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ABSTRACT

The quantitative analysis of non-invasive electrophysiology signals from electroen-
cephalography (EEG) and magnetoencephalography (MEG) boils down to the
identification of temporal patterns such as evoked responses, transient bursts of
neural oscillations but also blinks or heartbeats for data cleaning. Several works
have shown that these patterns can be extracted efficiently in an unsupervised
way, e.g., using Convolutional Dictionary Learning. This leads to an event-based
description of the data. Given these events, a natural question is to estimate how
their occurrences are modulated by certain cognitive tasks and experimental ma-
nipulations. To address it, we propose a point process approach. While point
processes have been used in neuroscience in the past, in particular for single cell
recordings (spike trains), techniques such as Convolutional Dictionary Learning
make them amenable to human studies based on EEG/MEG signals. We develop
a novel statistical point process model — called driven temporal point processes
(DriPP) — where the intensity function of the point process model is linked to a
set of point processes corresponding to stimulation events. We derive a fast and
principled expectation-maximization (EM) algorithm to estimate the parameters
of this model. Simulations reveal that model parameters can be identified from
long enough signals. Results on standard MEG datasets demonstrate that our
methodology reveals event-related neural responses — both evoked and induced —
and isolates non-task-specific temporal patterns.

1 INTRODUCTION

Statistical analysis of human neural recordings is at the core of modern neuroscience research.
Thanks to non-invasive recording technologies such as electroencephalography (EEG) and mag-
netoencephalography (MEG), or invasive techniques such as electrocorticography (ECoG) and
stereotactic EEG (sEEG), the ambition is to obtain a detailed quantitative description of neural signals
at the millisecond timescale when human subjects perform different cognitive tasks (Baillet, 2017).
During neuroscience experiments, human subjects are exposed to several external stimuli, and we are
interested in knowing how these stimuli influence neural activity.

After pre-processing steps, such as filtering or Independent Component Analysis (ICA; Winkler
et al. 2015) to remove artifacts, common techniques rely on epoch averaging — to highlight evoked
responses — or time-frequency analysis to quantify power changes in certain frequency bands (Cohen,
2014) — for induced responses. While these approaches have led to numerous neuroscience findings,
it has also been criticized. Indeed, averaging tends to blur out the responses due to small jitters in
time-locked responses, and the Fourier analysis of different frequency bands tends to neglect the
harmonic structure of the signal, leading to the so-called “Fourier fallacy” (Jasper, 1948; Jones, 2016).
In so doing, one may conclude to a spurious correlation between components that have actually the
same origin. Moreover, artifact removal using ICA requires a tedious step of selecting the correct
components.

Driven by these drawbacks, a recent trend of work aims to go beyond these classical tools by isolating
prototypical waveforms related to the stimuli in the signal (Cole & Voytek, 2017; Dupré la Tour et al.,
2018; Donoghue et al., 2020). The core idea consists in decomposing neural signals as combinations
of time-invariant patterns, which typically correspond to transient bursts of neural activity (Sherman
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et al., 2016), or artifacts such as eye blinks or heartbeats. In machine learning, various unsupervised
algorithms have been historically proposed to efficiently identify patterns and their locations from
multivariate temporal signals or images (Lewicki & Sejnowski, 1999; Jost et al., 2006; Heide et al.,
2015; Bristow et al., 2013; Wohlberg, 2016b), with applications such as audio classification (Grosse
et al., 2007) or image inpainting (Wohlberg, 2016a). For neural signals in particular, several methods
have been proposed to tackle this task, such as the sliding window matching (SWM; Gips et al. 2017),
the learning of recurrent waveforms (Brockmeier & Principe, 2016), adaptive waveform learning
(AWL; Hitziger et al. 2017) or convolutional dictionary learning (CDL; Jas et al. 2017; Dupré la Tour
et al. 2018). Equipped with such algorithms, the multivariate neural signals are then represented
by a set of spatio-temporal patterns, called atoms, with their respective onsets, called activations.
Out of all these methods, CDL has emerged as a convenient and efficient tool to extract patterns, in
particular due to its ability to easily include physical priors for the patterns to recover. For example,
for M/EEG data, Dupré la Tour et al. (2018) have proposed a CDL method which extracts atoms
that appertain to electrical dipoles in the brain by imposing a rank-1 structure. While these methods
output characteristic patterns and an event-based representation of the temporal dynamics, it is often
tedious and requires a certain domain knowledge to quantify how stimuli affect the atoms’ activations.
Knowing such effects allows determining whether an atom is triggered by a specific type of stimulus,
and if so, to quantify by how much, and with what latency.

As activations are random signals that consist of discrete events, a natural statistical framework is
the one of temporal point processes (PP). PP have received a surge of interest in machine learn-
ing (Bompaire, 2019; Shchur et al., 2020; Mei et al., 2020) with diverse applications in fields such as
healthcare (Lasko, 2014; Lian et al., 2015) or modelling of communities on social networks (LLong
et al., 2015). In neuroscience, PP have also been studied in the past, in particular to model single
cell recordings and neural spike trains (Truccolo et al., 2005; Okatan et al., 2005; Kim et al., 2011;
Rad & Paninski, 2011), sometimes coupled with spatial statistics (Pillow et al., 2008) or network
models (Galves & Locherbach, 2015). However, existing models do not directly address our question,
namely, the characterization of the influence of a deterministic PP — the stimuli onsets — on a stochastic
one — the neural activations derived from M/EEG recordings.

In this paper, we propose a novel method — called driven point process (DriPP) — to model the
activation probability for CDL. This method is inspired from Hawkes processes (HP; Hawkes 1971),
and models the intensity function of a stochastic process conditioned on the realization of a set of
PP, called drivers, parametrized using truncated Gaussian kernels to better model latency effects in
neural responses. The resulting process can capture the surge of activations associated to external
events, thus providing a direct statistical characterization of how much a stimulus impacts the neural
response, as well as the mean and standard deviation of the response’s latency. We derive an efficient
expectation-maximization (EM) based inference algorithm and show on synthetic data that it reliably
estimates the model parameters, even in the context of MEG/EEG experiments with tens to hundreds
of events at most. Finally, the evaluation of DriPP on the output of CDL for standard MEG datasets
shows that it reveals neural responses linked to stimuli that can be mapped precisely both in time and
in brain space. Our methodology offers a unified approach to decide if some waveforms extracted
with CDL are unrelated to a cognitive task, such as artifacts or spontaneous brain activity, or if they
are provoked by a stimulus — no matter if they are ‘evoked’ or ‘induced’ as more commonly described
in the neuroscience literature (Tallon-Baudry et al., 1996). While these different effects are commonly
extracted using different analysis pipelines, DriPP simply reveals them as stimuli-induced neural
responses using a single unified method, that does not require any manual tuning or selection.

2 DRIVEN TEMPORAL POINT PROCESS (DRIPP)

A temporal point process (PP) is a stochastic process whose realization consists of discrete events {t; }
occurring in continuous time, ¢; € R* (Daley & Vere-Jones, 2003). In case where the probability
that an event occurs at time ¢ only depends on the past events .%; == {t;, t; < t}, PP are usually
characterized through the conditional intensity function A : RT — R*:

o P(Nipar — Ne = 1|.%)
di—0 dt ’
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where N; := .. 1¢,< is the counting process associated to the PP. This function corresponds to
the expected infinitesimal rate at which events are occurring at time ¢ given the arrival times of past
events prior to ¢ (Daley & Vere-Jones, 2003).

The proposed model DriPP is adapted from the Hawkes process (HP; Hawkes 1971), as the occurrence
of a past event in the driver increases the likelihood of occurrence of activation events in the near
future. However, here we suppose that the stochastic point process in our model of neural activations
does not have the self-excitatory behavior characteristic of HP. Instead, the sources of activation in
the DriPP model are either the drivers or some spontaneous background activity, but not its own
previous activations. More specifically, in DriPP, the intensity function at time ¢ between a stochastic
process k — whose set of events is denoted .4y, — and a non-empty set of drivers P — whose events are

denoted 7, = {tgp)7 .. ,tgi)},p € P —is composed of a baseline intensity i, > 0 and triggering
kernels k p : RT — R:

Mep(t) = pr + Z Z Ak pKk,p (t — tl(-p)> , 2)

pEP i,t£p>§t

where oy, > 0 is a coefficient which controls the relative importance of the driver p on the
occurrence of events on the stochastic process k. Note that when the driver processes are known,
the intensity function is deterministic, and thus corresponds to the intensity of an inhomogeneous
Poisson process (Daley & Vere-Jones, 2003). The coefficient «, j, is set to be non-negative so that
we only model excitatory effects, as events on the driver only increase the likelihood of occurrence of
new events on the stochastic process. Inhibition effects are assumed non-existent. Figure 1 illustrates
how events 7T, on the driver influence the intensity function after a short latency period.

A critical parametrization of this model is the choice of the triggering kernels xy, j,. To best model the
latency, we use a parametric truncated normal distribution of mean my, , € R and standard deviation
ok,p > 0, with support [a;b] C RT, b > a. Namely,

1 ¢ (ﬁzﬁ?k,p>
/@k,p(:z) = K (:E; mk7p, Uk,p; a, b) = — o ko — 1a§a:§b 5 (3)
e e ()
Tk,p Ok,p

where ¢ (resp. ®) is the probability density function (resp. cumulative distribution function) of the
standard normal distribution. This parametrization differs from the usual exponential kernel usually
considered in HP, that captures responses with low latency. Note that the truncation values a,b € RT
are supposed independent of both the stochastic process and the drivers, hence they are similar for all
kernel p € P. Indeed, in the context of this paper, those values delimit the time interval during which
a neuronal response might occur following an external stimulus. In other words, the interval [a ; b]
denotes the range of possible latency values. In the following, we denote by 7' := T'*) the duration
of the process k.

3 PARAMETERS INFERENCE WITH AN EM-BASED ALGORITHM

We propose to infer the model parameters Oy p = (ug, o, p, Mk p, Ok p), Where we denote in
bold the vector version of the parameter, i.e., x; p = (ack,p)p ¢p- via maximum-likelihood using an
EM-based algorithm (Lewis & Mohler, 2011; Xu et al., 2016). The pseudocode of the algorithm is
presented in Algorithm 1. The expectation-maximization (EM) algorithm (Dempster et al., 1977) is
an iterative algorithm that allows to find the maximum likelihood estimates (MLE) of parameters in a
probabilistic model when the latter depends on non-observable latent variables. First, from (2), we
derive the negative log-likelihood of the model (see details in Appendix A.1):

Lip (Orp) =mT+ > arpny— Y log [ pe+ > Y arphirp (t - L‘Ep)) NG

pEP teA PEP ;1 (P <y

Expectation step  For a given estimate, the E-step aims at computing the events’ assignation,
i.e., the probability that an event comes from either the kernel or the baseline intensity. At iteration n,
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Figure 1: Top: Convolutional dictionary learning (CDL) applied to a univariate signal (blue) de-
composes it as the convolution of a temporal pattern (orange) and a sparse activation signal (black).
Bottom: Intensity function Ay, defined by its baseline 1, and the stimulus events 7, (green).
Intensity increases following stimulation events with a certain latency.

let PIE") (t) = P,E") (t; p, k) be the probability that the activation at time ¢ € [0; 7] has been triggered

by the baseline intensity of the stochastic process &, and PIS") (t) = PZS") (t; p, k) be the probability
that the activation at time ¢ has been triggered by the driver p. By the definition of our intensity model
(2), we have:

R o) S e (1= 7
Pt :% and  Vpe P, P () = ——h S(;) ’p( ) NG
A (t) AL (t)

where #(™) denotes the value of the parameter 6 at step n of the algorithm, and similarly, if f is a func-
tion of parameter 6, f(") (2;6) := f (2;60(™)). Note that Vt € [0; T P () + > pep P () =1.

Maximization step  Once this assignation has been computed, one needs to update the parameters

of the model using MLE. To obtain the update equations, we fix the probabilities P,E") and P,S"), and
cancel the negative log-likelihood derivatives with respect to each parameter. For given values of

probabilities P,En) (t) and PZE") (t), we here derive succinctly the update for parameters p and o
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where 7 (+) denotes the projection onto the set E. These two updates amount to maximizing the
probabilities that the events assigned to the driver or the baseline stay assigned to the same generation
process. Then, we give the update equations for m and o, which corresponds to parametric estimates
of each truncated Gaussian kernel parameter with events assigned to the kernel. Detailed computations
are provided in Appendix A.2.
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b _ 2
where, C(m,0,a,b) = [ exp (f%(“ UT) )du, Cm (m,o,a,b) = g—g (m,o,a,b) and
Cy, (m,o,a,b) = g—f (m,o,a,b). Here € > 0 is predetermined to ensure that o remains strictly
positive. In practice, we set € such that we avoid the overfitting that can occur when the kernel’s
mass is too concentrated. Note that once the initial values of the parameters are determined, the EM

algorithm is entirely deterministic.

Also, when the estimate of parameter m
is too far from the kernel’s support [a ; b],
we are in a pathological case where EM

Algorithm 1: EM-based algorithm

input :A;,7,,a,b,T, N is diverging due to indeterminacy between
output : The estimated values for parameters setting o = 0 and pushing m to infinity due
W, e, mand o to the discrete nature of our events. Thus,
Initialize 49, (), m©, &), we consider that the stochastic process is
fori—=0 . . N—1do not linked to the considered driver, and fall
e (D back to the MLE estimator. The algorithm

if a/izi;)Oi#;(ﬁlell); is therefore stopped and we set @ = Og#».
break; It is worth noting that if Vp € P, ay,, = 0,
end then the intensity is reduced to its base-
Define A\(); Compute line, thus the negative log-likelihood
QD Qi) i+ g (i+1). is Lrp(Orp) = mT — #Axlog i,

’ ’ ’ ’ where #.A denotes the cardinality

end ’
) ) ) ) of the set A. Thus, we can termi-

return ;D (D m (D) | g (D) nate the EM algorithm by directly

computing the MLE for puy, namely:
MLE
" = 4 AT

Initialization strategy = We propose a "smart start” initialization strategy, where parameters are
initialized based on their role in the model. It reads:

L #A, — # (Upep Dk,p)
C T2 (UpepUper, [+ a5t +1))

D
oy = #Diy —u?, WpeP (11)
A (Ut'eTp [t'+a;t + b])

(10)

(0) 1 (0) 1 2
m, ) = d and o, = d—mO" VpecP
kv T YDy, de%; k2 = | #Dr de%; | | .12

where A (-) denotes the Lebesgue measure, and where Dy, ,, :== {t — ¢ (t), t € Ag} N a;b]isthe
set of all empirical delays possibly linked to the driver p, with P (t) == max{t', t' € Tp,t' <t}
denoting the timestamp of the last event on the driver p that occurred before time ¢. Here, the baseline
intensity 1(?) is set to the average number of process’ events that occur outside any kernel support,
i.e., the events that are guaranteed to be exogenous or spontaneous. Similarly, the kernel intensity o(?)
is computed as the increase in the average number of activations over the kernel support, compared to
19, The initial guess for m(?) and o(®) are obtained with their parametric estimates, considering
that all event on the kernel support are assigned to the considered driver.

4 EXPERIMENTS

We evaluated our model on several experiments, using both synthetic and empirical MEG data. We
used Python (Python Software Foundation, 2019) and its scientific libraries (Virtanen et al., 2020;
Hunter, 2007; Harris et al., 2020). We relied on alphacsc for CDL with rank-1 constraints on
MEG (Dupré la Tour et al., 2018) and we used MNE (Gramfort et al., 2013) to load and manipulate the
MEQG datasets. Computations were run on CPU Intel(R) Xeon(R) E5-2699, with 44 physical cores.


https://alphacsc.github.io/
https://mne.tools/stable/index.html
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Figure 2: True and estimated intensity functions following a driving event at time zero for two
different kernels, on synthetic data. Left: "wide" kernel with 0 = 0.2. Right: "sharp" kernel with
o = 0.05. Parameters used are 7 = 10000, P/S = 0.6. On synthetic data, the EM algorithm
successfully retrieves the true values of parameters, for both shapes of kernels.

4.1 EVALUATION OF THE EM CONVERGENCE ON SYNTHETIC DATA

For a given number of drivers and a set of corresponding parameters ©, we first generate the
drivers’ processes and then simulate the stochastic process for a pre-determined duration 7'. Each
driver’s timestamps are simulated as follows: given an interstimuli interval (ISI), a set of S = [%J
equidistant timestamps is generated — where |- | denotes the floor function. Then P timestamps are
uniformly sampled without replacement from this set. In all our experiments, we fixed the ISI to 1s
for the "wide" kernel, and to 1.4 s for the "sharp" one. Finally, a one-dimensional non-homogeneous
Poisson process is simulated following Lewis’ thinning algorithm (Lewis & Shedler, 1979), given the
predefined intensity function A and the drivers’ timestamps.

Figure 2 illustrates the intensity function recovery with two drivers considered together: the first one
has a "wide" kernel with standard deviation o = 0.2 s, and the second one has a "sharp" kernel with
o = 0.05s. Both kernels have support [0.03 s ;0.8 5] and mean m = 0.4s, the coefficients « are both
set to 0.8 and the baseline intensity parameter x to 0.8. We report 8 estimated intensities obtained
from independent simulations of the processes — using 7' = 10000 s and P/S = 0.6 — that we plot
over each one of the driver’s kernel’s support. The EM algorithm is run for 50 iterations using the
"smart start" initialization strategy described in Section 2. Note that here, the randomness only comes
from the data generation, as the EM algorithm uses a deterministic initialization. Figures demonstrate
that the EM algorithm is able to successfully recover the parameters for both shapes of kernels.

To provide a quantitative evaluation of the parameters’ recovery, we compute, for each driver p € P,
the £ norm between the intensity A* computed with the true parameters ©; and the estimated

intensity A, with parameters (:)p:

s

L= [ apr(t) = o i ()] a3

The rationale for using the /., norm is to ensure that errors during baseline and within the kernel
support are given equal importance. Figure 3 presents the parameter recovery for the same scenario
with varying P/S and T'. To easily compare the EM performances on the two shapes of kernels,
Figure 3 (resp. Figure A.1) reports the mean (resp. standard deviation) of the relative £, norm — that
is the /. divided by the maximum of the true intensity A* — computed for each of the driver over 30
repetitions with different realizations of the process. The results show that the more data are available,
either due to a longer process duration (increase in T') or due to a higher event density (increase in
P/S), the better are the parameter estimates. The convergence appears to be almost linear in these
two cases. Moreover, the average computation time for an EM algorithm in Figure 3 took 18.16s,
showing the efficiency of our inference method. In addition, we report in appendix the scaling of the
EM computation time as a function of 7" in Figure A.2.



Published as a conference paper at ICLR 2022

pn=08a=08m=04,0=02 pn=038a=08 m=0.4,0=0.05
100 4 E

P/S

0.1
— 0.3
— 0.6

\

*
max

Mean || [loo/A

10? 103 10* 107 103 10*
T (s) T (s)

Figure 3: Mean of the relative infinite norm as a function of process duration 7" and the percentage of

events kept P/.S, for two kernel shapes on synthetic data: wide kernel (left) and sharp kernel (right).

The accuracy of the EM estimates increases with longer and denser processes.

4.2 EVOKED AND INDUCED EFFECTS CHARACTERIZATION IN MEG DATA

Datasets Experiments on MEG data were run on two datasets from MNE Python package (Gramfort
et al., 2014; 2013): the sample dataset and the somatosensory (somato) dataset'. These datasets were
selected as they elicit two distinct types of event-related neural activations: evoked responses which
are time locked to the onset of the driver process, and induced responses which exhibit random jitters.
Complementary experiments were performed on the larger Cam-CAN dataset (Shafto et al., 2014)°.
Presentation of the dataset, data pre-processing and obtained results on 3 subjects are presented in
Appendix A.7. The presented results are self-determined as they exhibit, for each subject, the atoms
that have the higher ratio o/ . For all studied datasets, full results are presented in supplementary
materials.

The sample dataset contains M/EEG recordings of a human subject presented with audio and visual
stimuli. In this experiment, checkerboard patterns are presented to the subject in the left and right
visual field, interspersed by tones to the left or right ear. The experiment lasts about 4.6 min and
approximately 70 stimuli per type are presented to the subject. The interval between the stimuli is on
average of 750 ms, all types combined, with a minimum of 593 ms. Occasionally, a smiley face is
presented at the center of the visual field. The subject was asked to press a button with the right index
finger as soon as possible after the appearance of the face. In the following, we are only interested in
the four main stimuli types: auditory left, auditory right, visual left, and visual right. For the somato
dataset, a human subject is scanned with MEG during 15 min, while 111 stimulations of his left
median nerve were made. The minimum IST is 7s.

Experimental setting For both datasets, only the 204 gradiometer channels are analyzed. The
signals are pre-processed using high-pass filtering at 2 Hz to remove slow drifts in the data, and are
resampled to 150 Hz to limit the atom size in the CDL. CDL is computed using alphacsc (Dupré la
Tour et al., 2018) with the GreedyCDL method. For the sample dataset, 40 atoms of duration
1 s each are extracted, and for the somato dataset, 20 atoms of duration 0.53 s are estimated. The
extracted atoms’ activations are binarized using a threshold of 6 x 10~!! (resp. 1 x 10719) for
sample (resp. somato), and the times of the events are shifted to make them correspond to the
peak amplitude time of the atom. Then, for every atom, the intensity function is estimated using
the EM-based algorithm with 400 iterations and the "smart start” initialization strategy. Kernels’
truncation values are hyper-parameters for the EM and thus must be pre-determined. The upper
truncation value b is chosen smaller than the minimum ISI. Here, we used in addition some previous
domain knowledge to set coherent values for each dataset. Hence, for the sample (resp. somato)
dataset, kernel support is fixed at [0.03s;0.5s] (resp. [0s;25]). See Appendix A.4 for an analysis on
how these hyperparameters influence on the obtained results presented below.

Evoked responses in sample dataset Results on the sample dataset are presented in Figure 4. We
plot the spatial and temporal representations of four selected atoms, as well as the estimated intensity
functions related to the two types of stimuli: auditory (blue) and visual (orange). The first two atoms

'Both available at https://mne.tools/stable/overview/datasets_index.html
2Available at https://www.cam-can.orqg/index.php?content=dataset
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Figure 4: Spatial and temporal patterns of 4 atoms from sample dataset, and their respective estimated
intensity functions following a stimulus (cue at time = O s), for auditory and visual stimuli. The
heartbeat and eye-blink artifacts are not linked to any stimuli. An auditory stimulus will induce a
neural response similar to atom 2, with a mean latency of 85 ms.

are specifically handpicked to exhibit the usual artifacts, and the last two are selected as they have
the two bigger ratios «/ s for their respective learned intensity functions. Even though the intensity
is learned with the two stimuli conjointly, we plot the two corresponding "intensities at the kernel
separately, i.e., Vp € P,Vt € [0;0.5], we plot A ,(t),k =0,1,2,6.

Spatial and temporal representations of atom O (resp. atom 1) indicate that it corresponds to the
heartbeat (resp. the eye blink) artifact. These two atoms are thus expected not to be linked to any
stimuli. This is confirmed by the shape of the intensities estimated with DriPP that is mostly flat,
which indicates that the activation of these two atoms are independent of auditory and visual stimuli.
Note that these two artifacts can also be recovered by an Independent Component Analysis (ICA), as
shown in Figure A.5. Indeed, the cosine similarity between the spatial maps of the eye blink (resp. the
heartbeat) artifact extracted with CDL and its corresponding component in ICA analysis is 99.58 %
(resp. 99.78 %), as presented in Figure A.6. In contrast, by looking at the spatial and temporal
patterns of atom 2 (resp. atom 6), it can be associated with an auditory (resp. visual) evoked response.
Given the spatial topography of atom 2, we conclude to a bilateral auditory response and the peak
transient temporal pattern suggests an evoked response that is confirmed by the estimated intensity
function that contains a narrow peak around 85 ms post-stimulus. This is the M 100 response — here
the auditory one — well known in the MEG literature (its equivalent in EEG is the N100) (Nédtinen
& Picton, 1987). The M100 is indeed a peak observed in the evoked response between 80 and 120
milliseconds after the onset of a stimulus in an adult population. Regarding atom 6, topography is
right lateralized in the occipital region, suggesting a visual evoked response. This is confirmed by the
intensity function estimated that reports a relationship between this atom and the visual stimuli. Here
also, the intensity peak is narrow, which is characteristic of an evoked response. This reflects a right
lateralized response along the right ventral visual stream in this subject. This may be connected to the
P200, a peak of the electrical potential between 150 and 275 ms after a visual onset. Moreover, the
intensities estimated with DriPP for the unrelated tasks are completely flat. We have @ = 0, which
indicates that atoms’ activations are exogenous or spontaneous relatively to unrelated stimuli. For
comparison, we present in Appendix A.5 similar results obtained with dedicated MEG data analysis
tools, such as evoked responses and time-frequency plots.
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Figure 5: Spatial and temporal patterns of 3 atoms from somato dataset, and their respective estimated
intensity functions following a somatosensory stimulus (cue at time = 0 s). The eye-blink artifact
(atom 0) is not linked to the stimulus, and neither is the a-wave (atom 7). A somatosensory stimulus
will induce a neural response similar to atom 2, with a mean latency of 1s.

Induced response in somato dataset Results on the somato dataset are presented in Figure 5.
Similar to the results on sample, spatial and temporal patterns of 3 handpicked atoms are plotted
alongside the intensity functions obtained with DriPP. Thanks to their spatial and temporal patterns,
and with some domain knowledge, it is possible to categorize these 3 atoms: atom 2 corresponds
to a p-wave located in the secondary somatosensory region (S2), atom 7 corresponds to an a-wave
originating in the occipital visual areas, whereas atom O corresponds to the eye-blink artifact. As
a-waves are spontaneous brain activity, they are not phase-locked to the stimuli. It is thus expected
that atom 7 is not linked to the task, as confirmed by its estimated intensity function where o = 0.
For atom 2 — that corresponds to a p-wave —, its respective intensity is nonflat with a broad peak
close to 1s, which characterizes an induced response. Moreover, similar to results on the sample
dataset, we recover the eye-blink artifact that also has a flat intensity function. This allows us to be
confident in the interpretation of the obtained results. Some other p-wave atoms — atoms 1 and 4 —
are presented in Figure A.10 in Appendix A.6. They have an estimated intensity similar to atom 2,
i.e., non-flat with a broad peak close to 1s. The usual time/frequency analysis reported in Figure A.9
exhibits the induced response of the p-wave.

5 DISCUSSION

This work proposed a point process (PP) based approach specially designed to model how external
stimuli can influence the occurrences of recurring spatio-temporal patterns, called atoms, extracted
from M/EEG recordings using convolutional dictionary learning (CDL). The key advantage of the
developed method is that by estimating few parameters (one baseline parameter and 3 parameters per
considered driver), it provides a direct statistical characterization of when and how each stimulus is
responsible for the occurrences of neural responses. Importantly, it can achieve this with relatively
limited data which is well adapted to MEG/EEG experiments that last only a few minutes, hence
leading to tens or hundreds of events at most. This work proposed an EM algorithm derived for a
novel kernel function: the truncated Gaussian, which differs from the usual parametrization in PP
models that capture immediate responses, e.g., with exponential kernels. As opposed to competing
methods that can involve manual selection of task-related neural sources, DriPP offers a unified
approach to extract waveforms and automatically select the ones that are likely to be triggered by the
considered stimuli. Note however that DriPP has been developed based on a point process framework,
which is event-based. When working with continuous stimuli, other techniques must be considered
(e.g., STRE, spatio-temporal response functions; Drennan & Lalor 2019). Future work will explore
the modeling of inhibitions effects (o < 0) frequently observed in neuroscience data. Yet, this could
potentially degrade the interpretability of the model parameters, and it also requires a new definition
of the intensity function as one needs to ensure it stays non-negative at all times.
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A APPENDIX

A.1 DETAILS OF THE NEGATIVE LOG-LIKELIHOOD COMPUTATION

We defined the negative log-likelihood for parameters ©y » = (ug, 0k, p, Mk, p, Ok p) as follows:

T
Lop(Op) = / Nep®dt— 3 log M (t) - (14)
0

teEAg

We show here in details that fOT Mep(B)dt = p T + > p g pnp. Without loss of generality, we

can first assume that Vp € P, tgf;) + b < T. Hence,

T
VpEP,Vizl,...,nP,/ Fkp (tftgm) dt=1.
0

Thus, we have that
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/ Ak,p(t)dtz/ pet > D kg (t—tﬁp)) dt
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pEP i,tff’)<t
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= T + Z Qg pNp -
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Finally, we have that the negative log-likelihood writes

LypOrp) =T+ Z Qg pNp — Z log A, p(2) .

peEP teAL

A.2 DETAILS OF EM-BASED ALGORITHM COMPUTATIONS

First, recall that the negative log-likelihood for parameters Oy p = (ux, og p, My p, O p) is as
follows:

Lip (©Orp)= MkT+Z Qk,pNp— Z log | px + Z Z Qk,pRk.p (t — tEp);mkyp, O’k’p)

pEP teAy pEPMEP)St

Recall also that we defined P\ and P{™ as follows:

(n) agcn) Zi » K/}(;L) (t B t(p) (t))
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t
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where #(") denotes the value of the parameter 6 at step n of the algorithm, and similarly, if f is a
function of parameter 0, f(") (x;0) == f(x;0™).

o (15)

PkE7L) (t) — -
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Below are details of calculation for parameters update for m and o. We first rewrite the kernel
function to have it under a form that simplifies further computations.

k(z;m,o,a,b) = —
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where

b 2
C(m,o,a,b) = / exp (1(u—2m)> du . (16)

2 o

Hence, we can precompute its derivatives with respect to m and o
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where Cy, (m, 0, a,b) : m,o,a,b) and Cy (m, 0, a,b) = 2< (m, 0,a,b).
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Finally, to ensure that the o coefficient stays strictly positive in order to avoid computational errors,
we add a projection step onto [¢ ; +00), with € > 0: al(fprH) = e i400) (0,8”’”).
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Figure A.1: Standard deviation of the relative infinite norm as a function of the process duration T'
and the percentage of events kept P/.S, for two kernel shapes on synthetic data: wide kernel (left)
and sharp kernel (right). The variance of the EM estimates continually decreases with longer and

denser processes.

A.3 EXPERIMENTS ON SYNTHETIC DATA

In this section, we present figures that are complementary to the ones obtained on synthetic data,
presented in subsection 4.1. In Figure A.1, we report the standard deviation associated with Figure 3,
i.e., the standard deviation of the relative infinite norm for different process duration 7" and different
proportion of events kept P/S, for the two kernel shapes.

Figure A.2 reports some details on the computation time of the experiment done on synthetic data
which produced the Figure 3 and Figure A.1. For each value of T', the mean computation time is
computed over 90 experiments (3 values of P/S times 30 random seeds). Results are presented in
Figure A.2.
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Figure A.2: Mean and 95 % CI of computation time (in seconds) for one EM algorithm, as a function
of the process duration 7" (in seconds). Results are obtained on synthetic data.

A.4 IMPACT OF MODEL HYPERPARAMETER

In this section, we dwell on the analysis of how setting hyperparameter values may impact the
obtained results, with the aim of determining whether it is possible to set these parameters using a
general rule of thumb, without degrading previous results. More specifically, we will look at the
impact of two hyperparameters on the results we obtained on the MNA sample dataset: the threshold
value — applied to the atoms’ activation values to binarized them, currently set at 6 x 10~! — and
the kernel support, currently set at [0.03 s; 0.5 s] using previous and domain knowledge. To do so, we
conducted two experiments on sample where each varies one hyperparameter. We plot the intensity
function learned by DriPP for the same four atoms — namely, the two artifacts (heartbeat and eye
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blink) and the auditory and visual responses —, separately for the two stimuli (auditory and visual),
similarly to Figure 4.

For the first experiment, presented in Figure A.3, we varied the threshold, expressed as a percentile,
between 0 and 80. A threshold of 20 means that we only keep activations whose values are above
the 20 % percentile computed over all strictly positive activations, i.e., the smaller the threshold is,
the more activations are kept. The value of the threshold used in all other experiments is the 60 %
percentile. One can observe that for the two artifacts (atoms 0 and 1), when the threshold gets smaller,
the learned intensity functions get flatter, indicating that the stimulus has no influence on the atom
activation. However, for the two others atoms, the effect of a smaller threshold is the opposite, as
the intensity functions have a higher peak, indicating a bigger value of the o parameter, and thus
strengthening the link stimulus-atom. Thus, the threshold value could be set to a small percentile and
therefore computed without manual intervention, without degrading the current results.

For the second experiment, we now focus on the kernel truncation values a and b. Results are
presented in Figure A.4. We set a = 0, as we did for somato and Cam-CAN datasets, and we vary b
between 0.5 — the current value — and 10, a large value compared to the ISI. One can observe that
for b = 0.5 or b = 1, the results are either unchanged (atoms 1, 2, and 6) or better (atom 0, as the
intensity function is totally flat for this artifact), indicating that setting a = 0 and b close to the
average ISI of 0.750 s does not hinder the results. However, when b is too large, the results degrade
quickly, up to the point where all learned intensities are flat lines, indicating that our model does
not find any link between the stimuli and the atoms. This is due to the fact that this hyperparameter
is of great importance in the initialization step, as the greater b is, the more atom’s activations are
considered being on a kernel support. Thus, setting the upper truncation value to a value close to the
average ISI seems to give reliable results.

A.5 UsuAL M/EEG DATA ANALYSIS

We present in this section some results obtained using usual M/EEG data analysis, such as Independent
Component Analysis (ICA), epoch averaging, or time/frequency analysis. First, on MNE sample
dataset, we proceed to an ICA to manually identify usual artifacts. To do so, similarly as the CDL
pre-processing, the raw signals are filtered (high-pass filter at 2 Hz), and 40 independent components
are fitted. The two components 1 and 3, that we manually identify as corresponding to the eye blink
and heartbeat artifacts, are presented in Figure A.5. In Figure A.6, we associate for each of the CDL
atoms presented in Figure 4 the ICA component that has the maximum cosine similarity. One can
observe that the artifact atoms and components are highly similar, suggesting that CDL and ICA have
equal performance on the artifact detection. Note that this high similarity is only based on the spatial
pattern. Indeed, ICA does not provide temporal waveforms for the atoms as well as their temporal
onsets, contrarily to CDL.

However, for the auditory and visual response, the result is different. For the auditory one (atom
1), there is not really an ICA equivalent, as it is most correlated with the eye-blink ICA component.
Regarding the visual atom (atom 6), there is an ICA component that presents a high similarity. While
the two related components correspond to neural sources on the occipital cortex, the atom 6 obtained
with CSC is more right lateralized, suggesting a source in the right ventral visual stream. Note that
unlike ICA, which recover full time courses for each source, CDL also provides the onset of the
patterns, which we later use for automated identification of event related components. Finally, this
demonstrates that CDL is a strong competitor to ICA for artifact identification, while simultaneously
enabling to reveal evoked or induced neural responses in an automated way.

As mentioned, the ICA is commonly used to remove manually identified artifacts to reconstruct the
original signals free of those artifacts. However, there are two drawbacks of this method, the first one
being that some domain-related knowledge is needed in order to correctly identify the artifacts. The
second drawbacks happen when the signal is reconstructed after the removal of certain components.
Indeed, such a reconstruction will lead to a loss of information across all channels, as the artifacts are
shared by all the sensors. Thanks to the Convolutional dictionary learning (CDL) that extracts the
different artifacts directly from the raw data, our method does not suffer from these drawbacks.

Still on MNE sample dataset, we compute from raw data the epoch average following an auditory
stimulus (stimuli in the left ear and in the right ear are combined) and plot on Figure A.7 the obtained
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Figure A.3: Influence of the threshold (expressed as a percentile) on the obtained results on MNE
sample dataset, for the 4 main atoms, for auditory and visual stimulus. The value of the threshold
presented in Figure 4 is 7 = 60 %. The threshold value has limited impact on obtained results, and
thus could be determined with a general rule of thumb, as a percentile over all activations values.
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Figure A.4: Influence of the kernel truncation upper bound b (with a = 0) on the obtained results on
MNE sample dataset, for the 4 main atoms, for auditory and visual stimulus. By setting b too high,
all intensity functions are completely flat, indicating a total loss of information.
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Figure A.5: The first two components alongside with electrooculography (EOG) signal (top) and
their corresponding topomaps (bottom), on MNE sample dataset. ICA000 can be associated to the
heartbeat artifact, whereas TCA003 can be associated to the eye-blink artifact.
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Figure A.6: Spatial representation of the four atoms presented in Figure 4 (top) alongside their ICA
components with the maximum cosine similarity (value indicated at the bottom). Atoms and ICA are

computed on MNE sample dataset.

evoked signals. Figure A.8 is similar but for the visual stimuli (again, stimuli on the left visual field
and on the right visual field are combined).
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Figure A.7: Evoked signals following an auditory stimulus (cue at time = 0), on MNE sample dataset.
Baseline correction applied from beginning of the data until time point zero.

On somato dataset, in order to exhibit the induced response to the somatosensory stimulus on the left
median nerve of the subject, we perform a time/frequency analysis, presented on Figure A.9. In order
to perform this analysis, a complex process including the use of Morlet wavelets is performed.
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Figure A.8: Evoked signals following a visual stimulus (cue at time = 0) on MNE sample dataset.
Baseline correction applied from beginning of the data until time point zero.
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Figure A.9: Time-frequency plane for epoched signals following a somatosensory stimulus (cue
at time = 0), on MNE somato dataset, with overviews at 1 and 1.3 seconds and 7.7 Hz. Baseline
correction applied from time point -0.5 until time point zero.

Finally, note that these methods that are commonly used in the M/EEG data analysis comprise a
thoughtfully data pre-processing as well as a manual intervention requiring domain knowledge to
identify both artifacts and evoked and induced responses. As the proposed method in this paper is
composed of a unified pipeline, it is a significant gain. Indeed, DriPP is able to automatically isolate
artifacts without prior removal of artifacts using ICA, as well as capture the diversity of latencies
corresponding to induced responses.

Regarding the statistical significance of the link between a stimulus and a neural pattern, one can
consider performing a statistical test, where one wishes to reject the null hypothesis of independence.
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atomid atom type p-value auditory p-value visual

0 heartbeat  2.25 x 10~1 1.19 x 107!
1 eye-blink  5.85 x 1071 8.48 x 101
2 auditory  2.31 x 10797 6.31 x 107!
6 visual 7.78 x 1071 5.12 x 10750

Table 1: On MNE sample dataset, statistical univariate Student t-test, Hy: independence between an
atom and the stimulus (auditory or visual). The atom ids correspond to the ones presented in Figure 4.

We have performed a statistical test using a student t-test to check if the mean activation probability
on [a, b] segments is the same as the mean estimated on the baseline [0, 7] \ U, [t; + a,t; + b]. We
present the results of the performed test in Table 1. We can clearly see that both artifacts (heartbeat
and eye-blink) are not linked to stimuli while neural responses are linked to related stimuli (p-values
are very small). We would like to stress that while this test is interesting, it is much more dependent
on the selection of the support interval [a, b] than the proposed method. Moreover, this test does
not allow to assess the latency of the responses, and whether the atom is an induced response or an
evoked one.

A.6 EXPERIMENTS ON MNE SOMATO DATASET

We present in this section extra results obtained on the real dataset somato, that are complementary
of Figure 5. Figure A.10 shows 3 atoms that correspond all to a p-wave located in the secondary
somatosensory region (S2), with three different shapes of kernels in their estimated intensity functions.

A.7 EXPERIMENTS ON CAM-CAN DATASET

The Cam-CAN dataset contains data of M/EEG recordings of 643 human subjects submitted to audio
and visual stimuli. In this experiment, 120 bimodal audio/visual trials and eight unimodal trials
— included to discourage strategic responding to one modality (four visual only and four auditory
only) — are presented to each subject. For each bimodal trial, participants see two checkerboards
presented to the left and right of a central fixation (34 milliseconds duration) and simultaneously hear
a 300 milliseconds binaural tone at one of three frequencies (300, 600, or 1200 Hz, equal numbers of
trials pseudorandomly ordered). For unimodal trials, participants either only hear a tone or see the
checkerboards. For each trial, participants respond by pressing a button with their right index finger
if they hear or see any stimuli (Shafto et al., 2014). For each subject, the experiment lasts less than
4 min.

The signals are pre-processed using low-pass filtering at 125 Hz to remove slow drifts in the
data, and are resampled to 150 Hz to limit the atom size in the CDL. CDL is computed using
alphacsc (Dupré la Tour et al., 2018) with the GreedyCDL method. Twenty atoms of duration
0.5 s are extracted from the signals. The extracted atoms’activations are binarized and, similarly as
previous experiments, the events time are shifted to make them correspond to the peak amplitude time
in the atom. Then, for every atom, the intensity function is estimated using the EM-based algorithm
with 200 iterations and the "smart start" initialization strategy. Kernels’ truncation values are set at
[0s;0.9s]. Two drivers per atom are considered. The first driver contains timestamps of all bimodal
trials (all frequencies combined) with in addition the 4 auditory unimodal stimuli (denoted cat chO).
The second driver is similar to the first one, but instead of the auditory unimodal stimuli, it contains
the 4 visual unimodal stimuli (denoted catchl).

This experiment is performed for 3 subjects, for each one we plot the 5 atoms that have the highest
ratio «/ i, so that we automatically exhibit atoms that are highly linked to the presented stimuli.
Similarly as results presented in Section 4, we plot the spatial and temporal representation of each
atom, as well as the two learned intensity functions that we plot "at kernel". Results are presented on
Figure A.11, Figure A.12 and Figure A.13.
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Figure A.10: Spatial and temporal patterns of 3 p-wave atoms from somato dataset, alongside with
their respective estimated intensity functions. Below, in order to provide further information, are the
corresponding brain locations for each atom obtained with dipole fitting.

First, we can observe that, as for experiments on sample and somato datasets, we recover the heartbeat
artifact (atom O in Figure A.12) as well as the eye-blink artifact (atoms O in Figure A.11 and in
Figure A.13). Because of the paradigm of the experiment, and in particular the instructions given to
the subjects — that is, to press a button after every stimulus, the majority of them being visual —, it is
not surprising if the eye blink artifact is slightly linked to the stimuli. Indeed, it is often observed in
such experiments — where there is no designated time to blink — that the subject "allows" themself to
blink after the visual stimulus.

As the majority of the presented stimuli are a combination of visual and auditory, the CDL model
struggles to separate the two corresponding neural responses. Hence, that is why it can be observed
that most of the first atoms reported exhibit a mixture between auditory and visual response in their
topographies (first row). However, one can observe that for some such atoms, DriPP learned intensity
is able to indicate what is the main contributing stimulus in the apparition of the atom. For instance,
for atom 10 in Figure A.11, the auditory stimulus is the main responsible stimulus of the presence of
this atom, despite this latter presenting a mixture of both neural responses. A similar analysis can be
made for atom 1 in Figure A.12, but this time for the auditory stimulus.
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Figure A.11: Spatial and temporal patterns of the 5 atoms from Cam-CAN dataset subject CC620264,
a 76.33-year-old female, and their respective estimated intensity functions following an audiovisual
stimulus (cue at time = 0 s). Atoms are ordered by their bigger ratio o/ .
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Figure A.12: Spatial and temporal patterns of the 5 atoms from Cam-CAN dataset subject CC520597,
a 64.25-year-old male, and their respective estimated intensity functions following an audiovisual
stimulus (cue at time = 0 s). Atoms are ordered by their bigger ratio o/ .
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Figure A.13: Spatial and temporal patterns of the 5 atoms from Cam-CAN dataset subject CC723395,
a 86.08-year-old female, and their respective estimated intensity functions following an audiovisual
stimulus (cue at time = 0 s). Atoms are ordered by their bigger ratio «/ .
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