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Abstract

Unsupervised domain adaptation aims to learn a model
generalizing on target domain given labeled source data
and unlabeled target data. However, source data sometimes
may be unavailable when considering data privacy and de-
centralized learning architecture. In this paper, we address
the source-free unsupervised domain adaptation problem
where only the trained source model and unlabeled target
data are given. To this end, we propose an Augmented Self-
Labeling (ASL) method jointly optimizing model and labels
for target data starting from the source model. This includes
two alternating steps, where augmented self-labeling im-
proves pseudo-labels via solving an optimal transport prob-
lem with Sinkhorn-Knopp algorithm, and model re-training
trains the model with the supervision of improved pseudo-
labels. We further introduce model regularization terms to
improve the model re-training. Experiments show that our
method can achieve comparable or better results than the
state-of-the-art methods on the standard benchmarks.

1. Introduction
Deep learning has achieved great success in various ap-

plications and areas with the help of large amount of labeled
data. However, annotating category labels, bounding boxes
or even masks for different applications requires expensive
labour cost and sometimes expert knowledge. To mitigate
the reliance on manual annotations, unsupervised domain
adaptation aims at adapting the model trained on a similar
source domain to the unlabeled target domain.

Traditional unsupervised domain adaptation methods
tackle the setting that labeled source data and unlabeled tar-
get data are available when adapting to target domain. Most
methods seek to improve the model generalization ability on
target domain by reducing the distribution discrepancy be-
tween domains according to the theoretical analysis in [1].
One prevailing paradigm is to learn domain-invariant rep-
resentations by minimizing cross-domain feature discrep-
ancy with certain metric. For example, Maximum Mean
Discrepancy (MMD) [13] measures the feature discrepancy

between two domains and lots of works [23, 25] align fea-
tures by minimizing MMD in different layers. Inspired by
the Generative Adversarial Networks (GAN) [11], many
works [9, 36, 24, 15, 35] align domain distributions in dif-
ferent levels with the help of domain discriminators. Other
works [8, 32, 40] utilize semi-supervised learning methods
for model regularization or self-training with pseudo-labels.

However, source data might be inaccessible when adapt-
ing to target domain. This is possible in some privacy-
sensitive applications. For example, federated learning col-
laboratively trains a model using decentralized data on mo-
bile phones without fetching data into a centralized machine
[2]. When adapting the model trained via federated learn-
ing, we have no access to the source data. This comes to the
source-free unsupervised learning setting, where only the
trained source model and unlabeled target data are given.
Traditional unsupervised learning methods are not applica-
ble to this setting because they usually seek to align distribu-
tions of source and target domains where samples from both
domains are required. Few methods tackling this setting
are published recently. For example, SHOT [22] alternately
refine the pseudo-labels with a prototype classifier and fine-
tunes the feature extractor together with a model regulariza-
tion term maximizing mutual information between features
and model outputs. 3C-GAN [21] collaboratively generates
labeled target data using conditional GAN and fine-tunes
the source model with the help of some model regulariza-
tion terms.

In this paper, we propose a new Augmented Self-
Labeling (ASL) method for the source-free unsupervised
domain adaptation problem. This includes two alternating
steps, where augmented self-labeling step aims to improve
the pseudo-labels and model re-training step retrains the tar-
get model with the self-labeled target data. Firstly, we aug-
ment the self-labeling technique in [39] with data augmen-
tation. Specifically, pseudo-labels obtained from the source
model are noisy as the existence of cross-domain discrep-
ancy. Thus, training target model with pseudo-labels may
suffer error accumulation which decreases the performance
of target model. We propose to use the ensemble of multiple
predicted probabilities corresponding to different randomly
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augmented versions of the same sample for self-labeling.
By minimizing a cross-entropy loss in addition to an en-
tropy loss with respect to the labels, we can derive this
problem to be an instance of optimal transport problem. In
order to avoid the degenerate solution to this problem, we
add the equi-partition constraint to the labels, which means
each category contains similar number of samples. Thus
this problem can be solved efficiently via a fast version of
the Sinkhorn-Knopp algorithm [7].

Furthermore, we introduce several model regularization
terms to improve the model re-training. Firstly, the condi-
tional entropy minimization term is used to make the target
features more discriminative and keep the decision bound-
aries far away from the data dense regions of the samples
[32]. Secondly, virtual adversarial loss [26, 32] is added to
guarantee the model’s locally-Lipschitz which is important
for empirical estimation of the conditional entropy. The ad-
versarial perturbation introduced in virtual adversarial loss
can also act as data augmentation which makes the model
generalize better on the target domain. Thirdly, weight reg-
ularization term [21] is utilized to preserve knowledge from
the source model and stable the target model training.

We apply the proposed ASL to the source-free unsuper-
vised domain adaptation tasks. Experiments show that our
method can achieve comparable or even better results than
the state-of-the-art methods on the standard benchmarks. In
addition, we conduct an ablation study to tease apart the
contributions of each component in our method and perform
hyper-parameter sensitivity analysis.

2. Related Work
Unsupervised Domain Adaptation. Most unsupervised
domain adaptation methods seek to reduce the cross-
domain discrepancy based on the theoretical guarantees in
[1]. Related works can be divided into two categories,
metric-based and adversarial training. Metric-based meth-
ods enforce the model to learn domain-invariant repre-
sentations by minimizing feature discrepancy between do-
mains with certain distance metric. Examples of these met-
rics include maximum mean discrepancy (MMD) [23, 25],
second-order moment matching [33, 27], Wasserstein dis-
tance [31, 19], etc. Inspired by the Generative Adversarial
Networks (GAN) [11], adversarial training has been utilized
to align distribution between domains in different levels,
including feature-level [9, 10, 36, 24, 5], input-level [15],
output-level [35], etc.

Regularization terms from semi-supervised learning ap-
proaches can also be utilized to adapt the source model us-
ing unlabeled target data. Mean teacher [34] has been used
in [8] to regularize the model predictions to be consistent
across the student and teacher models. Entropy minimiza-
tion [12] for unlabeled target data enforces the model’s de-
cision boundaries to be far away from data-dense regions

[32, 6]. Virtual adversarial training [26] acts as a locally-
Lipschitz constraint in [32] to guarantee the empirical ap-
proximation of conditional entropy when used together with
the entropy minimization. Pseudo-labeling [20] has also in-
spired the self-training methods for unsupervised domain
adaptation. [40] alternately select high-confident pseudo-
labels using certain criteria and re-train the model with the
pseudo-labeled target data.

Source-Free Unsupervised Domain Adaptation. In
source-free unsupervised domain adaptation setting, labeled
source data are unavailable which makes the problem more
challenging. Traditional unsupervised domain adaptation
methods are not applicable to this setting since both source
and target data are required to align distributions in the
previous methods. Few methods for the source-free un-
supervised domain adaptation setting have been proposed
recently. SHOT [22] refines the pseudo-labels by alter-
nately computing the centroids for each class and per-
forming weighted clustering in the target domain. PPDA
[17] assigns pseudo-labels based on prototype classifier and
a sample-level re-weighting scheme. 3C-GAN [21] and
SDDA [18] utilize the conditional GAN to generate labeled
target data through input-level adversarial training.

3. Preliminary
In this section, we briefly introduce the self-labeling

technique as a preliminary for the proposed methodology.
Self-labeling is proposed in [39] for the task of unsuper-
vised representation learning.

In the unsupervised setting, we have only samples
{xi}Ni=1 but have no access to the corresponding labels
{yi}. Self-labeling treats the labels as learnable vari-
ables and denote each of them as a one-hot vector qi =
[qi1, qi2, · · · , qiK ], and formulate the learning problem as
a joint optimization over the model parameters θ and the
labels {qiy} through a cross-entropy loss:

min
θ,q
− 1

N

N∑
i=1

K∑
y=1

qiy log p(y|xi; θ)

s.t. qiy ∈ {0, 1},
K∑
y=1

qiy = 1, ∀i, y.

(1)

where K denotes the number of classes. However, this may
lead to a degenerate solution such that the objective in Eq.
(1) can be trivially minimized by assigning the same arbi-
trary label to all samples and making the model classify all
samples to that class. To avoid this, one can constrain the
label assignment such that each category contains similar
number of samples, which is called equi-partition constraint
in [39]. Moreover, to avoid the combinatorial optimization
with respect to the binary labels q, one can relax the labels
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to be soft-labels, i.e. qiy ∈ [0, 1]. Thus, the learning prob-
lem becomes,

min
θ,q
− 1

N

N∑
i=1

K∑
y=1

qiy log p(y|xi; θ)

s.t. qiy ∈ [0, 1],

K∑
y=1

qiy = 1,

N∑
i=1

qiy =
N

K
.

(2)

This problem is actually an instance of optimal transport
problem [7]. By adding an additional entropy regularizer,
it can be solved using a fast version of the Sinkhorn-Knopp
algorithm [7].

4. Augmented Self-Labeling (ASL) for Source-
Free Unsupervised Domain Adaptation

This paper tackles the source-free unsupervised domain
adaptation problem where only source model and unlabeled
target data are available. Specifically, for the traditional
unsupervised domain adaptation (UDA), we have access
to the labeled source data (xs, ys) ∈ (Xs,Ys) and unla-
beled target data xt ∈ Xt. But in the source-free unsu-
pervised domain adaptation setting, only the source model
fs : Xs → Ys are given together with the unlabeled target
data which we denote as x for simplification. The goal is to
learn a model f generalizing well on the target data.

In this section, we present our proposed Augmented
Self-Labeling (ASL) method for the source-free unsuper-
vised domain adaptation problem. In the first part, we aug-
ment the self-labeling technique with data augmentation to
obtain reliable pseudo-labels for the unlabeled target data,
which can be used to train the target model. In the second
part, several model regularization terms are introduced to
further benefit the model re-training.

4.1. Augmented Self-Labeling

We initialize the target model f with the weights of the
source model fs. Given the unlabeled target data {xi}Ni=1,
pseudo-labels can be obtained by choosing the high confi-
dent predictions from the model f and further used to fine-
tune the model alternately.

However, as the existence of domain discrepancy,
pseudo-labels for target data are noisy which may lead to
error accumulation in the target model. On the other hand,
data augmentation is a common regularization approach to
enhance deep model’s generalization ability. We thus pro-
pose an Augmented Self-Labeling method to optimize la-
bels from the weighted average of multiple output predic-
tions corresponding to samples with random data augmen-
tations. Specifically, M different augmented version of
samples {xmi }Mm=1 can be obtained from the original sam-
ple xi by applying random data augmentation M times, i.e.

x1i , x
2
i , · · · , xMi = RandAugment(xi), (3)

where RandAugment(·) denotes a combination of multi-
ple random data augmentations. The data augmentations
we used include random resized crop, random auto-contrast
and random color distortion [3].

In order to reduce the noise in the predicted probability,
we take the ensemble of theM+1 probabilities correspond-
ing to the M augmented version and the unaugmented ver-
sion of sample xi to get the average prediction indicating
the probability of sample xi belonging to class y,

piy =
1

2
p(y|xi; θ) +

1

2M

M∑
m=1

p(y|xmi ; θ). (4)

The reason half weight is assigned to the unaugmented ver-
sion of predicted probability is that most target samples are
still similar to the source samples and higher weight can
make the obtained labels more stable and reliable.

We aim to optimize labels using the following objective,

min
{qiy}

−
N∑
i=1

K∑
y=1

qiy log piy + λ

N∑
i=1

K∑
y=1

log qiy

s.t. qiy ∈ [0, 1],

K∑
y=1

qiy = 1,

N∑
i=1

qiy =
N

K
.

(5)

where K is the number of classes and we omit the coeffi-
cient 1/N in the cross-entropy term for the convenience of
further derivation. In this objective, we relax the labels to be
soft-labels to avoid the combinatorial optimization problem
and after the optimization we will convert the soft-labels
back to hard-labels. Secondly, the negative conditional en-
tropy term is added to get smoothed soft-labels. The pa-
rameter λ controls the smoothness of the labels and higher
λ leads to smoother soft-labels. Thirdly, the equi-partition
constraint

∑
i qiy = N/K is added to avoid a degenerate

solution where the same arbitrary label is assigned to all
samples [39]. This constraint enforces that each category
contains similar number of sample, which is reasonable in
class-balanced dataset. But it is also rational in unbalanced
dataset since it is actually maximizing the mutual informa-
tion between the sample indices and labels according to
[39].

The problem thus becomes an instance of optimal trans-
port problem [7]. To make it more clear, we convert the no-
tations in Eq. (5) to matrix form, where [Q]iy = qiy is the
label matrix with dimension of N ×K and [P ]iy = piy is
the predicted probability matrix with dimension of N ×K.
The objective in Eq. (5) can be derived to be:

min
Q∈U(r,c)

〈Q,− logP 〉 − λH(Q) (6)

where 〈·〉 denotes Frobenius inner product, i.e. the sum of
element-wise product between two matrices and log is ap-
plied in element-wise. The matrix Q is thus constrained to

3
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be an element of the transport polytope [7],

U(r, c) := {Q ∈ RN×K+ |Q1K = r,Q>1N = c}. (7)

where r = 1N , c = N
K1K . This is equivalent to the con-

straints of labels in Eq. (5). This problem can be solved
via the fast version of Sinkhorn-Knopp algorithm [7]. The
closed-form solution to this problem is,

Q = diag(u) · P 1/λ · diag(v), (8)

where u, v are vectors guaranteeing the constraints in
Eq. (7) and can be computed with the Sinkhorn’s fixed point
iteration until convergence:

(u, v)← (r./(P 1/λv), c./([P 1/λ]>u)). (9)

Specifically, we initialize v as normalized unit vector and
then iteratively compute u and v until v converges. In prac-
tice, this iteration can converge in a few steps.

After the optimization, the obtained soft-labels are con-
verted to hard-labels for model training. The target model
f(·; θ) can be optimized with the following cross-entropy
loss using the augmented self-labeled target data,

Lce = −
1

N

N∑
i=1

K∑
y=1

qiy log p(y|xi; θ). (10)

We can alternately perform augmented self-labeling and
model re-training steps for multiple epochs such that the
performance on target data can be gradually improved.

4.2. Model Regularization

Model regularization is also an important technique for
deep model learning, especially for semi-supervised learn-
ing and unsupervised learning problem. Regularization
terms usually constrain the model parameters or outputs
based on empirical knowledge or characteristics of model
and data.

In our source-free unsupervised domain adaptation prob-
lem, we believe that the target features shall be discrimina-
tive. Even though this can be achieved by the cross-entropy
loss in Eq. (10), explicit regularization term can still ben-
efit the training of target model. What’s more, cluster as-
sumption is reasonable in our setting, i.e. the target samples
shall be in clusters and samples in the same cluster comes
from the same class. If this assumption holds, the optimal
decision boundaries shall be far away from the data dense
regions of the samples [32]. To tackle these expectations,
we add the conditional entropy minimization [12] term,

Lent = −
1

N

N∑
i=1

K∑
y=1

p(y|xi; θ) log p(y|xi; θ) (11)

As shown above, the conditional entropy is empirically
estimated using the available target data. According to
[12, 32], this approximation holds only if the model is
locally-Lipschitz. To this end, we add the virtual adversarial
loss from [26] to guarantee the locally-Lipschitz constraint,

Lvat = Ex
[
max
‖r‖≤ε

DKL(f(x)‖f(x+ r))

]
, (12)

where DKL(·‖·) is the Kullback-Leibler Divergence. Ac-
cording to [26], r is first initialized as Gaussian random
noise with the same shape as the input batch samples to
compute the KL divergence loss and then updated as the
gradient of the loss w.r.t. r itself. After few iterations,
the obtained r is treated as the perturbation that makes the
model behaviours most differently and the corresponding
KL loss is treated as the final virtual adversarial loss. By
minimizing this loss, we are expecting the model can be-
haviours consistently within the norm-ball of each sam-
ple [32], which guarantees the locally-Lipschitz constraint.
What’s more, the perturbation added to the samples can be
treated as a kind of data augmentation which makes the
model generalize better on the target domain.

In our method, the source model fs(·; θs) is only used
as an initialization of the target model f(·; θ) so far. While
fine-tuning on the source model with the self-labeled tar-
get data, the target model could possibly get far away from
the source hypothesis. However according to the theoretical
analysis in [1], the optimal classifier shall generalize well on
both domains. Therefore, we add the weight regularization
loss which computes the squared L2 distance between the
source and target model parameters,

Lwr = ‖θ − θs‖22. (13)

On one hand, the weight regularization prevents the target
hypothesis getting far away from the source, which helps
preserve the source knowledge in the target model [21]. On
the other hand, it stables the target model training since the
obtained labels are noisy and updated every epoch.

Combining the cross-entropy loss in Eq. (10), the overall
loss for model re-training is,

L = Lce + λ1(Lent + Lvat) + λ2Lwr, (14)

where λ1 and λ2 are trade-off parameters. The entropy
loss and virtual adversarial loss empirically share the same
trade-off parameter [32, 21].

Overall, the augmented self-labeling procedure assigns
labels to the unlabeled target data according to Eq. (8),
which is further used to re-train the target model by mini-
mizing the loss in Eq. (14). The target model can be trained
by alternating the two steps in each epoch. The algorithm
for our proposed method is shown in Algorithm 1.
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Algorithm 1 Augmented Self-Labeling for Source-Free
Unsupervised Domain Adaptation
Input: source model fs(·; θs), target model f(·; θ) initial-

ized with source model, unlabeled target data {xi}Ni=1,
number of classes K, number of data augmentations
M , self-labeling parameter λ, trade-off parameters
λ1, λ2, learning rate η.

1: for i = 1, · · · , N epochs do
2: X = [x1, x2, · · · , xN ] . ASL starts
3: P 0 = f(X; θ)
4: for m = 1, · · · ,M do
5: X̂ = RandAugment(X)
6: Pm = f(X̂; θ)
7: end for
8: P = 1

2P
0 + 1

2M

∑M
m=1 P

m

9: v = 1K/K . Sinkhorn’s iteration
10: err = 1
11: while err > 0.1 do
12: u = 1./(Pλv)
13: v′ = N./(K · [Pλ]>u)
14: err = ‖v′/v − 1‖1
15: end while
16: Q = diag(u) · Pλ · diag(v) . get soft labels
17: Q = argmaxQ . ASL ends
18: X̂ = RandAugment(X) . re-training starts
19: P = f(X̂; θ)
20: L = Lce(P,Q) + λ1(Lent + Lvat) + λ2Lwr
21: θ = θ − η ∂L∂θ . re-training ends
22: end for
Output: target model f(·; θ)

5. Experiments

5.1. Setup

We evaluate the proposed Augmented Self-Labeling
(ASL) method on the following standard benchmarks.

Office-31 [29] is a standard small-sized visual domain
adaptation benchmark which contains images of 31 cate-
gories from three domains: Amazon (A), DSLR (D) and
Webcam (W), each containing 2,817, 498 and 795 images
respectively.

Office-Home [37] is a medium-sized dataset with images
belonging to 65 categories from four distinct domains:
Artistic images (Ar), Clip Art (Cl), Product images (Pr),
and Real-World images (Rw), each including 2,427, 4,365,
4,439 and 4,357 images respectively.

VisDA-2017 [28] is a large-scale synthetic-to-real dataset
with images in 12 categories from two domains, Synthetic
and Real, each consists of 152,397 and 55,388 images re-
spectively.

Baseline Methods. We compare our method ASL with
the existing methods for source-free unsupervised domain
adaptation setting, SHOT [22], PPDA [17], 3C-GAN [21]
and SDDA [18]. As references, we also list results from
recent state-of-the-art methods for standard unsupervised
domain adaptation setting, including Domain Adversarial
Neural Network (DANN) [10], Adversarial Discrimina-
tive Domain Adaptation (ADDA) [36], Maximum Classifier
Discrepancy (MCD) [30], Conditional Domain Adversar-
ial Network (CDAN) [24], BSP [4], TransNorm [38], SWD
[19] and CAN [16].

5.2. Implementation Details

We use the same network architecture as the previous
methods for fairness. For Office-31 and Office-Home
datasets, we use ResNet-50 [14] as the backbone network.
Considering image quantity and for better performance,
ResNet-101 [14] is utilized as the backbone module for
VisDA-2017 dataset. Following [9], the fully-connected
(FC) layer in the ResNet network is replaced with a bot-
tleneck and one FC layer, where the bottleneck layer is
composed of one FC layer with 256 units and an one-
dimensional Batch Normalization (BN) layer.

To get the trained source model, we randomly split each
dataset into training set and validation set with the ratio
0.9/0.1. The ResNet model pretrained on ImageNet is used
to initialize the backbone module and then the complete
model is trained on the training set. We adopt mini-batch
SGD with momentum 0.9 to optimize all networks. The
batch size is set to be 64 considering GPU RAMs. Follow-
ing [9], the learning rate is adjusted per batch iteration ac-
cording to ηi = η0(1 + γ in )

−β , where γ = 10, β = 0.75, i
is the iteration index and n is the total number of iterations.
What’s more, η0 is the initial learning rate which is set to
be 0.001 for the pretrained backbone module and 0.01 for
the bottleneck and FC layers. The optimal model with best
validation accuracy is saved as the source model.

When adapting to the target domain, we perform the
self-labeling procedure once per epoch. The target model
is first initialized with the weights of source model and
then optimized using the same mini-batch SGD algorithm.
The batch size is set to be 32 since the virtual adversar-
ial loss costs more GPU RAMs. The learning rate is fixed
to be 10−4 for the backbone and 10−3 for the bottleneck
and FC layers such that all sample share the same weight
in each iteration. The optimal trade-off parameters are
λ = 2, λ1 = 1, λ2 = 0.1,M = 4 for Office-31 and Office-
Home datasets and λ = 100, λ1 = 1, λ2 = 0.01,M = 1
for VisDA-2017 dataset.

5.3. Results

We evaluate our proposed method ASL on the three vi-
sual domain adaptation benchmarks including Office-31,
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Table 1. Classification accuracy (%) on Office-31 (ResNet-50)
Methods A→ D A→W D→ A D→W W→ A W→ D Avg.
ResNet-50 [14] 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [10] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
ADDA [36] 77.8 86.2 69.5 96.2 68.9 98.4 82.9
CDAN+E [24] 92.9 94.1 71.0 98.6 69.3 100. 87.7
CDAN+BSP [4] 93.0 93.3 73.6 98.2 72.6 100. 88.5
CDAN+TransNorm [38] 94.0 95.7 73.4 98.7 74.2 100. 89.3
CAN [16] 95.0 94.5 78.0 99.1 77.0 99.8 90.6
SDDA [18] 85.3 82.5 66.4 99.0 67.7 99.8 83.5
SHOT [22] 93.1 90.9 74.5 98.8 74.8 99.9 88.7
3C-GAN [21] 92.7 93.7 75.3 98.5 77.8 99.8 89.6
ASL (Ours) 93.4 94.1 76.0 98.4 75.0 99.8 89.5

Office-Home and VisDA-2017 under the source-free unsu-
pervised domain adaptation setting.

Results on Office-31: Table 5.3 shows the performance
of different methods on the six domain adaptation tasks of
this small sized dataset, where the first part includes the
source-only and unsupervised domain adaptation methods
and the second part consists of the existing methods and our
method under the source-free unsupervised domain adapta-
tion setting. All methods use ResNet-50 [14] as the back-
bone network. Denoted as ResNet-50, source-only reports
the performance of the target data evaluated directly us-
ing the source model. Comparing with the source-only re-
sults, our method improves the performance of all the six
domain adaptation tasks and achieves an average 17.6%
performance gain, which shows the effectiveness of our
method. Comparing with the unsupervised domain adap-
tation methods, our method can outperform most previous
methods even though the setting without source data is more
challenging. What’s more, our method achieves better per-
formance than SHOT [22] and SDDA [18], illustrating the
effectiveness of the augmented self-labeling procedure. We
can also achieve similar performance as 3C-GAN [21] even
though 3C-GAN uses generative model to generate lots
of labeled target data which is time-costing and resource-
costing. Especially, our method achieves the state-of-the-art
performance on the first three tasks, i.e. A→D, A→W and
D→A under the source-free unsupervised domain adapta-
tion setting.

Results on Office-Home: Table 5.3 demonstrates the per-
formance of different methods on the 12 domain adaptation
tasks of this medium sized benchmark. All methods share
the same ResNet-50 [14] backbone network. Comparing
with the source-only, our method improves every task’s per-
formance and obtains an average 52% performance gain.
What’s more, our method outperforms all the unsupervised
domain adaptation methods on this dataset given the more
challenging source-free setting for our method. Comparing
with existing source-free UDA methods, our method out-
perform PPDA [17] by a large margin. We can also ob-
tain comparable results to the state-of-the-art method SHOT
[22] even though SHOT raises the baseline (source-only)

by using label smoothing and weight normalization when
training source model.

Results on VisDA-2017: Table 5.3 illustrates the accuracy
for each class and the average accuracy per class under dif-
ferent methods on this large scale benchmark. ResNet-101
[14] is used as the backbone network in all methods. Our
method achieves the state-of-the-art performance under the
source-free unsupervised domain adaptation setting. Com-
paring with the source-only, our method can improve the
accuracy in every class and achieve 58% performance gain
on average. We can also outperform most previous un-
supervised domain adaptation methods even though under
the more strict source-free constraint. Comparing with the
methods under the same setting, our method outperforms
PPDA [17], SHOT [22] and 3C-GAN [21] in most classes
and on average we get the best result.

5.4. Ablation Study

We further perform an ablation study to tease apart the
contributions of each component in our method and conduct
hyper-parameter sensitivity analysis.

Contribution of each component: As shown in Table 4,
we compare the performance of our method dropping dif-
ferent components with the naive pseudo-labeling method
[20] which directly fine-tunes the source model with the
pseudo-labeled target data. Firstly, we can see that both
self-labeling and augmented self-labeling can easily outper-
form the naive PL method even without the model regu-
larization terms. This demonstrates the superiority of self-
labeling method in source-free unsupervised domain adap-
tation tasks. Secondly, the model regularization terms can
also benefit the performance of both naive PL and our
method. Thirdly, augmented self-labeling can promote the
results by a large margin comparing with the self-labeling,
which shows that data augmentation can truly benefit the
self-labeling procedure. What’s more, we can see that each
model regularization term plays a positive role in achieving
the final result.

Hyper-parameter sensitivity analysis: Table 5 shows the
classification accuracy of our method on the task A → W
of Office-31 dataset under different times of random data
augmentation used in augmented self-labeling step. We can
see that multiple times of data augmentation do benefit the
performance of target model but 4 times is enough for the
task A→W. We can also see that the performance of aug-
mented self-labeling method is not sensitive to the times
of data augmentation used such that the proposed method
under different parameter M all achieve similar and good
performance comparing with other methods.

Table 5.4 shows the accuracy of our method on the same
task under different parameter λ used in augmented self-
labeling to control the smoothness of labels. Smaller λ can
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Table 2. Classification accuracy (%) on Office-Home (ResNet-50)
Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
ResNet-50 [14] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [10] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN+E [24] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+BSP [4] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
CDAN+TransNorm [38] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
PPDA [17] 48.5 71.3 75.6 63.9 69.0 72.1 62.4 43.5 76.0 70.4 50.1 76.1 64.9
SHOT [22] 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
ASL (Ours) 56.0 77.0 79.7 66.3 76.5 77.7 62.8 54.9 81.6 71.5 58.4 83.7 70.5

Table 3. Class-wise accuracy (%) on VisDA-2017 (ResNet-101)
Methods plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ResNet-101 [14] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD [30] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN [24] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BSP [4] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [19] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
CAN [16] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
PPDA [17] 81.5 79.4 80.3 61.8 92.3 91.9 84.5 82.7 86.5 58.4 74.2 43.5 76.4
SHOT [22] 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6
3C-GAN [21] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
ASL (Ours) 97.3 85.3 86.9 70.7 96.4 72.8 93.0 80.1 95.5 78.1 87.7 50.3 82.8

Table 4. Ablation study: accuracy (%) with each component.
Methods Office-31
Source Only 76.1
Naive Pseudo-Labeling (PL) [20] 76.7
Naive PL + Lent + Lvat + Lwr 83.3
Self-Labeling (SL) 83.8
SL + Lent + Lvat + Lwr 86.7
Augmented Self-Labeling (ASL) 88.0
ASL + Lent + Lvat 88.4
ASL + Lent + Lvat + Lwr 89.5

Table 5. Ablation study: accuracy (%) on task A→W under differ-
ent times of random data augmentation (M )

M 1 4 7 10
A→W 93.0 94.1 92.5 92.5

Table 6. Ablation study: accuracy (%) on task A→W under differ-
ent λ used in augmented self-labeling

λ 0.1 0.5 1 2 5 10
A→W 92.8 93.8 94.0 94.1 90.6 90.1

achieve better accuracy, which means less smoothed labels
can benefit the model training on this task. We can also see
that the accuracy is approximately concave related to the
parameter λ and achieve the best performance in λ = 2. But
our method still can get good performance under different
value of λ, which means our method is not quite sensitive
to the parameter λ.

6. Conclusion

In this paper, we propose a new Augmented Self-
Labeling method for the source-free unsupervised domain
adaptation, where only source model and unlabeled target

data are available. We formulate this problem as a joint op-
timization over the labels and model. This can be divided
into two alternating steps, where self-labeling improves the
pseudo-labels with the help of equi-partition constraint and
re-training trains the model with the self-labeled target data.
We further exploit data augmentation to improve the self-
labeling procedure by the ensemble of multiple probability
matrices corresponding to augmented versions of samples.
What’s more, model regularization terms are introduced to
further benefit the model re-training. Experiments on differ-
ent sized benchmarks verify the effectiveness and superior-
ity of our proposed method for the source-free unsupervised
domain adaptation problem.
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don, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMa-
han, et al. Towards federated learning at scale: System de-
sign. arXiv:1902.01046, 2019. 1

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 3

[4] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin
Wang. Transferability vs. discriminability: Batch spectral
penalization for adversarial domain adaptation. In ICML,
2019. 5, 6, 7

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[5] Shuhao Cui, Xuan Jin, Shuhui Wang, Yuan He, and Qing-
ming Huang. Heuristic domain adaptation. In NeurIPS,
2020. 2

[6] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qing-
ming Huang, and Qi Tian. Towards discriminability and di-
versity: Batch nuclear-norm maximization under label insuf-
ficient situations. In CVPR, 2020. 2

[7] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. NeurIPS, 2013. 2, 3, 4

[8] Geoffrey French, Michal Mackiewicz, and Mark Fisher.
Self-ensembling for visual domain adaptation. In ICLR,
2018. 1, 2

[9] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In ICML, 2015. 1, 2, 5

[10] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016. 2, 5, 6, 7

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 1, 2

[12] Yves Grandvalet and Yoshua Bengio. Semi-supervised
learning by entropy minimization. In NeurIPS, 2005. 2, 4

[13] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard
Schölkopf, and Alex Smola. A kernel method for the two-
sample-problem. In NeurIPS, 2007. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5, 6, 7

[15] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
ICML, 2018. 1, 2

[16] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Haupt-
mann. Contrastive adaptation network for unsupervised do-
main adaptation. In CVPR, 2019. 5, 6, 7

[17] Youngeun Kim, Donghyeon Cho, and Sungeun Hong. To-
wards privacy-preserving domain adaptation. IEEE Signal
Processing Letters, 27:1675–1679, 2020. 2, 5, 6, 7

[18] Vinod K Kurmi, Venkatesh K Subramanian, and Vinay P
Namboodiri. Domain impression: A source data free domain
adaptation method. In WACV, 2021. 2, 5, 6

[19] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and
Daniel Ulbricht. Sliced wasserstein discrepancy for unsu-
pervised domain adaptation. In CVPR, 2019. 2, 5, 7

[20] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, 2013. 2, 6, 7

[21] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model adaptation: Unsupervised domain adaptation
without source data. In CVPR, 2020. 1, 2, 4, 5, 6, 7

[22] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In ICML, 2020. 1, 2, 5, 6,
7

[23] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation net-
works. In ICML, 2015. 1, 2

[24] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I. Jordan. Conditional adversarial domain adapta-
tion. In NeurIPS, 2018. 1, 2, 5, 6, 7

[25] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation net-
works. In ICML, 2017. 1, 2

[26] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018. 2, 4

[27] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In ICCV, 2019. 2

[28] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge. arXiv:1710.06924, 2017. 5

[29] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.
Adapting visual category models to new domains. In ECCV,
2010. 5

[30] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In CVPR, 2018. 5, 7

[31] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasser-
stein distance guided representation learning for domain
adaptation. In AAAI, 2018. 2

[32] Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon.
A DIRT-T approach to unsupervised domain adaptation. In
ICLR, 2018. 1, 2, 4

[33] Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In ECCV, 2016. 2

[34] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, 2017. 2

[35] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In CVPR, 2018. 1, 2

[36] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In CVPR,
2017. 1, 2, 5, 6

[37] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In CVPR, 2017. 5

[38] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and
Michael Jordan. Transferable normalization: Towards im-
proving transferability of deep neural networks. In NeurIPS,
2019. 5, 6, 7

[39] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling
via simultaneous clustering and representation learning. In
ICLR, 2020. 1, 2, 3

[40] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jin-
song Wang. Confidence regularized self-training. In ICCV,
2019. 1, 2

8


