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Abstract

We extend score-based generative diffusion processes (GDPs) to sparse graphs and
other inherently discrete data, with a focus on scalability. GDPs apply diffusion
to training samples, then learn a reverse process generating new samples out of
noise. Previous work applying GDPs to discrete data effectively relax discrete
variables to continuous ones. Our approach is different: we consider jump diffusion
(i.e., diffusion with punctual discontinuities) in Rd × G where G models discrete
components of the data. We focus our attention on sparse graphs: our DISSOLVE
process gradually breaks apart a graph (V,E) ∈ G in a certain number of distinct
jump events. This confers significant advantages compared to GDPs that use
less efficient representations and/or that destroy the graph information in a sudden
manner. Gaussian kernels allow for efficient training with denoising score matching;
standard GDP methods can be adapted with just an extra argument to the score
function. We consider improvement opportunities for DISSOLVE and discuss
necessary conditions to generalize to other kinds of inherently discrete data.

Generative diffusion processes (GDPs) [13] are a family of unsupervised methods that prescribe a
forward diffusion process destroying the information contained in training data samples, then learn
the reverse process (i.e., backward in time) generating new samples out of noise. Although such
techniques hinge heavily on the ability to continuously transform data instances, recent advances
[1, 6, 9, 11, 12] extended the use of GDPs to domains involving discreteness (e.g., text, graphs). In
essence, the common strategy behind these works is to relax categorical variables to continuous ones
so that a data sample may be represented as a point in real space. The present work challenges the
scalability of that strategy for some classes of data – including large sparse graphs – and proposes an
alternative where discrete information is explicitly part of a jump diffusion process’ internal state.

For simplicity, we focus our attention on large undirected sparse graphs whose nodes and edges do
not have any kind of inherent features. Given a training dataset composed of such graphs, our goal is
to generate new graphs from the same distribution. At this stage, our main concerns are the time and
space complexities for both training and inference: how scalable are GDPs for large sparse graphs?
Our main contributions concerns two hurdles to such scalability: the sheer dimension of the real
space in which diffusion takes place, hereafter called representation complexity; and the intricacies
of “scenarios” that must be simultaneously considered, hereafter called simultaneity. We are free
to prescribe both how graphs are represented as well as what are the forward stochastic dynamics
destroying training samples – the validity of this choice should be judged on how feasible it is to
learn the corresponding backward process building graphs, and how scalable the method is overall.

As part of a tutorial-ish exposition, we consider different incarnations of graph GDP, building up
toward more scalable ones. The first such GDP, BASE, captures the essential ideas behind Niu et al.
[12] and Jo et al. [9]. Because it represents a graph as a continuous relaxation of its adjacency
matrix, BASE’s representational complexity scales as the square of the number of nodes which,
for large sparse graphs, is highly inefficient. This motivates EXPLODE, which instead relaxes
a sparse representation of the graph (i.e., adjacency matrix in “COO” sparse format) and thus
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achieves much better representational complexity. However, learning the backward process in this
sparse representation is subjected to simultaneity issues. DISSOLVE eschews these problems by
incrementally injecting small chunks of graph information into real space, instead of cramming it all
in the initial condition. Although there are issues with DISSOLVE’s time and space complexity as it
is, we discuss viable paths towards improving it for reasonable classes of sparse graphs.

Mathematically, DISSOLVE is a jump diffusion process whose state at any given time is the joint of a
point in real space and of a graph. During the time interval between two jumps, the graph component
of this state remains fixed and diffusion takes place in real space: standard denoising score matching
allows us to learn a score function, parameterized by the graph, that reverses this inter-jump diffusion.
When a jump occurs, a chunk of information is removed from the graph and injected in real space:
these jumps are prescribed so that they are simple to both detect and “undo” in the backward process.
Overall, backward diffusion and backward jumps can be iteratively chained to generate new graphs.
Appendices provide additional details and considers generalizing our core ideas beyond graphs.

Background on denoising score matching for score-based GDPs. We here consider GDPs from
the score-based stochastic differential equation (SDE) perspective presented in Song et al. [14].
Our notation here distinguishes stochastic variables (capital letters) from the value they may take
(lowercase letters); temporal dependency is indicated as a subscript t.

Let X be the stochastic variable associated with the data distribution: we have access to some training
dataset providing a finite number of samples x ∼ X , and our goal is to generate new samples x̂ ∼ X .
The first step is to prescribe a stochastic process {Ut} whose initial value U0 fully determine x but,
for a sufficiently high time τstop, the mutual information I(X;Uτstop) drops to zero. In practical
terms, this means specifying both how the initial condition U0 may be obtained from x, as well as
the SDE governing the forward evolution of the process. We usually make those choices such that we
know a simple analytical expression for p(Ut = u|X = x), the probability density to observe u at
time t given that the input training sample was x (hereafter called kernel).

The next step is to learn how to reverse this stochastic process, i.e., running it backward in time.
It is known that forward SDE may be converted to a backward one provided that we can evaluate
∇u ln p(Ut = u) [14]. A priori, we may estimate p(Ut = u) = Ex∼X p(Ut = u|X = x) by
marginalizing the kernel over the training dataset, but this is not tractable in practice. Instead, we use
the training dataset to learn the parameters θ of the score function sθt (u) which itself approximates
∇u ln p(Ut = u) by minimizing the denoising score matching loss

Lθ = Ex∼X Et∼T λt Eu∼Ut|X=x

∥∥∥sθt (u)− κt(u|x)
∥∥∥2
2
, (1)

where the kernel score κt(u|x) = ∇up(Ut = u|X = x) is typically known analytically. Here λt is
a positive weighting function for the expectation over t ∼ T : as discussed in Song et al. [15], the
choice of λt and of the distribution of the stochastic variable T are complementary levers toward the
dual goal of managing the loss’ training variance while balancing the errors at different times.

Status quo: the BASE process. We now restrict our attention to the case where the training dataset
is composed of undirected graphs without any kind of node nor edge features. More precisely, a
sample x ∼ X takes the form x = (V,E), where V = {0, 1, · · · , N −1} (i.e., the first N contiguous
non-negative integers) and E ⊆ {{i, i′}|i, i′ ∈ V, i ̸= i′}. We define the BASE GDP so that it
represents such graphs as the continuous relaxation of their adjacency matrix, which is the main ideas
behind Niu et al. [12] and Jo et al. [9] in the context of our present discussion.

Concretely, for a graph (V,E) ∼ X with N nodes, we prescribe the stochastic process {Ut} in
R 1

2N(N−1) so that, for i < i′, the initial condition’s entry [U0] 1
2 i(i−1)+i′ is 1 if {i, i′} ∈ E and 0

otherwise, i.e., “unrolling” the upper-triangular part of the (symmetric) adjacency matrix. We should
then prescribe the SDE specifying BASE’s forward dynamics, decide on the architecture of the neural
network for the score function sθt (u) (preferably taking advantage of the permutation invariance
inherent to graphs), then finally train this network by minimizing Lθ in Eq. (1).

However, for our present needs, it suffices to notice that BASE’s representation complexity, O(N2),
is highly inefficient for large sparse graphs (i.e., |E| ≪ N2). Indeed, the proportion of nonzero
entries in U0 would tend toward zero as larger sparse graphs are considered, and the space and time
complexity of the overall method would suffer accordingly. To be clear, the use of BASE-like GDPs
may be very appropriate in situations involving small and/or dense graphs. The problem is that there
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(a) BASE (b) EXPLODE with δ = 2 (c) DISSOLVE with δ = 2

Figure 1: Sample path of graph GDPs for x = ({0, 1, 2, 3, 4}, {{0, 1}, {1, 2}, {1, 3}, {3, 4}}). Each
of these plots may be read left-to-right (forward time, destroying a training sample graph) or right-to-
left (backward time, generating a graph). In each case, multiple curves are used to represent a single
multi-dimensional realization of the process. On the top of each plot, the expectation over many such
realizations is shown for the corresponding adjacency (first) or covariance (two others) matrix. (a)
For BASE, the 10 entries in the upper triangular part of the adjacency matrix experience diffusion.
After a certain time, one cannot say whether an edge was initially present or not. (b) In EXPLODE,
the graph’s 5 nodes are each randomly embedded in δ = 2 dimensions, and 8 particles are initialized
at the endpoints of the corresponding 4 edges. Particle trajectories quickly “explode” away from
nodes with more than one edge (star markers). Taken individually, a particle’s position carries no
information whatsoever. With time, diffusion destroys the covariances among particles that initially
encoded the graph structure. (c) In effect, DISSOLVE “chunks” EXPLODE’s initial explosion into
multiple “split” events (square markers). Each such split creates a copy of the splitting particle at the
same location, and both particles split the original’s edges – each taking at least one. The resulting
covariance matrix has “less going on” than EXPLODE does at any particular time of the process.
Remark: the limit where all splittings occur simultaneously at t = 0 exactly recovers EXPLODE.

are plenty of potential use cases involving large sparse graphs (e.g., social networks, knowledge
graphs, relational databases, computer code), which justify an alternative approach.

Naive fix: the EXPLODE process. Sparse data warrants sparse representations: instead of tracking
a matrix whose entries are almost all zero, it may be better to just list where the nonzero entries are
(i.e., same idea as the “COO” sparse format). Indeed, the set of edges E can be represented as a
two-columns table whose |E| rows each specify the two nodes involved in the corresponding edge,
i.e., V |E|×2. Each entry of that table is a categorical variable with N = |V | possible values: how
should we represent those in a manner that plays well with neural networks?

A categorical variable i ∈ V could be represented as some variations of “one-hot encoding”: a vector
R|V | whose i-th entry is 1, all the other ones are zero. However, representing each of our table’s
variables as such would give R|E|×2|V |. We could slightly improve that and come up with a “two-hot
encoding” R|E|×|V |, but our representation complexity would remain O(|E||V |). Since we can
expect nontrivial graphs with |E| ≥ O(|V |), we’re back to a representation complexity of O(N2) or
worse: we must represent categorical variables in a sublinear manner to make any headway.

We thus settle on representing i ∈ V as an embedding vi ∈ Rδ randomly sampled from the
δ-dimensional Normal (i.e., vi ∼ N (0δ, Iδ) for all i ∈ V ), with the restriction δ ≪ N . Such
embeddings are usually trained after their random initialization, but here we do not: we sample a
fresh set of embeddings {vi} for each graph to be represented. Indeed, node indices are arbitrary, so
there is limited use in learning how to embed them. However, learned embeddings could also provide
contextual/neighborhood information about a node, which could alleviate the “simultaneity” issue
encountered later: future work may investigate this alternative (or complementary) strategy.

Now fully committed to this embedding choice, we prescribe the EXPLODE GDP in terms of the
aforementioned table V |E|×2 represented as R|E|×2δ . After sampling {vi}, the initial condition U0

is obtained by concatenating vi and vi′ for each edge {i, i′} ∈ E. Appendix A prescribes a specific
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forward SDE and details how the analytical solution for the kernel and kernel scores are obtained.
For our present needs, it should suffice to get some intuition by considering Fig. 1b.

At any time t, the point u ∼ Ut may be understood as specifying the position in Rδ of |E| pairs of
particles, each pair being joined by a line. At time t = 0, these lines between particle pairs effectively
“draw” the graph in Rδ, and there will be as many particles at position vi as the number of edges
in which node i is involved (i.e., i’s degree). However, the diffusion process quickly cause these
particles to “explode” away from vi and each other: there is no actual repulsive force involved, it
is just that each particle experiences different random events. After a sufficient amount of time, the
particles effectively forgot about their origin, resulting in a random jumble of unrelated lines.

Following the standard GDP recipe, we could a priori learn the score function sθt (u) and use the
resulting backward SDE to run the process backward down to t = 0, interpreting sufficiently-close
particles as representing the same node. However, “learning the score function” here turns out to be a
tall order, which we attribute to a phenomenon that we call “simultaneity”. In a nutshell, the forward
process blows up the graph information all at once, so the reverse process similarly has to infer the
graph structure – local and global – simultaneously.

This conjecture begs for the question “Why isn’t that an issue with image GDPs, or even with BASE?”
We here blame the fact that a particle’s position in EXPLODE does not bear any meaning in itself,1
but only through its relation with others particles. In an image GDP, not only does a pixel’s color
has some inherent meaning, but that pixel also always shares the same 4 neighbours in the image
lattice through the process: the pixel can look at its neighbours to get an idea about itself. Similarly,
high values in BASE’s adjacency matrix are indicators of the probable presence of an edge, and a
row/column with many high values is an indicator of an high degree node. In EXPLODE, there is a
“fog of war” that prevents particles to get an appropriate awareness of the situation until it is too late.

Enter jumps: the DISSOLVE process. If EXPLODE’s problem truly is that each of its nodes
simultaneously blow up, then it makes sense to prescribe a different process where the particles
originating from the same node “stick together” for longer, departing at a more gradual pace. One
could achieve such “clinginess” in many ways (e.g., particle-particle attractive interactions, “potential
wells” trapping particles near node embedding vi), but such “soft” approaches forbid (or highly
complicate) obtaining an analytical solution for the kernel, which would cause inefficient training.
We thus “chunk down the explosion into multiple all-or-nothing discrete splitting events”: the reader
is strongly encouraged to process this informal intuition through Fig. 1c before continuing further.

Formally, DISSOLVE is a jump diffusion process whose full internal state (u, g) is the join of a
continuous state u ∈ Rnδ , tracking the position of n particles in Rδ , and of a discrete substate g ∈ G,
where G allows to explicitly represent a graph in its native discrete format g = (V,E). For (V,E) ∼
X , we prescribe the initial condition (U0, G0) so that G0 = (V,E) and U0 ∼ N (0|V |δ, I|V |δ)

(corresponding to EXPLODE’s random embeddings {vi}). We prescribe the forward SDE driving the
continuous evolution of Ut in the interval between jump events to be the same one as for EXPLODE.
At a jump event, a new node is added to the discrete substate’s graph and a pre-existing node with more
than one edge is randomly selected: both nodes split the original node’s edges among themselves,
each ending up with a minimum of 1 edge. A copy of the selected node’s position is appended at the
end of the continuous substate, effectively adding δ dimensions to it. See Appendix B for details.

Beyond DISSOLVE. Although DISSOLVE does decently in terms of representation complexity and
simultaneity, this does not in itself guarantee good time and space complexity for GDP models based
off it. In fact, if the score function were to consider all particle-particle covariances, we would quickly
end back in O(N2) (or more) territory. However, we see two complementary paths toward a more
efficient successor to DISSOLVE: approximations involving locality-sensitive hashing (leveraging
the fact that the score function for a particle should mostly depend on the neighbouring particles),
and the addition of new birth–death mechanisms for the particles in the process (greatly reducing
the number of particles present at any time in the process). This last point reflects the fact that the
analytical tractability of DISSOLVE’s kernel is not just a mere accident: Appendix C paves the way
for a new breed of jump diffusion GDPs that need not be restricted to graphs.

1As mentioned earlier, using learned {vi} carrying context/neighborhood information could potentially
alleviate this issue. It would however cause complications of its own, and is not further studied here.
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A Details for EXPLODE

This section specifies SDEs for EXPLODE and discuss of its forward analytical solution, providing
both the associated kernel and kernel score.

Although basically any diffusion process could do, we here favour the so-called “variance-preserving”
SDE [14] with unit noise, i.e.,

dut = − 1
2utdt+ dwt (forward) (2a)

dut = −
(
1
2ut + sθt (ut)

)
dt+ dw̄t , (backward) (2b)

where wt (resp. w̄t) is the standard Wiener process for time flowing forward (resp. backward). For
Gaussian distributions, this process can be solved analytically in the forward direction:

if Ut ∼ N (µt,Σt), then Ut′ ∼ N
(
µte

− 1
2 (t

′−t), I+ (Σt − I)e−(t′−t)
)

for t′ > t. (3)

We now formalize how the embeddings {vi} are assigned to the initial condition U0 for a training sam-
ple x = (V,E). We must first decide on a particle-to-node assignment ν = (ν0, ν1, · · · , ν(2|E|−1))
such that there exists a particle pairing E′ satisfying E = {{νk, νk′} : {k, k′} ∈ E′}. For
the small matrices depicted on the top of Fig. 1b, this assignment is ν = (0, 1, 2, 3, 4, 1, 3, 1)
(which may be related with the colors in these small matrix margins) and we can verify that
E′ = {{0, 1}, {2, 5}, {3, 4}, {6, 7}} satisfies the above condition (which may be related with the
lines drawn between particle pairs).

Given ν and {vi}, the initial condition is U0 = vν0 ⌢ vν1 ⌢ · · · ⌢ vν(2|E|−1)
, where “⌢” is the

vector concatenation operator. Recalling that vi ∼ N (0δ, Iδ), we have U0 ∼ N (02δ|E|,Σ0|x) with

Σ0|x =


Iδ 1ν0=ν1

Iδ 1ν0=ν2
Iδ · · ·

1ν1=ν0
Iδ Iδ 1ν1=ν2

Iδ · · ·
1ν2=ν0

Iδ 1ν2=ν1
Iδ Iδ · · ·

...
...

...
. . .

 , (4)

where 1νk=νk′ is the indicator function with value 1 if νk = νk′ and 0 otherwise. Plugging this initial
condition into Eq. (3) allows us to efficiently sample the system’s state at any time t ≥ 0 using

Ut|X=x ∼ N (02δ|E|,Σt|x) where Σt|x =


Iδ 1ν0=ν1

e−tIδ 1ν0=ν2
e−tIδ · · ·

1ν1=ν0e−tIδ Iδ 1ν1=ν2e−tIδ · · ·
1ν2=ν0

e−tIδ 1ν2=ν1
e−tIδ Iδ · · ·

...
...

...
. . .

 .

(5)

Stated otherwise, the kernel is the Gaussian p(Ut = u|X = x) = ϕ(u;02δ|E|,Σt|x) and the kernel
score is κt(u|x) = −Σ−1

t|xu.

Note that all the above may be performed at pre-processing time: the training loop minimizing Eq. (1)
may receive batches composed of samples (t,u,κt(u|x)). Worker processes (with or without GPU
acceleration) may prepare such batches in parallel from the main optimization process.

B Details for DISSOLVE

This section establishes some notations, provides the kernel and kernel score for the DISSOLVE
process, discusses some adaptations (necessary and optional) for Eq. (1), hint at the functional form
for the graph-dependent score function sθt (u|g), and drafts the path toward improving DISSOLVE
with an additional birth–death mechanisms for the particles.

Notations and solution. We introduce two hyperparameters, τpairs and τstop, so that 0 < τpairs ≤
τstop. For a graph x = (V,E) without any singleton (i.e., all its nodes have at least one edge), a total
of J = 2|E| − |V | jump events will occur before τpairs, the time at which it is guaranteed that all that
remains in the discrete substate is a soup of disjoint particle pairs. As for τstop, it is the time at which
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we end the process and assume that all information about the input x, except its number of edges |E|,
has been destroyed from the full state: the time interval τstop − τpairs allows the continuous part of
state to thermalize. When generating graphs, we may sample |E| by some external means (be it the
training distribution or some interpolation of it) then initialize the backward process at τstop using
Uτstop = N (02|E|, I2|E|) and setting the graph to a soup of |E| pairs. Note that we present below
variations that also destroy this information |E|.
We need to prescribe the distribution for the different times 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τJ ≤ τpairs at
which the J jumps occur. At the moment of writing these lines, our code uniformly samples J times
in the interval [0, τpairs), sorts them, then assigns the j-th one to τj . However, future investigations
may reveal better choices. In any case, we use the convention τ0 = 0 and τJ+1 = τstop so that if
τj ≤ t < τj+1, then j jumps occurred before time t.

We also need to prescribe the specific way in which the j-th jump transforms the graph gj−1 = (V,E)
(before the jump) into the graph gj = (V ′, E′) (after the jump). Our current code first samples
a node i from gj−1, giving each node a weight of one less than its degree (minimum 0). Hence,
a node of degree 3 is twice as likely as a node of degree 2 to be picked, and a node of degree 0
or 1 will never be picked. We then set V ′ = V ∪ i′, where i′ = |V | is the new node. We note
Ei = {{i, i′′} : i′′ ∈ V, {i, i′′} ∈ E} the set of edges in E that involve i. Now we define two disjoint
sets by randomly selecting two edges from Ei and assigning one to each of those two sets, then we
randomly distribute the remaining edges among the two sets according to a fair coin. We note one of
those two sets E′

i, and we substitute all instances of i in the other set by i′ before placing them in
E′

i′ . We finally set E′ = (E \Ei) ∪E′
i ∪E′

i′ , which completes the specification of gj . Again, future
investigations may reveal better strategies.

We abide by the “càdlàg” convention (from the French “continue à droite, limite à gauche”, meaning
“right continuous with left limits”) such that τj can be understood as the time immediately after the
j-th jump (so Uτj has already been subjected by the j-th jump), and we understand τ−j as the time
immediately before the j-th jump, writing Uτ−

j
the appropriate limit. If i is the particle being split by

the j-th jump, then that jump simply concatenate that particle’s position at the end of the continuous
substate, taking Uτ−

j
to Uτj = Uτ−

j
⌢
[
Uτ−

j

]
iδ:(i+1)δ

.

This last relation, together with Eq. (3) and the initial condition U0 ∼ N (0|V |δ, I|V |δ), fully specify
how to obtain a sample Ut at time τj ≤ t < τj+1 for any initial graph x = (V,E), provided we know
when jumps occur and which node gets split in each of them. We formalize this type of information as
the discrete history H , whose samples h ∼ H have the format h =

(
(τ1, g1), (τ2, g2), · · · , (τJ , gJ)

)
.

We write h:j =
(
(τ1, g1), · · · , (τj−1, gj−1)

)
the part of the discrete history that, together with the

discrete initial condition g0 = x, suffices to sample Ut if t < τj . In particular, notice that we may
easily infer which node got split at the j′-th jump (with j′ < j) by finding which of gj′−1’s node lost
at least one edge in gj′ .

In fact, for τj−1 ≤ t < τj , we can iteratively obtain the covariance matrix Σt|x,h = Σt|x,h:j
(i.e., with

no dependency whatsoever in the j-th jump nor the following ones) for a given sample x = (V,E) and
discrete history h such that Ut may be sampled from the Gaussian N (0(|V |+j)δ,Σt|x,h). Concretely,
the effect of the j-th jump splitting gj−1’s node i can be inferred by considering an Ansatz:

if Στ−
j |x,h:j

=


Iδ c0,1Iδ · · · c0,|V |+j−1Iδ

c1,0Iδ Iδ · · · c1,|V |+j−1Iδ
...

...
. . .

...
c|V |+j−1,0Iδ c|V |+j−1,1Iδ · · · Iδ

 ,

then Στj |x,h:(j+1)
=


Iδ c0,1Iδ · · · c0,|V |+j−1Iδ c0,iIδ

c1,0Iδ Iδ · · · c1,|V |+j−1Iδ c1,iIδ
...

...
. . .

...
...

c|V |+j−1,0Iδ c|V |+j−1,1Iδ · · · Iδ c|V |+j−1,iIδ
ci,0Iδ ci,1Iδ · · · ci,|V |+j−1Iδ Iδ

 , (6)

where ci′,i′′ = ci′′,i′ and ci′,i′ = 1. We may verify that this Ansatz holds by recursion, starting with
Στ−

1 |x,h:1
= I|V |δ (because the initial condition remains unaffected by Eq. (3)). In general, chaining
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Eq. (3) and Eq. (6) provides the sought covariance matrix at any time. The reader may get some
additional intuition by inspecting the small matrices on the top of Fig. 1c.

In particular, this provides the history-conditioned kernel p(Ut = u|X = x,H = h) = ϕ(0,Σt|x,h).
The initial conditions and system’s symmetry cause the means to always be zero. All of Ut’s
information about X is captured by its covariance matrix.

Adapting the loss. In standard GDP, the process’ state at any time t is given by a continuous vector
Ut, and we learn the score function sθt (u) ≈ ∇u ln p(Ut = u) by minimizing the loss Eq. (1),
which involves the kernel score κt(u|x) = ∇u ln p(Ut = u|X = x). Here the process’ state at a
time τj ≤ t < τj+1 is the joint (Ut, Gj), involving an extra discrete substate Gj in addition to the
usual continuous vector Ut. We now consider how to generalize the score function to this case, as
well as obtaining the denoising score matching loss generalizing Eq. (1).

It is important to keep in mind the circumstances in which we will need the score function: we
wish to run the diffusion process backward from some time τj+1 to time τj . More specifically, this
operation takes as input the time τj+1 (but not the value of j: we do not know how many jumps occur
between time 0 and time τj+1) as well as the state (u, g) at that time (i.e., Uτ−

j+1
= u and Gj = g).

We do not know τj a priori, but we can infer it from the continuous substate: going backward from
τ−j+1, we can detect τj as the first time t < τj+1 such that there is a collision between two particles
in Ut (i.e., in practice, two particles get within some small distance ϵ of one another). Notice that
the graph g stays the same over this whole flight: we can view g as a parameter of the diffusion
process between the interval τj ≤ t < τj+1. This motivates us to consider the graph-conditioned
score function sθt (u|g) = ∇u ln p(Ut = u|Gj = g) which, given the g parameterizing this interval,
allows us to approximate the reverse stochastic process described above.

There are minor complications due to how this graph g appears as an entry of the discrete history
H , but which one depends on T , the time at which we are presently minimizing the error (see the
comment following Eq. (1)). To simplify the following, we define the stochastic variable G̃ such
that, given H =

(
· · · , (τj , gj), · · ·

)
and T = t, if τj ≤ t < τj+1, then G̃ = gj . Despite the fact that

we defined G̃ in terms of H , we will consider the opposite dependency: we will sample discrete
histories H that are compatible with given G̃, X and T . As an aside, the notation “TtU” introduced
later (Appendix C) gives the equivalence G̃ = GTtU.

With these definitions in mind, we observe that

p
(
Ut = u

∣∣ X = x, G̃ = g
)
= Eh∼H|X=x,G̃=g,T=t p

(
Ut = u

∣∣ X = x,H = h
)
, (7)

where the probability on the right-hand side is known to be ϕ(0,Σt|x,h). This provides the graph-
conditioned kernel score

κt(u|x, g) = ∇u ln p
(
Ut = u

∣∣ X = x, G̃ = g
)

=

(
Eh∼H|X=x,G̃=g,T=t ϕ(u;0,Σt|x,h)(−Σ−1

t|x,h)

Eh∼H|X=x,G̃=g,T=t ϕ(u;0,Σt|x,h)

)
u , (8)

which we may estimate by empirically sampling a certain number of discrete histories compatible
with X = x, G̃ = g and T = t. Again, note that Eq. (8) may be evaluated outside of the main
training loop by some “dataloader” process. The corresponding denoising score matching loss thus
becomes

Lθ = Ex∼X Et∼T λt Eg∼G̃|X=x,T=t Eu∼Ut|X=x,G̃=g

∥∥∥sθt (u|g)− κt(u|x, g)
∥∥∥2
2
. (9)

Functional form for sθt (u|g). Our current code represents sθt (u|g) as a message passing neural
network (MPNN) [4], which is a family of graph neural networks. Our MPNN proceeds in two steps:
first obtain “features” for each particles, then use these features to estimate a matrix Sθ

t (u|g) such
that sθt (u|g) = Sθ

t (u|g)u. Again, future investigations may reveal better strategies.

In the first step, we learn an MPNN whose main goal is to grant to each particle some features
capturing the “role” played by the corresponding node in the graph g. We initialize each node’s
representation with the corresponding particle’s distance from the origin as well as that node’s degree.
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Multiple rounds of message passing then propagate representations on the graph g: we append to each
message the distance between the corresponding source and target particles, and aggregation/update
may only depend on these messages as well as the receiving node’s degree and distance from origin.
The main learned representations thus depend on g but also on u through pairwise distances between
nodes and/or origin: it is not clear yet to which extent, but we expect these limited dependencies on
u to improve the MPNN’s representations over the usual Weisfeiler–Lehman graph isomorphism
bounds [16].

The second step is a another MPNN, initialized on the first one’s output and with similar dependencies
on distances in u, except that this time messages are exchanged on a different graph. A priori, we
would have to consider the complete graph where all nodes are neighbours to all other nodes, but
there are strong indications that sparse interactions should suffice to get good approximations. Indeed,
we argue that most of the contributions should come from the complement of g, and that this graph
may be further filtered by only considering particles that are sufficiently close from each other.

The clear part of this picture is that the sought symmetric matrix Sθ
t (u|g) has the same general

structure of “weighted Iδ blocks” as those seen Eq. (6), except that the main diagonal’s weights need
not be 1. The fact that such a matrix gives sθt (u|g) = Sθ

t (u|g)u follows from the observation that

p(Ut|G̃ = g) = Ex∼X p
(
Ut = u

∣∣ X = x, G̃ = g
)

(10)

implies that sθt (u|g) has a similar form as κt(u|x, g) in Eq. (8).

Intuitively, each weight in that matrix captures to which extent pairs of particles are “attracted to each
other” in the backward process. Due to the nature of the process, these weights should be sparsely
populated: our second MPNN models these weights as a function of the messages exchanged on a
graph that is similarly sparse. More experiments are needed on this front.

Injecting and destroying particles in DISSOLVE. In DISSOLVE, once a pair of two degree one
particles has detached from the rest, we know that neither of these particles will ever be involved in a
splitting event again in the forward process. Once the entries of the covariance matrix involving those
two particles are sufficiently close to zero, there is no point in tracking those two particles anymore:
we could amend the forward process such that the pair spontaneously disintegrate. If we can learn a
function of t, u and g that predicts the global rate at which these disintegration take place, we can use
that rate to spontaneously create pairs of particles in the backward process.

Note that this operation does destroy the information about the number of edges |E| in the graph,
which may be seen as a feature instead of a bug (because it removes the need to sample |E| before
starting the backward process at generation time). Moreover, if preserving the exact number of edges
is desirable, then the number of destroyed edges may be tracked by incrementing a counter in an
augmented discrete state G′ = G × N0.

Similarly, at the beginning of the forward process, we know that particles that have not yet been
involved in a splitting event cannot be involved in any non-diagonal nonzero terms of the covariance
matrix: we don’t need to track these particles until they get involved in splitting events. We may thus
further amend the forward process such that it injects particles on their first split, learn a function of t,
u and g that predicts the probability that a split event was concomitant with an injection, and use that
probability to assess, in the backward process, when to eject merging particles.

Further improvements could be made by crafting an “injection schedule” that determines which
particles to inject first, together with a “splitting schedule” determining which particles to split,
so that as few particles as possible are simultaneously “active” in the process. For graphs of low
treewidth [2], a promising direction is to consider — in addition to 1. the particles not injected yet, 2.
the particles currently active in the process and 3. the particles that were disintegrated — a fourth
tier of particles that have been injected but are presently “shelved”, to be made active again under
some circumstances later. The tree decomposition of the graph could then inform good choices for
“injection schedule”, “splitting schedule” and new “shelving/unshelving schedules”.

Of course, this long term programme repose on numerous assumptions that should first be verified in
simpler contexts. However, we wish to highlight that this rich landscape hints at the existence of very
efficient graph GDPs
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Figure 2: Generic jump-diffusion process in Rd × G. This figure solely illustrates notations
and core ideas for our GDP framework: it is not meant to represent any specific process. Top:
A piecewise-continuous trajectory in the Rd subspace is drawn as one-dimensional for simplicity.
Bottom: Discrete trajectories in the G subspace are constant between jumps.

(a) Specialization of Fig. 2 to DISSOLVE. (b) Jump at τ1 in Fig. 3a.

Figure 3: A different take on Fig. 1c. Here a smaller graph is considered, and curves are hand-drawn
(Fig. 1 shows actual stochastic processes), which may slightly improve readability. (a) Bottom: An
input graph x (here the “claw graph”) is directly represented as g0 ∈ G. At the jump time τ1, a new
node 4 is created and one of 1’s edge is given to it. A similar jump occurs at τ2, resulting in the graph
g2 composed of 3 disjoint edges. Top: Each curve tracks the 2-dimensional position of a node (i.e.,
δ = 2): like Fig. 2, Fig. 3a shows a single trajectory. Since x has 4 nodes, there are initially only
4 curves, and u0 ∼ N (08, I8) lives in a R8 subspace of R12. Each jump adds a node, and thus 2
dimension to the continuous substate. (b) At the jump time τ1, the new node 4 takes the same position
as the node 1 (from which it got its edge).

C General framework for jump diffusion GDP

This section revisits core ideas discussed in the main text in the context of sparse graphs, here
reframed in a much broader context. Our aim here is to be “self-contained but terse”. Notations are
compatible.

We note X the stochastic variable associated with some data distribution: we have access to a training
dataset providing a finite number of samples x ∼ X , and our goal is to generate new samples x̂ ∈ X .
A priori, these samples can be anything.

We address this problem with a GDP. At a given time t, the process’ full state corresponds to a point
in the space Rd × G, which we understand as the joint of a continuous state in the subspace Rd and a
discrete state in the subspace G. A priori, the elements of G may be anything.

The stochastic process Ut, with samples u ∼ Ut, tracks the evolution of the continuous state, which
continuously obeys a specified SDE for 0 ≤ t ≤ τstop except at a finite number of jump times
τ1, · · · , τJ . To simplify the notation, we prescribe τ0 = 0 and τJ+1 = τstop so that τj ≤ t < τj+1

means that j jumps have taken place before time t. The stochastic variable Gj , with samples
gj ∼ Gj , tracks the discrete state after j jumps, which remains static in-between jumps. The
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number of jumps J , the jump times τ1, · · · , τJ , and the stopping time τstop may all differ between
realizations of the jump-diffusion process: we write T the stochastic variable such that τ ∼ T
provides τ = (0, τ1, · · · , τJ , τstop). We write τ−j the time immediately before jump j, and we write
TtU the number of jumps before time t (so (ut, gTtU) is the full state at time t). Figure 1 exemplifies
some of these notations.

The initial condition (U0, G0) is obtained from a training example x ∼ X such that, given (u0, g0),
we may perfectly recover x, and we may do so efficiently. A necessary condition is I(X;U0, G0) =
H(X). Like in a standard GDP, the jump-diffusion process is chosen so that it gradually destroys
the mutual information between the process’ state and the training sample: we require that τstop is
sufficiently high so that I(X;Uτstop , GJ) is negligible. We wish for the jumps to be simple to “undo”
efficiently: a necessary condition is that the mutual information between the training sample and the
full state is the same immediately after a jump than it was immediately before it, i.e.,

I
(
X;Uτj , Gj

)
= I
(
X;Uτ−

j
, Gj−1

)
∀ 1 ≤ j ≤ J . (11)

Our earlier requirement for the initial condition can similarly be viewed as “a jump from x to
(u0, g0).”

Intuitively, Gj may carry less information about x than Gj−1 did, but the difference in informational
content has been “pushed into Uτj ” so that, overall, the jump preserved all the information about X .
Conversely, any information about X missing from the full state has thus — like in standard GDP —
been destroyed by the (continuous) diffusion process.

Therefore, we can directly generalize the standard GDP approach to generate new samples x̂ ∼ X
provided that: 1. we can define a forward jump-diffusion process satisfying the above requirements;
2. we can learn the associated score estimation function sθt (u|g) ≈ ∇u lnP (Ut = u|GTtU = g); 3.
we can efficiently sample τstop and (Uτstop , GJ); 4. in the backward process, we can “detect” when
a jump should occur and we know how to “undo” that jump.

D Relation with other work

The present work focuses on general purpose, efficient GDPs for sparse graphs. Besides Niu et al.
[12] and Jo et al. [9], other work considered GDPs in a graph context, mainly in the molecular domain.
However, these works often focus on generating conformations for fixed graphs [10, 17]. Other work
[7] predict atom positions, then infer the graph structure from those positions, which is an approach
that does not generalize to many domains of interest. Moreover, the use of application-specific
“codes”, e.g., SELFIES for molecular data [5], may mitigate representational complexity issues.

More generally, the problem of “generating graphs” has been addressed an incredible number of times
across fields such as computer science (with or without machine learning involved), mathematics,
physics, sociology, engineering, etc. We here acknowledge this fact, but focus our coverage of the
literature those most relevant to this work. The present work focuses on general purpose, efficient
generation for sparse graphs using GDPs.

Although they do not involve graphs, two more works deserve mention as they relate to the general
framework presented in Appendix C. The first one, Jing et al. [8] considers an image GDP in which
the stochastic process proceeds “the standard way” in pixel-space up to a certain point, at which
it halves the resolution of the representation: in our language, this resolution halving corresponds
to a jump. More generally, we could consider the system’s state as a lattice specifying the spatial
arrangement of the pixels (discrete information in G), together with a vector Ut encoding the RGB
representations of all pixels (without information about their location). The jump transforms the
lattice into a new one, adapting Ut accordingly.

The second work, Dockhorn et al. [3], is relevant for two reasons. At a conceptual level, it decouples
the sample x ∼ X from the initial condition U0 = u: we need not have a bijective map between the
input sample and the system’s initial condition. Indeed, in absence of a discrete substate, it suffices to
have p(U0 = u|X = x) such that I(X;U0) = H(X) (as long as we know how to efficiently map
back U0 to x). At a more practical level, our own methods could benefit from a critically-damped
Langevin diffusion treatment, and the addition of “conjugate variables” has interesting applications
to improve DISSOLVE (e.g., grant momentum in opposite directions to splitting particles, give a
different mass according to a particle’s corresponding node degree).

11


	Details for Explode 
	Details for Dissolve 
	General framework for jump diffusion GDP 
	Relation with other work

