T2J)J: LEVERAGING DEVELOPER BUG-FIXING BE-
HAVIORS TO EVALUATE AND IMPROVE LLM-BASED
PYTORCH-TO-JAX TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While Large Language Models (LLMs) have shown strong performance in code-
to-code translation for widely-used programming languages, their application to
PyTorch-to-JAX translation remains challenging. Although both frameworks are
implemented in Python, they differ fundamentally in design principles, execu-
tion models, and ecosystem maturity, with JAX being relatively new and under-
represented in public code repositories. Moreover, the lack of parallel PyTorch-
JAX datasets and the limitations of existing evaluation metrics hinder effective
cross-framework translation. In this work, we propose T2J , a prompt aug-
mentation framework aimed at improving LLM-based PyTorch-to-JAX transla-
tion. First, we construct two PyTorch code datasets, the problem solving code
dataset collected from TorchLeet (Aroori & Chien, 2025) repository and the
Github code dataset collected from CodeParrot benchmark (Wolf et al.l [2022),
leveraging the cheap LLM 4o0-mini to generate initial translations. Second, we
employ two professional developers to iteratively fix the generated JAX code un-
til it is functionally equivalent to the original PyTorch code, resulting in a cu-
rated fixed-bug dataset that captures common translation errors and their corre-
sponding fixes. Third, we design augmented prompts that incorporate structured
guidance from the fixed-bug dataset to improve translation quality of lightweight
LLMs as GPT-40-mini. Finally, we take advantages of using LLM as a judge
and using LLM to measure the scale of each bug fixing step to propose three
evaluation metrics for Pytorch-to-JAX code translation: T2J_CodeTrans_Score,
T2J _FixCost_Score, and T2J_Comparison_Score. Our results demonstrate that
T2J significantly improves GPT-40-mini performance by up to 10% in Code-
BLEU, 50% in T2J _FixCost_Score, 1.33 point in T2J_CodeTrans_Score (as scale
of 0-4), and 100% in T2J_Comparison_Score. T2J’s generated code can improve
2.5 faster in running time compared to the baseline’s output execution. Replication
package is available at: https://tinyurl.com/yradutma,

1 INTRODUCTION

Code translation involves converting a program from one programming language to another while
preserving the original functionality. This process is useful for cross-language and cross-domain
migration, allowing organizations to transition their code base to more modern languages or to
various purposes. It also supports the modernization of legacy systems by re-implementing them in
languages that promote greater maintainability and scalability as part of system refactoring efforts .
Furthermore, in enterprises that employ multiple programming languages, code translation enhances
the productivity of the programmer.

However, recent research works (Pan et al., 2024} Dou et al., 2024) indicate that LLMs-generated
programs in the target language continue to encounter various quality problems, including compi-
lation errors or functional inconsistencies. These challenges become even more pronounced in spe-
cialized contexts such as domain-specific language translation. For example, (TehraniJamsaz et al.,
2024) demonstrates that their transformer-based approach, CodeRosetta, outperforms well-known
LLMs in C-to-CUDA translation. Our work, by contrast, focuses on another domain-specific transla-
tion problem: translating between different Python libraries—specifically, converting PyTorch code

https://tinyurl.com/yradutma

snippets into their JAX equivalents. Unlike CodeRosetta, which operates on translation between dif-
ferent programming languages, PyTorch-to-JAX translation cannot be reduced to Abstract Syntax
Tree transformations. Relying on low-cost LLMs therefore introduces a significant risk of generat-
ing poor-quality translations. This risk arises because JAX, a framework designed for parallelization
across diverse hardware platforms, is far less familiar to the broader developer community. Conse-
quently, during PyTorch-to-JAX migration, LLMs often struggle to generate correct JAX code due
to their limited exposure to JAX, which is a comparatively newer ecosystem than PyTorch.

To address these challenges, we introduce T2J , a in-context code learning and code evaluation
framework designed to enhance LLM-based PyTorch-to-JAX code translation by leveraging cu-
rated datasets and structured prompting strategies. This framework proceeds in several key stages:
first, we construct parallel corpora of Pytorch and JAX corresponding code snippets from estab-
lished PyTorch datasets, in particular TorchLeet and CodeParrot (Wolf et al.,[2022; |Aroori & Chien,
2025)). Then we employ high-quality GPT models GPT-4o to produce initial JAX translations. Sub-
sequently, professional human developers iteratively refine the translated JAX program to achieve
functional equivalence with the original PyTorch input, producing a curated fixed-bug dataset that
systematically documents prevalent translation errors. The dataset, called bug fixing dataset, also in-
cludes error-by-error fix instructions as multiple fixing steps. Building on this, we design augmented
prompts that integrate targeted, structured guidance derived from the fixed-bug dataset. Finally, we
evaluate T2J’s performance across both datasets using the CodeBLEU (Ren et al., 2020), along-
side three novel metrics: T2J_CodeTrans_Score (assessing the usefulness and functional correctness
of LLMs using LLMs as a judge), T2J_FixCost_Score (quantifying the effort required for post-
translation corrections), and T2J_Comparison_Score (measuring semantic and functional alignment
through differential analysis) to provide a comprehensive assessment of translation quality. Our
contributions are as follows:

1. The creation of the first fixed-bug dataset specifically for PyTorch-to-JAX code translation,
encompassing detailed annotations of error patterns and fixes to facilitate improvements in
reliability on LLM code translation.

2. The T2J framework, which innovates prompt augmentation techniques to bridge domain-
specific gaps in cross-library code migration problem as Pytorch-to-JAX translation.

3. The evaluation framework for Pytorch-to-JAX translation, which compare the source/ tar-
get code with LLM-prompting techniques and fixing cost from error to correct programs
by human bug fixing process.

The remainder of this paper is organized as follows: Section 2 reviews related work, Section 3
describe the Motivation Example, Section 4 introduces the components of T2J , Section 5 presents
experimental results, and the final sections discuss limitations, conclusion, and future directions.

2 RELATED WORK

Challenges of Code Translation. One of the important challenges of code translation is to provide
a metric for comparison between predicted and expected code. Research works show that just sim-
ply comparing source code by traditional textual similarity scores is not efficient |Iran et al.[(2019).
Instead, code metrics that included information of syntactic/ semantic similarity between code snip-
pets have been proposed (Zhou et al.,[2023). Another challenge is that collecting parallel corpus for
code translation is very expensive and require human effort for verification (Husain et al., |2020). To
evaluate unsupervised code translation’s output, automated test cases generation approaches have
been proposed (Roziere et al., [2022; |[Peng et al., [2024)). Finally, studies show that there are many
types of bugs extracted from LLMs’ generated code (Dinh et al., [2023} [Zhang et al.| [2024)).

Machine Learning-based Approaches for Code Translation. Supervised methods for code trans-
lation are typically trained on well-established datasets such as CodeXGLUE (Lu et all [2021).
Among these methods, BERT-based models have proven particularly effective not only for code-to-
code translation but also for a wide range of code generation tasks (Guo et al., 2021} 2022} Wang
et al., 20235 |]Ahmad et al., [2021). Unsupervised code translation typically relies on transforming
the source code into an intermediate representation (IR), followed by learning to generate target
language code from that intermediate form. |Szafraniec et al.| (2023) proposed Transcoder-IR, a
system that uses IR as a pivot language to translate between widely-used languages such as Java,

N B W

]

(a) Input PyTorch Code (b) Incorrect JAX code (c) Correct JAX Code

import torch 1| import jax 1| import jax
import torch.nn as nn 2| import jax.numpy as jnp 2| import Jjax.numpy as jnp
import torch.nn.functional as F 3| from jax import random 3| from jax import random
4 4
Define model 5| # Initialize parameters 5| # In alize paramet
class SimpleNN (nn.Module) : 6| def init_params (key) : 6| def init_params (key) :
def __init__ (self): 7 w_key, b_key = random.split (7 w_key, b_key = random.split (
super (SimpleNN, self). key) key)
__dinit_ () 8 # Wrong shape 8 # Correct shape
self.fc = nn.Linear (28 = 9 W = random.normal (w_key, (10, 9 W = random.normal (w_key,
28, 10) 28%28)) * jnp.sqrt(l / (28%28, 10)) = jnp.sqrt
(28%28)) (1 / (28%28))
def forward(self, x): 10 b = jnp.zeros((10,)) 10 b = jnp.zeros((10,))
x = x.view(-1, 28 x 28) 11 return {'W : W, 'b’: b} 11 return {'W' : W, 'b’: b}
F1 en 12 12
return self.fc(x) 13| # Forward function 13| # Forward fur on
14| def forward (params, Xx): 14| def forward(params, Xx):
Exa e 15 x = x.reshape (x.shape[0], -1) 15 x = x.reshape (x.shape[0], -1)
model SimpleNN () 16 return jnp.dot (x, params[’W’ 16 return jnp.dot (x, params[’W’
input_tensor = torch.randn(1l, 1, 1) + params[’b’] 1) + params[’b’]
28, 28) 17 17
output = model (input_tensor) 18| # E ple 18| # Example
print (output) 19] key random.PRNGKey (0) 19| key = random.PRNGKey (0)
20| params = init_params (key) 20| params = init_params (key)
21| input_tensor = random.normal (key, 21| input_tensor = random.normal (key,
(1, 1, 28, 28)) (1, 1, 28, 28))
22| output = forward (params, 22| output = forward(params,
input_tensor) input_tensor)
23| print (output) 23| print (output)

Figure 1: Example of PyTorch-to-JAX translation. (a) Input code; (b) Incorrect translation by 4o-
mini; (c) Correct code.

Python, and C++. [Huang et al|(2023) proposed Codist, which adopts a filtered IR to improve the
precision of code translation through a process called code distillation. [TehraniJamsaz et al.[(2024)
presented CodeRosetta, a framework for unsupervised translation from C to CUDA. Their method
exploits the syntactic similarity between the two languages, leveraging abstract syntax trees (ASTs)
as the pivot representation to learn structural correspondences. [Roziere et al. (2021)) emphasized
the significance of a pre-training objective based on recovering broken or obfuscated code.

Large Language Models for Code Translation. The emergence of large language models (LLMs)
capable of addressing questions across multiple domains has significantly benefited research in code
translation. (Zhu et al., 2024} highlighted that state-of-the-art LLMs such as CodeLLaMA often
produce translations lacking semantic equivalence—referred to as “shallow translations”—relative
to the ground truth. To improve translation quality, Mahmud et al.| (2024) proposed AutoParLLM,
a framework to translate C code into OpenMP pragmatics. Their approach integrates Graph Neu-
ral Networks (GNNs) into the prompt to guide LLMs toward better output, and they introduced
OMPScore, a domain-specific metric tailored to evaluate OpenMP code translations. Tong & Zhang
(2024) explored the use of LLMs as evaluators in a multi-phase process, involving code analysis,
summarization, and fault localization to assess translated output. Similarly, |Ibrahimzada et al.
(2025)) introduced AlphaTrans, a repository-level translation framework that applies LLMs across
multiple translation and validation phases. |Macedo et al. (2024) proposed InterTrans, an LLM-
based framework that views code translation as a transitive process that involves intermediate lan-
guages.

3 MOTIVATION EXAMPLE

An illustration of how low-cost LLM as 40-mini generate JAX buggy code from Pytorch code can be
shown in Figure[I} The input Pytorch program, which is a simple neural network, defines a single-
layer feedforward network that flattens a 28x28 input image and applies a linear transformation to
produce a 10-dimensional output tensor. The JAX code generated by 40-mini has an extra function
called init_params, while in Pytorch the corresponding function was performed in the construction
of the Neural Network object. We can see that the generated code consumed an error in Line 8
(see Figure[Ip)), where it incorrectly passed the shape of a linear object defined by the parameter
W. The correct version of the generated code, shown in Figure [I] requires one modification step to
correct the argument passed onto the random.normal JAX API call. This example shows specifc

1. Human Bug Fixing Process 3. Fixed Bugs Dataset Creation
Loop Until Fixed Code is correct Failed Output 1: ZO'ProbIem Standard Cheap JAX translated Human Fixed Bug
ae Fixed B Solving Pytorch " Bug Dataset from
‘ - ixed Bug Cod Prompt LLm code (Initial) Eixini 20 codes
JAX Fixed Dataset odes
Code
‘_{ Output 2: JAX
i Correct Code 4. Intrinsic Evaluation for Problem Solving Pytorch Code Dataset with Cross Validation Setting
Compaiely Input 1: T2J: JAX Code Generation by In-context Learning over Cheap LLM
Pytorch T Us Problem Fixed Bu
J code’s test Pytorch Code . 9 Context Augmented Cheap | | JAX translated
I Solving Datesstlicn) Generation Prompt LLm code (T2J)
results Pytorch Code 19 codes
— Input 2: JAX T ¥ T
Manually Fixing i Code
the code . JAX Code Generation by Baselines as Cheap LLM
N Probl;
e Standard | | Cheap | | JAX transiated M[Evaluation H S
Pytorch Code Prompt LLM code (baseline) Framework Pytorch Code
2. Evaluation Framework JAX Ground-truth Code Generation by Costly LLM and Human Bug Fixing ‘
T2J-CodeTrans-Score . Problem Standard Costly JAX translated Human JAX
Pytorch Code Code-to-Code Solving code for — Bug ground-truth
Usefulness Prompt LLM 4 o
JAX transiated (0-4) Pytorc‘h Code ground-truth Fixint code
code i
JAX ground-truth Ci
cod (Optional) ‘ Costly/CH ‘ (04) 5. Extrinsic Evaluation for Github Pytorch Code Dataset
T2J-FixCost-Score T2J: _JAX Code Ge::(r::l;: by In-context Learning over Cheap LLM
T ! = f‘:’““:‘ Ol Context Augmented Cheap JAX translated
re Count Fixing yiore Generation Prompt LLM code (T2J)
(Initial) i Code 20 codes
Steps Fix Score
Code T I i [
after fix steps
‘ JAX Code Generation by Baselines as Cheap LLM
T2J-Comparison-Score fl:::g, Standard Cheap JAX translated
Y/ b
| —— Code Prompt LLM code (baseline) Github
JAX Code as JAX Codes’
A B Which _ K Pytorch
| Candidate1 | Comparison e JAX Ground-truth Code Generation by Costly LLM ' Code
JAX Code as candidate is Sithub JAX oted
Candidate 2 better? ithul Standard Costly translate:
Pytorch code as
Costly LLM Code Prompt Lm TR

Figure 2: Overview Architecture of T2J

challenge of Pytorch-to-JAX translation that even with this simple code snippet, low-cost LLM still
failed to extract the correct code.

4 APPROACH

We depict modules of T2J in Figure[2] In the first module, we describe how we hire software devel-
opers to check and modify JAX-generated code to ensure it is correct. We also define the definition
of correct generated code in our work. The second module introduces our proposed metrics for
comparing between predicted and expected generated code, in terms of using LLMs and leveraging
the human bug fixing process’s output. In the third module, we go in to details about the fixed bug
dataset, which we will use for in-context learning with data about fixed bugs as extra context. In
the fourth and fifth sections, we describe how T2J performs translation and how we generate the
ground-truth dataset for evaluation. We also describe what baseline setting we use for comparison
with our proposed pipeline. We call these modules intrinsic evaluation and extrinsic evaluation, and
these modules are performed on two different datasets. Next, we discuss about important concepts
and design selection we use for T2J .

4.1 DESIGN SELECTION
4.1.1 SELECTION OF PYTORCH DATASET

We curate datasets of PyTorch code for two tasks. First, we create a dataset of fixed bugs as JAX-
generated code from PyTorch input code for our proposed in-context learning process. This process
requires the involvement of software developers and LLM for PyTorch-to-JAX code translation.
The second task is the evaluation process, where the PyTorch code will be used as input for baseline
models or our proposed translation framework to get the output as JAX code snippets for further
processing to correct the code and evaluation. Depending on the tasks, we collect the PyTorch
dataset from two domains: problem-solving code and general-purpose code.

Problem-Solving Code Dataset. We construct a PyTorch dataset based on popular coding interview
problems implemented in PyTorch. Owing to the popularity of these problems, we assume that
developers can readily verify solutions and fix bugs by consulting existing online resources. For this
purpose, we leverage the TorchLeet dataset (Aroori & Chienl |2025) as our problem-solving code
corpus. We chose this dataset because each problem is scoped at the file level and because TorchLeet

has been highly ranked by GitHub users. From this dataset, we collect all 20 code snippets, covering
three difficulty levels: easy, medium, and hard. All snippets are compilable and runnable using the
default test cases included within the dataset.

GitHub Code Dataset. To further evaluate our proposed PyTorch-to-JAX translation approach on
a broader range of PyTorch code, we consider code snippets drawn from high-quality repositories
on GitHub. Specifically, we use the PyTorch subset of the large-scale CodeParrot dataset [Wolf
et al.| (2022) as our second evaluation corpus. From this dataset, we extract 100 PyTorch code
snippets. Unlike the Problem-Solving Code dataset, the GitHub PyTorch snippets originate from
diverse repositories and are not guaranteed to be directly compilable.

4.1.2 SELECTION OF LLMs

Cheap LLMs. We define low-cost LLMs as the target models to improve in the PyTorch-to-JAX
translation task. These models, referred to as Cheap LLMs, can be used without commercial API
keys or additional costs. Moreover, we leverage their JAX-generated code to construct the fixed-bug
dataset, under the assumption that cheap LLMs produce a higher proportion of buggy code, which
can enrich this dataset. For our experiments, we select GPT-40-mini, the least expensive model
offered by OpenAl, as the representative cheap LLM.

Costly LLLMs. We define high-cost LLMs, referred to as Costly LLMs, as the source of ground-truth
JAX code for comparison with the translations produced by cheap LLMs. We employ the GPT-40
model as the costly LLM. GPT-4o is one of the most widely used models provided by OpenAl.

4.1.3 PROMPTS

We define these following types of prompt in our work.

Standard Prompt. We define the standard prompt as the basic prompt for translating code snippet
from Pytorch to JAX (see Appendix A.1). In this prompt, we define the translation request by
annotating the role of LLM as an expert in code translation and provide a basic request that translate
from source language as PyTorch to target language as JAX code.

Augmented Prompt. We design augmented prompt with following information. First, similar
to the standard prompt, the augmented prompt will have information about the role of LLM and
the requirement about input and output. Differ from standard prompt, the augmented prompt will
specify a hint for LLMs as the list of errors and errors’ solution provided by the fixed bug dataset,
uploaded in the JSON format as context of prompt. Definitions of each fields in the fixed bug dataset
are also included in the prompt content (see Appendix A.2).

Evaluation Prompt. We propose two metrics that leverage LLMs for code-to-code translation.
From our knowledge, there are yet existing LLM prompt for doing this task. We define a set of
prompts, called evaluation prompts (see Appendix A.3), to ask costly LLMs to evaluate source code
in different aspects. We will describe in details of these metrics in the next section.

4.1.4 TYPES OF EVALUATION

Intrinsic and Extrinsic Evaluation. Our evaluation is divided into two parts. The first, referred
to as intrinsic evaluation, is conducted on 20 problem-solving PyTorch code snippets using a cross-
validation setting. The second, extrinsic evaluation, is performed on 100 samples of PyTorch code
collected from GitHub. There are two key differences between these configurations. First, for
intrinsic evaluation, the ground-truth JAX code is obtained through human verification and bug-
fixing, whereas for extrinsic evaluation, we rely on JAX code generated by a costly LLM for the
GitHub dataset.

4.2 HUMAN BUG FIXING PROCESS

The core module of T2J is a systematic bug-fixing process designed to improve the reliability of
LLM-generated translations from PyTorch to JAX. Starting with Python code written in PyTorch
and the corresponding JAX-generated code from LLMs, this process produces a parallel dataset that
pairs the original PyTorch snippets with their corresponding corrected JAX translations. To ensure

Table 1: Evaluation preferences and their descriptions for T2J_CodeTrans_Score.

Preference Description

Usefulness How useful the JAX code is for replicating or adapting the functionality of a typical PyTorch source code implemen-
tation.

Functional Correctness How well the JAX code preserves the behavior of the original PyTorch code. You are to assess whether the JAX code

would produce equivalent outputs to the original PyTorch code across possible inputs, even though the PyTorch code
is not shown. Consider unit-test-style logic and general expectations of equivalence.

correctness, we employed two professional software developers with over five years of Python pro-
gramming experience to analyze and fix the outputs produced by LLMs. The JAX translations are
then subjected to careful manual verification: the developers perform multiple rounds of debugging
and correction until the translated JAX code passes all test cases and produces results equivalent
to the original PyTorch implementation. During this stage, the verifiers execute the translated and
fixed code using Python compilers to confirm correctness. At the end of the process, two com-
plementary datasets are created: one containing pairs of PyTorch snippets and their validated JAX
counterparts, and another capturing the bugs identified in LLM outputs along with their correspond-
ing fixes. Importantly, this methodology is flexible, as we apply the same procedure to different
PyTorch datasets and experiment with different LLMs depending on the objectives of other modules
within our framework.

Verified Code Correctness by Human. We consider a fixed version as JAX code snippet verified
by a human as correct if and only if the JAX-generated code can be compiled, runnable, and returns
the same output as its corresponding Pytorch code snippet, given the same test case. In our work, the
human bug fixing process was performed in the problem-solving dataset only since its code snippets
have test case and can be runnable which we can rely on their execution output for comparison with
the JAX generated code.

4.3 EVALUATION FRAMEWORK

We use CodeBLEU [Ren et al.|(2020), a well-known code evaluation metric, as the baseline metric
for PyTorch-to-JAX translation. Since CodeBLEU relies on the AST similarity between two code
snippets, we assume that it cannot be a good metric for PyTorch-to-JAX translation output compar-
ison, since both the JAX-generated code might be very similar to the ground truth code, such as in
Motivation Example [l| Recently, an LLM-based code evaluation metric has been proposed (Zhuo),
2024). In this work, the authors proposed the ICE-score, a metric for natural language to code
translation based on usefulness and functional correctness. In our work, we inherit the idea of the
ICE-score and leverage our fixing process to propose three metrics for evaluating JAX-generated
code. Given the n pairs of Pytorch and JAX codes in the corresponding Pytorch code set P, the
predicted code set JAX JP, the ground truth (reference) code set JAX J" as (p;,j;), our proposing
metrics will be provided as following.

T2J_CodeTrans_Score. Similar to the ICE-Score metric (Zhuol |2024) for natural language to code
translation, we use the GPT-40 model to evaluate the quality of translated code by usefulness and
functional correctness. We design prompt, called CodeTrans prompt, with corresponding evalua-
tion criteria and scoring rubric from 0 (lowest) to 4 (highest). CodeTrans also be useable without
having the reference code. Thus, we have a set of following metrics: T2J_CodeTrans_Use_Ref (i.e.
the metric for usefulness with reference), T2J_CodeTrans_Func_Ref, T2J_CodeTrans_Use_NoRef,
T2J_CodeTrans_Func_NoRef. Explanation of two aspects/ preferences is shown in Table[I]

T2J FixCost_Score. We measure the number of fix steps required to have the JAX correct code
from input JAX initial translated code from LLM with this equation:

. 1 & g
T2J,FixCost,Score(Jbefore’fw, Jeerreety = — Z count,fix,step(jfefom’fm geerreety (1)
n

1 Ji
i=1

In equation Jbefore-fiz i5 the set of JAX generated code as input for human verification process,
while Jecormec is the final version of JAX fixed code that is correct, i.e. it can run and returns
consistent output with its corresponding PyTorch code given the same input test case.

T2J_Comparison_Score. In this metric, we propose a direct comparison between two translation
sets J' and J? to see which one is closer to the input PyTorch code set P, implemented by this
equation:

2

1. (1, ifisbetter(sl, 2, p;
T2J_Comparison_Score(J*, P, J?) = — {) 1Lshe e (i, Ji s pi)
n 0, otherwise

In equation |2} the is_better(j}, 2, p;) function returns 1 if j} is considered as better code than
j2, given the input prompt for comparison called Comparison prompt (see Appendix A.3). Note, we
also include the content of PyTorch code p; as a required input to help LLM comparing the input
with each code candidate. The scale of this score is from O to 1.

4.4 FIXED BUG DATASET

Given the input of 20 PyTorch samples from the TorchLeet dataset, two professional developers are
hired to modify the code snippets generated from the LLM code translation process. The output
of this process for each generated code is a set of multiple fix steps. We store this data in JSON
array format to be usable as the context for T2J prompting technique. The fixed bug dataset was
constructed by our selected cheap LLM 4o0-mini. In total, this dataset contains 163 pairs of bugs/
solutions to fix bug.

4.5 INTRINSIC EVALUATION

In the intrinsic evaluation setting, we want to check if we can use knowledge from fixing 19 problem-
solving code pairs of Pytorch and JAX correct code to improve the quality of cheap LLM to translate
Pytorch code of the remaining sample. We perform this evaluation as a cross validation process over
20 samples of the fixed bug dataset. Next, we compare the output of three following modules.

Code generation as Baseline. We perform the code translation process using the cheap LLM 4o-
mini. This process leverages the standard prompt (see Appendix A.l) to translate input PyTorch
code to JAX-generated code. We consider this configuration as baseline for T2J for comparison.

T2]J ’s In-context learning for code generation. We perform this process with following modules.
First, the augmented prompt will be created with input information as the given Pytorch code snippet
and the JSON format of other bug-solutions from other code samples of the problem-solving code
dataset. Next, through the cheap LLM, the JAX generated code by T2J ’s approach is created. This
process was done without the need of any fine-tuning steps, which are usually costly.

Ground-truth JAX code generation. We take advantage of costly LLM gpt-4o to generate the JAX
code, called JAX initial code from given problem-solving code snippet. Next, the human bug fixing
process was performed on this JAX initial code to make the JAX corrected code as ground truth.
The main different between this process and the fixed bug dataset creation we mentioned earlier is
that this module works with costly LLM. Finally, the output of these three modules will be use as
the input of evaluation framework along with the PyTorch source code.

4.6 EXTRINSIC EVALUATION

There are two main differences between intrinsic evaluation and extrinsic evaluation. First, for this
set up we use the code snippets collected from another dataset, called Github dataset. We evaluate on
100 sample code snippets that are at repository level, meaning that the input code snippets, usually
collected from single files, are not guarantee to be runnable and having test cases. Thus, we will use
automated metrics we propose for the evaluation. Second, the extrinsic evaluation considered the
output of costly LLMs, i.e. JAX translated code by this process) as the ground-truth data point.

Table 2: Results with Cheap LLM (gpt-40-mini) and Costly LLM (gpt-40).

Intrinsic Evaluation Extrinsic Evaluation

Maetrics

Baseline T2J Baseline T2J
CodeBLEU 0.19 0.29 0.41 0.38
T2J_CodeTrans_Use._Ref 1.75 2.55 2.74 2.94
T2J_CodeTrans_Func._Ref 0.35 1.3 2.43 3.02
T2J_CodeTrans_Use._NoRef 1.60 2.45 2.81 2.98
T2J_CodeTrans_Func._NoRef 0.70 2.15 2.74 3.37
T2J_FixCost_Score 163 87 N/A N/A
T2J_Comparison_Score 0 1 0.18 0.82

Table 3: Correlation of other metrics with T2J_FixCost_Score on Fixed Bug Dataset.
Correlation with T2J _FixCost_Score

Metric

Pearson Spearman
CodeBLEU 0.04 0.2
T2J_CodeTrans_Use._Ref 0.2 0.25
T2J_CodeTrans_Func._Ref 0.07 0.07
T2J_CodeTrans_Use._NoRef 0.09 0.19
T2J_CodeTrans_Func._NoRef 0.11 0.29
T2J_Comparison_Score NaN NaN

5 EXPERIMENT

5.1 SETUP

Hardware Configuration. For the human bug fixing process, software developers work in the
Google Colab environment to debug and fix the code. They use Python 3 as a compiler and use one
T4 GPU for running all sample code.

Question-answering for cheap and costly LLMs. For both cheap LLM (40-mini) and costly
LLM(gpt-40), we perform the code generation process through the official interface of ChatGPT-
pro. Each question will be created solely in a new topic, and from the answer given by ChatGPT’s
interface, we manually extract the code snippet as JAX-generated code. Other textual explanation
in the output will be omitted. To add context to the existing prompt, we use the Upload function
provided by ChatGPT’s interface to assign a fixed bug dataset as a JSON file to our designed prompt.

Executing Evaluation Prompts. We leverage the access on OpenAl gpt-4o0 models by API key to
get the scoring results for T2J_CodeTrans_Score. For T2J_Comparison_Score, we use ChatGPT-
pro’s interface to ask questions and receive answers. The reason for using ChatGPT-pro’s interface
instead of using API key is that some tasks of our work require JSON file upload.

5.2 RESULT

5.2.1 TRANSLATION ACCURACY

From Figure 2] our pipeline improves the CodeBLEU score to 0.29, representing a 10% rela-
tive gain. In terms of T2J_CodeTrans_Use_Ref, the augmented prompt yields an improvement of
0.8 points over the baseline. For functional correctness, T2J achieves an improvement of 0.95
point. Under the no-reference configuration—where the LLM evaluates only by comparing the
input and translated code—T2]J still delivers gains of 0.85 and 1.15 points for usefulness and
functional correctness, respectively, as measured by the T2J_CodeTrans metrics. Regarding the
T2J_Comparison_Score, 100% of the translations generated by T2J are judged superior to the base-
line outputs. Finally, in terms of fixing cost, T2J enables GPT-40-mini to produce code requiring
only 87 fixing steps—roughly half the effort compared to fixing the baseline JAX outputs.

Table 4: Comparison of running time (seconds) on Intrinsic Evaluation.
PyTorch Ground Truth Baseline T2J
1003 851 12329 449

Table 5: Comparison of human fixing costs between baseline (weak LLM with standard prompt)
and JAX code initially generated by a costly LLM.

Num. of Fixes Correcting Weak LLM’s Code Correcting Costly LLM’s Code

Minimum 1 0
Maximum 32 12
Mean 8.15 2.77
Median 5 2
Total 163 61

The extrinsic evaluation on the GitHub PyTorch code also highlights the superiority of T2J over the
baseline in generating precise code. Interestingly, in this setting the baseline approach outperformed
T2J by 3% according to CodeBLEU. In terms of the T2J_CodeTrans metrics, our approach achieves
improvements of up to 1.2 point in usefulness and 0.6 point in functional correctness.

5.2.2 CORRELATION OF CODE TRANSLATION METRICS VS HUMAN FIXING COST

From Table[3] we observe that the T2J _CodeTrans_Score metrics show the strongest correlation with
T2J _FixCost_Score under both Pearson and Spearman measures. . Overall, all metrics exhibit weak
correlation (below 0.3) with fixing cost. One possible reason is that other metrics are continuous,
whereas fixing cost is measured as discrete steps.

5.2.3 HoOW CLOSE JAX-GENERATED CODE BY COSTLY LLM IS TO BEING CORRECT

We further analyze the quality of JAX generated code by costly LLM by meassuring the fixing cost
to get the JAX correct code by costly LLM as ground-truth code. The result, shows in Table[5] shows
that while it requires much less effort for correcting costly LLM’s output than baseline’s output, it
still requires in total 61 fixing steps to get the correct code set.

5.2.4 ANALYSIS ON RUNNING TIME

We analyze the running time of the corrected code from 3 settings for intrinsic evaluation in Table
[l Results show that T2J can provide significant improvement as 2.5 times faster than running the
baseline’s output. Details of running time can be seen in Appendix B.

6 LIMITATIONS

First, the current version of T2J has not yet been applied to improving open LLMs, due to budget
constraints that limit our ability to hire software professionals for the human bug-fixing process on
these models. Second, our measure of fixing cost is currently based only on the number of fixes,
whereas in practice each fix may vary in difficulty. To improve this, there is a need of an algorithm
that estimates the relative effort of each bug-fixing step. Third, we conducted the human bug-fixing
process only on the problem-solving code dataset, which we want to extend this process for other
domains. In future versions of T2J , we plan to collect bug datasets from other general domains.

7 CONCLUSION AND FUTURE WORKS

In this work, we show that T2J can achieve significant improvement compared to baselines as
original 40-mini model for PyTorch-to-JAX code translation. In future work, we attempt to apply
our approach for newer open-source LLMs and leverage more advance techniques as supervised
fine-tuning and direct preference optimization.

REFERENCES

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training
for program understanding and generation, 2021. URL https://arxiv.org/abs/2103.
06333,

Chandrahas Aroori and Caslow Chien. Torchleet: Leetcode for pytorch. https://github.
com/Exorust/TorchLeet, 2025. Accessed: YYYY-MM-DD.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George
Karypis. Large language models of code fail at completing code with potential bugs, 2023. URL
https://arxiv.org/abs/2306.03438.

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu
Chai, Jessica Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou, Ming Zhang, Yuhao
Zhou, Yueming Wu, Rui Zheng, Ming Wen, Rongxiang Weng, Jingang Wang, Xunliang Cai, Tao
Gui, Xipeng Qiu, Qi Zhang, and Xuanjing Huang. What’s wrong with your code generated by
large language models? an extensive study, 2024. URL https://arxiv.org/abs/2407.
06153.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training
code representations with data flow, 2021. URL https://arxiv.org/abs/2009.08366

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified cross-
modal pre-training for code representation, 2022. URL https://arxiv.org/abs/2203.
03850.

Yufan Huang, Mengnan Qi, Yongqgiang Yao, Maoquan Wang, Bin Gu, Colin Clement, and Neel
Sundaresan. Program translation via code distillation, 2023. URL https://arxiv.org/
abs/2310.11476.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search, 2020. URL |https:
//arxiv.org/abs/1909.09436.

Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid, Rangeet Pan,
Saurabh Sinha, and Reyhaneh Jabbarvand. Alphatrans: A neuro-symbolic compositional ap-
proach for repository-level code translation and validation. Proceedings of the ACM on Software
Engineering, 2(FSE):2454-2476, June 2025. ISSN 2994-970X. doi: 10.1145/3729379. URL
http://dx.doi.org/10.1145/3729379.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation, 2021. URL https://arxiv.org/abs/2102.04664,

Marcos Macedo, Yuan Tian, Pengyu Nie, Filipe R. Cogo, and Bram Adams. Intertrans: Leveraging
transitive intermediate translations to enhance llm-based code translation, 2024. URL https:
//arxiv.org/abs/2411.01063.

Quazi Ishtiaque Mahmud, Ali TehraniJamsaz, Hung D Phan, Nesreen K. Ahmed, and Ali Jannesari.
AUTOPARLLM: GNN-guided automatic code parallelization using large language models, 2024.
URL https://openreview.net/forum?id=znjaiyl1z9q.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in
translation: A study of bugs introduced by large language models while translating code. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software Engineering, ICSE ’24,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400702174. doi:
10.1145/3597503.3639226. URL https://doi.org/10.1145/3597503.3639226.

10

https://arxiv.org/abs/2103.06333
https://arxiv.org/abs/2103.06333
https://github.com/Exorust/TorchLeet
https://github.com/Exorust/TorchLeet
https://arxiv.org/abs/2306.03438
https://arxiv.org/abs/2407.06153
https://arxiv.org/abs/2407.06153
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2203.03850
https://arxiv.org/abs/2203.03850
https://arxiv.org/abs/2310.11476
https://arxiv.org/abs/2310.11476
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
http://dx.doi.org/10.1145/3729379
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2411.01063
https://arxiv.org/abs/2411.01063
https://openreview.net/forum?id=znjaiy1Z9q
https://doi.org/10.1145/3597503.3639226

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
mark for cross-lingual natural language generalization, 2024. URL https://arxiv.org/
abs/2402.16694.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis,
2020. URL https://arxiv.org/abs/2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. Dobf: A deob-
fuscation pre-training objective for programming languages, 2021. URL https://arxiv.
org/abs/2102.07492.

Baptiste Roziere, Jie M. Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation, 2022. URL https:
//arxiv.orqg/abs/2110.06773.

Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick Labatut, and Gabriel
Synnaeve. Code translation with compiler representations, 2023. URL https://arxiv.
org/abs/2207.03578.

Ali TehraniJamsaz, Arijit Bhattacharjee, Le Chen, Nesreen K. Ahmed, Amir Yazdanbakhsh, and Ali
Jannesari. Coderosetta: Pushing the boundaries of unsupervised code translation for parallel pro-
gramming. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=V6hrg409gg.

Weixi Tong and Tianyi Zhang. Codejudge: Evaluating code generation with large language models,
2024. URL https://arxiv.org/abs/2410.02184.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. Does bleu score work
for code migration? In Proceedings of the 27th International Conference on Program Com-
prehension, ICPC 19, pp. 165-176. IEEE Press, 2019. doi: 10.1109/ICPC.2019.00034. URL
https://doi.org/10.1109/ICPC.2019.00034.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023. URL
https://arxiv.org/abs/2305.07922.

Thomas Wolf, Leandro Werra, Loubna Allal, and Zdar. Codeparrot dataset. https://
huggingface.co/codeparrot, 2022. Accessed: YYYY-MM-DD.

Quanjun Zhang, Chunrong Fang, Yang Xie, YuXiang Ma, Weisong Sun, Yun Yang, and Zhenyu
Chen. A systematic literature review on large language models for automated program repair,
2024. URL https://arxiv.org/abs/2405.01466

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
generation with pretrained models of code, 2023. URL https://arxiv.org/abs/2302.
05527.

Ming Zhu, Mohimenul Karim, Ismini Lourentzou, and Daphne Yao. Semi-supervised code trans-
lation overcoming the scarcity of parallel code data. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ASE 24, pp. 1545-1556, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712487. doi:
10.1145/3691620.3695524. URL https://doi.org/10.1145/3691620.3695524,

Terry Yue Zhuo. ICE-score: Instructing large language models to evaluate code. In Yvette Graham
and Matthew Purver (eds.), Findings of the Association for Computational Linguistics: EACL
2024, pp. 2232-2242, St. Julian’s, Malta, March 2024. Association for Computational Linguis-
tics. URL|https://aclanthology.org/2024.findings—eacl.148/.

11

https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2110.06773
https://arxiv.org/abs/2110.06773
https://arxiv.org/abs/2207.03578
https://arxiv.org/abs/2207.03578
https://openreview.net/forum?id=V6hrg4O9gg
https://arxiv.org/abs/2410.02184
https://doi.org/10.1109/ICPC.2019.00034
https://arxiv.org/abs/2305.07922
https://huggingface.co/codeparrot
https://huggingface.co/codeparrot
https://arxiv.org/abs/2405.01466
https://arxiv.org/abs/2302.05527
https://arxiv.org/abs/2302.05527
https://doi.org/10.1145/3691620.3695524
https://aclanthology.org/2024.findings-eacl.148/

APPENDIX

A PROMPT TEMPLATE

A.1 STANDARD PROMPT FOR PYTORCH-TO-JAX TRANSLATION

You are an expert in programming language translation from PyTorch to JAX. In this task, I
will give you input as PyTorch code. Please translate this input PyTorch code to JAX code:
Input Source Code Snippet:

Figure 3: Standard Prompt for PyTorch-to-JAX code translation. The prompt in blue shows the
immediate query after the prompt.

A.2 AUGMENTED PROMPT FOR PYTORCH-TO-JAX TRANSLATION

You are an expert in programming language translation from PyTorch to JAX. In this task, I
will give you two inputs:

1. Pytorch source code.

2. A JSON file that contains a dataset of common errors in PyTorch-to-JAX translation by
Weak LLLM 4o0-mini. Each data point contains the following fields:

- Example_id: ID of the source code.

- Input_Code: Source code in Pytorch.

- LLM_weak_output: JAX translated code of Input_Code using a weak LLM (40-mini).
LLM_fix_output: Fixed JAX code from LLM_weak_output by the process of manually
check and fix errors conducted by software developers.

- Errors: This is a list of errors that appeared in the process of manually checking and
fixing bugs from LLM_weak . Each error item has the following labels:

* "Error_Code": The part of LLM_weak_output that caused the error.

* "Error": the error message returned by compilation.

*"Fix_info": the textual description of how to fix the error code

* "Fixed_Code": The fixed code corresponding to the "Error_Code" part.

3. The data.csv file thich stored possible input when running some examples in the JSON
file. Your task is to reason and get the output JAX code from these above inputs. Please
note that you can learn the process of error fixing in Torch-to-JAX translation in 2) JSON
file. Now I will give you a set of input in the next query.

Input Source Code Snippet:

Figure 4: Prompt for Augmenting to the weak LLM. The prompt in blue shows the immediate
query after the prompt.

A.3 EVALUATION PROMPT FOR T2J_CODETRANS_SCORE
A.3.1 FUNCTIONAL CORRECTNESS

See the prompt without reference at Figure[5]and the prompt with reference at Figure [f]

A.3.2 USEFULNESS

See the prompt without reference at Figure|/|and the prompt with reference at Figure

12

You will be given a JAX code snippet that was translated from PyTorch source code. Your
task is to rate the snippet on **one metric only**: its **functional correctness**.

Please ensure you read and understand these instructions carefully before reviewing. Refer
to this guide as needed during the evaluation process.

Evaluation Criteria:

Functional Correctness (0—4) — How well the JAX code preserves the behavior of the orig-
inal PyTorch code.

You are to assess whether the JAX code would produce equivalent outputs to the original
PyTorch code across possible inputs, even though the PyTorch code is not shown. Consider
unit-test-style logic and general expectations of equivalence.

- A score of 0: The translation is completely incorrect and meaningless.

- A score of 4: The translation is fully correct and handles all core functionalities as expected.
Evaluation Steps:

1. Assume the code was translated from PyTorch and should preserve its logic.

2. Evaluate whether the JAX code appears complete, meaningful, and implementationally
correct based on general expectations for such translations.

3. Assign a score for functional correctness on a scale from O to 4.

Input Source Code in PyTorch:

{SOURCE_CODE}

Translated JAX Code Snippet:

{TRANSLATED_CODE}

Evaluation Form:

Functional Correctness (scores ONLY):

Figure 5: Prompt for Scoring Functional Correctness by T2J _CodeTrans_Func_NoRef

Table 6: Error categories and their counts in Human Bug Fixing dataset.

Error Main Category Count
Training loops, training steps, model fitting 32
Other miscellaneous 43
Model definitions, LinearModel classes, encoders/decoders 51
Loss functions, gradient computation, criterion 12
JAX-specific constructs: jit, grad, PRNG, etc. 18
Iteration patterns: for, while, data loops 1
Parameter updates 3
Final layers, return statements, outputs 3
TOTAL 163

A.4 EVALUATION PROMPT FOR T2J_COMPARISON_SCORE

The prompt for querying the T2J_Comparison_Score can be seen in Figure 0]

B ADDITIONAL RESULTS

ANALYSIS ON CATEGORIES OF BUGS

We perform a study on the categorization of bugs on the fixed bug dataset as following. First, two
software professionals will go through all the bugs and discuss about the categorizations. Second,
from this categorization, they go to the dataset’s entities for the second time and do the annotation
for categories. We summarize the categorization in Table [§] We further classify types of bugs for
some categories to sub-categories, shown in Table [7] and Table [8] We upload each case of this

categorization process in the replication package.

13

You will be given a JAX code snippet that was translated from PyTorch source code. Your
task is to rate the snippet on **one metric only**: its **functional correctness**.

Please ensure you read and understand these instructions carefully before reviewing. Refer
to this guide as needed during the evaluation process.

Evaluation Criteria: Functional Correctness (0—4) — How well the JAX code preserves the
behavior of the original PyTorch code.

You are to assess whether the JAX code would produce equivalent outputs to the original
PyTorch code across possible inputs, even though the PyTorch code is not shown. Consider
unit-test-style logic and general expectations of equivalence.

- A score of 0: The translation is completely incorrect and meaningless.

- A score of 4: The translation is fully correct and handles all core functionalities as expected.
Evaluation Steps:

1. Assume the code was translated from PyTorch and should preserve its logic.

2. Evaluate whether the JAX code appears complete, meaningful, and implementationally
correct based on general expectations for such translations.

3. Assign a score for functional correctness on a scale from O to 4.

Input Source Code in PyTorch:

Translated JAX Code Snippet:
Reference JAX Code Snippet:

Evaluation Form:
Functional Correctness (scores ONLY):

Figure 6: Prompt for Scoring Functional Correctness by T2J _CodeTrans_Func_Ref

Table 7: Error subcategories under training loops, training steps, and model fitting.

Error Subcategory Count

Misc training issues

Improper passing/using rng_key/prng_key

Epoch in range (.. .) loop issues

Incorrect usage of Flax TrainState and state.apply_gradients
Incorrect usage of wrappers (e.g., trainmodel (...) /fit(...))
Train steps return only new state/params without loss at epoch level
JIT/static argument handling for training functions

Errors with batches or dataloaders in training

Loop constructs that break vectorization

Optimizer update/apply patterns in the training loop

—_ == 00 LD W W W O\ OO

B.2 RUNNING TIME ANALYSIS

We perform the running process on a T4 GPU for all the code. We set the timeout of program to run

as 180 seconds. Results for each sample in the intrinsic evaluation are shown in Table [9]

C CONFIGURATIONS

Router’s AP]F_-]

For the task that required user interface action with LLMs, we use the default ChatGPT-pro setting
for gpt-40 and 4o0-mini. Most of the data were created before July 31st, 2025 when 40-mini was still
available on ChatGPT’s interface. For task like LLM-based metric calculation, we leverage Open-
to perform the implementation of these tasks. We also report the hyper parameters

for querying costly LLMs for code evaluation in the replication packages.

'https://openrouter.ai/

14

Your task is to rate the snippet on **one metric only**: its **usefulness** for understanding
and reusing the logic of a typical PyTorch implementation.

Please ensure you read and understand these instructions carefully before reviewing. Refer
to this guide as needed during the evaluation process.

Evaluation Criteria: Usefulness (0—4) — How useful the JAX code is for replicating or
adapting the functionality of a typical PyTorch source code implementation.

- A score of 0: The JAX translated snippet is irrelevant or confusing and does not help at all.
- A score of 1: The JAX translated snippet includes some related elements but is mostly
unhelpful.

- A score of 2: The JAX translated snippet is somewhat useful but needs substantial modifi-
cation.

- A score of 3: The JAX translated snippet is helpful with minor revisions needed.

- A score of 4: The JAX translated snippet is very helpful and covers the intended function-
ality clearly.

Evaluation Steps:

1. Assume the PyTorch source code performs a well-defined functionality.

2. Determine whether the JAX translated code snippet enables meaningful reuse or guidance
toward equivalent implementation.

3. Assign a score for usefulness from 0 to 4.

Input Source Code in PyTorch:

Translated JAX Code Snippet:

Evaluation Form:
Usefulness (scores ONLY):

Figure 7: Prompt for Scoring Usefulness by T2J _CodeTrans_Use_NoRef

Table 8: Error subcategories under other miscellaneous.

Error Subcategory Count

Data arrays, tensors, and dataset values (e.g., creating arrays, specifying shapes)

Dot products with parameters (e.g., params ["w"])

Initialization, often in class constructors (__init__)

Dot products, sums, or nonlinear transforms

Neural network layers and activations (e.g., nn.relu, nn.Dense, LSTMs, decoders/encoders)
Tensor dimension errors

Generating synthetic data for CSV

Errors with constant declaration (e.g., epoch)

Incomplete functions/placeholders

N = =N W W= oo

—

15

Your task is to rate the snippet on **one metric only**: its **usefulness** for understanding
and reusing the logic of a typical PyTorch implementation.

Please ensure you read and understand these instructions carefully before reviewing. Refer
to this guide as needed during the evaluation process.

Evaluation Criteria: Usefulness (0—4) — How useful the JAX code is for replicating or
adapting the functionality of a typical PyTorch source code implementation.

- A score of 0: The JAX translated snippet is irrelevant or confusing and does not help at all.
- A score of 1: The JAX translated snippet includes some related elements but is mostly
unhelpful.

- A score of 2: The JAX translated snippet is somewhat useful but needs substantial modifi-
cation.

- A score of 3: The JAX translated snippet is helpful with minor revisions needed.

- A score of 4: The JAX translated snippet is very helpful and covers the intended function-
ality clearly.

Evaluation Steps:

1. Assume the PyTorch source code performs a well-defined functionality.

2. Determine whether the JAX translated code snippet enables meaningful reuse or guidance
toward equivalent implementation.

3. Assign a score for usefulness from 0 to 4.

Input Source Code in PyTorch:

Translated JAX Code Snippet:
Reference JAX Code Snippet:

Evaluation Form:
Usefulness (scores ONLY):

Figure 8: Prompt for Scoring Usefulness by T2J _CodeTrans_Use_Ref

You are an expert in PyTorch to JAX translation. I provide 3 inputs: 1 . PyTorch input code;
2. Translated Code Candidate A; 3. Translated Code Candidate B. Which candidate is a
better translation result for this Pytorch code.

Input Pytorch code:

2. Translated Code A:
3. Translated Code B:

Please also provide the reason why you consider a candidate better than the other translated
code candidate.

Figure 9: Prompt for T2J _Comparison_Score.

16

Table 9: Example results comparing PyTorch, ground truth, baseline, and T2J (T2J) outputs.
Example ID PyTorch Ground Truth Baseline T2J

el 6.61 12.7 9.78 8.79
e2 10.00 60.0 244 3.59
e3 8.57 17.3 4.14 5.18
ed 8.82 22.1 21.8 5.36
e5 8.48 35.0 352 6.53
eb 13.0 24.0 3.0 13.68
e7 8.23 5.0 90.0 14.53
ml 17.0 26.0 180.0 15.62
m3 180.0 180.0 4.0 1.05
m4 180.0 18.0 180.0 29.0
m5 102.0 57.0 180.0 19.5
mé6 18.0 6.0 61.0 4.0
m7 78.0 65.0 47.9 62.0
m8 240.0 19.0 11.8 10.0
hl 0.48 4.0 2.5 10.0
h3 97.0 7.0 44.1 19.0
h4 31.1 180.0 180.0 15.0
h5 19.6 180.0 180.0 42.0
h6 0.31 9.0 4.0 180.0
h10 0.89 14.0 7.6 2.0
Total 1028.09 941.1 1271.22 466.83

17

	Introduction
	Related Work
	Motivation Example
	Approach
	Design Selection
	Selection of PyTorch Dataset
	Selection of LLMs
	Prompts
	Types of Evaluation

	Human Bug Fixing Process
	Evaluation Framework
	Fixed Bug Dataset
	Intrinsic Evaluation
	Extrinsic Evaluation

	Experiment
	Setup
	Result
	Translation Accuracy
	Correlation of Code Translation Metrics vs Human Fixing Cost
	How close JAX-generated code by costly LLM is to being correct
	Analysis on Running Time

	Limitations
	Conclusion and Future Works
	Appendix
	Prompt Template
	Standard Prompt for PyTorch-to-JAX translation
	Augmented Prompt for PyTorch-to-JAX translation
	Evaluation Prompt for T2J_CodeTrans_Score
	Functional Correctness
	Usefulness

	Evaluation Prompt for T2J_Comparison_Score

	Additional Results
	Analysis on Categories of Bugs
	Running time Analysis

	Configurations

