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Abstract

Pre-trained language models (LMs) are able to
perform complex reasoning without explicit fine-
tuning. To understand how pre-training with a
next-token prediction objective contributes to the
emergence of such reasoning capability, we pro-
pose that we can view an LM as deriving new con-
clusions by aggregating indirect reasoning paths
seen at pre-training time. We found this perspec-
tive effective in two important cases of reasoning:
logic reasoning with knowledge graphs (KGs) and
chain-of-thought (CoT) reasoning. More specifi-
cally, we formalize the reasoning paths as random
walk paths on the knowledge/reasoning graphs.
Analyses of learned LM distributions suggest that
a weighted sum of relevant random walk path
probabilities is a reasonable way to explain how
LMs reason. Experiments and analysis on multi-
ple KG and CoT datasets reveal the effect of train-
ing on random walk paths and suggest that aug-
menting unlabeled random walk reasoning paths
can improve real-world multi-step reasoning per-
formance. .

1. Introduction

Recently, pre-trained large language models (LLMs) (Tou-
vron et al., 2023a;b; Brown et al., 2020) have demonstrated
remarkable capabilities in performing intricate reasoning
tasks (Kojima et al., 2022). These tasks include problem-
solving with world knowledge (Hendrycks et al., 2020;
Suzgun et al., 2022), logical reasoning (Pan et al., 2023),
and solving mathematical problems (Cobbe et al., 2021;
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(Hypothetical) Reasoning graph G

Pre-training corpus D

Figure 1. We hypothesize that the pre-training corpus can be
viewed as generated from random walks on a reasoning graph
over world knowledge/concepts. With each node s; representing
concepts, p; can be viewed as arguments that connect them. Then
we hypothesize that a language model (LM) training on such a
corpus can be viewed as reasoning by a weighted aggregation of
random walk paths that connect the entities in interest. Py denote
the LM distribution while Pp denotes the random walk probability
from the pre-training corpus. w; denotes the weight assigned to
the first random walk path by the LM for argument p;, and w?
denotes the weight assigned to the second random walk path.

Hendrycks et al., 2021). These models are typically not ex-
plicitly fine-tuned to solve these tasks. Recent research (Jain
et al., 2023) also suggests that the supervised fine-tuning
process following pre-training only learns a wrapper on top
of the already existing model capabilities, instead of learn-
ing new ones. It is intriguing to understand how next-token
prediction pre-training contributes to the emergence of such
reasoning capability. A better understanding of this matter
can also inspire new pre-training/fine-tuning techniques to
improve these important abilities of LLMs.

It is well-known that LLMs acquire emergent abilities
through extensive pre-training (Wei et al., 2022a). In this
paper, we focus on elucidating the emergence of reason-
ing ability — the capacity to draw novel conclusions from
existing knowledge, which has been less studied. Many
recent works also attempt to understand this phenomenon.
Some works focus on understanding Transformers’ reason-
ing capability by construction (Liu et al., 2023; Chi et al.,
2023; Feng et al., 2023). Others try to provide post hoc
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mechanistic explanations (Geiger et al., 2021; Wu et al.,
2023; Hanna et al., 2023) or understanding inference time
in-context learning reasoning (Li et al., 2023; Razeghi et al.,
2022; Wang et al., 2023). Our study is more relevant to the
line of work analyzing the contribution of pre-training data
to LM reasoning (Bi et al., 2023; Chen et al., 2023; Xiao &
Liu, 2023; Zhou et al., 2023; Ramesh et al., 2023).

In contrast to these works, we adopt a Bayesian view and
try to understand why next-token-prediction pre-training
can unlock LMs’ reasoning ability. More specifically, we
hypothesize that LMs can aggregate the indirect reason-
ing paths seen at pre-training time, through the next-token-
prediction training objective. In a real-world scenario, the
reasoning path can be a piece of text argument connecting
two concepts. We hypothesize that, at inference time, this
enables an LM to jump from one concept to another during
its reasoning process, which could be verbalized by generat-
ing chain-of-thought (CoT) solutions (Wei et al., 2022b), or
silent without generating outputs.

Prystawski et al. (2023) propose a different hypothesis that
localized structure on dependencies between variables in
training data is important for LM reasoning, especially CoT
reasoning. Our hypothesis implies a similar property of
the pre-training data: when two concepts are related by
a reasoning path, they are highly likely to cooccur in the
data and thus form a graph-like localized structure. One
drawback of Prystawski et al. (2023)’s work is that their
experiments equate reasoning to conditional probability es-
timation of boolean variables with intermediate variables,
which can be considered overly simplified compared to real-
world reasoning processes. In our paper, we aim to produce
a more realistic analysis of the effect of training data by
closely examining two predominant types of reasoning: log-
ical reasoning and mathematical reasoning. In these two
reasoning scenarios, we first construct unsupervised random
walk paths, which are used to (continually) pre-train the LM
with next-token loss. Then we adopt the pre-trained LM to
perform reasoning tasks on unseen examples.

For logical reasoning, we analyze a straightforward yet gen-
eral reasoning scenario: reasoning over knowledge graphs.
A knowledge graph (KG) stores facts in the form of triples
(e1,r, e2), where e; and e represent entities connected by
the relationship r. KGs can be incomplete, lacking certain
relations between existing entities. These missing relations
can typically be inferred from the known triples stored in the
KG by employing logical rules. For instance, the relation
(A, isGrandChildof, C) can be derived from the triples
(A, isSon0Of, B) and (B, isSon0f, C). We formalize a
reasoning path as a random walk path on the KG, which
enables us to accurately compute its probability. We show
that an LM pre-trained from scratch on random walk paths
generated from a given KG can accurately deduce missing

relation connections. We also analyze the KL divergence
between LM output distributions and weighted/unweighted
sums of random walk path probabilities, which are vari-
ances of the classic path ranking algorithm (PRA) (Lao
etal., 2011). Our analysis suggests that the LM distribution
shares many similarities with aggregating the probabilities
of possible random walk paths in a logical-rule-aware man-
ner, and is usually superior to them.

For mathematical reasoning, we focus on a more complex
case of reasoning: solving math word problems (MWPs).
Since it is very challenging to pre-train an LM from scratch
to perform well on MWPs, which require both math deduc-
tion and language understanding, we propose to continue
training on a pre-trained base LM. Based on the insights ob-
tained from the KG reasoning analysis, We propose to create
random walk reasoning paths from existing CoT train-
ing data, and test the effectiveness of next-token-prediction
training on these unlabeled reasoning paths. More specif-
ically, we construct a reasoning graph by regarding the
reasoning state at each CoT step as the graph node. Then we
reorder and reconnect the existing CoT steps to form the ran-
dom walk paths on the graph. Experiment results on three
MWP datasets, GSM8K (Cobbe et al., 2021), AQUA (Ling
etal., 2017), SVAMP (Patel et al., 2021), show consistent
improvement compared to vanilla supervised fine-tuning,
and a similar effect of random walk path length as in the
KG reasoning case is observed.

Our findings can be summarized as follows: (a) We show in
both reasoning scenarios that our weighted random walk rea-
soning paths aggregation hypothesis is one (of many) valid
ways to explain how LMs may gain their reasoning ability;
(b) We show that LMs can utilize unlabeled reasoning paths
highly efficiently and show the potential of incorporating
the random walk idea to real-world (continue) pre-training.

2. Logical Reasoning

We first analyze a well-controlled case of logic reasoning,
knowledge graph (KG) reasoning, by pre-training a small
Transformer over random walk paths from KGs. The KL
divergence between aggregated random walk path probabil-
ities and LM distribution shows that LM is very close to a
weighted aggregation. We also show that KL divergence
reflects how LMs assign weights to logical rules. We find
that there is usually an optimal random walk path length
for training LMs. These observations support our reasoning
paths aggregation hypothesis.

2.1. Problem setting

Consider a knowledge graph G = {(el, %, e})} , consist-
ing of N triples, such that the head entity ¢! and tail entity
eb are related by ¢ for all i. Let R denote the set of all pos-
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sible relations and £ denote the set of all entities. Our goal
is to predict a set of unseen triples 7 = {(e], 17, e%)};”:l,
e{, e% € &, 77 € R, by training a Transformer based gen-
erative language model (LM) from scratch on the given
knowledge graph G. To translate a triple into a sentence (i.e.
a sequence of tokens), We add each entity e’ and relation r*
as a new token (<e_i> and <r_i>) to the Transformer’s vo-
cabulary and translate each triple into a three-token sentence
“<e_i> <r_j> <e_k>.”. Inthis way, we avoid using any
natural language thus no semantic meaning of the entity or
relation name will affect the LM prediction.

2.2. Language Model Pre-training

We construct the training data by performing random walks
on the given KG G. More specifically, we randomly sample
a start entity e ~ U(E), where U(+) denotes the uniform
distribution. Then we perform a random walk on G from e
by sampling the next node with ¢ ~ U(C/(e)), and stop at
a maximum path length L4,

Then we translate each triple into a sentence and concatenate
all the sentences in the sampled random walk path to become
a paragraph. The paragraphs are then concatenated together
and separated by the special end-of-sequence token to form
text chunks of the same length. The training loss function is
the next-token prediction loss:
¢ exp (fo(wipr|wi:t))
ELM(9)=ZZ P Jo\Wit1|W1:¢
02085 exp (Jo(wlwr)

ey

Here, # denotes the LM parameters 2. w; € V represents a
token in the LM vocabulary V, and wy .7 is a token sequence
in the training data D, where T is the length of a text chunk.

To test the reasoning ability of a pre-trained LM, we format
the testing triples as sentence completion tasks. For example,
the triple (e1, r, e2) will be translated to the prompt “<e_1>
<r>)”, and let the LM predict the next token, then verify
the prediction with the ground truth e;. Note that, here the
raw LM output distribution is over all entities and relations.
To make the LM distribution more well-defined and simplify
the following analysis, we take the LM output logits over
all entities and define the LM output distribution as:

exp (fo(ezler,))

2
Soeew(olelenr)

Piv(ezler,r) =

2.3. Random Walk Paths Aggregation

Recall that our hypothesis is LM can aggregate the reason-
ing paths seen at the pre-training time. In the KG setting,
we can explicitly define how the reasoning/random walk

*We use a randomly initialized GPT-2 model (Radford et al.,
2019).

paths are aggregated. Inspired by the classic path ranking
algorithm PRA (Lao et al., 2011), we define the aggrega-
tion of random walk paths P, as the exponential of a
weighted sum of the probabilities of all appropriate random
walk paths connecting the two target entities. More specif-
ically, we are interested in a distribution P, (esley,r) for
unseen (e, 7, ea) in the form of:

exp(Sy (ezler,)/T)
Zeeg exp(Sy(eler,r)/T)

Here S, (ez2|e1,r) is a score/logits of e5. T' > 0 is a tem-
perature to rescale the weighted logits S, so that it can
match the scale of LM logits fp °, and that P,,(ez|ey, ) and
Pim(ezler, r) are more comparable. The score Sy, (ezleq, )
is defined to be a weighted sum of the probability of follow-
ing all possible logical rules going from e; to es:

Suw(ealer,r) = wy(h)P(ezler, h)

heH

P, (esler,r) = (3)

Here ‘H denotes the set of all possible logical rules, and
h € H is a specific logical rule. w,(h) is the weight as-
signed to rule h when inferring relation r. For example, a
rule for inferring the 1locatedIn relation can be h : (e,
neighborOf, e3) A (es, locatedIn, es). Formally, for
a target relation r, we consider logic rules with conjunctive
form. V{e;}, C &,

(e, €n) < (€0,7T1,€1) Ao A(€n—1,Tn,€n)

where (e;_1,7;,e;) € G. We abbreviate such rule by h =
[r1, 72, ..., 7]. We can formalize the set of all possible logic
rules by H = {[r1,72,...,mn]In > 1,7 € R}.

Then the probability of following a specific logic rule h € H
between e; and e, during the random walk would be the
sum of the probability of all possible random walk paths
from e; to es following the rule h = [rq, 72, ..., ry]:

P(eyleo, h) = Z Hp(ei|ei—177"i)

(e0,r1,€1)...(€n—1,Tn,en)EP, =1

where P;, denotes all paths from the KG following h. Fol-
lowing the pre-training data generation, we perform a uni-
form random walk. ie. P(e;le;—1,7) = 1/|C(ei—1)l.
Then the rule probability P(es|eq, h) can be computed di-
rectly from the KG.

To learn the rule weights w,., we first observe that

P,(rle1, es)

Zeef,‘ P’LU(T|617 6)7

if we sample e; and ey independently and uniformly. Re-
call Equation (3), we can instead model P, (r|e1,e2)

P,(ealer,r) =

*In practice, we take 7' = 0.01.
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exp Sy (ealer, ). We can even further simplify it into a
binary classification problem p; = P,,(1,:—,|et, €). Then
we can use w, to parameterize a logistic regression model
with a loss function:

Lo(w) ==Y [yilnp; + (1 — i) In (1 = p;)] + Aluwl,
i
exp Sy, (eblet,r)
1+exp Sy (e;\ei,r) ’
1,i—,. Aw| is a regularization term, and we can take any
appropriate norm on w.

where p; = and the binary label y; =

At training time, we sample positive triples with relation r
and negative triples with other relations from G as training
data. We search over the graph to compute their probability
of being reached by each rule P(ez|e1, h) to compute p;.

For computation efficiency, we only want to search for a
subset of more possible logical reasoning rules H,,. in the test
set for each relation r, and assign w,.(h) = 0 for h ¢ H..
Note that a rule can be infinitely long, so we set a maximum
rule length n < N, 4. To obtain 7., we search over G, and
record all paths between any two entities that are connected
with the relation r, and shorter than N,,,,,. We then collect
the rules that have more than m valid paths.

A simplified version of P, would be letting w,.(h) = 1 for
all h and r. And we define this unweighted aggregation
distribution to be P,:

exp(D_pen, Ple2ler, h)/T)
Dece exp(ZheHT P(eler, h)/T)

Ps(ezler,r) = “

2.4. KL Divergence and Prediction Accuracy

To better understand the similarity between LM and the
random walk aggregation algorithm as described in the pre-
vious section, we propose to compute and analyze the KL
divergence between them: K L[P,,(ele1,r), PLm(eler, )],
where e is a random variable taking values in £. To better
understand the meaning of the computed KL divergence,
we derive an upper bound of it by writing Py (ez|e1, ) as
marginalization over rules:

Pim(ezler,r) = > Plesler, h)Piu(hler,r)  (5)
heH
Similarly, we can write
Py(ealer,r) = > Plealer, h)Puy(hler,r)  (6)
heH

Then by the Log sum inequality, we can see that the KL
divergence of the rule importance is an upper bound of the
computed KL divergence *:

*Proof available in Appendix A.

Proposition 2.1. If LM effectively learned the random walk
data distribution through pre-training, we have

KL[P,(e|e1,r), Pu(eler, r)]
<KL[P,(hl|ey,r), Piy(hley,r)]

Here h is a random variable taking values in 7{. This means
the KL divergence reflects how LM assigns probabilities
to possible logical rules based on the given prompt, which
implies how the LM learns to do logical reasoning.

KL computation We compute the KL divergence between
the weighted aggregation distribution Py, (ez|eq,r) as de-
fined in Equation (3) and the LM distribution P v(ez|er,7)
as defined in Equation (2), abbreviated as K L[P,,, P.m].
We then compare it with the KL divergence between the
unweighted aggregation distribution Ps(esley, r) as defined
in Equation (4) and the LM distribution, abbreviated as
K L[Ps, PLm]. To better understand the effect of random
walk length, we consider maximum random walk path
length ranging from 1 to 10 (i,e. 1 < Ly, < 10 and
1 € Npe < 10), for computing both the aggregation
distribution and the LM distribution. We then compute a
pairwise KL between each of them and show the results as a
heatmap. To better anchor the computed KL divergence, we
also compute the KL divergence K L[P*, P v| between a
reference distribution P* and the LM distribution P}y, and
KL divergence K L[P,, PLu] between the uniform distribu-
tion P, and the LM distribution F ;. Here P* is uniform
over all correct answers, and P, is uniform over all pos-
sible answers. The described KL divergences for Countries
(top) and UMLS (bottom) testing sets are shown in heatmaps
in Figure 2. More interpretations of these quantities can be
found in the caption.

Accuracy We also compute the prediction accuracy using
each method and plot it w.r.t to path length (1 < L4, <
10). Note that there could be more than one correct answer
for a query (e1,7). We say the prediction is correct as
long as it is one of the correct answers. The described
testing accuracy for Countries (left) and UMLS (right) is
shown in Figure 3, where LM is arg max Py, Weighted
is arg max P,,, and Unweighted is arg max Ps. In general,
LM predictor Py performs on par/better than weighted
aggregation P,,, and significantly better than the unweighted
aggregation P,. This shows that LM likely learns a better
logical rule weighting scheme than P,,.

2.5. Results and Analysis

We consider five KG datasets in total: Countries (Bouchard
et al., 2015), UMLS (Kok & Domingos, 2007), Kinship
(Denham, 2020), NELL-995 (Xiong et al., 2017), and
FB15K-237 (Toutanova et al., 2015) 3. We take the smallest

>More dataset details can be found in Appendix C.1.
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Figure 2. KL divergence between various reference distributions and LM distribution, with different maximum random walk lengths,
averaged over Countries (top) and UMLS (bottom) testing set, respectively. The rows correspond to the LM distribution Pim(ez|e1, 7) with
maximum pre-training random walk path lengths (L.qz) ranging from 1 to 10. From left to right, the columns correspond to the weighted
aggregation distribution P, (e2|e1,r) with maximum random walk path lengths (Ny,qz) from 1 to 10, the unweighted aggregation
distribution Ps(ez|e1, ) with maximum random walk path lengths (Ny,qz) from 1 to 10, the reference distribution P*(ez|e1, r), and the
uniform distribution P, (e2), respectively. A darker color represents a smaller KL value, meaning that the two distributions are closer.
In general, K L[P,,, PLm] is always smaller than K L[Ps, Pov|, which implies that LM is learning the difference in rule importance.
KL[P*, Pom] and K L[P,, P.m] serve as anchor points to show the scale of KL values. K L[P*, P v] is generally high because the
probability mass concentrates on correct answers, thus it can be very different from the LM distribution. Thus K L[P*, P.m] shows how
peaky the LM distribution is, and K L[P,,, PLm] shows how flat the LM distribution is.

two for KL divergence analysis for their lower time com-
plexity. We show LM prediction accuracy for all datasets
with different pre-training path lengths.

KL divergence with Countries In Figure 2 (top), we can
see that when the maximum path length for computing the
aggregated distribution (columns) is three, there is a sudden
drop in K L[P,,, P_m]|. This is because the ground truth path
length to reach the correct answers in the testing set is three
(fixed when constructing the dataset). Both the weighted
and unweighted aggregation of random walk paths have
low accuracy with path lengths less than three as shown
in Figure 3 (left). The behavior of the path aggregation
method is not well-defined at this stage and thus can result
in an abnormal KL trend. On the other hand, LM yields a
non-trivial accuracy when trained with a path length smaller
than three, which shows LM’s ability to generalize beyond
the pre-training reasoning length. This echoes the findings
in Xiao & Liu (2023); Zhou et al. (2023), that Transformers

can generalize to longer sequences than training sequences.

As shown in Figure 2 (top left), the weighted aggregation
scheme P, converges to a stable distribution, likely by
putting most weights on shorter rules when using long ran-
dom walk paths. The LM distribution P, y; becomes closer
to P, when the pre-training path length becomes longer.
On the other hand, K L[Ps, P ] stably increases when the
path length for P; becomes larger. This echoes the accu-
racy trends as shown in Figure 3 (left). For the countries
dataset, since it only has two relations, longer random walk
paths introduce more noise than useful information. Thus
by increasing the path length the unweighted aggregation
scheme P, becomes less and less effective. Both P,, and
Py learn to assign a small weight to the long/noisy paths,
and thus do not experience an accuracy drop.

KL divergence with UMLS In Figure 2 (bottom), we can
see that when the maximum path length for computing
the aggregated distribution (columns) is larger than 3, the
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Figure 4. Testing accuracy of LM trained on different random walk
path lengths. Each line corresponds to a different KG dataset and
thus is not directly comparable. We want to highlight the common
trend here that each line peaks at some optimal path length.

weighted aggregation scheme P, also converges to a stable
distribution. To investigate why path length 3 is unique, we
find the average path length corresponding to the largest
number of valid paths for each relation in the testing set is
3.14. We find the average path length corresponding to the
largest weight assigned by P,, when N, = 10 is 2.75.
This confirms that path length three is likely a good rule
length for many relations. However, from Figure 3 (right),
we can see that both weighted (P,,) and unweighted (P;)
aggregation peaked at path length two instead of three. We
believe this is because when the rule length becomes larger
(i.e. larger than two), the validity of a rule would be more
head entity (e;) dependent. Using only relation-dependent
weight w,.(h) as in P, is likely insufficient. This also ex-
plains why LM constantly outperforms both path aggrega-
tion methods: LM likely learns a rule importance function
that depends both on the head entity and the relation.

Different from the Countries dataset, UMLS’ K L[Ps, P v]
does not increase when the path length for P, in-
creases. Instead, K L[Ps, P y| follows a similar trend as
KL[P,, P .|, while in general K L[P,,, PLm]| is smaller
than K L[Ps, Piv|. Similarly, in Figure 3 (right), the
weighted (P,) and unweighted (P,) aggregation has a
similar performance, while P, is slightly better. This

shows that the logical rule weights learned by P, are
similar between different rules, so it has similar effects
(KL and accuracy) as the unweighted version P;. The
LM also has a flatter distribution, as we can see for
UMLS KL[P* Pm| < KL[P,, P.m] while for Coun-
tries K L[P*, Pm] > K L[P,, Pov]. This is likely because
UMLS is more complex than Countries (49 v.s. 2 relations),
thus many longer paths and rules are similarly useful for
prediction, making the LM distribution flatter.

Prediction accuracy v.s. pre-training path length We
briefly touched on how the pre-training random walk path
length L,,,, affects the LM distribution in the analysis
above. In general, a longer path length improves the predic-
tion accuracy and decreases K L[P,,, P.m]. This shows that
LM can improve the logical rule weight assignment when
trained with a longer path length. To further investigate
this problem, we pre-train LM on longer random walk path
lengths with more KG datasets.

In Figure 4, we show the LM prediction accuracy v.s. the
maximum pre-training random path length of 1, 5, 7, 10, 15,
and 20, trained on five different KG datasets. In general,
there is a large performance gain from a path length of 1
to 5. Note that when the path length is equal to one, we
randomly sample individual triples from a KG. i.e. There
are no reasoning paths in the training data. So it is impor-
tant to have reasoning paths with a non-trivial length in the
pre-training data, to enable the LM’s reasoning ability. By
extending the maximum length from 10 to 20, we can see
that there is a slight drop in the Countries dataset. Similarly,
in most datasets, there is a small decrease after an optimal
path length. This is likely because a too-long random walk
path would contain more noise/unrelated triples for reason-
ing. i.e. It is less likely to be useful for predicting the head
and tail entity relation in a path aggregation sense. On the
other hand, we can understand this from a localized data
structure perspective (Prystawski et al., 2023): a sufficiently
long random walk path makes any two entities similarly
possible to appear in the same path, thus hurting the local
dependency in the training data.



Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation

3. Chain-of-thoughts Reasoning

After carefully analyzing the logical reasoning on KGs, we
want to apply and verify the obtained insights on a more gen-
eral and realistic case of reasoning: chain-of-thoughts (CoT)
reasoning (Wei et al., 2022b) with textual descriptions and
step-by-step solutions. We continue training a pre-trained
LM with random walk reasoning paths and show that these
unlabeled paths consistently benefit CoT reasoning perfor-
mance across multiple datasets of various tasks, including
math reasoning, multihop question answering (QA), and
logical deduction. We also observe a similar optimal ran-
dom walk path length effect as in the KG logical reasoning
case, which is associated with the intrinsic reasoning length
of different datasets. These results support our reasoning
path aggregation hypothesis and imply principles for con-
structing/augmenting pre-training data.

3.1. Problem Setting

Suppose we have a set of training data D =
{(2*,ri,rh,...,rl, y")}i, where x is a question described
in the text that needs to be answered. ri,r5,...,7,; is a
chain-of-thought (CoT) solution, where 77 is one reasoning
step. g is the ground truth answer to the question. Since
CoT datasets are hard to collect and usually small in size, a
model is not likely to generalize to new questions by aggre-
gating reasoning paths over this small set of CoT reasoning
paths. Fine-tuning on a pre-trained LM can effectively miti-
gate this problem since the LM has already seen many other
reasoning paths at the pre-training time, but more unlabeled
reasoning paths specific to this task would likely improve
the testing performance if the path aggregation hypothesis
still holds for this task.

3.2. Random Walk on Latent Reasoning Graph

We assume that CoT paths 74,75, ..., r? . can be regarded
as random walk paths sampled from a reasoning graph G,
where the nodes are the reasoning states at each step r;
The reasoning state can be regarded as a belief that will be
updated after each reasoning step. Denote the last hidden
state of the pre-trained LM we are going to tune by fy. To
represent the reasoning state for each step r;'», we propose to
use fp to cumulatively encode all the steps before r’é, and
then average over the sequence dimension, to obtain a fixed
dimensional vector sé—:

sj = avg fo(a', 11,79, ... 75)

Assuming similar sz-’s are sampled from the same node of

the latent reasoning graph, we propose to cluster ® similar
s5’s together to form a node. Suppose we have constructed a
graph G from the CoT dataset D, with nodes Ay, Ao, ..., Ak,

%1n practice we use K-meanings clustering.

Algorithm 1 Random Walk on Latent Graph

Input: CoT dataset D, latent graph G, maximum path length
L mazx-
Randomly initialize current node a = Ay. Initialize path p = ||
repeat

Randomly choose a CoT step 1”;» € a.

Uniformly sample m from [1, L].

Append 7}, 7% 1, T iy to path p.

3
; 7Tmin{j+m,
Suppose r? i € A;. Seta = A

min{j+m,n

until len(p) > Liaz.
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Figure 5. Testing accuracy of continue pre-training with our ran-
dom walk paths of different length L,,,.. Each line corresponds
to a different math dataset and thus is not directly comparable. We
want to highlight the common trend here that each line would peak
at some optimal path length range, which is similar to Figure 4.

where K is predefined by the clustering algorithm. Each
CoT step would be classified into a node. i.e. 7“} € A,
for some m € [1, k]. Then we can perform random walks
on the graph by using the original CoT as links between
the nodes as shown in Algorithm 1. Then we record the
random walk paths produced by Algorithm 1 and do next-
token-prediction training on them for M steps. To make
sure the LM can produce a CoT solution and a final answer,
we do another NV — M step of supervised fine-tuning (SFT)
on the original dataset D, for some N > M.

3.3. Experiments

Datasets. We conduct experiments on three math word prob-
lem (MWP) datasets: GSM8K (Cobbe et al., 2021), AQUA
(Ling et al., 2017), SVAMP (Patel et al., 2021), a multihop
QA dataset StrategyQA (Geva et al., 2021), and a logical
deduction dataset LogicalDeduction from the BIG-bench
(Srivastava et al., 2023). GSM8K, AQUA, and SVAMP are
math questions with annotated CoT steps. StrategyQA is
annotated with decomposed questions, which we used as the
Chain-of-thought (CoT) path of the question. As there is no
CoT annotation in LogicalDeduction, we use GPT4 to gen-
erate CoTs for the training set, which on average requires
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Model Method GSM8K AQUA SVAMP StrategyQA LogicalDeduction Avg.
Gemma (2B) SFT 24.8 31.4 56.4 54.2 50.7 43.5
Ours 26.1 33.9 60.3 56.3 51.6 45.6

Yi (6B) SFT 322 37.0 65.8 65.8 62.2 52.6
Ours 33.1 39.8 67.0 70.0 63.3 54.6

Llama 2 (7B) SFT 26.8 30.0 533 58.4 55.3 44.8
Ours 28.5 34.6 55.8 63.7 56.1 47.7

Llama 2 (13B) SFT 37.1 35.0 66.4 69.5 55.7 52.7
Ours 41.2 374 69.0 71.2 57.7 55.3

Table 1. Testing accuracy of different open source LMs continue pre-trained with our random walk paths and then supervised fine-tuned.
The supervised fine-tuning baseline (SFT) is fine-tuned by the same number of total steps. Results are reported on five CoT datasets.

Ablation GSM8K AQUA SVAMP Avg.
#Steps = 0 26.8 30.0 533 36.7
200 27.5 30.1 53.6 37.1

500 28.5 34.6 55.8 39.6

1000 249 323 51.6 36.3

#Nodes = 0 26.8 30.0 533 36.7
10 26.8 30.3 54.8 37.3

50 26.6 29.9 54.7 37.1

100 28.5 34.6 55.8 39.6

200 26.6 31.1 52.5 36.7

Table 2. Ablation on the number of random walk training steps M
and the number of clusters/nodes K.

6+ reasoning steps per question. ’

Training Because of computation limits, we do LoRA (Hu
et al., 2021) parameter efficient training in 8 bits with Llama
2 7B and 13B models (Touvron et al., 2023b), Yi 6B model
(Young et al., 2024) and Gemma 2B model (Team et al.,
2024). If not specified, we default to using the Llama 2 7B
model.

Results. In Table 1, we demonstrate the effectiveness of our
proposed method against the supervised fine-tuning (SFT)
baseline. We train both our method and SFT with N = 2500
steps in total. The first M = 500 steps of our method are
continually pre-trained on random walk data, and then we
do 2000 steps of SFT on the original dataset. Experiment
results show that our method can notably improve on math,
multihop QA, and logical reasoning. The improvement is
especially significant on StrategyQA, likely because of the
relative simplicity of the reasoning, as only 3 subquestions
per example on average are needed.

Then we investigate the effect of random walk path length
L4, by plotting accuracy v.s. path lengths. In Figure 5, we
observe that each dataset has a performance peak at a certain
random walk length. While both AQUA and GSMS8K peak
at path length 10, the SVAMP dataset peaks at path length
5. This is likely related to the different intrinsic reasoning
lengths for different datasets. The average length of CoTs

"More dataset details can be found in Appendix C.1.

in AQUA, GSMS8, and SVAMP training sets are 4.79, 3.72,
and 1.36, respectively. The reasoning length required for
SVAMP is significantly shorter than the other two datasets,
thus explaining the earlier peaking. As we discussed in the
logical reasoning case, a long random walk may introduce
more noise than useful information. Note that even the
LM performance can drop after the optimal path length,
it is always better than training with path length one. i.e.
multi-step random walk always helps.

We also do ablation studies on two critical hyperparameters
of our method: the number of steps training on random walk
paths M and the number of clusters/nodes K. In the upper
half of Table 2, we show that the optimal number of training
steps M is 500 for all three datasets. Since the generated
random walk reasoning paths are not natural within small
corpora, e.g. the subject might be suddenly changed from
one step to another, training too many steps might make
the LM overfit the unwanted artifacts. In the lower half of
Table 2, we show that the optimal number of clusters is 100
for all three datasets. Here O clusters mean the SFT baseline.
Since the datasets we use are small in scale, clustering with
a large number of clusters may introduce more noise than
useful matchings. We hypothesize that this may be solved
by using a larger dataset and more number of clusters/nodes
K: in this case, the steps within each node will be more
intrinsically similar. This also hints at the potential of our
method in the actual pre-training stage: we can view each
example in the pre-training corpus as a reasoning path and
apply our method.

Latent reasoning graph analysis. To give a better under-
standing of the discovered latent reasoning graph, we show
some discovered reasoning patterns through the graph in
Figure 6. We show high-frequency node patterns of CoTs
in the training set and corresponding CoT examples. We
show examples from GSM8K and StrategyQA as they are
shorter. With the GSMS8K examples, we show our method
discovers a 2-step pattern that first computes the baseline
quantity and then performs division/multiplication to get the
goal quantity based on the question specification. With the
StrategyQA examples, we show a 3-step pattern that first
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Node 94: Baseline Node 1: Multiplication

Ben collected 36/3=<<36/3=12>>12 shells. Alan collected 12*4=<<12*4=48>>48 shells.

Emily sold 180/3=<<180/3=60>>60 oranges. Alice sold 60*2=<<60*2=120>>120 oranges.

Shelly bought 12/2=<<12/2=6>>6 pretzels. Angie bought 6*3=<<6*3=18>>18 pretzels.

Node 94: Baseline Node 27: Division

Tim has 68-30 = <<68-30=38>>38 apples. Harry has 38/2 = <<38/2=19>>19 apples.

GSM8K

He had 40-16=<<40-16=24>>24 left after using some. Then after giving some away he is left with 24/2=<<24/2=12>>12.

Bobbie has 18 * 3 = <<18*3=54>>54 crayons. Lizzie has 54 / 2 = <<54/2=27>>27 crayons.

Node 35: Size/weight Node 35: Size/weight Node 86: Comparison

What is the average weight of a six year old?
On average, how large is a sand cat's ear?

What is the density of a pear?

StrategyQA

Which field of science do horoscopes fall under?
What is the area of study of a geographer?

What are the areas of focus of ontology?

What is the weight of a gallon of seawater?
What is the size of a standard NBA basketball?
What is the density of water?

Which science field do astronomers study?
What is the area of study of Biochemistry?

Where does a scalpel find application?

Is ten times #2 more than #17?
Is #1 greater than #27?
Is #1 greater than #27?

Is #1 the same as #2?
Is any of #1 in #27?
Is #2 included in #1?

Figure 6. High-frequency node patterns in the training data of GSM8K and StrategyQA, discovered by our constructed latent reasoning

graphs, with example CoT solutions belonging to the node pattern.

decomposes the question into two parallel subquestions of
size/weight/subject area, and then uses the third question to
compare the answers to the first two questions. 8

4. Related Work

Many recent works have investigated LM’s reasoning ability.
Geiger et al. (2021); Wu et al. (2023) ai to find the causal
abstraction of an LM. (Hanna et al., 2023) tries to find cir-
cuit for year-span-prediction. Liu et al. (2023); Chi et al.
(2023); Feng et al. (2023) show that CoTs enable fixed-size
Transformers to perform certain types of reasoning tasks.
Li et al. (2023); Razeghi et al. (2022); Wang et al. (2023)
try to understand inference time in-context CoT reasoning.
Our study is more relevant to the line of work analyzing the
contribution of pre-training data to LM reasoning. Bi et al.
(2023) analyzes how code data affect program-of-thoughts
(Chen et al., 2023) reasoning ability. Xiao & Liu (2023);
Zhou et al. (2023) study how reasoning length generalizes
from training data. Ramesh et al. (2023) studies LMs’ com-
positional generalization ability. Our hypothesis also echos
the conclusion of Malach (2023) that reasoning paths in
training data enable supervision on intermediate steps with
a next-token-prediction objective. Prystawski et al. (2023)
propose a different hypothesis that localized structure on
dependencies between variables in training data is important
for LM reasoning, especially CoT reasoning. Our proposed
hypothesis echoes theirs and is shown to be effective on

8More latent reasoning graph examples can be found in Ap-
pendix C.3.

more realistic data and tasks. Hou et al. (2023) confirm with
attention probing that LMs perform multi-step reasoning
internally, which echos our KG logical reasoning results. °

5. Conclusion

In conclusion, we aim to understand reasoning abilities in
language models (LMs), from the perspective of aggregat-
ing reasoning paths from pre-training data. The findings
shed light on the origins of LLMs’ remarkable reasoning
capabilities, showcasing the importance of pre-training in
acquiring these skills. The construction of the pre-training
sequence, such as organizing it as ’chains” or random walks
on the graph, was found to significantly impact the effec-
tiveness of reasoning. The study also revealed that LM be-
havior is similar to reason over known facts by aggregating
relevant reasoning paths. These insights contribute to our
understanding of the underlying mechanisms behind LLMs’
reasoning abilities and lead to a potential pre-training data
augmentation technique to boost reasoning performance.
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Impact Statement

Understanding the reasoning processes of large language
models (LLMs) through the lens of aggregating indirect
reasoning paths holds potential implications for identify-
ing and mitigating potential biases within LLMs. By for-
malizing reasoning as random walk paths on knowledge
and reasoning graphs, this approach not only elucidates the
mechanisms through which LLMs derive conclusions but
also sheds light on data and reasoning paths that contribute
to their outputs. This insight is crucial for recognizing
biases embedded in the training data or in the reasoning
process itself. Recognizing these biases is the first step to-
ward developing more equitable and transparent models. By
augmenting models with unbiased, unlabeled random walk
reasoning paths, we can potentially reduce the influence
of biased reasoning patterns and improve the fairness and
reliability of LLMs in real-world applications. This research
advances our understanding of LLM reasoning capabilities
and their implications for bias, paving the way for more
responsible Al development and deployment.
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A. Proof

Proposition A.1. If LM effectively learned the random walk
data distribution through pre-training, we have

KL[P,(ele1,r), Py(eler, )] < KL[P, (h|r), Puy(hler, )]

Proof. Recall that

PLM(62|€1,7“) = Z P(62|€1, h)PLM(h|€1, 7’)
heH
and
Py(ezler,r) ZP ealer, h) Py (hler, 7).
heH
By log sum inequality, we have:
KL[P,(ele1, )PLM(e|€1a 7)]
_ZP (ealer,r )logip w(ealer,T)
0aCE LM(62|61a )
P(62|€1,h)PLM(h|€1,’I“)
S P(e2|elah)Pw(h’|el7T)
622625};{ P(esler, h)Py(hler,T)
Pim(h
=3 % Plesler, P (hler, r) Culller )
P, (hley,r)
eo €€ heH
PLM(h\el,r)
=> (Y Plealer,h)Py(hler, 1) =22
hEH es€l Pu(hlex,r)
BPiv(h
_ZP (Blex, ) LM(h|€1a
hen w( |€17 )
ZKL[Pw(h|7"),PLM(h|€1,T)]

B. Detailed discussion of related work

Theory on LM reasoning Many recent works are investi-
gating LM’s reasoning ability. Geiger et al. (2021); Wu et al.
(2023) aims to find the causal abstraction of an LM. (Hanna
et al., 2023) tries to find circuit for year-span-prediction.
Liu et al. (2023); Chi et al. (2023); Feng et al. (2023) show
that CoTs enable fixed-size Transformers to perform certain
types of reasoning tasks. Li et al. (2023); Razeghi et al.
(2022); Wang et al. (2023) try to understand inference time
in-context CoT reasoning. Our study is more relevant to the
line of work analyzing the contribution of pre-training data
to LM reasoning. Bi et al. (2023) analyzes how code data
affect program-of-thoughts (Chen et al., 2023) reasoning
ability. Xiao & Liu (2023); Zhou et al. (2023) study how
reasoning length generalizes from training data. Ramesh
et al. (2023) studies LMs’ compositional generalization abil-
ity. Our hypothesis also echos the conclusion of Malach
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(2023) that reasoning paths in training data enable supervi-
sion on intermediate steps with next-token-prediction objec-
tive, and also increase the length complexity, thus reducing
time/sample complexity at training time. Prystawski et al.
(2023) propose a different hypothesis that localized struc-
ture on dependencies between variables in training data
is important for LM reasoning, especially CoT reasoning.
Our proposed hypothesis echoes theirs and can be shown
effective on more realistic data and tasks.

Logic/knowledge graph reasoning Existing methods can
be divided into three categories: rule-based, GNN-based
(Gori et al., 2005), and LM-based. Markov Logic Network
(MLN) (Richardson & Domingos, 2006) and path ranking
algorithm (PRA) (Lao et al., 2011) are two classical methods
that assign weights to different logical rules. Neural Logic
Programming (Yang et al., 2017) and RNN-logic (Qu et al.,
2020) are two neural methods that combine the explain-
ability of learned logical rules and the high performance of
neural networks. R-GCN (Schlichtkrull et al., 2018) and
NBFNet (Zhu et al., 2021) are two GNN-based methods that
train a GNN on the KG and use the obtained triple embed-
dings. These two category methods either rely on random
walks to find paths or use random walks to train GNNs. Re-
cently, LM-based methods are shown to be highly effective
on not only KG reasoning (Misra et al., 2023), but more
general logical reasoning problems with text descriptions
(Pan et al., 2023).

Chain-ot-thought (CoT) reasoning Recently, LLMs have
shown to be highly effective in complex reasoning tasks, like
math reasoning (Azerbayev et al., 2023; Yang et al., 2023).
Chain-of-thought (CoT) (Wei et al., 2022b) prompting/fine-
tuning has been the major way to invoke/improve LLMs’ rea-
soning capabilities. Many variants of CoT prompting have
been proposed to improve upon the vanilla CoT prompting
(Chen et al., 2023; Yao et al., 2024). On the other hand,
many works have focused on fine-tuning LLMs on gener-
ated high-quality CoT training data (Wang et al., 2022; Nye
et al., 2022; Yuan et al., 2023). However, they all rely on the
annotated Q-A pairs to generate corresponding paths with
LM, which limits the size of augmented data and requires
large LMs to do the CoT generation. Our proposed method
does not need supervised seed data and thus can be extended
to the vast amount of pre-training data. Our method is also
lightweight, which only requires a small/medium LM to
produce the step embeddings and then do clustering on
them.

C. Experiment Details

C.1. Datasets

Knowledge graph datasets For KL analysis, we focus on
two KGs: Countries (Bouchard et al., 2015) and UMLS
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(Kok & Domingos, 2007), as they have a reasonable time
complexity to compute the aggregated probabilities for long
paths. The Countries (Bouchard et al., 2015) contains two
relations (lLocatedIn and neighborOf) and 227 enti-
ties, including countries, regions, and subregions. We use
the hardest version (S3) of the Countries. The Unified Med-
ical Language System (UMLS) (Kok & Domingos, 2007)
is a more complex KG built from biomedicine knowledge,
containing 49 relations and 135 entities. Example entities
are diseases and antibiotics, and example relations are treats
and diagnoses.

We add three more datasets for computing the prediction
accuracy v.s. different random walk path lengths: Kin-
ship (Denham, 2020), NELL-995 (Xiong et al., 2017), and
FB15K-237 (Toutanova et al., 2015). The Kinship dataset
contains 104 entities and 26 kinship relationships among
members of the Alyawarra tribe from Central Australia.
The NELL-995 dataset contains 75,492 entities and 200
relations, which is built from the Web via an intelligent
agent called Never-Ending Language Learner. The FB15K-
237 dataset contains 14,505 entities and 237 relations de-
rived from Freebase. We adopt a processed version of these
datasets from Das et al. (2017).

Math word problem datasets We conduct experiments on
three math word problem (MWP) datasets: GSM8K (Cobbe
etal., 2021), AQUA (Ling et al., 2017), SVAMP (Patel et al.,
2021). The Grade School Math dataset (GSM8K) contains
8.5K examples of linguistically diverse grade school math
world problems. The AQUA-RAT dataset contains 100K
samples of mathematical problems, along with sequences
of human-readable mathematical expressions in natural lan-
guage. The SVAMP dataset is a testing set consisting of
elementary-level MWPs. The training set is a combina-
tion of simpler MWPs: MAWPS (Koncel-Kedziorski et al.,
2016) and ASDiv-A (Miao et al., 2020) with 3.5k training
examples in total.

StrategyQA is annotated with decomposed questions,
which we used as the Chain-of-thought (CoT) path of the
question. Since the test set labels are not publicly released
and the testing set predictions are only allowed to be verified
every 7 days, we split the original training set into a new
training and testing set.

C.2. Training Details

Logical reasoning We train randomly initialized GPT-2
(Radford et al., 2019) (124M parameters) with batch size 16
and learning rate Se-4 using AdamW optimizer (Loshchilov
& Hutter, 2017) on one 24G Titan GPU.

CoT reasoning We continually (LORA) train all base LLMs
with batch size 16 and learning rate 2e-4 using AdamW
optimizer (Loshchilov & Hutter, 2017) on one 40G A100
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GPU.

C.3. Additional Latent Reasoning Graph Examples

With the GSMS8K examples in Figure 7, we show that our
method discovers a pattern that first computes money for
parallel items/individuals and then sums them up, within 3
and 4 steps respectively. With the StrategyQA example in
Figure 7, we show a 2-step pattern that first asks about an
emotion/psychology fact and then asks the applicability to
an individual in the second question.

D. Limitations

While the scope of this project is to provide a plausible
understanding of how language models obtain reasoning
abilities from next-token pre-training, we acknowledge that
there are other possible ways of understanding this phe-
nomenon. While our empirical results show our hypothesis
is also effective in real-world reasoning tasks, our experi-
ments remain on a small scale with specific tasks, limited by
our computation resources and project scope. An important
future work is to apply our proposed random walk training
method to a large and diverse reasoning corpus with more
training steps in the actual pre-training phase and verify
the effectiveness of our method in improving the general
reasoning ability of LLMs. We also want to point out that
our proposed method is effectively up-sampling the given
training set and might amplify unwanted artifacts/biases if
exist in the original dataset.
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Node 8: Money (first) Node 57: Money (middle) Node 57: Money (middle) | Nodet12:sum |

The four bags of Reese's cost\$9x  The three bags of Snickers cost\$5  The five bags of Skittles cost\$7  Therefore, the unicorn pifiata and the
4 =\$<<9*4=36>>36. x 3 =\$<<5*3=15>>15. x5 =\$<<7*5=35>>35. treats cost\$13 +\$36 +\$15 +1$35 =
\$<<13+36+15+35=99>>99.

Olivia made \$9 * 4 hours = Olivia made \$9 * 3 = Olivia made \$9 * 6 hours = For the week Olivia made \$36 +\$27 +
\$<<9*4=36>>36 on Monday. \$<<9*3=27>>27 on Wednesday. \$<<9*6=54>>54 on Friday. \$54 = \$<<36+27+54=117>>117.
% The total cost of The Life Journeyis The total cost of When You The total cost of A Day a Lifeis 3 The total cost for all the CDs is \$150 +
= 3x\$100 =\$<<3*100=300>>300. Rescind is 3 x $85 = x\$50 = \$<<3*50=150>>150. \$255 +\$300 =
8 \$<<3*85=255>>255. \$<<150+255+300=705>>705.
A pound of cream cheese cost $10/ 2 A pack of cold cuts cost $10 x 2 Jasper spent $10 + $5 + $20
=$<<10/2=5>>5. =$<<10*2=20>>20. = $<<10+5+20=35>>35 on the ingredients.
The cost of Gary’s gold is 30 * $15 The cost of Anna’s gold is 50 * $20 The total cost of their gold is $450 + $1000
= $<<30*15=450>>450. = $<<50*20=1000>>1000. = $<<450+1000=1450>>1450.
From selling her tomatoes, she can make 200  From selling her carrots, she can make 350 The total amount of money she can make is $200
< *$1 = $<<200*1=200>>200. *$1.50 = $<<350%1.5=525>>525. +$525 = $<<200+525=725>>725.
g Node 34: Emotion facts Node 14: Personal facts
g,n What kind of feeling is fear? Can a person in a coma experience #17?
=
E What are the ways a person may express their grief? Based on #1, can one always tell when someone is grieving?
=
¢)  Whatwould an anxious person benefit from receiving? Can the Wizard of Oz provide #1?

Figure 7. Additional high-frequency node patterns in the training data of GSM8K and StrategyQA, discovered by our constructed latent
reasoning graphs, with example CoT solutions belonging to the node pattern.
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