly overlooked.

Training and testing on individual problem sizes misleadingly diminishes the performance gap
between neural combinatorial optimization (NCO) solutions and solvers. While algorithms are often
designed to provide bounded approximation [5, 17, 24], NCO requires an ensemble of models to
achieve similar performance, which can be prohibitive in industrial applications [2].

Curriculum learning (CL) is based on the premise that neural networks learn faster from tasks
gradually increasing in complexity [4, 9]. CL algorithms used for scheduling tasks are called
sampling strategies. The naïve strategy often leads to catastrophic forgetting and decline of efficiency.
Adaptive staircase [21], a strategy developed in psychophysics, incorporates rehearsal and adjustment
of difficulty to the current capacity, which were shown to significantly improve performance in multi-
task learning [20]. In this work we assess CL as an effective training procedure to help a recent state-of-
the-art NCO model [19] achieve competitive performance on a range of problem sizes simultaneously.

We provide a novel application of the CL framework in NCO. Our assessment of the model’s
performance on problem sizes other than it was trained on shows that the extent of knowledge that can
be transferred between tasks changes smoothly with problem size. Investigation of several baseline
strategies shows a clear benefit from rehearsal and training on problems of increasing difficulty. These
insights serve to motivate a psychologically-inspired approach that improves upon classic CL.
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2 Background

Travelling Salesperson Problem. The travelling salesperson problem (TSP) is a combinatorial
problem in which we look for the shortest path through n cities, visiting each city exactly once,
and return to the origin. The NCO model we utilize was designed to operate on the Euclidean TSP,
which requires the distances between the cities to be defined using the Euclidean metric. Imposing
such a restriction allows for clear visualizations and direct comparison of the results with previous
research. The problem was shown to be NP-complete [1], but in practice we can find solutions within
a reasonable time frame, using highly optimized solvers, like Concorde [1].

TSP can be formulated as a search for an optimal permutation of input cities. Following the notation
from [19], let π = {π1, . . . , πn}, where each element πi ∈ {1, . . . , n} is a node index, such that
πi 6= πj ∀i 6= j. Given a distance matrix D, where input elements Dij correspond to a cost of travel
between a city i and a city j, our objective is to find a permutation resulting in a tour of minimal
length L(π) =

∑n
i=1Dπiπi+1

.1

Evaluation Metric. Comparing the performance of combinatorial problems that differ in complexity
is challenging and often requires domain-specific knowledge. A commonly used metric is the
approximation ratio R(x, y) = f(y)

OPT(x) between the score f(y) of an approximate feasible solution
y to a problem instance x, and the score of an optimal solution OPT(x) [16, 18]. Constant factor
approximation algorithms are expected to be no worse than a given ratio, independent of the problem
size. For TSP the objective f(y) = L(π). Most of the previous work in NCO [3, 19, 28] uses a
variant of the approximation ratio, called the optimality gap

(
R(x, y) − 1

)
, and propose using a

Concorde solution as a reference point in the ratio [3, 19, 28]. In this work we calculate the optimality
gap w.r.t. the Held-Karp (HK) lower bound [11], as it is independent of any software, well understood
in the combinatorial optimization community [6], and easy to implement.

Neural Combinatorial Optimization. Most of the recent advances in NCO are based on sequence-
to-sequence models [3, 15, 28], attention models [19], or graph neural networks2 (GNN) [8, 14].
Solutions inspired by successful applications in machine translation [25] do not carry forward directly
to TSP, as the the models depend on a fixed dictionary. Pointer Networks [28] train an attention
mechanism to point back to the input, which eschews the need for a separate dictionary and allows
for training on graphs of variable size. Reinforcement learning was later shown to provide a more
suitable specification of the objective function for combinatorial problems than supervised learning
[3, 19]. The attention model (AM), proposed by [19], builds upon the empirical evidence that pure
attention-based models tend to outperform their recurrent neural network counterparts on sequence
prediction tasks [7, 26], mainly due to improvements in algorithmic efficiency and regularization
effects. While graph convolutional networks show better performance on individual problem sizes,
the attention-based methods provide comparable results with better generalization [13, 14].

Curriculum Learning. Curriculum learning (CL) is a training procedure that utilizes knowledge
transfer between tasks of increasing difficulty and devises an efficient task sampling strategy. While
the difficulty of a problem can be defined with respect to the capability of a model to solve it, we
impose a further restriction and assume a global ordering of tasks, with a direct correspondence
between the problem’s size and its difficulty level. CL attemps to exploit a neural network’s ability to
facilitate learning solutions to difficult tasks with the knowledge of simpler ones. Recently, there has
been a lot of focus on algorithms that can automate the process of designing curricula for specific
applications, particularly those stemming from reinforcement learning [10, 23].

Adaptive staircase. Adaptive staircase is an improved CL strategy adapted from psychophysics
to deep reinforcement learning [21]. At each step, the strategy determines if it is either: ready to
advance to a more difficult task, backtrack, or train on a task at the current difficulty level. In the
base case, the agent is always trained on a task of the current difficulty level t. The alternative is a
probe case, where the task is sampled uniformly from a range [1, t]. The base and probe cases are
chosen equiprobably at each trial. The level is incremented to t+ 1 when the agent achieves a certain
performance threshold α after observing Nbase base trials. Probe trials contribute to training, but the
agent is not evaluated on them. The number of base trials per task can either be constant or can be
proportional to the current difficulty level: Nbase ∝ t.

1The additional element πn+1 = π1 in the equation ensures the closure of the path.
2The authors of [19] point out that their model is equivalent to the graph attention network proposed in [27].
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3 Experiments and discussion

To test the effectiveness of CL in improving NCO performance on a range of problem sizes, we
performed two experiments. We started by analyzing the ability of the AM model [19] to solve tasks
on which it was not trained. The results showed the limitations of knowledge transfer between the
models, which prompted our investigation of several different sampling strategies: (i) single task, (ii)
stochastically sampled range of tasks, and (iii) two curriculum learning approaches. In all the exper-
iments we used REINFORCE with a greedy rollout baseline with a learning rate η = 10−3. Training
each of the methods for 100 epochs took ≈ 50 hours on 4 P100 GPUs, depending of the dominant
size of the problem. Following [19], we initialized parameters with Uniform(−1/

√
d, 1/
√
d) for

the input dimension d. Every epoch the network used 2,500 batches of 512 samples.3 As a metric we
chose the optimality gap, reported as percentage, between the average cost returned by the model and
the HK lower bound estimate computed over 104 TSPs per problem size. For the smallest problem
sizes (4–9) we ran exhaustive search over 105 TSPs to reduce the variability.

To quantify the capability of the model to generalize to other tasks we trained 147 models from TSP
4 to 150, and tested them on sizes 10 to 300. HK lower bounds for this experiment were extrapolated
from the available representative set. Each of the models was initialized with the parameters of a
model pretrained in a classic curriculum fashion, and subsequently trained for 20 epochs. Fig. 2 shows
the performance matrix, in a form of a heat map, where each row corresponds to the performance of
a model trained on a single task when tested on a range of tasks from 10 to 300.

In the second experiment, we compared six sampling strategies (Fig. 1). Following previous work
[3, 19, 28], we first trained three models on fixed problem sizes 20, 50 and 100. For the rest of the
strategies, we trained the model on a set of TSPs from 4 (the minimal meaningful problem size) to
100. We started with a baseline (uniform) stochastic model that selected a task randomly at each
epoch. Then we tested the two CL approaches — the classic approach of monotonically increasing
problem sizes, and the adaptive staircase.
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Figure 1: For each sampling strategy, we follow the training procedure of the Attention Model (AM)
proposed in [19]. The curves are color coded from dark to bright in increasing level of task difficulty.
Each subplot title denotes the task schedule on which the model was trained. The “Test: TSP-N”
curve represents validation of the model on a task N at every epoch.

We start the discussion by observing that the performance of models trained on neighboring tasks is
correlated (Fig. 3, Fig. 2). The figures show that the performance of different models can be delineated
by a skewed Gaussian centered at the task on which the model was trained. The ability of the model to
solve problems close in size suggests a large knowledge transfer, which occurs with widening spread
but smaller magnitude as the problem size increases (Fig. 2). Moreover, a drift from smaller problem
sizes implies that a successful sampling strategy must be able to balance small and large problem sizes.

3In case of adaptive staircase the number varied per epoch. This is explained later in the section.
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Figure 2: Heat map of validation scores of mod-
els trained separately on problem sizes 4 to 150.
The optimality gap is measured with respect to
the HK lower bound and the threshold caps it
from the top at 10%.
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Figure 3: The optimality gap of the final epoch
performance of each of the models w.r.t. exhaus-
tive search (sizes 4–9) and HK bound (sizes 10–
150). The confidence intervals represent 2 stan-
dard errors over 5 runs.

Throughout the course of training (Fig. 1), the models that do not visit the previous problems along
with the new ones show initial improvement in performance, but as soon as the network reaches a
certain epoch the performance decays for the tasks that are further away. This shows the limitation of
knowledge transfer and exposes catastrophic forgetting.

The model trained with uniform sampling (Fig. 3) is the closest in performance to a constant
factor approximator, but its optimality gap across all the problem sizes is larger than most of the
other methods. We conclude that balancing the problem sizes naïvely does not lead to an overall
improvement in performance. Knowledge transfer discrepancies, catastrophic forgetting and lack of
efficiency prompted our investigation of curriculum-based methods.

Classic curriculum learning consolidates knowledge from observed tasks and delivers a more consis-
tent performance across all the tasks as compared to the baseline. However, the method still results
in catastrophic forgetting (Fig. 1), as the cues learned from solving smaller problem sizes are not
helpful enough to the model to retain that knowledge. One way to alleviate forgetting is to combine
rehearsing with incremental learning.

We propose to use adaptive staircase, a method previously applied to train a reinforcement learning
agent in a psychophysics environment [21]. The experiment was run by scheduling tasks according
to the probe case with α = 0.05 threshold on the optimality gap to advance the task difficulty. If
performance α was not attained after a full epoch we decremented the task. We set the number of
base trials (batches) per epoch to (10+current_graph_size - min_graph_size) / (max_graph_size
- min_graph_size). To make sure that the number of probe trials did not exceed the number of
batches available to the other sampling strategies, we stopped training one epoch earlier than the
other strategies. This resulted in ≈ 1.6% reduction in the amount of data exposed to this strategy.
Fig. 1 and Fig. 3 both show that adaptive staircase results in the best trade-off between forgetting and
average performance across problem sizes.

4 Conclusion

In this work we have assessed the ability of an attention-based NCO model to perform well on
a large range of problem sizes. We found that knowledge transfer between tasks is measurable
and changes smoothly, but is otherwise limited and cannot be ignored when designing a sampling
strategy. Curriculum learning provides a convenient framework that takes into account complexity
and knowledge transfer between tasks. The classic approach of training on tasks monotonically
increasing in complexity suffers from catastrophic forgetting. Our analysis demonstrates the need for
rehearsal of less complex samples during training. By choosing an efficient rehearsal-based sampling
strategy, adaptive staircase, we were able to show both the usefulness of curriculum learning in
neural combinatorial optimization and provide important evidence supporting the applicability of a
biologically-inspired method to an emerging area of deep learning.
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