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Abstract
Large language models (LLMs) are increas-
ingly being deployed in high-stakes domains
where the ability to reason under uncertainty is

A 65-year-old patient presents to
the emergency department with
classic symptoms of a myocardial
infarction (heart attack), including
chest pain radiating to the left
arm and abnormal ECG readings.
The physician should

A 65-year-old patient presents to
the emergency department with
classic symptoms of a myocardial
infarction, including chest pain
radiating to the left arm and
abnormal ECG readings. The
physician could

critical. Despite recent progress in evaluating
factuality and calibration, little is known about
how LLMs internally represent epistemic
modality: linguistic cues that signal speaker
uncertainty (e.g., “might”, “probably”). To
our knowledge, this work presents one of the
first systematic investigations into whether
and how LLMs encode sensitivity to epistemic
modality in their activation space. We curate
a contrastive multiple choice dataset of
3114 sentence pairs that vary in epistemic
certainty and introduce a probing framework to
quantify activation-level differences between
certain and uncertain prompts. We further
propose Model Sensitivity to Uncertainty
(MSU), a layerwise metric that captures
representational shifts attributable to epistemic
cues. Our findings suggest that LL.Ms exhibit
measurable and layer-specific sensitivity
to epistemic modality, raising implications
for their deployment in sensitive decision-
making contexts.Code can be accessed at
https://anonymous.4open.science/r/

Uncertainty-Beneath-the-Surface-11D1.

1 Introduction

Large Language Models (LLMs) are increasingly
deployed in high-stakes domains such as law,
medicine, and public policy—settings that demand
not only accurate outputs but also the ability to rea-
son responsibly under uncertainty. While previous
research has emphasized calibrating model con-
fidence and evaluating output probabilities, com-
paratively little is known about how LLMs inter-
nally represent input-side uncertainty—particularly
linguistic uncertainty expressed through epistemic
modality (e.g., might, could, probably). Figure 1
shows that even minimal shifts in modality, such
as replacing ‘should’ with ‘could’, lead to consis-
tent differences in model generations, despite all

@ The physician could initiate MI
by admini

@ The physician should promptly
administer aspirin, perform a
12-lead ECG, and initiate MONA
protocol. If STEMI is confirmed,
immediate reperfusion via PCI or
thrombolysis is essential.

PCI. Continuous monitoring and
supportive care should follow to

or shock.

ing aspirin,
nitrates, and oxygen, and preparing for
immediate reperfusion therapy such as

address complications like arrhythmias

Figure 1: Although the prompt pairs differ only in epis-
temic modality (should vs could), the responses vary:
those prompted with could tend to offer a broader range
of medical possibilities and are more open-ended com-
pared to those ending with should. This could imply
how the model interprets linguistic uncertainty.

other input remaining constant. These variations
are not artifacts of sampling noise; rather, they
indicate a systematic and grounded sensitivity to
uncertainty cues. This raises important questions:
How are such epistemic signals encoded across
the layers of a model? Are these representations
stable across model variants? Understanding the
internal treatment of linguistic uncertainty is crit-
ical for building trustworthy, transparent systems,
especially in applications where appropriately re-
sponding to hedged or speculative language can
directly affect outcomes and user trust.

1.1 Uncertainty in LLM Qutputs

Much of the recent work on LLM uncertainty has
focused on model outputs, through calibration tech-
niques (Desai and Durrett, 2020), truthfulness un-
der uncertainty (Lin et al., 2022), or confidence
alignment with ground-truth (Ghafouri et al., 2024).
While these approaches provide useful diagnos-
tics on model predictions, they do not investigate
how input uncertainty is internally represented or
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whether models distinguish between certain and
uncertain prompts at a representational level.

1.2 Epistemics and Modal Reasoning

Several recent studies have examined the role of
modal verbs in model reasoning. (Holliday et al.,
2024)) show that LLMs often struggle with logical
tasks involving modal operators, suggesting a lack
of systematic reasoning with modality.

(Zhou et al., 2023) analyze use of epistemic
markers in LLM-generated text, showing large
effects on accuracy depending on whether uncer-
tainty or certainty markers are used, although they
do not study how these markers are internally rep-
resented in neural activations. Similarly, (Lee et al.,
2025) show that LLM-based evaluators are system-
atically biased against responses containing expres-
sions of uncertainty.

Our work complements these efforts by offer-
ing a mechanistic perspective on how epistemic
modality is encoded inside models, using probing
over activation spaces. In contrast to prior work
focusing on usage or output alignment, we pro-
vide empirical evidence of internal sensitivity to
epistemic variation.

1.3 Probing Internal Representations

A growing body of mechanistic interpretability re-
search seeks to understand LLM internals by in-
tervening in the activation space. One core tech-
nique is activation patching, also known as causal
mediation or causal tracing, which substitutes hid-
den activations from a clean forward pass into
a corrupted run, thereby identifying components
causally responsible for specific behaviors (Vig
et al., 2020). Building on this, path patching refines
the approach by restricting interventions to specific
computational paths, enabling finer-grained local-
ization of functional subcircuits (Goldowsky-Dill
et al., 2023). Complementary methods include
causal scrubbing (Chan et al., 2022), which tests
whether abstract circuits maintain function across
structural perturbations, and automated circuit dis-
covery frameworks such as ACDC (Conmy et al.,
2023).

In this work, we pose the question — Are large
language models sensitive to epistemic modality
in their input? This question is investigated by
contrasting representations elicited by semantically
similar prompts that differ only in the degree of
certainty they convey. As depicted in Figure 2, we
curate a multiple-choice dataset of 3,114 sentence

<|im_start|>user
Cultured/lab-grown meats

<|lim_start|>user
Cultured/lab-grown meats ____
be allowed to be sold. Choose a
replacement for the blank: A)
should B) could.<]im_end|>
<|lim_start|>assistant Ans:
<lim_end|> A

should B) could.<|im_end|>
<|lim_start|>assistant Ans:
<|lim_end|> B
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Figure 2: Paired inputs with linguistic certainty and
uncertainty are passed through the model. Layerwise
activation differences (A) are used to compute MSU,
capturing the model’s sensitivity to uncertainty across
layers.

pairs that differ in their expression of certainty and
examine how these variations influence the model’s
internal activation space.

To quantify such effects, we introduce a novel
metric, Model Sensitivity to Uncertainty (MSU),
which captures the representational shift induced
by epistemic cues at each layer of the model.
Through this lens, we assess whether and where in
the model epistemic modality is internally encoded.
Our key contributions are as follows:

* We propose a probing framework to assess
whether LLMs encode epistemic modality
through changes in their activation space.

* We introduce MSU, a layerwise metric for
quantifying model sensitivity to linguistic un-
certainty.

* We release the dataset of 3,114 sentence pairs
depicting linguistic certainty and uncertainty.

2 Dataset

Unlike contrastive datasets used in prior work (Rim-
sky et al., 2024), data was not constructed to be
semantically opposite or adversarial. Instead, they

be allowed to be sold. Choose a
replacement for the blank: A)

Linguistic Uncertainty

A MSU - Sensitivity



vary along a fine-grained linguistic axis of uncer-
tainty, making them well-suited for probing repre-
sentational sensitivity to uncertainty.

The dataset used in this work is derived from
claims in the Anthropic/Persuasion (Durmus
et al., 2024) corpus. Sentences containing modal
verbs such as “should” and “must” were identified
and programmatically masked using the pandas
(Wes McKinney, 2010), NumPy (Harris et al., 2020),
and NLTK (Bird and Loper, 2004) libraries. These
masked positions were then filled with controlled
multiple-choice options representing either certain
or uncertain linguistic modality (e.g., “‘should” vs.
“could”).

For example, consider a sample from the
Anthropic/Persuasion dataset (Durmus et al.,
2024):

Example Prompt

Original: “Governments and technology
companies must do more to protect online
privacy and security.”

Modified prompt:

<|im_start|>user

Governments and technology companies
[MASK] do more to protect online
privacy and security.

Choose a replacement for the MASK.
A) Must B) Might

<|im_end|>

One of the pair would be appended with A, and
the other with B, as shown in Figure 2 to form the
linguistic certain-uncertain pair. The changes made
to the dataset ensure the following:

Controlled Variation: The only systematic dif-
ference across each pair is the use of uncertainty
markers (e.g., “might”, “possibly”, “maybe”), en-

suring minimal lexical confounds.

Semantic Stability: As the core semantics is pre-
served, any variation in activation vectors can be
more confidently attributed to modality, not content
drift. For examples of these some of these changes,
refer Appendix A.4.

Each sentence was paired with two variants, one
expressing certainty and one expressing uncertainty
by appending the starting letter of the option at the
end of the instruction, resulting in 3,114 samples
per condition, and a total of 6,228 examples.

Layer 10: PCA of Last Token Activations Layer 17: PCA of Last Token Activations
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Figure 3: PCA plots of the last token activations of
layers 10 and 17 for Qwen2.5-0.5B-Instruct model. A
geometric inversion can be observed in the Projections
for the Uncertain and Certain input activations.

3 Evaluation Setup

We conduct our analysis on three small-scale
language models: Qwen2.5-0.5B-Instruct (Team,
2024), Qwen1.5-0.5B-Chat (Bai et al., 2023), and
LLaMA-3.2-1B-Instruct(Grattafiori et al., 2024).
Details on the number of parameters, layers, model
sources, and the reason for selecting those are pro-
vided in Appendix A.1.

Can Linguistic Uncertainty be probed in the
Activation Space?

Principal Component Analysis (PCA) is applied
layer by layer to the model activation vectors to ex-
amine whether the uncertainty is encoded linearly
separable. For each layer, activations of certain
and uncertain examples are projected onto the two
main components using Scikit-learn (Pedregosa
et al., 2011), allowing visualization of potential
clustering patterns. This analysis serves as a diag-
nostic to assess the validity of the data set to study
linguistic uncertainty (refer to appendix A.3).

Results

In all three models, we observe clear clustering
patterns that validate the separability of epistemic
modalities in the model’s internal representation
space. Interestingly, in the later layers of the In-
struct model (Layer 17 and 23), as well as in Layers
13 through 15 of the Chat model, we detect a geo-
metric inversion in the PCA projections: the cluster
corresponding to uncertain statements flips posi-
tion relative to that of certain statements along the
primary axes. This inversion suggests a deeper
semantic reorganization in the latent space, poten-
tially signaling a transition from syntactic or lex-
ical representation toward task-relevant abstrac-
tions of linguistic uncertainty. These structured
shifts reinforce our hypothesis that uncertainty is
not only linearly encoded but is also semantically



recontextualized in deeper layers, underscoring the
interpretability and representational richness of the
models under investigation.

How does Sensitivity to Linguistic Uncertainty
change across layers?

We extract activation vectors from all transformer
layers using the TransformerLens library (Nanda
and Bloom, 2022), which allows access to cached
internal states without modifying the model archi-
tecture. Specifically, for each input pair, consisting
of a certain and an epistemically uncertain vari-
ant, we record the residual stream activations at the
final token position, where model output is most
strongly influenced.

To quantify the representational shift induced by
linguistic uncertainty, we introduce a metric called
Model Sensitivity to Uncertainty (MSU). This met-
ric captures the average distance between the rep-
resentations of the certain and uncertain variants of
each input sentence pair.

Formally, for a given model layer ¢, we define
MSU as:

MSU Z Hh (€,certain) h(ﬁ uncertain)

2
)
where hgé”) denotes the activation vector ob-
tained from layer ¢ for the i-th input in its certain or
uncertain form, and NV is the total number of input
pairs.

MSU provides a quantitative estimate of how
much linguistic uncertainty perturbs the model’s in-
ternal representations. Larger MSU values indicate
greater sensitivity to uncertainty at that layer.

Results

Across three models, we observe a strikingly con-
sistent trend: the MSU scores increase monotoni-
cally with depth, indicating that sensitivity to epis-
temic uncertainty is a progressively emerging phe-
nomenon in the transformer stack (Figure 5). Later
layers exhibit substantially higher sensitivity to
epistemic modals than early layers, indicating that
semantic distinctions introduced by modality are
progressively amplified across depth. This aligns
with prior work indicating that deeper layers are
responsible for encoding abstract, compositional
semantics and final decision-making(Zhao et al.,
2024). Our results suggest that epistemic uncer-
tainty is treated as a high-level semantic feature.

Sensitivity to Epistemic Cues Across Transformer Layers - Qwen2.5-0.5B-Instruct 2
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Figure 4: Layer-wise MSU scores for Qwen2.5-0.5B-
Instruct, indicate progressively increasing scores across
layers suggesting that later layers are responsible for
encoding uncertainties in language

Model Average MSU
LLaMA 3.2-1B 9.361
Qwenl.5-0.5B-Chat 16.968
Qwen2.5-0.5B-Instruct 11.520

Table 1: Average MSU values across transformer layers
for each model. Qwen1.5-0.5B-Chat comes out to be
the most sensitive to linguistic uncertainty which is
then followed by Qwen2.5-0.5B-Instruct and LLaMA
3.2-1B, among the 3 tested models.

4 Conclusion

Our investigation reveals that the encoding of epis-
temic uncertainty is a distributed and emergent
property of deep transformer architectures. Rather
than residing in isolated layers, epistemic modal-
ity unfolds progressively, peaking in the final lay-
ers—across models and variants alike. By propos-
ing the Mean Sensitivity to Uncertainty (MSU)
metric, we provide a targeted lens into this phe-
nomenon. This structural consistency underscores
a deeper semantic organization within LLMs and
opens new pathways for designing models that are
not only more interpretable, but also more epistem-
ically aware.

Limitations

This study takes an initial step toward understand-
ing how language models encode linguistic uncer-
tainty. Our findings are based on a limited set of
instruction-tuned models, so their generality across
architectures, sizes, and pretraining paradigms re-
mains uncertain.

Future work should expand to include di-
verse model types, like non-instruct, multilingual,
domain-specific and inputs namely, varied modal
verbs, syntax, discourse). A key direction is local-
izing uncertainty to specific neurons or attention



heads, and examining how internal uncertainty sig-
nals (e.g., logits, entropy) relate to output confi-
dence and calibration.
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A Appendix
A.1 Model Specifications

These models were selected to cover a range of
instruction-tuned and chat-oriented variants with
varying parameter counts while maintaining man-
ageable computational overhead. All models pro-
vide access to internal activations, which is crucial
for our layer-wise representation analysis. ageable
computational overhead. Table 2 details the model
sizes and number of layers for the language models
used in our experiments. All internal activations
were accessed using the TransformerLens (Nanda
and Bloom, 2022) library.

Model Parameters | Layers
Qwen2.5-0.5B-Instruct 391M 24
Qwen1.5-0.5B-Chat 308M 24
Llama-3.2-1B-Instruct 1.1B 16

Table 2: Model sizes, number of layers, and sources for
LLM variants used in our analysis.

A.2 Layer-wise Sensitivity to Linguistic
Uncertainty

Transformer-based language models adopt a deep,
autoregressive architecture in which representa-
tions are refined layer by layer—gradually building
from lexical cues to nuanced semantic abstraction.
This layered structure raises a key question: at
which depth is linguistic uncertainty, especially
that conveyed by epistemic modals (e.g., must,
might, should, could), most saliently represented?
To investigate this, we analyze the Mean Sensitiv-
ity to Uncertainty (MSU) across transformer layers
for three Qwen2.5-0.5B variants—Chat, Instruct,
and Base—as well as the LLaMA 3.2-1B-Instruct
model.

Across all models, a consistent pattern emerges:
early layers (e.g., Layers 0-5) demonstrate low
sensitivity to uncertainty (MSU =~ 2.5-6), reflect-
ing a focus on surface-level representations. In
contrast, later layers (e.g., Layers 13—23) show a
sharp rise in MSU, often surpassing 30, suggesting
that deeper layers increasingly encode and amplify
epistemic cues. For instance, in LLaMA 3.2-1B-
Instruct, MSU climbs from 2.67 at Layer 0 to 31.96

Sensitivity to Epistemic Cues Across Transformer Layers - Qwen1.5-0.5B-Chat
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Figure 5: Layer-wise MSU scores for Qwen2.5-0.5B-
Chat. Among all variants, the Chat model exhibits the
highest sensitivity to linguistic uncertainty, with a steep

increase in MSU across deeper layers, reaching a score
of .
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Figure 6: Layer-wise MSU scores for LLaMA 3.2-1B-
Instruct, illustrating a steady increase in sensitivity to
epistemic uncertainty across layers. The scores begin
modestly in early layers (e.g., 2.68 at Layer 0) and rise
sharply in deeper layers, peaking at 31.96 in Layer 15.
This trend supports the hypothesis that later layers in au-
toregressive transformers are more attuned to modeling
linguistic uncertainty.

at Layer 15. Among the Qwen variants, the Chat
model displays the highest overall sensitivity, with
elevated MSU values throughout the stack, indicat-
ing a heightened responsiveness to modal uncer-
tainty. These findings support the hypothesis that
the semantic abstraction required to capture epis-
temic nuance is a late-stage phenomenon within
the transformer hierarchy.

A.3 PCA-analysis

We observe a noticeable shift in the principal com-
ponents of internal representations in the deeper
layers of all models A.1. (Figures: 8a) Specif-
ically, while earlier and mid-level layers exhibit
stable projection patterns, the final layers display
a reorientation in the direction of PC1 and PC2.
This structural transition likely reflects a late-stage
reorganization of semantic or epistemic features,
where uncertainty-related signals become more lin-
early separable or concentrated. Such emergent
behavior may indicate that LLMs progressively
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consolidate abstract modality cues toward the fi-
nal layers, where decision-critical information is
encoded. This suggests that the geometry of repre-
sentations—not just their magnitude—may carry
functional signals related to epistemic reasoning.

A.4 Dataset Examples

Example Prompt

Original: “Social media companies should be required to
label Al-generated content” Modified prompt - Certain:

<|im_start|>user Social media

companies [MASK] be required

to label AI-generated content.

Choose a replacement. A) should

B) could.<|im_end|>

<|im_start|>assistant

Ans: <|im_end]|>(A

Modified prompt - Uncertain:

<|im_start|>user

Social media companies [MASK] be required
to label AI-generated content.

Choose a replacement. A) should

B) could.<|im_end]|>

<|im_start|>assistant

Ans: <|im_end|>(B

-

Example Prompt

Original: “Individuals must take responsibility for online
privacy without excessive government mandates.” Modi-
fied prompt - Certain:

<|im_start|>user
Individuals ____ take responsibility
for online privacy without excessive government
replacement. A) must B) might.
<[im_end]|>
<|im_start|>assistant
Ans: <|im_end]|>(A

Modified prompt - Uncertain:

<|im_start|>user
Individuals ____ take responsibility
for online privacy without excessive government
replacement. A) must B) might.
<|im_end]|>
<|im_start|>assistant
Ans: <|im_end|>(B
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Figure 7: PCA projections of internal representations at different layers of the LLaMA 3.2—-1B model. While early
and mid layers exhibit relatively stable clustering patterns, the final layer shows a notable shift in the orientation
of the principal components, suggesting a reorganization of the representational space. This directional change in
PC1 vs. PC2 may reflect the model’s transition from encoding general contextual features to more task-specific or
decision-relevant information.

Layer 0: PCA of Last Token Activations

0.5

0.0

PC2

-0.5

Certain
Uncertain

2 -1 0 1 2
PC1

(a) Layer O

Layer 13: PCA of Last Token Activations

Certain
Uncertain

-6 -4 -2 0 2 4 6

(b) Layer 10

PC2

Layer 23: PCA of Last Token Activations

Certain
Uncertain

(c) Layer 15

Figure 8: PCA projections of internal representations at different layers of the Qwen1.5-0.5B-Chat model. Most
layers display a consistent structure in the representational space; however, a marked shift in the direction of PC1 vs.
PC2 emerges between layers 13 and 15. This transition suggests that epistemic information becomes reorganized or
amplified in deeper layers, aligning with the model’s increasing sensitivity to uncertainty.
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