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Abstract001

Large language models (LLMs) are increas-002
ingly being deployed in high-stakes domains003
where the ability to reason under uncertainty is004
critical. Despite recent progress in evaluating005
factuality and calibration, little is known about006
how LLMs internally represent epistemic007
modality: linguistic cues that signal speaker008
uncertainty (e.g., “might”, “probably”). To009
our knowledge, this work presents one of the010
first systematic investigations into whether011
and how LLMs encode sensitivity to epistemic012
modality in their activation space. We curate013
a contrastive multiple choice dataset of014
3114 sentence pairs that vary in epistemic015
certainty and introduce a probing framework to016
quantify activation-level differences between017
certain and uncertain prompts. We further018
propose Model Sensitivity to Uncertainty019
(MSU), a layerwise metric that captures020
representational shifts attributable to epistemic021
cues. Our findings suggest that LLMs exhibit022
measurable and layer-specific sensitivity023
to epistemic modality, raising implications024
for their deployment in sensitive decision-025
making contexts.Code can be accessed at026
https://anonymous.4open.science/r/027
Uncertainty-Beneath-the-Surface-11D1.028

1 Introduction029

Large Language Models (LLMs) are increasingly030

deployed in high-stakes domains such as law,031

medicine, and public policy—settings that demand032

not only accurate outputs but also the ability to rea-033

son responsibly under uncertainty. While previous034

research has emphasized calibrating model con-035

fidence and evaluating output probabilities, com-036

paratively little is known about how LLMs inter-037

nally represent input-side uncertainty—particularly038

linguistic uncertainty expressed through epistemic039

modality (e.g., might, could, probably). Figure 1040

shows that even minimal shifts in modality, such041

as replacing ‘should’ with ‘could’, lead to consis-042

tent differences in model generations, despite all043

Figure 1: Although the prompt pairs differ only in epis-
temic modality (should vs could), the responses vary:
those prompted with could tend to offer a broader range
of medical possibilities and are more open-ended com-
pared to those ending with should. This could imply
how the model interprets linguistic uncertainty.

other input remaining constant. These variations 044

are not artifacts of sampling noise; rather, they 045

indicate a systematic and grounded sensitivity to 046

uncertainty cues. This raises important questions: 047

How are such epistemic signals encoded across 048

the layers of a model? Are these representations 049

stable across model variants? Understanding the 050

internal treatment of linguistic uncertainty is crit- 051

ical for building trustworthy, transparent systems, 052

especially in applications where appropriately re- 053

sponding to hedged or speculative language can 054

directly affect outcomes and user trust. 055

1.1 Uncertainty in LLM Outputs 056

Much of the recent work on LLM uncertainty has 057

focused on model outputs, through calibration tech- 058

niques (Desai and Durrett, 2020), truthfulness un- 059

der uncertainty (Lin et al., 2022), or confidence 060

alignment with ground-truth (Ghafouri et al., 2024). 061

While these approaches provide useful diagnos- 062

tics on model predictions, they do not investigate 063

how input uncertainty is internally represented or 064
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whether models distinguish between certain and065

uncertain prompts at a representational level.066

1.2 Epistemics and Modal Reasoning067

Several recent studies have examined the role of068

modal verbs in model reasoning. (Holliday et al.,069

2024)) show that LLMs often struggle with logical070

tasks involving modal operators, suggesting a lack071

of systematic reasoning with modality.072

(Zhou et al., 2023) analyze use of epistemic073

markers in LLM-generated text, showing large074

effects on accuracy depending on whether uncer-075

tainty or certainty markers are used, although they076

do not study how these markers are internally rep-077

resented in neural activations. Similarly, (Lee et al.,078

2025) show that LLM-based evaluators are system-079

atically biased against responses containing expres-080

sions of uncertainty.081

Our work complements these efforts by offer-082

ing a mechanistic perspective on how epistemic083

modality is encoded inside models, using probing084

over activation spaces. In contrast to prior work085

focusing on usage or output alignment, we pro-086

vide empirical evidence of internal sensitivity to087

epistemic variation.088

1.3 Probing Internal Representations089

A growing body of mechanistic interpretability re-090

search seeks to understand LLM internals by in-091

tervening in the activation space. One core tech-092

nique is activation patching, also known as causal093

mediation or causal tracing, which substitutes hid-094

den activations from a clean forward pass into095

a corrupted run, thereby identifying components096

causally responsible for specific behaviors (Vig097

et al., 2020). Building on this, path patching refines098

the approach by restricting interventions to specific099

computational paths, enabling finer-grained local-100

ization of functional subcircuits (Goldowsky-Dill101

et al., 2023). Complementary methods include102

causal scrubbing (Chan et al., 2022), which tests103

whether abstract circuits maintain function across104

structural perturbations, and automated circuit dis-105

covery frameworks such as ACDC (Conmy et al.,106

2023).107

In this work, we pose the question – Are large108

language models sensitive to epistemic modality109

in their input? This question is investigated by110

contrasting representations elicited by semantically111

similar prompts that differ only in the degree of112

certainty they convey. As depicted in Figure 2, we113

curate a multiple-choice dataset of 3,114 sentence114

Figure 2: Paired inputs with linguistic certainty and
uncertainty are passed through the model. Layerwise
activation differences (∆) are used to compute MSU,
capturing the model’s sensitivity to uncertainty across
layers.

pairs that differ in their expression of certainty and 115

examine how these variations influence the model’s 116

internal activation space. 117

To quantify such effects, we introduce a novel 118

metric, Model Sensitivity to Uncertainty (MSU), 119

which captures the representational shift induced 120

by epistemic cues at each layer of the model. 121

Through this lens, we assess whether and where in 122

the model epistemic modality is internally encoded. 123

Our key contributions are as follows: 124

• We propose a probing framework to assess 125

whether LLMs encode epistemic modality 126

through changes in their activation space. 127

• We introduce MSU, a layerwise metric for 128

quantifying model sensitivity to linguistic un- 129

certainty. 130

• We release the dataset of 3,114 sentence pairs 131

depicting linguistic certainty and uncertainty. 132

2 Dataset 133

Unlike contrastive datasets used in prior work (Rim- 134

sky et al., 2024), data was not constructed to be 135

semantically opposite or adversarial. Instead, they 136
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vary along a fine-grained linguistic axis of uncer-137

tainty, making them well-suited for probing repre-138

sentational sensitivity to uncertainty.139

The dataset used in this work is derived from140

claims in the Anthropic/Persuasion (Durmus141

et al., 2024) corpus. Sentences containing modal142

verbs such as “should” and “must” were identified143

and programmatically masked using the pandas144

(Wes McKinney, 2010), NumPy (Harris et al., 2020),145

and NLTK (Bird and Loper, 2004) libraries. These146

masked positions were then filled with controlled147

multiple-choice options representing either certain148

or uncertain linguistic modality (e.g., “should” vs.149

“could”).150

For example, consider a sample from the151

Anthropic/Persuasion dataset (Durmus et al.,152

2024):153

Example Prompt

Original: “Governments and technology
companies must do more to protect online
privacy and security.”
Modified prompt:

<|im_start|>user
Governments and technology companies
[MASK] do more to protect online
privacy and security.
Choose a replacement for the MASK.
A) Must B) Might
<|im_end|>

154

One of the pair would be appended with A, and155

the other with B, as shown in Figure 2 to form the156

linguistic certain-uncertain pair. The changes made157

to the dataset ensure the following:158

Controlled Variation: The only systematic dif-159

ference across each pair is the use of uncertainty160

markers (e.g., “might”, “possibly”, “maybe”), en-161

suring minimal lexical confounds.162

Semantic Stability: As the core semantics is pre-163

served, any variation in activation vectors can be164

more confidently attributed to modality, not content165

drift. For examples of these some of these changes,166

refer Appendix A.4.167

Each sentence was paired with two variants, one168

expressing certainty and one expressing uncertainty169

by appending the starting letter of the option at the170

end of the instruction, resulting in 3,114 samples171

per condition, and a total of 6,228 examples.172

Figure 3: PCA plots of the last token activations of
layers 10 and 17 for Qwen2.5-0.5B-Instruct model. A
geometric inversion can be observed in the Projections
for the Uncertain and Certain input activations.

3 Evaluation Setup 173

We conduct our analysis on three small-scale 174

language models: Qwen2.5-0.5B-Instruct (Team, 175

2024), Qwen1.5-0.5B-Chat (Bai et al., 2023), and 176

LLaMA-3.2-1B-Instruct(Grattafiori et al., 2024). 177

Details on the number of parameters, layers, model 178

sources, and the reason for selecting those are pro- 179

vided in Appendix A.1. 180

Can Linguistic Uncertainty be probed in the 181

Activation Space? 182

Principal Component Analysis (PCA) is applied 183

layer by layer to the model activation vectors to ex- 184

amine whether the uncertainty is encoded linearly 185

separable. For each layer, activations of certain 186

and uncertain examples are projected onto the two 187

main components using Scikit-learn (Pedregosa 188

et al., 2011), allowing visualization of potential 189

clustering patterns. This analysis serves as a diag- 190

nostic to assess the validity of the data set to study 191

linguistic uncertainty (refer to appendix A.3). 192

Results 193

In all three models, we observe clear clustering 194

patterns that validate the separability of epistemic 195

modalities in the model’s internal representation 196

space. Interestingly, in the later layers of the In- 197

struct model (Layer 17 and 23), as well as in Layers 198

13 through 15 of the Chat model, we detect a geo- 199

metric inversion in the PCA projections: the cluster 200

corresponding to uncertain statements flips posi- 201

tion relative to that of certain statements along the 202

primary axes. This inversion suggests a deeper 203

semantic reorganization in the latent space, poten- 204

tially signaling a transition from syntactic or lex- 205

ical representation toward task-relevant abstrac- 206

tions of linguistic uncertainty. These structured 207

shifts reinforce our hypothesis that uncertainty is 208

not only linearly encoded but is also semantically 209
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recontextualized in deeper layers, underscoring the210

interpretability and representational richness of the211

models under investigation.212

How does Sensitivity to Linguistic Uncertainty213

change across layers?214

We extract activation vectors from all transformer215

layers using the TransformerLens library (Nanda216

and Bloom, 2022), which allows access to cached217

internal states without modifying the model archi-218

tecture. Specifically, for each input pair, consisting219

of a certain and an epistemically uncertain vari-220

ant, we record the residual stream activations at the221

final token position, where model output is most222

strongly influenced.223

To quantify the representational shift induced by224

linguistic uncertainty, we introduce a metric called225

Model Sensitivity to Uncertainty (MSU). This met-226

ric captures the average distance between the rep-227

resentations of the certain and uncertain variants of228

each input sentence pair.229

Formally, for a given model layer ℓ, we define230

MSU as:231

MSU(ℓ) =
1

N

N∑
i=1

∥∥∥h(ℓ,certain)
i − h

(ℓ,uncertain)
i

∥∥∥
2

(1)232

where h
(ℓ,·)
i denotes the activation vector ob-233

tained from layer ℓ for the i-th input in its certain or234

uncertain form, and N is the total number of input235

pairs.236

MSU provides a quantitative estimate of how237

much linguistic uncertainty perturbs the model’s in-238

ternal representations. Larger MSU values indicate239

greater sensitivity to uncertainty at that layer.240

Results241

Across three models, we observe a strikingly con-242

sistent trend: the MSU scores increase monotoni-243

cally with depth, indicating that sensitivity to epis-244

temic uncertainty is a progressively emerging phe-245

nomenon in the transformer stack (Figure 5). Later246

layers exhibit substantially higher sensitivity to247

epistemic modals than early layers, indicating that248

semantic distinctions introduced by modality are249

progressively amplified across depth. This aligns250

with prior work indicating that deeper layers are251

responsible for encoding abstract, compositional252

semantics and final decision-making(Zhao et al.,253

2024). Our results suggest that epistemic uncer-254

tainty is treated as a high-level semantic feature.255

Figure 4: Layer-wise MSU scores for Qwen2.5-0.5B-
Instruct, indicate progressively increasing scores across
layers suggesting that later layers are responsible for
encoding uncertainties in language

Model Average MSU
LLaMA 3.2–1B 9.361
Qwen1.5–0.5B-Chat 16.968
Qwen2.5–0.5B-Instruct 11.520

Table 1: Average MSU values across transformer layers
for each model. Qwen1.5-0.5B-Chat comes out to be
the most sensitive to linguistic uncertainty which is
then followed by Qwen2.5–0.5B-Instruct and LLaMA
3.2–1B, among the 3 tested models.

4 Conclusion 256

Our investigation reveals that the encoding of epis- 257

temic uncertainty is a distributed and emergent 258

property of deep transformer architectures. Rather 259

than residing in isolated layers, epistemic modal- 260

ity unfolds progressively, peaking in the final lay- 261

ers—across models and variants alike. By propos- 262

ing the Mean Sensitivity to Uncertainty (MSU) 263

metric, we provide a targeted lens into this phe- 264

nomenon. This structural consistency underscores 265

a deeper semantic organization within LLMs and 266

opens new pathways for designing models that are 267

not only more interpretable, but also more epistem- 268

ically aware. 269

Limitations 270

This study takes an initial step toward understand- 271

ing how language models encode linguistic uncer- 272

tainty. Our findings are based on a limited set of 273

instruction-tuned models, so their generality across 274

architectures, sizes, and pretraining paradigms re- 275

mains uncertain. 276

Future work should expand to include di- 277

verse model types, like non-instruct, multilingual, 278

domain-specific and inputs namely, varied modal 279

verbs, syntax, discourse). A key direction is local- 280

izing uncertainty to specific neurons or attention 281
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heads, and examining how internal uncertainty sig-282

nals (e.g., logits, entropy) relate to output confi-283

dence and calibration.284
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A Appendix395

A.1 Model Specifications396

These models were selected to cover a range of397

instruction-tuned and chat-oriented variants with398

varying parameter counts while maintaining man-399

ageable computational overhead. All models pro-400

vide access to internal activations, which is crucial401

for our layer-wise representation analysis. ageable402

computational overhead. Table 2 details the model403

sizes and number of layers for the language models404

used in our experiments. All internal activations405

were accessed using the TransformerLens (Nanda406

and Bloom, 2022) library.407

Model Parameters Layers
Qwen2.5-0.5B-Instruct 391M 24
Qwen1.5-0.5B-Chat 308M 24
Llama-3.2-1B-Instruct 1.1B 16

Table 2: Model sizes, number of layers, and sources for
LLM variants used in our analysis.

A.2 Layer-wise Sensitivity to Linguistic408

Uncertainty409

Transformer-based language models adopt a deep,410

autoregressive architecture in which representa-411

tions are refined layer by layer—gradually building412

from lexical cues to nuanced semantic abstraction.413

This layered structure raises a key question: at414

which depth is linguistic uncertainty, especially415

that conveyed by epistemic modals (e.g., must,416

might, should, could), most saliently represented?417

To investigate this, we analyze the Mean Sensitiv-418

ity to Uncertainty (MSU) across transformer layers419

for three Qwen2.5-0.5B variants—Chat, Instruct,420

and Base—as well as the LLaMA 3.2-1B-Instruct421

model.422

Across all models, a consistent pattern emerges:423

early layers (e.g., Layers 0–5) demonstrate low424

sensitivity to uncertainty (MSU ≈ 2.5–6), reflect-425

ing a focus on surface-level representations. In426

contrast, later layers (e.g., Layers 13–23) show a427

sharp rise in MSU, often surpassing 30, suggesting428

that deeper layers increasingly encode and amplify429

epistemic cues. For instance, in LLaMA 3.2-1B-430

Instruct, MSU climbs from 2.67 at Layer 0 to 31.96431

Figure 5: Layer-wise MSU scores for Qwen2.5-0.5B-
Chat. Among all variants, the Chat model exhibits the
highest sensitivity to linguistic uncertainty, with a steep
increase in MSU across deeper layers, reaching a score
of .

Figure 6: Layer-wise MSU scores for LLaMA 3.2-1B-
Instruct, illustrating a steady increase in sensitivity to
epistemic uncertainty across layers. The scores begin
modestly in early layers (e.g., 2.68 at Layer 0) and rise
sharply in deeper layers, peaking at 31.96 in Layer 15.
This trend supports the hypothesis that later layers in au-
toregressive transformers are more attuned to modeling
linguistic uncertainty.

at Layer 15. Among the Qwen variants, the Chat 432

model displays the highest overall sensitivity, with 433

elevated MSU values throughout the stack, indicat- 434

ing a heightened responsiveness to modal uncer- 435

tainty. These findings support the hypothesis that 436

the semantic abstraction required to capture epis- 437

temic nuance is a late-stage phenomenon within 438

the transformer hierarchy. 439

A.3 PCA-analysis 440

We observe a noticeable shift in the principal com- 441

ponents of internal representations in the deeper 442

layers of all models A.1. (Figures: 8a) Specif- 443

ically, while earlier and mid-level layers exhibit 444

stable projection patterns, the final layers display 445

a reorientation in the direction of PC1 and PC2. 446

This structural transition likely reflects a late-stage 447

reorganization of semantic or epistemic features, 448

where uncertainty-related signals become more lin- 449

early separable or concentrated. Such emergent 450

behavior may indicate that LLMs progressively 451
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consolidate abstract modality cues toward the fi-452

nal layers, where decision-critical information is453

encoded. This suggests that the geometry of repre-454

sentations—not just their magnitude—may carry455

functional signals related to epistemic reasoning.456

A.4 Dataset Examples 457

Example Prompt

Original: “Social media companies should be required to
label AI-generated content” Modified prompt - Certain:

<|im_start|>user Social media
companies [MASK] be required
to label AI-generated content.
Choose a replacement. A) should
B) could.<|im_end|>
<|im_start|>assistant
Ans: <|im_end|>(A

Modified prompt - Uncertain:

<|im_start|>user
Social media companies [MASK] be required
to label AI-generated content.
Choose a replacement. A) should
B) could.<|im_end|>
<|im_start|>assistant
Ans: <|im_end|>(B

458

Example Prompt

Original: “Individuals must take responsibility for online
privacy without excessive government mandates.” Modi-
fied prompt - Certain:

<|im_start|>user
Individuals ____ take responsibility

for online privacy without excessive government mandates. Choose a
replacement. A) must B) might.
<|im_end|>
<|im_start|>assistant
Ans: <|im_end|>(A

Modified prompt - Uncertain:

<|im_start|>user
Individuals ____ take responsibility

for online privacy without excessive government mandates. Choose a
replacement. A) must B) might.
<|im_end|>
<|im_start|>assistant
Ans: <|im_end|>(B

459
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(a) Layer 0 (b) Layer 10 (c) Layer 15

Figure 7: PCA projections of internal representations at different layers of the LLaMA 3.2–1B model. While early
and mid layers exhibit relatively stable clustering patterns, the final layer shows a notable shift in the orientation
of the principal components, suggesting a reorganization of the representational space. This directional change in
PC1 vs. PC2 may reflect the model’s transition from encoding general contextual features to more task-specific or
decision-relevant information.

(a) Layer 0 (b) Layer 10 (c) Layer 15

Figure 8: PCA projections of internal representations at different layers of the Qwen1.5-0.5B-Chat model. Most
layers display a consistent structure in the representational space; however, a marked shift in the direction of PC1 vs.
PC2 emerges between layers 13 and 15. This transition suggests that epistemic information becomes reorganized or
amplified in deeper layers, aligning with the model’s increasing sensitivity to uncertainty.
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