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Abstract

Question answering over heterogeneous data001
requires reasoning over diverse sources of data,002
which is challenging due to the large scale of003
information and organic coupling of hetero-004
geneous data. Various approaches have been005
proposed to address these challenges. One006
approach involves training specialized retriev-007
ers to select relevant information, thereby re-008
ducing the input length. Another approach is009
to transform diverse modalities of data into010
a single modality, simplifying the task diffi-011
culty and enabling more straightforward pro-012
cessing. In this paper, we propose HPROPRO ,013
a novel program-based prompting framework014
for the hybrid question answering task. HPRO-015
PRO follows the code generation and execution016
paradigm. In addition, HPROPRO integrates017
various functions to tackle the hybrid reason-018
ing scenario. Specifically, HPROPRO contains019
function declaration and function implemen-020
tation to perform hybrid information-seeking021
over data from various sources and modali-022
ties, which enables reasoning over such data023
without training specialized retrievers or per-024
forming modal transformations. Experimental025
results on two typical hybrid question answer-026
ing benchmarks HybridQA and MultiModalQA027
demonstrate the effectiveness of HPROPRO : it028
surpasses all baseline systems and achieves the029
best performances in the few-shot settings on030
both datasets.031

1 Introduction032

Question answering systems (Pasupat and Liang,033

2015; Rajpurkar et al., 2016; Goyal et al., 2017)034

have attracted significant attention and made con-035

siderable progress in recent years. However, real-036

world data often exists in diverse formats and orig-037

inates from multiple sources. Consequently, re-038

searchers turn their focus to the hybrid question039

answering (HQA) task (Chen et al., 2020b; Talmor040

et al., 2020), which necessitates mixed reasoning041

across various types of data. The HQA task is042

Passages 
1、 Atchison, Topeka and Santa Fe Railway reached 
the Kansas-Colorado border in 1873 and Pueblo, 
Colorado, in 1876. 
2、 The two lines of Union Pacific Railroad were 
joined together at Promontory Summit, Utah on May 
10, 1869. 
...

Question
Where does the original owner's railroad of 

the shield-shaped GE C30-7 intersect with the 
Central Pacific Railroad?

Table

Reasoning with Program
while scan over column "Railroad":

if the railroad in hyperlink has a "shield-shaped 
logo":

return information in hyperlink "where does the 
railroad meet the Central Pacific Railroad?"

Railroad Quantity
Atchison, Topeka and Santa Fe Railway 157

Louisville and Nashville Railroad 44
Seaboard Coast Line Railroad 51

Union Pacific Railroad 140
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Figure 1: Example of hybrid question answering task
with the corresponding program.

challenging due to the vast amount of information 043

and the organic coupling of heterogeneous data 044

sources. Reasoning over such diverse data requires 045

the ability to understand multiple data types simul- 046

taneously. For instance, as depicted in Figure 1, 047

the model must engage in reasoning over both the 048

table and the extensive passages and images linked 049

in hyperlinks to make accurate predictions. 050

To tackle these challenges, recent approaches 051

focus on training domain-specific models to re- 052

trieve or rank elements such as table rows, pas- 053

sages, or images, selecting the most relevant ones to 054

enhance the subsequent reasoning process (Eisen- 055

schlos et al., 2021; Kumar et al., 2021; Lei et al., 056

2023). Since real-world heterogeneous data is vast 057

and constantly updated, even if these approaches 058
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demonstrate promising performance on their fo-059

cused datasets, their applicability to such intricate060

data is still limited. Furthermore, some existing061

approaches tend to transform diverse modalities062

of data into a single modality, such as image cap-063

tioning (Cheng et al., 2022; Liu et al., 2023), or064

table-to-text generation (Li et al., 2021), to reduce065

the task difficulty. However, such approaches are066

constrained by the performance of modal transfor-067

mation models, which often result in the loss of068

information. In a word, these approaches highly069

rely on data distribution, and the complexity of real-070

world heterogeneous data makes them exorbitant.071

In contrast to previous approaches, we argue that072

the solution of solving the HQA task should be073

agnostic to data distribution. Consequently, we074

advocate for an optimal solution devising a proce-075

dure for determining how to find an answer, rather076

than merely generating the answer itself. Noticing077

that the program could elucidate the reasoning pro-078

cess employed to arrive at the answer (as depicted079

in Figure 1), in the current era of large language080

models (LLMs), leveraging a program can serve081

as an advantageous solution since LLMs are an082

excellent program generator. Moreover, the pro-083

cess of program generation necessitates the incor-084

poration of various functions into the program, en-085

abling information-seeking across diverse sources086

and modalities of data.087

Based on the aforementioned considerations,088

in this paper, we introduce a novel program-089

based prompting framework HPROPRO (Hybrid090

Program-Based Prompting) for HQA task. HPRO-091

PRO considers the solution as a process of code092

generation and execution, integrating external cus-093

tomized functions under the few-shot setting1.094

To facilitate the utilization of customized func-095

tions, HPROPRO incorporates two key components:096

Function Declaration during the code generation097

phase and Function Implementation during the098

execution phase, which is shown in Figure 2. Dur-099

ing the function declaration stage, HPROPRO de-100

fines the function name and formal parameters,101

utilizing them as prompts to generate code. Sub-102

sequently, in the function implementation stage,103

HPROPRO implements the declared functions, serv-104

ing for the direct execution of the generated code.105

By defining different functions, HPROPRO can sup-106

port reasoning over data from various modalities,107

1In this work, we use Python code as the carrier of the
program.

making it a flexible and scalable framework. Im- 108

portantly, HPROPRO eliminates the need to convert 109

different modalities of data into a single modality 110

beforehand. Instead, it acquires information within 111

the origin modal by the functions themselves. To 112

the best of our knowledge, HPROPRO is the first 113

work to explore the power of LLMs in handling het- 114

erogeneous data without requiring domain-specific 115

retrieval or modal transformation. Experiments 116

demonstrate that HPROPRO significantly outper- 117

forms previous methods. 118

In summary, our contributions are as follows: 119

• We introduce HPROPRO , a program-based 120

prompting framework that enables reason- 121

ing over heterogeneous data without domain- 122

specific retrieval and modal transformation. 123

• We implement a few-shot code generation and 124

execution pipeline, calling various functions 125

by function declaration and implementation to 126

perform information-seeking across data from 127

different sources and modalities. 128

• Experiments show the effectiveness that 129

HPROPRO achieves the best performances 130

under the few-shot settings on HybridQA 131

(Chen et al., 2020b) and achieves state-of-the- 132

art performances under all settings on Multi- 133

ModalQA (Talmor et al., 2020). 134

2 Method 135

2.1 HPROPRO Framework 136

Task Formulation In this paper, our focus is 137

on the task of hybrid question answering, which 138

involves answering questions based on heteroge- 139

neous information sources such as tables, text, and 140

images. The objective is to provide accurate an- 141

swers to questions based on the given heteroge- 142

neous data. Figure 2 provides the comparison be- 143

tween retrieval-based methods and our proposed 144

approach HPROPRO . Similar to existing program- 145

based prompting approaches, HPROPRO follows 146

a paradigm that involves generating code and ex- 147

ecuting it to obtain the final answer. Unlike the 148

previous approaches with a separate retriever, we 149

deal with the input data with external functions 150

but not the retriever module. As a result, we in- 151

troduce two key components: function declaration 152

and function implementation, which are required 153

during the code generation stage and code execu- 154

tion stage, respectively. In the following sections, 155
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Passages
-------

Passages
-------

def solve(table):
    result = ‘’
    for index, row in table.iterrows():
        if check(extract_info(row['Work'], 'Is this song inedit?'), 'Yes', '==‘):
            result = extract_info(row['Work'], 'To whom was this song dedicated?‘)
            if result:
                return result
    return result

Function Declaration

Query and Information Source

Function Implementation

Code Generation

Code Execution

Year Winner Work

2000 Santana featuring Corazón Espinado

2001 Alejandro Sanz El Alma al Aire

2002 Alejandro Sanz Y Sólo Se Me Ocurre

2003 Juanes Es Por Ti

Question: To whom was this inedit
song dedicated?

Function Call Result Return

defxxx check(obj1, obj2, op):
    # check if the two objs are the 
same
    xxx    
    return result

def extract_info(cell, query):
    # obtain the passages and get 
the answer to the query
    xxx
    return result

result = solve(table)

HProPro

Retrieval-based
Baseline

Table

Question: To whom was this inedit
             song dedicated?

Retriever Alejandro Snchez Pizarro, better known 
as Alejandro Sanz(Spanish ...

Reading Model
Retrieved Top-k Passages

Answer: Manuela

prompt = """Read the table and write python 
code to answer the question. Sometimes 
answering questions requires extracting 
information in hyperlinks. We have defined 
following functions: 
1) If you want to extract information from the 
hyperlink passages, please use 
extract_info(cell, target information).
2) If you want to compare two objects, please 
use check(str1, str2, operation).
Table: {}
question: {}
""".format(table, question)
result = query_API(prompt)

Figure 2: Comparison of HPROPRO with previous retrieval-based methods.

we will delve into both parts of the framework and156

discuss their roles and functionalities.157

Function Declaration The function declaration158

process in HPROPRO serves the purpose of defin-159

ing appropriate functions that can be utilized during160

the code generation phase. During this stage, it is161

necessary to specify the function name and formal162

parameters. These declared functions are treated163

as input prompts for LLMs and are expected to be164

leveraged to generate code. In Figure 2, the func-165

tions with different highlight backgrounds on the166

left represent the declared functions. Each func-167

tion has a specific role, which is described briefly168

alongside the table and query as the input prompts.169

These prompts are then fed into LLMs to generate170

the corresponding code. The LLMs will attempt171

to utilize the declared functions to generate the de-172

sired code. By providing function declarations as173

prompts, HPROPRO enables the LLMs to have a174

better understanding of the expected structure and175

behavior of the code to be generated. This allows176

for more accurate and controllable code generation,177

ultimately facilitating the HQA task.178

Function Implementation The generated code179

contains formally defined functions, rendering it180

incapable of direct execution. Consequently, the181

process of function implementation aims to im-182

plement the declared functions to make the code183

able to be executed by off-the-shelf interpreters.184

As discussed in Section 1, functions are expected185

to interact with data from various sources. How-186

ever, conventional function structures cannot be187

accommodated in some scenarios, such as extract- 188

ing information over unstructured texts or images. 189

Therefore, we proceed with the initial implemen- 190

tation of the declared functions integrated with the 191

ability of LLMs to ensure that each function encom- 192

passes comprehensive functionality. Specifically, 193

to achieve this process, we pre-design function- 194

related prompts, which are expected to be fed into 195

LLMs when executing the generated code. 196

2.2 Function Instantiation 197

In this section, we introduce several functions and 198

elaborate on the declaration and implementation of 199

each function to support HPROPRO . 200

Extract information from external source 201

To facilitate reasoning across heterogeneous 202

information sources, we introduce the func- 203

tion "extract_info". Since data from these 204

sources is often unstructured, the process of 205

extracting information can be likened to a 206

reading comprehension task. In the func- 207

tion declaration, "extract_info" is defined as 208

"extract_info(cell, target_information)". 209

Here, "cell" refers to a specific cell in a table, 210

and "target_information" represents the infor- 211

mation that is required to be extracted, as shown 212

in Figure 3. The function’s purpose is to extract 213

the relevant information from the paragraph or 214

image associated with the "cell" based on the 215

specified "target_information". It should return 216

the extracted information as a textual string. All 217

the necessary information, including the function 218

name and its parameters, will be part of the gen- 219

3



def solve(table) -> str:

for index, row in table.iterrows():

if 'Leitner-Poma' in row['make'][0] and \

check(convert_datetime(row['Ride time'][0]).minute, 5, '<‘):

return row['Year constructed'][0]

return 'NOT_AVAILABLE'

Traceback (most recent call last):
File ”xxx”, line 60, in execute
NameError: name ‘xxx' is not defined.

Code

Traceback Information

Code Refinement Prompt

def solve(table) -> str:

for index, row in table.iterrows():

if 'Leitner-Poma' in row['make'][0] and \

float(row['Ride time'][0].replace(' min', '')) < 5:

return row['Year constructed'][0]

return 'NOT_AVAILABLE'

Refined Code

Obj1

The Capital of China

Obj2

Beijing

==Operator

Check Prompt

Luis Fonsi album: This album contains an inedit song , Y Sólo Se
                  Me Ocurre Amarte dedicated to his daughter Manuela.

Cell Linked
Information

Daughter
Target

Information

Extract info Prompt

LLM

Extract info Result

Check Result

Code Refinement Result

Figure 3: Details of the process of the defined functions and the code refinement.

erated code and are expected to be generated by220

LLMs. During the function implementation pro-221

cess, we utilize an automatically constructed dic-222

tionary to locate the corresponding paragraphs or223

images based on the provided cell. Subsequently,224

we construct prompts to invoke LLMs based on225

the data types, which can be categorized into text-226

based extraction and image-based extraction. The227

detailed prompts are introduced in Appendix A.228

Compare two pieces of information Code of-229

ten includes rich comparisons between two objects230

using operators like ">", "<", or "==". However,231

when dealing with heterogeneous data, the infor-232

mation extracted from various sources may not233

adhere to a strict format. The form of informa-234

tion obtained from functions like "extract_info"235

cannot be predetermined. As a result, the tradi-236

tional comparison operators cannot be directly ap-237

plied to compare two objects, such as comparing238

the values ”20, 000” and "ten thousand", or com-239

paring "Beijing" and "the capital of China". To240

address this issue, we propose a more flexible func-241

tion called "check". In the function declaration242

process, "check" can be defined as "check(obj1,243

obj2, op)". As shown in Figure 3, "obj1" and244

"obj2" are two strings representing pieces of infor-245

mation. These strings can be the contents of table246

cells, information obtained from other functions,247

or directly generated by LLMs based on natural248

language questions. The "op" parameter represents249

one of three operators: ">", "<", or "==". The pur-250

pose of the "check" function is to compare whether251

"obj1" and "obj2" are semantically consistent un-252

der the specified "op" operator. In other words, it253

evaluates if the semantic relationship between the254

two objects aligns with the given operator. Similar255

to the "extract_info" function, all the relevant 256

information, including the function name and its 257

actual parameters, will be part of the generated 258

code and are expected to be generated by LLMs. 259

During the function implementation process, we 260

provide some few-shot cases as prompts to guide 261

LLMs on how to compare the objects. The detailed 262

prompts are introduced in Appendix A. 263

2.3 Code Refinement 264

In HPROPRO , the final answer is obtained by exe- 265

cuting the generated code using a standard Python 266

interpreter. Any error in the code will terminate 267

the execution process. However, since the model 268

cannot predict the results returned by each function 269

during code generation, there is a possibility that 270

the model may generate code with mismatched pro- 271

cessing methods. This can lead to execution errors 272

or empty results when running the code. Since ini- 273

tial outputs from LLMs can be improved through 274

iterative feedback and refinement (Madaan et al., 275

2023), we perform code refinement by re-calling 276

the LLMs and incorporating error codes and trace- 277

back information into the prompts to generate new 278

code. Figure 3 illustrates the prompts used for code 279

refinement. By providing the above information to 280

LLMs, the models are expected to reconsider the 281

code generation process and generate new code that 282

can alleviate the issues encountered. The detailed 283

prompts are introduced in Appendix A. 284

2.4 Query Simplification 285

In the HQA task, code generation is often per- 286

formed based on the input of a table and a question 287

since including all relevant data as input would 288

result in an extensive input length. However, the 289

reasoning process often involves linked passages 290
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Program Title Original 
Voice

Iron Man: Armored 
Adventures Anna Cummer

Kick Buttowski: 
Suburban Daredevil Emily Osment

Question: Among animated TV shows, who was 
the original voice actor on the show whose 
poster features a character in yellow gloves?

Retriever Query Simplification

Simplified Question: Among animated TV 
shows, who was the original voice actor 
on Kick Buttowski: Suburban Daredevil?

Code Generation 
and Execution

Figure 4: Schematic diagram of query simplification process.

or images, which are not directly visible during the291

code generation phase. This increases the burden292

of the code generation process. To address this is-293

sue, we employ query simplification to simplify the294

question and establish links between the question295

and the table cells before conducting code genera-296

tion. Figure 4 illustrates the schematic diagram of297

the query simplification process. Taking "Among298

animated TV shows, who was the original voice299

actor on the show whose poster features a charac-300

ter in yellow gloves" as an example, we utilize a301

general retriever2 initially to retrieve relevant infor-302

mation from passages or images in the hyperlinks.303

Query simplification involves using LLMs that take304

as input the retrieved passage or image, the origi-305

nal question, and the table. The goal is to replace306

the span in the question (such as "the show whose307

poster features a character in yellow gloves") with308

the corresponding content in the table cell (such309

as "Kick Buttowski: Suburban Daredevil"). The310

detailed prompts are introduced in Appendix A.311

3 Experiments312

3.1 Datasets313

We conduct experiments on two typical HQA314

datasets: HybridQA(Chen et al., 2020b) and Mul-315

tiModalQA(Talmor et al., 2020). Both datasets316

involve the task of mixed reasoning over diverse317

sources of data. HybridQA necessitates reasoning318

over hybrid contexts that consist of both tables and319

texts. On the other hand, MultiModalQA requires320

reasoning over tables, texts, and images. To eval-321

uate HPROPRO , we follow the official evaluation322

metrics provided by the datasets. We report the323

exact match and F1 score on both HybridQA and324

MultiModalQA. For more detailed statistics about325

the datasets, please refer to Appendix B.326

2The general retriever stands for either a naive retriever or
a neural retriever trained on a general corpus, rather than a
customized retriever trained on a specific task.

3.2 Experimental Settings 327

In all our experiments, we utilize different ver- 328

sions of the GPT language models for different 329

components. Specifically, we use gpt-4-0613 330

as the backbone model for code generation, code 331

refinement, and query simplification. For imple- 332

menting the function "extract_info", we employ 333

gpt-4-0613 and gpt-4-vision-preview to ex- 334

tract information in the passages and images respec- 335

tively. For implementing the function "check", we 336

employ gpt-3.5-turbo. In the process of query 337

simplification, for the HybridQA task, we employ a 338

hybrid retriever that combines TF-IDF and longest- 339

substring matching (Chen et al., 2020b) as the re- 340

triever. For the MultiModalQA task, we utilize sen- 341

tence transformers (Reimers and Gurevych, 2020) 342

as the retriever respectively. The temperature pa- 343

rameter for all models is set to 0. All few-shot ex- 344

periments for code generation are in the settings of 345

4 shots. Furthermore, in the oracle settings of Mul- 346

tiModalQA, where the golden passage and image 347

are provided, we remove the query simplification 348

module. This allows us to directly feed all relevant 349

data to the language models without encountering 350

issues related to excessive input length. 351

3.3 Baseline Systems 352

We compare HPROPRO to various methods on Hy- 353

bridQA and MultiModalQA, which can be mainly 354

divided into with(w.) and without(w.o.) fine-tuning 355

approaches. For HybridQA, approaches w. fine- 356

tuning stand for the method that trained on the 357

training set, including MAFiD (Lee et al., 2023), 358

S3HQA (Lei et al., 2023), etc, and approaches 359

w.o. fine-tuning include the Unsupervised-QG (Pan 360

et al., 2021) and End-to-End QA with retriever 361

on GPT-4. For MultiModalQA, baseline meth- 362

ods consist of approaches w. fine-tuning including 363

SKURG(Yang et al., 2023), PReasM-Large(Yoran 364

et al., 2022), etc, and approaches w.o. fine-tuning 365

including Binder(Cheng et al., 2022), MMHQA- 366

ICL (Liu et al., 2023), etc. 367
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Models

Table Passage Total

Dev Test Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Approaches w. Fine-tuning
HYBRIDER (Chen et al., 2020b) 54.3 61.4 56.2 63.3 39.1 45.7 37.5 44.4 44.0 50.7 43.8 50.6
DocHopper (Sun et al., 2021) – – – – – – – – 47.7 55.0 46.3 53.3
MuGER2 (Wang et al., 2022) 60.9 69.2 58.7 66.6 56.9 68.9 57.1 68.6 57.1 67.3 56.3 66.2
POINTR (Eisenschlos et al., 2021) 68.6 74.2 66.9 72.3 62.8 71.9 62.8 71.9 63.4 71.0 62.8 70.2
DEHG (Feng et al., 2022) – – – – – – – – 65.2 76.3 63.9 75.5
MITQA (Kumar et al., 2021) 68.1 73.3 68.5 74.4 66.7 75.6 64.3 73.3 65.5 72.7 64.3 71.9
MAFiD (Lee et al., 2023) 69.4 75.2 68.5 74.9 66.5 75.5 65.7 75.3 66.2 74.1 65.4 73.6
S3HQA (Lei et al., 2023) 70.3 75.3 70.6 76.3 69.9 78.2 68.7 77.8 68.4 75.3 67.9 75.5

Approaches w.o. Fine-tuning
Unsupervised-QG (Pan et al., 2021) – – – – – – – – 25.7 30.5 – –
GPT-4 End-to-End QA w. Retriever 50.0† 61.8† – – 11.1† 13.3† – – 24.5† 30.0† – –
HPROPRO 51.4† 55.9† 52.9 57.6 46.8† 54.4† 46.5 57.5 48.0† 54.6† 48.7 57.7

Table 1: Experimental results on HybridQA. † stands for running on 200 sampled cases from the validation set.

3.4 Main Results368

Results on HybridQA According to the results369

presented in Table 1, it is evident that HPRO-370

PRO outperforms all baseline systems among ap-371

proaches w.o. fine-tuning. GPT-4 End-to-End QA372

w. Retriever stands for leveraging GPT-4 to gen-373

erate answers directly along with a retriever. To374

conduct this experiment, we follow the retrieval375

approach proposed by Chen et al. (2020b). In com-376

parison to GPT-4 End-to-End QA w. Retriever,377

HPROPRO achieves more than a 20% improvement378

in both EM and F1 scores. This result demonstrates379

the effectiveness of HPROPRO compared with the380

approaches relied on retrievers. However, it is im-381

portant to note that HPROPRO still exhibits a sig-382

nificant performance gap when compared to the383

state-of-the-art approaches w. fine-tuning. We ar-384

gue that the main reason for this gap is that these385

methods are fully trained on the HybridQA dataset.386

These systems focus on domain-specific training,387

which includes training a retriever (Wang et al.,388

2022; Lei et al., 2023), ranker (Kumar et al., 2021),389

or reasoner (Eisenschlos et al., 2021; Lee et al.,390

2023). These domain-specific components may391

lack flexibility and generalization in handling di-392

verse scenarios.393

Results on MultiModalQA Table 2 summarizes394

the results obtained on the MultiModalQA dataset,395

where HPROPRO achieves state-of-the-art perfor-396

mances across all experimental settings. When397

considering systems w.o. fine-tuning, HPROPRO398

outperforms the previous system MMHQA-ICL by399

4.2% and 0.9% in terms of EM and F1 scores, re-400

spectively. In comparison to the baseline systems401

Binder and MMHQA-ICL, which utilize modal402

transformation modules to convert images into403

texts, HPROPRO employs various functions to di- 404

rectly extract information from different modali- 405

ties. This approach avoids information loss and is 406

more suitable for real-world scenarios involving 407

heterogeneous data. It is important to note that 408

the improvements achieved by HPROPRO are non- 409

trivial, considering that MMHQA-ICL leverages 410

domain-specific fine-tuned classifiers and retriev- 411

ers to obtain the type and relevant passages of each 412

question respectively, which heavily relies on the 413

distribution of the targeted benchmark. In contrast, 414

HPROPRO is performed without any supervised 415

signals from the training set, resulting in a more 416

universal approach. 417

In the oracle setting which golden passages 418

and images are provided as the input, HPROPRO 419

achieves comparable results to the previous state- 420

of-the-art system MMHQA-ICL in terms of EM. 421

Demonstrating that regardless of the retriever (only 422

focus on the reasoning part), the results prove that 423

their work highly relies on the retrievers to gain 424

the performances. Besides, compared to their ap- 425

proach, HPROPRO follows a code generation and 426

execution paradigm, which provides enhanced in- 427

terpretability and generalizability. 428

3.5 Ablation Study 429

Effect of the function "check" The function 430

"check" is designed to compare the semantic rela- 431

tions between two objects, offering greater flexibil- 432

ity compared to arithmetic operators such as ">", 433

"<", and "==". To demonstrate the effectiveness 434

of the "check" function, we conduct ablation stud- 435

ies by removing its definition in both the function 436

declaration and function implementation processes. 437

Table 3 presents the results of these ablation stud- 438
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Models EM F1

Approaches w. Fine-tuning
Implicit-Decomp (Talmor et al., 2020) 48.8 55.5
AutoRouting (Talmor et al., 2020) 42.1 49.5
SKURG (Yang et al., 2023) 59.4 63.8
PReasM-Large (Yoran et al., 2022) 59.0 65.5

Approaches w.o. Fine-tuning
Binder (Cheng et al., 2022) 51.0 57.1
MMHQA-ICL (Liu et al., 2023) 54.8 65.8
HPROPRO 59.0 66.7

Approaches in Oracle Setting
Binderoracle (Cheng et al., 2022) 58.1 64.5
MMHQA-ICLoracle (Liu et al., 2023) 65.0 75.9
HPROPRO 65.1 73.1

Table 2: Experimental results on MultiModalQA.

Models
HybridQA MultiModalQA

EM F1 EM F1

HPROPRO 48.0 54.6 56.0 62.8
– "check" 44.5 52.5 35.5 38.0
– Question Simplification 43.0 50.0 37.0 39.4
– Code Reflection 43.5 50.9 54.0 60.5

Table 3: Ablation studies on HybridQA and Multi-
ModalQA. All ablation studies are performed on 200
randomly sampled subsets from validation sets.

ies, highlighting the impact of the "check" func-439

tion. When the "check" function is removed, there440

is a noticeable drop of 3.5% and 2.1% points in441

terms of EM and F1 scores, respectively, in the442

HybridQA dataset. Moreover, the removal of the443

"check" function has an even more substantial im-444

pact on the MultiModalQA dataset. Specifically,445

the results drop by more than 20% for both EM and446

F1 scores. This is because constraints from images447

are weaker than those from passages since LLMs448

can copy spans from the passages as the answer,449

which improves the need for the "check" function450

in this set of experiments.451

Effect of query simplification The purpose of452

query simplification is to alleviate the burden of the453

code generation process by simplifying the ques-454

tion and establishing links between the question455

and the table cells. In Table 3, we present the ef-456

fectiveness of query simplification on both the Hy-457

bridQA and MultiModalQA datasets. When query458

simplification is removed, the results demonstrate459

a decrease of approximately 2% on the HybridQA460

dataset and a substantial drop of about 20% on461

the MultiModalQA dataset. These findings high-462

light the effectiveness of query simplification in463

the HQA task. It is important to note that the re-464

25.0%

11.5%

37.5%

26.0%

HybridQA

EM Not Match
Failed Information-Seeking

26.1%

5.7%

29.5%

38.7%

MultiModalQA

Execution Error
Wrong Predict Answer

Figure 5: Error percentage of HPROPRO on HybridQA
and MultiModalQA.

moval of the query simplification module leads to a 465

significant drop specifically in the MultiModalQA 466

dataset. We posit that this drop is due to the pres- 467

ence of passages and images that are necessary to 468

answer the question but are not linked in the table, 469

which couldn’t be accessed by the model from the 470

prompt. Therefore, performing query simplifica- 471

tion becomes crucial in handling such scenarios in 472

the MultiModalQA task. 473

Effect of code refinement The code refinement 474

module aims to enable LLMs to reconsider the code 475

generation process based on previous execution 476

traceback. In Table 3, we can observe the impact 477

of removing the code refinement module on both 478

the HybridQA and MultiModalQA datasets. When 479

the code refinement module is removed, there is 480

a noticeable decrease in performance. In the Hy- 481

bridQA dataset, the EM and F1 scores drop by 482

4.5% and 3.7% respectively. Similarly, in the Mul- 483

tiModalQA dataset, the EM and F1 scores drop 484

by 2.0% and 2.3% respectively. The drop in per- 485

formance demonstrates the effectiveness of the 486

code refinement module in HPROPRO . By en- 487

abling LLMs to refine their code generation pro- 488

cess based on previous execution errors, the code 489

refinement module plays a vital role in generating 490

accurate code, thereby enhancing the overall ability 491

of HPROPRO in the HQA task. 492

3.6 Error Analysis 493

We analyze the errors that occurred within ran- 494

domly selected subsets of 200 cases from the vali- 495

dation sets of HybridQA and MultiModalQA. Our 496

examination reveals that the main errors can be 497

classified into four distinct types, with the corre- 498

sponding percentages depicted in Figure 5. 499

The first type of error involves predicted answers 500

that possess similar meanings to the golden an- 501

swers but differ in their expressions (25.0% for 502
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HybridQA and 26.1% for MultiModalQA). For503

instance, an instance may present the predicted504

answer as "the Southeastern Conference (SEC)",505

while the correct answer is simply "Southeastern506

Conference". From a technological perspective, we507

contend that such cases have already been resolved,508

as the underlying code solution is entirely accurate.509

The second type of error observed is related to510

execution failure (11.5% for HybridQA and 5.7%511

for MultiModalQA). This error arises due to the in-512

herent complexity of the heterogeneous data, which513

lacks a standardized format and therefore cannot514

be effectively addressed using a uniform solution.515

The third type of error pertains to failures in516

the information-seeking from heterogeneous data517

sources (37.5% for HybridQA and 29.5% for518

MultiModalQA). These errors occur when the519

"extract_info" function fails to produce a valid520

result. This may be attributed to a mismatch be-521

tween the generated code and the expected solution522

for answering the given question, or it could be523

indicative of instability in the implementation of524

the "extract_info" function.525

The last type of error involves wrong predicted526

answers (26.0% for HybridQA and 38.7% for Mul-527

tiModalQA). Due to the similarity between con-528

tents in different columns, the model encounters529

difficulty in discerning the appropriate location530

to locate the answer when generating code solely531

based on the provided table. Addressing this chal-532

lenge remains a topic for future research.533

For the detailed visualization results of this anal-534

ysis, please refer to Appendix C.535

4 Related Work536

4.1 Hybrid Question Answering537

The first line of our related work introduces the538

HQA task, which focuses on answering questions539

that require reasoning over diverse information540

sources. Currently, HQA can be broadly catego-541

rized into three subtasks based on the nature of the542

information sources: table-text question answering543

(Chen et al., 2020b,a; Zhu et al., 2021), image-text544

question answering (Reddy et al., 2022; Singh et al.,545

2021), and table-image-text question answering546

(Hannan et al., 2020; Talmor et al., 2020). Numer-547

ous approaches have been explored for reasoning548

over heterogeneous data in the context of HQA.549

Many of these methods primarily focus on super-550

vised fine-tuning over specific benchmarks. This551

includes training dedicated retrievers (Wang et al.,552

2022; Kumar et al., 2021; Lei et al., 2023), rankers 553

(Kumar et al., 2021), reasoners (Wang et al., 2022; 554

Kumar et al., 2021; Eisenschlos et al., 2021; Lee 555

et al., 2023; Lei et al., 2023), or transforming dif- 556

ferent modalities of data into a unified modality 557

(Cheng et al., 2022; Liu et al., 2023; Li et al., 2021). 558

In contrast to existing works, HPROPRO performs 559

reasoning over heterogeneous data without relying 560

on domain-specific retriever and modal transforma- 561

tion modules. Instead, it integrates various func- 562

tions to facilitate information-seeking across data 563

from different sources and modalities. 564

4.2 Program-based Prompting 565

The second line of our related work focuses 566

on the program-based prompting strategy, with 567

two closely related works: Program-of-Thought- 568

Prompting (Chen et al., 2022; Gao et al., 2023) and 569

Binder (Cheng et al., 2022). Program-of-Thought- 570

Prompting (Chen et al., 2022; Gao et al., 2023) 571

generates code and executes it using an interpreter. 572

However, their approach is not designed to han- 573

dle heterogeneous data. In contrast, HPROPRO 574

integrates function declaration and implementa- 575

tion to specify different functions, enabling ef- 576

fective handling of heterogeneous data. On the 577

other hand, Binder (Cheng et al., 2022) converts 578

images into passages and pre-retrieves relevant pas- 579

sages. These passages, along with the table and 580

question, are then fed into LLMs to generate SQL 581

and Python code for solving the question. In com- 582

parison, HPROPRO does not rely on a modal trans- 583

formation module or a retriever. Instead, it utilizes 584

various functions to directly interact with data from 585

different sources and modalities. 586

5 Conclusion 587

In this work, we propose HPROPRO , a novel 588

program-based prompting framework for HQA 589

tasks, which does not require domain-specific re- 590

triever and modal transformation, but integrates 591

various functions to interact with heterogeneous 592

data instead. Experimental results on two typical 593

HQA benchmarks HybridQA and MultiModalQA 594

show the effectiveness of HPROPRO that HPRO- 595

PRO achieves the best performances under the few- 596

shot settings. For future work, we hope to further 597

utilize the coding capabilities of the LLMs, allow- 598

ing the model to judge and self-create more cus- 599

tomized functions based on different scenarios. 600
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Limitations601

The main limitation of this paper is that the perfor-602

mance of HPROPRO relies on the abilities of LLMs,603

which vary according to the different choices of604

LLMs. Model updates and server status may affect605

our experimental results. In addition, the existing606

benchmarks only focus on heterogeneous data con-607

taining tables, passages, and images. More types608

of data including knowledge graphs and charts are609

expected to be explored in the future.610

Ethics Statement611

In this paper, we propose HPROPRO , a program-612

based prompting framework for the HQA task. We613

conduct experiments on two benchmarks, namely,614

HybridQA and MultiModalQA. Both datasets are615

free and open for research use, which means no616

ethics issues.617
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A Detail Prompts of of HPROPRO 773

The system prompt and detail prompts of the func- 774

tion "extract_info", function "check", code re- 775

finement, and query simplification are shown in 776

Figure 7, Figure 8, Figure 9 and Figure 10. 777

B Data Statistics for Each Dataset 778

The statistics of HybridQA and MultiModalQA are 779

presented in Table 4 and Table 5. 780

C Error Analysis 781

The error analysis results are presented in Figure 6. 782

EXTRACT_INFO_PROMPT = """Read the following 
passages and find the answer from the passage 
according to the given query.
Passage: [CELL_CONTENT]
[PASSAGES]
Query: [QUERY]
Let's find the Answer. The answer should be as 
short as possible, like a word, a number or a shot 
span. If the answer is not available in the 
passage, the information should be marked as 
NOT_AVAILABLE. 
Please return the information in this format:
"So my answer is xxxx.”

Your answer:"""

CHECK_PROMPT = """Please verify whether the 
semantics of the two strings meet the given 
conditions.
For example:
Q: ten > 9
Check: True
Q: 21 Nov, 2030 < 09-31-2021
Check: False
Q: Beijing == The capital of China
Check: True
Q: 2022/10/01 == Oct 1st, 2022
Check: True

Q: [STRING1] [REL] [STRING2] 
Check:"""

SYSTEM_PROMPT = """Read the table and write python 
code to answer the given question. Note that 
sometimes answering questions requires extracting 
information in the hyperlinks. [HYPER] means these 
are hyperlinks in the cell. Assume we has defined 
the following functions to extract information from 
hyperlink text. You can use these functions 
directly as black box. You don't need to process 
the table. 

Attention: 
1. The given table is in the pandas DataFrame
format.
2. The table has already contained the hyperlink in 
the cell. 
a. If you want GET or SORT the content in the cell, 
you MUST use cell[0]. All data in cell[0] are 
string.
b. If you want get the hyperlink string in the cell, 
you use cell[1]
3. If you want to extract information from the 
hyperlink passages, you can use the function 
extract_info(cell[1], target information) defined 
above.
4. If you want to compare two objects, you can use 
the function check(str1, str2, operation) defined 
above, don't use '==' or '<' or '>'.
"""

SYSTEM_PROMPT = """Read the table and write python 
code to answer the question. Sometimes answering 
questions requires extracting information in 
hyperlinks. We have defined following functions: 
1) If you want to extract information from the 
hyperlink passages, please use extract_info(cell, 
target information).
2) If you want to compare two objects, please use 
check(str1, str2, operation).
Table: {}
question: {}
"""

Figure 6: Details of the system prompt.

EXTRACT_INFO_PROMPT = """Read the following 
passages and find the answer from the passage 
according to the given query.
Passage: [CELL_CONTENT]
[PASSAGES]
Query: [QUERY]
Let's find the Answer. The answer should be as 
short as possible, like a word, a number or a shot 
span. If the answer is not available in the 
passage, the information should be marked as 
NOT_AVAILABLE. 
Please return the information in this format:
"So my answer is xxxx.”

Your answer:"""

Figure 7: Details of the prompt of "extract_info"
function.
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CHECK_PROMPT = """Please verify whether the 
semantics of the two strings meet the given 
conditions.
For example:
Q: ten > 9
Check: True
Q: 21 Nov, 2030 < 09-31-2021
Check: False
Q: Beijing == The capital of China
Check: True
Q: 2022/10/01 == Oct 1st, 2022
Check: True

Q: [STRING1] [REL] [STRING2] 
Check:"""

Figure 8: Details of the prompt of "check" function.

CODE_REFINEMENT_PROMPT = """There is something 
wrong in your code, that I can't run it. 
Orginal Prompt: [PROMPT]
Generated Code: [CODE]
Execution Error Information: [TRACEBACK]
Can you generate the code again and fix it?
Your answer:"""

Figure 9: Details of the prompt of the code refinement
process.

CODE_REFINEMENT_PROMPT = """There is something 
wrong in your code, that I can't run it. 
Orginal Prompt: [PROMPT]
Generated Code: [CODE]
Execution Error Information: [TRACEBACK]
Can you generate the code again and fix it?
Your answer:"""

CODE_REFINEMENT_PROMPT = """There is something 
wrong in your code, that I can't run it. 
Orginal Prompt: [PROMPT]
Generated Code: [CODE]
Execution Error Information: [TRACEBACK]
Can you generate the code again and fix it?
Your answer:"""

QUERY_SIMPLIFY_PROMPT = """I have a question:
[QUERY]
I want to solve it step by step. Now I get some 
information:
[KNOWLEDGE]
If I substitute this information into my question 
(only replace the corresponding entity in the 
question), what will my question be ?
Attention: You must make sure that you replace the 
completely same part, no more or less.
Only give me the question without any explanation 
or description."""

Figure 10: Details of the prompt of the query simplifi-
cation process.

Split Train Dev Test Total

In-Passage 35,215 2,025 20,45 39,285 (56.4%)
In-Table 26,803 1,349 1,346 29,498 (42.3%)
Computed 664 92 72 828 (1.1%)
Total 62,682 3,466 3,463 69,611

Table 4: Data Statistics for HybridQA.

Measurement Value
# Distinct Questions 29,918
Train multimodal questions 34.6%
Dev.+test multimodal questions 40.1%
Train compositional questions 58.8%
Dev.+test compositional questions 62.3%
Average question length (words) 18.2
Average # of answers per question 1.16
List answers 7.4%
List answers per intermediate question 18.9%
Average answer length (words) 2.1
# of distinct words in questions 49,649
# of distinct words in answers 20,820
# of distinct context tables 11,022

Table 5: Data statistics for MultiModalQA.
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Type Question Generated Code Result Comparison

EM Not Match
What conference does
the team won in 2016
belong to?

def solve(table) -> str:
for index, row in table.iterrows():

if '2016' in row['Years won']:
return extract_info(row['Team'], 

'What conference does this team belong to?’)

The predicted answer is "the Southeastern Con-
ference ( SEC )", while the golden answer is
"Southeastern Conference". The code has the
completely correct solution but has different
expressions with the golden answer.

Execution Error
Who was the older per-
son involved in writing
the book from 2000?

def solve(table) -> str:
older_author, older_age = None, 0
for index, row in table.iterrows():

if check(row['Year'], '2000', '==‘):
for author in row['Author'].split(',’):

age = int(extract_info(author, 'age’))
if check(older_age, age, '<'): 

older_age,older_author=age,author
return older_author

The golden answer is "Sally Jenkins", while
the existence of function "split" and "int"
make the code fail to execute since the hetero-
geneous data is complex.

Failed Informa-
tion Seeking

What shipbuilder de-
signed the ship that the
delivery voyage was the
longest by a patrol boat?

def solve(table) -> str:
for index, row in table.iterrows():

if 'HMAS Fremantle' in row['Name'] 
and 'patrol boat' in row['Type']:

return extract_info(row['Name'], 
'Who is the shipbuilder?’)

The golden answer is "Brooke Marine", while
the code cannot locate the answer since the
"extract_info" returns "None".

Wrong Predicted
Answer

At which air force base
did the pilot who gradu-
ated in 1968 serve ?

def solve(table) -> str:
for index, row in table.iterrows():

if check(row['ClassYear'],'1968','==‘):
result = extract_info(row['Notability'], 

'At which air force base did the pilot 
serve?’)

return result

The prediction answer is "Hurlburt Field",
while the golden answer is "Hickam". The
model cannot distinguish where to find the an-
swer between the columns "ClassYear" and
"Notability" since the information in the two
columns is similar.

Table 6: Main error types of HPROPRO in HybridQA and MultiModalQA.
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