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ABSTRACT

Learning interpretable representations of data generative latent factors is an im-
portant topic for the development of artificial intelligence. With the rise of the
large multimodal model, it can align images with text to generate answers. In this
work, we propose a framework to comprehensively explain each latent variable in
the generative models using a large multimodal model. We further measure the
uncertainty of our generated explanations, quantitatively evaluate the performance
of explanation generation among multiple large multimodal models, and qualita-
tively visualize the variations of each latent variable to learn the disentanglement
effects of different generative models on explanations. Finally, we discuss the ex-
planatory capabilities and limitations of state-of-the-art large multimodal models.

1 INTRODUCTION

Latent variable based data generation has emerged as a state-of-the-art (SOTA) approach in the field
of generative modeling (Mittal et al., 2023; Deja et al., 2023; Patil et al., 2022). This technique lever-
ages latent variables to learn underlying data distributions effectively and also generate high-quality
samples (Vahdat et al., 2021). One of the key advantages of using latent variables is their ability to
capture the underlying structure in high-dimensional data. However, understanding and interpreting
such latent variables is challenging and often requires human expertise for meaningful interpreta-
tion. Learning interpretable representations of the data generative latent factors is an important topic
for the development of artificial intelligence that is able to learn and reason the same as humans do
(Higgins et al., 2016). Large multimodal models (LMMs) have accomplished remarkable progress
in recent years (Wang et al., 2024; Wu et al., 2023; Yin et al., 2023; Bai et al., 2024; Ling et al.,
2023). LMM is more similar to the way humans perceive the world (Yin et al., 2023). We thus
consider using large multimodal models to automatically explain the latent representations.

Recently, one of the most powerful LMMs is the instruction-following LMM (Li, 2023). LLaVA
and InstructBLIP are two instruction-following LMMs that achieve SOTA performance on many
datasets. Instruction-following models use instruction tuning to enhance their abilities to under-
stand and follow human-given instructions. Instruction tuning involves further fine tuning LLMs
using ⟨instruction, response⟩ pairs to better align human intent with model behavior (Wang et al.,
2024). LLaVA was introduced in the paper Visual Instruction Tuning (Liu et al., 2024), and then
further improved in Improved Baselines with Visual Instruction Tuning (referred to as LLaVA-1.5)
(Liu et al., 2023). Likewise, InstructBLIP (Dai et al., 2024) is a large multimodal model that adds
instruction tuning on the basis of its previous version BLIP-2 (Li et al., 2023). Google Bard is a
conversational AI service developed by Google, initially powered by LaMDA with a range of mod-
els to follow. In this work, we propose a framework to comprehensively explain each latent variable
in generative models and evaluate the performance of explanation generation of GPT-4-vision with
several popular LMMs: Google Bard, LLaVA-1.5, and InstructBLIP. To the best of our knowledge,
we are the first to use LMM to explain the latent representations of the generative models.
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Figure 1: The model framework consists of generating an image sequence with a progressively
varying latent variable, combining it with a prompt to pass to a large multimodal model to provide
some response samples and finally utilizing an uncertainty measure to select an explanation for that
specific latent variable and decide whether there is a clear explanation to display.

2 METHODS

Problem Formulation We start from a dataset D = {X,Z} where the images x ∈ RN and the
data generative latent variables z ∈ RM . We then can train a generative model that learns the joint
distribution of the data x and latent variables z. Here, our goal is to explain each latent variable zi
individually, where i ranges from 1 to the number of latent dimensions, and quantify the uncertainty
of the explanation to make sure the explanations presented are reliable and responsible.

In this work, we confront two primary challenges associated with the representation and interpre-
tation of the latent space. Firstly, the latent space is difficult to explicitly represent. To address
this, we interpolate a specific latent dimension zi at a time and subsequently decode these into an
image sequence. This method allows us to visualize the latent representations. Secondly, not all
latent variables have semantic meaning. To tackle this issue, we introduce an uncertainty approach
to distinguish between interpretable and uninterpretable latent variables.

Framework To start with, we trained three generative models for each dataset. After the generative
models are trained, a latent representation z is first sampled from an isotropic unit Gaussian distribu-
tion N (0, I). Given a certain latent variable zi, we perturb zi to observe the possible value range of
zi and keep the other latent variables constant. A sequence of images can then be generated by de-
coding a series of manipulated latent vectors. As a result, this generated sequence of images shows
how a latent variable zi changes gradually. Further, we pass this image sequence with a prompt to
a large multimodal model to explain the latent variable, as well as its changing pattern. Finally, we
quantify the uncertainty to decide which response to select as an explanation and whether to display
the selected explanation as shown in Figure 1.

Not every latent variable is interpretable, so we need to find an approach to determine whether a
latent variable is interpretable. Similarity and entropy are two major ways to measure uncertainty in
natural language generation(NLG). Since the likelihood of tokens is not available in GPT-4-vision,
we used the measure of similarity in this paper. However, the use of similarity is not a limitation of
the uncertainty measure. Other methods, such as predictive entropy, semantic entropy (Kuhn et al.,
2023), and P(true) (Kadavath et al., 2022), could also be used to quantify uncertainty if applicable.
To measure the uncertainty of the responses of our large multimodal model, GPT-4-vision, we sam-
pled n times from the GPT-4-vision to generate the responses R = {r1, r2, r3, ..., rn}. The certainty
score of the explanation is the average similarity of the responses R : 1

C

∑n
i=1

∑n
j=1,i̸=j sim(ri, rj),

where C = n ∗ (n − 1)/2. To find the threshold of the interpretability of the latent variables, we
denote the true label of the interpretability of each latent variable as 1 if a human can see a clear
pattern in the generated images, otherwise we denote it as 0. The certainty score of the explanation
for each row of generated images is its predicted probability. We can then compute their AUC (area
under the ROC curve) based on different thresholds and choose the one with the highest AUC as our
threshold ε. Our final output explanation is the explanation that has the highest mean pairwise simi-
larity with other responses if the certainty score is equal or greater than the threshold ε. Otherwise,
we will output there is no clear explanation.
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3 EXPERIMENTS

Datasets We perform evaluations with three datasets, the MNIST dataset of handwritten digits (Le-
Cun & Cortes, 2010), dSprites dataset of 2D shapes (Matthey et al., 2017) and 3dshapes dataset of
3D shapes (Burgess & Kim, 2018). The dSprites dataset consists of 6 ground truth latent factors.
These factors are color(white), shape(square, ellipse, heart), scale(6 values), rotation(40 values), po-
sition X(32 values) and position Y(32 values) of a sprite. Similarly, the 3dshapes dataset is generated
from 6 ground truth latent factors of floor color(10 values), wall color(10 values), object color(10
values), scale(8 values), shape(4 values), and orientation(15 values). The MNIST dataset consists of
grayscale handwritten digits(0 through 9).

Visual pattern generation We train three representative variational autoencoder(VAE) models, the
standard VAE (Kingma & Welling, 2014; Rezende et al., 2014), β-VAE (Higgins et al., 2016), and
β-TCVAE (Chen et al., 2018), with three aforementioned datasets. For each trained model, we
manipulate one latent variable between [-3, 3] at a time while keeping others constant, and the
trained decoder of the model can produce a series of images that reflect variations along that specific
latent dimension. This process is repeated for each latent variable, resulting in m×k images, where
m is the number of latent variables and k is the number of assigned values for each latent variable.
We set 6 latent variables and assign the values as torch.range(-3, 3, 0.6), so m = 6 and k = 11 here.

Explanation generation We use GPT-4-vision as our explanation generator and compare it with a
wide range of other large multimodal models: Google Bard, LLaVA-v1.5-13b (Liu et al., 2023), and
InstructBLIP (Dai et al., 2024). For GPT-4-vision, LLaVA-v1.5-13b, and InstructBLIP, we all set
temperature = 1, top p = 1. We then pass the generated images of each latent variable along with
a prompt to the LLMs to produce an explanation for each latent variable. For human annotations, two
annotators provide two explanations with various sentence expressions for each image sequence, so
we have four human explanations for each image sequence as references. Furthermore, We evaluate
the explanations across these LMMs with human annotations using BLEU(Papineni et al., 2002),
ROUGE-L(Lin, 2004), METEOR(Banerjee & Lavie, 2005), and BERTScore F1(Zhang et al., 2019).

Additionally, to compute the certainty scores, we try both the cosine similarity and lexical
similarity (Kuhn et al., 2023), where sim is cosine similarity and rouge-L respectively in
1
C

∑n
i=1

∑n
j=1,i̸=j sim(ri, rj). As Table 1 shows, the measure of cosine similarity has a much

higher AUC, which means it can better distinguish if there is a clear pattern. So we choose to
use the cosine similarity to generate the certainty score for the explanation. The best AUC in the
experiment is 0.9694 and its corresponding threshold ε is 0.7434.

Table 1: The evaluation metrics of the classification of the presence of a discernible trend.
Uncertainty Estimate AUC F1-score Precision Recall

lexical similarity 0.6898 0.9600 0.9412 0.9796
cosine similarity 0.9694 0.9684 1.0 0.9388

4 RESULTS AND DISCUSSION

Quantitative evaluation for explanation generation We give the same prompt and image sequence
to GPT-4-vision and other large multimodal models to generate explanations. Overall, GPT-4-vision
outperforms other large multimodal models in their explanatory capability to explain the visual
patterns of latent variables in Table 2. As shown in Appendix B, GPT-4-vision is the only LMM
that can accurately recognize the handwritten digits in MNIST, explain how the digits change, and
have the best overall explanations. Bard can answer the latent variable based on the prompt, but the
latent variables and the patterns found are not always accurate. LLaVA and InstructBLIP are not
able to respond based on the prompt. More specifically, LLaVA can only describe the images, but
it cannot explicitly answer what the latent variable is. InstructBLIP often repeats the task content in
the prompt, yet fails to provide the required explanations.

Uncertainty analysis We observe that when there is an evident pattern in the images, the certainty
score of the corresponding explanation is likely to be high in Appendix A Figure 3, showing the
sampled explanations are more consistent. Conversely, when human can not find a clear pattern
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Table 2: Evaluation of large multimodal models on the generated explanations of the latent variables
of different generative models

Dataset VAE Model LMM BLEU ROUGE-L METEOR BertScore

3dshapes

VAE

GPT-4-vision 0.051 0.196 0.370 0.875
Bard 0.047 0.167 0.240 0.842
LLaVA-1.5 0.000 0.169 0.224 0.864
InstructBLIP 0.000 0.167 0.212 0.843

β-VAE

GPT-4-vision 0.056 0.195 0.302 0.868
Bard 0.000 0.161 0.224 0.850
LLaVA-1.5 0.024 0.162 0.206 0.857
InstructBLIP 0.027 0.160 0.205 0.842

β-TCVAE

GPT-4-vision 0.058 0.203 0.293 0.865
Bard 0.000 0.189 0.211 0.864
LLaVA-1.5 0.030 0.181 0.206 0.856
InstructBLIP 0.062 0.133 0.107 0.846

dsprites

VAE

GPT-4-vision 0.051 0.190 0.291 0.858
Bard 0.052 0.225 0.197 0.864
LLaVA-1.5 0.062 0.176 0.219 0.855
InstructBLIP 0.065 0.195 0.205 0.847

β-VAE

GPT-4-vision 0.061 0.222 0.282 0.867
Bard 0.049 0.210 0.233 0.856
LLaVA-1.5 0.048 0.197 0.194 0.856
InstructBLIP 0.042 0.190 0.225 0.842

β-TCVAE

GPT-4-vision 0.051 0.193 0.276 0.858
Bard 0.028 0.209 0.262 0.848
LLaVA-1.5 0.052 0.184 0.187 0.857
InstructBLIP 0.041 0.194 0.249 0.849

MNIST

VAE

GPT-4-vision 0.038 0.181 0.291 0.862
Bard 0.000 0.203 0.237 0.865
LLaVA-1.5 0.027 0.162 0.265 0.857
InstructBLIP 0.000 0.144 0.217 0.843

β-VAE

GPT-4-vision 0.000 0.201 0.279 0.863
Bard 0.026 0.184 0.208 0.857
LLaVA-1.5 0.000 0.201 0.215 0.846
InstructBLIP 0.000 0.156 0.209 0.841

β-TCVAE

GPT-4-vision 0.040 0.207 0.288 0.863
Bard 0.041 0.227 0.240 0.857
LLaVA-1.5 0.099 0.245 0.287 0.864
InstructBLIP 0.000 0.197 0.237 0.836

in the images, the certainty score is relatively low in Appendix A Figure 4, indicating the sampled
explanations are more diverse.

We quantitatively evaluate if the certainty threshold we find can correctly distinguish whether there is
a clear trend in the generated image sequences in Table 1. Table 1 demonstrates an overall excellent
performance of the certainty threshold of cosine similarity to identify the cutoff for the presence of a
discernible trend. In comparison, the uncertainty estimate of cosine similarity can better distinguish
the scenarios when there is no clear trend than the uncertainty estimate of lexical similarity.

Qualitative evaluation for disentanglement When latent factors are entangled in the image se-
quences, like the ones of VAE and β-VAE in Appendix C, the LMM typically can only identify
one of the entangled latent factors in the explanations. Moreover, the greater entanglement of latent
factors makes it more challenging to identify changes in all latent factors within an explanation and
contributes to an increase in the uncertainty of the explanation, such as the latent factor of β-TCVAE
is more disentangled and thus has a higher certainty score than the ones of VAE and β-VAE.
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No clear explanation (certainty score: 0.7419)

The pattern in this row of images seems to be a consistent change in the 
background color, while the shape, scale, and orientation of the object in 
the foreground remain constant. The sequence shows a gradual shift in the 
background color from a lighter to a darker shade, moving from left to right.
The object in the foreground appears to be a sphere with a consistent light 
blue color, resting on a purple surface, which does not change throughout 
the sequence. This indicates that the varying latent dimension being 
observed here is likely related to the background color. (certainty score:
0.8164)

z1

z2

z3

z4

z5

z6

No clear explanation (certainty score: 7257)

The pattern in the row of images appears to be a change in color. Each image 
shows a spherical object on a stand, against a two-tone background. The sphere 
and the stand remain constant in shape across all images, but the hue of the 
background and the sphere shifts gradually through the spectrum of colors.
Starting from the left, the color of the background begins at a cyan or light blue, 
transitioning through different shades as it moves to the right. It appears to pass 
through a sequence of colors similar to a rainbow, transitioning from blues to 
greens, then yellows, followed by a reddish or magenta color, and back towards 
blueish or greenish hues. This row of images demonstrates a variation in color, 
which is likely the latent dimension being altered in this particular set. Each step 
from one image to the next shows a progression in color change, indicating that 
this is the dimension of interest being varied while other dimensions, such as 
shape or size, are held constant. (certainty score: 0.7669)

The images you‘ve provided appear to represent a sequence where the only 
changing attribute is the color of the spherical object placed against a two-tone 
background. Starting from the left, the first sphere is green, and with each 
subsequent image, there is a gradual transition through the color spectrum, 
moving through shades of green to yellow, then red, purple, blue, and finally to 
cyan. This progression of colors resembles the hues of the visible spectrum, 
although not in the conventional order. The background and the position of the 
sphere remain constant across the sequence, highlighting the change in color as 
the primary variable. This suggests that the varying latent dimension being 
represented here is likely linked to the color of the object. (certainty score:
0.8178)

The row of images provided appears to show a sequence where the primary 
variable that changes across the images is the color of the object‘s base. 
The object itself, which looks like a sphere, remains the same in shape and 
color. Starting from the left, the base begins with a cyan color and gradually 
transitions through the spectrum to blue, purple, pink, red, orange, yellow, 
and finally a greenish hue at the far right. This gradual change in hue 
suggests that the pattern of variation is a color shift in the visible spectrum 
for the base of the object. (certainty score: 0.7846)

Figure 2: The sample explanations generated by our framework. The latent variables are highlighted
in bold, and the patterns of the latent variables are in italics and underlined.

5 CASE STUDY

Figure 2 shows the explanations generated by our framework for the 3dshapes dataset. If the cer-
tainty score of the generated explanation is equal or greater than the certainty threshold (ε = 0.7434),
it will display the explanation selected. Otherwise, it will return “No clear explanation” like z1 and
z5. Our framework can generate an explanation for each latent variable if the latent variable has an
evident pattern. The explanation not only can tell what the latent variable is, but also can illustrate
how the latent variable changes. Sometimes, the identified latent variable can be wrong, such as
it misclassifies the wall orientation as background color in z3. This is due to the deficiency in the
LMM’s visual capabilities and will be elaborated in the later limitation section.

6 LIMITATION

Although GPT-4-vision is a state-of-the-art large multimodal model and performs the best in the
experiments, we still find some of its limitations when evaluating its generated explanations. It is
more likely to misinterpret the latent variable as color and is not sensitive to the scale, position, and
orientation. Sometimes the description of color patterns is not entirely accurate. Therefore, more
work can be undertaken to improve the visual understanding of GPT-4-vision.

7 CONCLUSION

In this work, we propose a framework to comprehensively explain each latent variable in the genera-
tive models and visualize the variations of each latent variable. We first analyze the certainty scores
of the explanations. The certainty score can tell us if there is a clear trend in the latent variable.
We also evaluate and compare the generated explanations with various LMMs. The result shows
that GPT-4-vision outperforms other large multimodal models, and we further discuss its limitations
and the explanatory capabilities of various LMMs. At last, we evaluate the effects of latent vari-
able disentanglement on the generated explanations. We believe our approach provides an efficient,
explainable, and reliable way to learn the latent representations of generative models.
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A EXAMPLES OF EXPLANATION GENERATION WITH CLEAR AND UNCLEAR
PATTERNS

Prompt
The pattern shown is that the digit seems to 
transform from a '6' through a series of stages 
into a '4'. The first image starts with a clear '6', 
and as we move from left to right across the 
sequence, the loop of the '6' gradually opens 
and the extended tail retracts until the images 
no longer resemble a '6' but start to take on 
characteristics of a '4'. The final images in the 
sequence display a form that is much closer to 
the digit '4', with the top part of the '6' 
morphing into the triangular top of a '4' and the 
bottom straightening out to resemble the 
vertical stroke of a '4’. (certainty score: 0.8018)

Response

GPT-4-vision

These are the generated images from the MNIST 
dataset for handwritten digits. This row of images are 
generated by the VAE variant model. Each row keeps 
the other latent dimensions constant, with the only 
dimension we are interested in changing, so we 
should be able to observe the variation in this latent 
dimension. Can you tell me the pattern of this row of 
images?(please don't introduce the VAE model)

Image

transforming
from 6 to 4

Prompt
The pattern in the row of images appears to be 
a change in the color of the object, which looks 
like a three-dimensional geometric shape, 
possibly a cylinder, that transitions from one 
color to another across the sequence. Starting 
from the left, the object is initially green and 
progressively changes through shades of yellow, 
orange, and then to red at the far right. Each 
image seems to represent a gradual shift in hue, 
moving through the color spectrum with the 
background and the object‘s shadow remaining 
constant throughout the series. This suggests 
that the varying latent dimension being 
observed here is likely related to the color or 
hue of the object. (certainty score: 0.8202)

Response

GPT-4-vision color

These are the generated images from the 3dshapes
dataset. This row of images are generated by the VAE 
variant model. Each row keeps the other latent 
dimensions constant, with the only dimension we are 
interested in changing, so we should be able to 
observe the variation in this latent dimension. Can 
you tell me the pattern of this row of images?(please 
don't introduce the VAE model)

Image

Prompt The images you've provided appear to show a 
sequence where the shape of the object is changing 
across the row. This sequence demonstrates a 
gradual transformation of the shape from left to 
right, with each image displaying a different stage of 
the shape's morphing process. Starting with a more 
rounded form and progressing towards a pointier 
shape, the transition seems smooth, indicating the 
alteration of a single latent dimension that controls 
the shape of the object. The pattern exhibits a 
systematic and controlled change, which is 
characteristic of latent space manipulations in 
generative models where one variable is adjusted 
while others are held constant to observe its 
effect.(certainty score: 0.7607)

Response

GPT-4-vision

These are the generated images from the dsprites
dataset. This row of images are generated by the VAE 
variant model. Each row keeps the other latent 
dimensions constant, with the only dimension we are 
interested in changing, so we should be able to 
observe the variation in this latent dimension. Can 
you tell me the pattern of this row of images?(please 
don't introduce the VAE model)

Image

shape

Figure 3: Sample images with clear patterns and sample prompts for GPT-4-vision to generate
explanations
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Prompt

The row of images you‘ve provided appears to 
be a sequential transformation of a 
handwritten digit, starting from a form that is 
ambiguous and gradually transforming into a 
more recognizable shape. The series of images 
suggests a progressive change in a single 
aspect or feature of the digit, perhaps 
changing from one digit to another or 
transitioning from an unclear form to a clear 
one. (certainty score: 0.6877)

Response

GPT-4-vision

These are the generated images from the MNIST 
dataset for handwritten digits. This row of images are 
generated by the VAE variant model. Each row keeps 
the other latent dimensions constant, with the only 
dimension we are interested in changing, so we 
should be able to observe the variation in this latent 
dimension. Can you tell me the pattern of this row of 
images?(please don't introduce the VAE model)

Image

changing from
one digit to another

Prompt
The pattern displayed in this row of images 
appears to show a systematic change in the 
shape of the objects. Starting from the left, the 
object begins as a tall cylinder and gradually 
transforms through a series of intermediate 
shapes, eventually becoming a cube on the 
right. The color and texture of the objects 
remain consistent throughout the sequence, as 
does the background, indicating that the only 
varying factor here is the shape of the object. 
This suggests that the latent dimension being 
varied in these images represents the geometric 
shape of the object. (certainty score: 0.7419)

Response

GPT-4-vision shape

These are the generated images from the 3dshapes
dataset. This row of images are generated by the VAE 
variant model. Each row keeps the other latent 
dimensions constant, with the only dimension we are 
interested in changing, so we should be able to 
observe the variation in this latent dimension. Can 
you tell me the pattern of this row of images?(please 
don't introduce the VAE model)

Image

Figure 4: Sample images with unclear patterns and sample prompts for GPT-4-vision to generate
explanations

B EXAMPLES OF EXPLANATIONS GENERATED BY DIFFERENT LMMS

These are the generated images from the MNIST dataset for 
handwritten digits. This row of images are generated by the VAE 
variant model. Each row keeps the other latent dimensions 
constant, with the only dimension we are interested in 
changing, so we should be able to observe the variation in this 
latent dimension. Can you tell me the pattern of this row of 
images?(please don't introduce the VAE model)

Prompt

Image

The pattern in the row of images appears to 
represent a progression of handwritten digits, 
transitioning from "3" to "6" and finally to "4". It 
seems to demonstrate a change in the shape and 
angles of the digits as they morph from one to 
another. The digits "3" and "5" are similar, with 
rounded shapes, but as the pattern moves towards 
"6", the top part of the digit becomes more closed. 
After "6", the transformation continues to "c", 
which could be seen as an intermediate step 
before the digit fully morphs into "4", which has 
straighter lines and more angles compared to the 
rounded shapes of "3" and "6".

Response

transitioning from "3"
to "6" and finally to "4"GPT-4-vision

Figure 5: The sample explanation generated by GPT-4-vision for the MNIST dataset.

These are the generated images from the MNIST dataset for 
handwritten digits. This row of images are generated by the 
VAE variant model. Each row keeps the other latent dimensions 
constant, with the only dimension we are interested in 
changing, so we should be able to observe the variation in this 
latent dimension. Can you tell me the pattern of this row of 
images?(please don't introduce the VAE model)

Prompt

Image

The pattern in the row of images 
generated by the VAE variant model is 
that the only latent dimension that is 
changed is the one that controls the 
thickness of the strokes in the digits. 
As the value of this latent dimension 
increases, the strokes in the digits 
become thicker. The other latent 
dimensions are kept constant, so the 
overall shape of the digits remains the 
same.

Response

the thickness 
of the strokes 
in the digits

Bard

Figure 6: The sample explanation generated by Bard for the MNIST dataset.
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These are the generated images from the MNIST dataset for 
handwritten digits. This row of images are generated by the VAE 
variant model. Each row keeps the other latent dimensions 
constant, with the only dimension we are interested in 
changing, so we should be able to observe the variation in this 
latent dimension. Can you tell me the pattern of this row of 
images?(please don't introduce the VAE model)

Prompt

Image

The row of images showcases the numbers 
in sequence, each digit corresponding to a 
consecutive number. Starting from 3 and 
ending with 4, each successive digit 
increases its value by one within the series. 
The pattern is consistent throughout the row, 
resulting in a numerical ladder starting from 
3 and advancing to 4.

Response

LLaVA-1.5 starting from 3 and
ending with 4

Figure 7: The sample explanation generated by LLaVA-1.5 for the MNIST dataset.

These are the generated images from the MNIST dataset for 
handwritten digits. This row of images are generated by the VAE 
variant model. Each row keeps the other latent dimensions 
constant, with the only dimension we are interested in 
changing, so we should be able to observe the variation in this 
latent dimension. Can you tell me the pattern of this row of 
images?(please don't introduce the VAE model)

Prompt

Image

This row of images is generated from the variation of 
one specific latent dimension in the MNIST dataset 
using a VAE model. The images vary when this specific 
latent dimension is manipulated while keeping all 
other latent dimensions constant. The patterns created 
by these generated images appear to form linear 
structures or lines, where the line patterns are quite 
similar in style and length throughout the row, as is 
demonstrated by the black curves in the image. The 
intermittent presence of the images in black emphasizes 
the high density of the line patterns in a group of 
images, and the variations are based on subtle 
differences in the style of the line drawings.

Response

InstructBLIP

the images vary 
when this specific 
latent dimension 
is manipulated 
while keeping all 
other latent 
dimensions constant

Figure 8: The sample explanation generated by InstructBLIP for the MNIST dataset.

C THE DISENTANGLEMENT EFFECTS OF DIFFERENT GENERATIVE MODELS
ON EXPLANATIONS

β-TCVAE

wall color

β-VAE

The pattern in the row of images you‘ve provided 
appears to involve a change in the background 
color. The images feature an object with a 
consistent shape and color in the foreground, 
placed against variously colored backgrounds. 
Starting from the left, the background transitions 
through a spectrum of colors: red, orange, yellow, 
green, light blue, and dark blue. The order of the 
colors seems to follow the sequence of a rainbow 
or a gradient of hues, typically seen in a 
chromatic scale moving from warmer to cooler 
colors. This systematic change in the background 
color, while keeping the object’s characteristics 
the same, suggests that the varying latent 
dimension being observed is color, specifically 
the hue of the background. (certainty score:
0.8583)

background color

object color,
object shape

The sequence of images you‘ve uploaded appears 
to exhibit a change in color as the primary pattern. 
Starting from the left, the first few images feature 
objects that are red, and as we move towards the 
right, the colors transition through shades of 
orange, yellow, green, and finally to shades of 
blue. This suggests that the latent dimension being 
varied in this row of images is likely controlling the 
color of the objects. The shape, orientation, and 
size of the objects remain consistent throughout 
the sequence, reinforcing that color is the variable 
attribute here. (certainty score: 0.7608)

object color

VAE

The pattern displayed in this row of images 
appears to show a systematic change in the shape
of the objects. Starting from the left, the object 
begins as a tall cylinder and gradually transforms 
through a series of intermediate shapes, 
eventually becoming a cube on the right. The color 
and texture of the objects remain consistent 
throughout the sequence, as does the 
background, indicating that the only varying factor 
here is the shape of the object. This suggests that 
the latent dimension being varied in these images 
represents the geometric shape of the object.
(certainty score: 0.7419)

object scale, object
shape, object color

object shape

Figure 9: The impact of disentanglement in different generative models on explanations. The ground
truth latent factors in the image sequences and the latent variables in the explanations are highlighted
in bold, and the patterns of the latent variables are in italics and underlined.
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