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ABSTRACT

Controlling the presented forms (or structures) of generated text are as importan-
t as controlling the generated contents during neural text generation. It helps to
reduce the uncertainty and improve the interpretability of generated text. Howev-
er, the structures and contents are entangled together and realized simultaneously
during text generation, which is challenging for the structure controlling. In this
paper, we propose an efficient, straightforward generation framework to control
the structure of generated text. A structure-aware transformer (SAT) is proposed
to explicitly incorporate multiple types of multi-granularity structure information
to guide the text generation with corresponding structure. The structure informa-
tion is extracted from given sequence template by auxiliary model, and the type of
structure for the given template can be learned, represented and imitated. Exten-
sive experiments have been conducted on both Chinese lyrics corpus and English
Penn Treebank dataset. Both automatic evaluation metrics and human judgement
demonstrate the superior capability of our model in controlling the structure of
generated text, and the quality ( like Fluency and Meaningfulness) of the gener-
ated text is even better than the state-of-the-arts model.

1 INTRODUCTION

Natural language is not just a sequence collections of tokens but a structure well-organized sequence
expressing understandable information. The structure of language usually obeys a set of grammat-
ical rules, which helps beginners grasp the language with less efforts. Similarly, incorporating the
structure into neural language model can obtain an increasing abstract level of representation and
improves the generalization which may potentially reduce the need of large amount of training data
(Shen et al., 2019b). The incorporations of structure information demonstrates considerable im-
provements in many language understanding tasks (Zhang et al., 2019; Hao et al., 2019; Wang et al.,
2019).

In text generation, it cares about not only the generated contents (i.e., what to say) but also the p-
resented structure forms (i.e., how to say) (Peng et al., 2019). Similar contents or meanings can be
presented with different structure forms. The structures and contents can be considered and planned
separately to achieve a highly informative generated text. From an empirical view, controlling or
planning the generated structure may be helpful in several aspects: i) reducing the uncertainty of the
generated contents with specific structure conditions, which may contribute to a good quality of gen-
erated text; ii) enhancing the interpretability of the generated text since more controlling attributes
can be realized during the generation; iii) improving the structure, format or style consistence in spe-
cific structure-constraint generation task or specific domain generation with particular formats, such
as style or paraphrase generation (Chen et al., 2019; Ficler & Goldberg, 2017), poetry generation
(Deng et al., 2020; Li et al., 2020), and lyric generation (Watanabe et al., 2018; Lu et al., 2019).

The language structures determined by the set of grammatical rules vary from different granularity
levels, such as participial construction (pc) is character-level, part of speech (pos) is word/phrase
level, and sequence length is sentence level. These kinds of structure are coupled and nested togeth-
er, which are realized with the contents simultaneously in most of the token by token generation. It
is difficult to disentangle the contents and the text structure, and even harder to discriminate and con-
trol the different granularity level of structure during text generation. Individually controlling some
specific types of structure like sequence length (Kikuchi et al., 2016), verbal predicate (Tu et al.,
2019) have been investigated in text generation. These works design specific structure representa-
tion and are inappropriately for controlling other types of structure, let alone controlling multiple
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types of structure simultaneously. Directly embedding the structure and adding them into the word
embeddings can achieve considerable controlling capability in character-level structure during text
generation, such as tone level and rhyme (Deng et al., 2020) controlling in Chinese poetry gener-
ation. While this method may fail when the controlled structure (such as phrase level or sentence
level) needs to aware the subsequent structure during the generation process. In addition to sum-
marizing the structure embeddings and word embeddings, SongNet (Li et al., 2020) designs another
structure embeddings which are queried and incorporated globally by the summarized embeddings
to renew the representation. With pre-training and fine-tuning, the SongNet (Li et al., 2020) can also
achieve good controllability in tailor-designed formats 1 (sentence level structure). The symbol sets
for this format are particular designed and may not applicable for other type of structure.

Contrast to the above works, in this paper, we are not focus on controlling specific type of struc-
ture or format, instead we propose a framework to control more general types of structure in text
generation. This framework allows for controlling individual type of structure, multiple or multi-
granularity types of structure during text generation. The controlled types of structure are extracted
from sequence templates (any valid sentence is a valid template) by one or several auxiliary models.
The extracted structure information are regarded as conditions, and the auxiliary model can be any
credible model or tool that can extract soundable structure information from template. Since we
want the generation of the current token or word can aware the global structures, the bi-directional
transformer encoder is adopted for structure representation and learning. The learned structure rep-
resentations are further incorporated into the decoder to guide the realization of the controlled struc-
ture. The main contributions of this work are summarized as follows:

• A straightforward, interpretable structure controlling text generation framework is pro-
posed, which is capable of controlling multi-granularity sequence structure from character-
level to sentence-level structure by explicitly incorporating the corresponding structure in-
formation.

• A simple alignment method and structure embedding, representation and learning method
are proposed, which are utilized for representing the multi-granularity and multiple types
of structure.

• A structure-aware transformer language model is proposed, and the structure representation
and token representation can be learned simultaneously. The structure information are
queried globally and incorporated into the token representation with attention mechanism,
which contribute to controlling the generated structure.

• Extensive experiments in controlling different individual type of structure and multi-
granularity types of structure have been conducted on Chinese lyrics corpus. The struc-
ture controllability is effective and the quality of the generated lyrics is favorable. We also
conduct controlling experiments on English Penn Treebank dataset, which demonstrates
similar structure controlling capability with this proposed framework.

2 RELATED WORKS

Controllable text generation has received much attention recently. Many efforts are devoted to con-
trolling the content of the generated text (Kiddon et al., 2016; Lebret et al., 2016; Shen et al., 2019a).
Based on conditioned RNN language model, stylistic parameters are further incorporated as condi-
tioning context to control stylistic aspects of the generated text (Ficler & Goldberg, 2017). Basing
generator on VAEs, Hu et al. (2017) proposes a generative model to generate plausible sentences
with designated semantics. A simple plug and play language model is proposed in Dathathri et al.
(2019) to guide controlling attributes (e.g. topic or sentiment) in text generation, without further
training of the pre-trained language model. None of these work attempts to control the structure of
the generated text. A similar approach, exemplar-based text generation, is proposed in Peng et al.
(2019), where for each input text, an exemplar text is retrieved from the training data and is then
used to construct a customized decoder for outputting a target. It is ambiguously to discriminate
how much the exemplar contributes to the generated structure or contents. Another similar work is
SongNet (Li et al., 2020), which are proposed to control the so called rigid formats. The rigid for-

1This format or structure is more about the length of each sentence within one paragraph or passage.
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mats are specifically designed with a sequence of placeholder symbols, which are utilized to control
the sentence (or sub-sentence) length.

Our method is different from all the previous methods in fourfold: 1) we focus on a general structure
controlling framework in text generation instead of controlling a specific type of structure;2) both
individual type of structure and multiple or multi-granularity types of structure can be controlled;3)
instead of designing the structure symbols by ourself, we adopt the most representative structure
symbols as extracted by external models to increase the applicability of our framework;4) the ex-
tracted structure information decoupled from the sequence information are learned and represented
fully before them are incorporated into word information to guide the text generation.

3 MODEL DESCRIPTION

3.1 STRUCTURE CONDITIONAL LANGUAGE MODEL

Given a natural language sequence denoted by x = [x1, ..., xT ], each word denoted as xt, t =
1, ..., T . The sequence joint distribution p(x) can be factorized into the product of conditional
distributions p(xt|x<t) as follows:

p(x) =p(x1, ..., xT )

=

T∏
t=1

p(xt|x<t). (1)

A standard language model is modeling the above distribution and maximizing the corresponding
likelihood accordingly (Bengio et al., 2003; Peters et al., 2018; Shen et al., 2019b). The above
distribution considers the order structure of natural language sequence explicitly, and the conditional
distribution are based on the previous word tokens.

Although the standard language model can generate sentence with high quality, the generated struc-
ture is inexplicable and cannot be controlled to satisfy specific generation task. Therefore, we incor-
porate the structure information explicitly into language model, and guide the structure generation.
The joint distribution of sequence x can be reformulated as shown in Equation equation 2:

p(x) =p(x1, ..., xT )

=p(s)

T∏
t=1

p(xt|x<t, s) (2)

where, s represents the global structure of the natural language sequence x, the global structure can
be any of the structure information like pos tags or semantic roles of the sequence, and p(s) is the
prior distribution of the global structure. We extract the structure information with auxiliary model,
and this structure information is considered as prior knowledge, which will not be optimized by the
language model.

The model parameters are learned by maximizing the objective function of SCLM, which is to
maximize the likelihood as shown in Equation equation 3:

max
θ

log pθ(x) =

T∑
t=1

log pθ(xt|x<t, s) (3)

We utilize the Transformer (Vaswani et al., 2017) as the backbone for implementing our SCLM.
The structure information is first extracted by auxiliary model and then encoded into transformer
encoder. The structure information can be learned and represented fully, which can be further in-
corporated to contribute the aware of the structure for sequence token representation with attention
mechanism. The reason why both the transformer encoder and decoder are adopted here is that we
want each token in sequence to aware its local and global structure information. Only the Trans-
former decoder, like GPT (Radford et al., 2018) ignores the subsequent structure information of
the token. The Transformer architecture is well designed and suitable for the implementation of the
structure conditional language model. We only modified the input representation and few parameters
of transformer.
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3.2 STRUCTURE EXTRACTION

We use auxiliary model (such as lexical tool) g(•) to extract the structure information s from natural
language sequence x as shown in Equation equation 4. The auxiliary model can be regarded as prior
knowledge and will not be optimized.

s = g(x). (4)

The structure can be any sounded structure information of language sequence vary from character-
level structure (like participial construction), word-level structure (like part of speech) to sentence-
level structure (positions for example).

The multi-granularity types of sequence structure s1, s2, .., si can be extracted by different auxiliary
models g1(•), g2(•), ..., gi(•) respectively. Since each structure unit (especially for word-level and
sentence-level structure) may contain several characters, we assign these characters with the same
symbol of this kind structure. We keep the length of the structure the same with the sequence tokens.

To be specific, we use the part of speech (pos) and participial construction (pc) as examples to
illustrate the alignment of multi-granularity types of structure. The pos information can be ex-
tracted by many lexical analyzer tools like Jieba analyzer and Stanza (Qi et al., 2020) for Chi-
nese and English sequence respectively. In Chinese, the pos is a type of word-level structure,
and the participial construction is the character-level structure for each segmented word. We u-
tilize the symbol collections Cpos = {n, v, r, ...} 2 from lexical analyzer (like Jieba) to represent
the pos for each word. The symbol collections Cpc = {P, S,B,M,E} 3 are utilized to repre-
sent the pc for each character within each word. Suppose we have two levels (word-level and
character-level) structure information for a sequence x = [x1, ..., xi, ..., xn], we can also present
the word-level form of the sequence with w = [w1, ..., wj , ..., wnw

], nw ≤ n, and the pos struc-
ture can be represented with s′w = [pos1, ..., posj , ..., posnw

], posj ∈ Cpos; each word con-
tains several characters wj = [..., xj,k, ...], k ∈ [1,mj ], and the pc structure for each word are
sc,j = [..., pcj,k, ...], pcj,k ∈ Cpc where

∑nw

j=1mj = n. Therefore, we can obtain the word-level
structure (pos) and character-level structure (pc) with the same length with the original sequence as
can be shown in the following expressions:

sw = [..., posj , .., posj︸ ︷︷ ︸
mj

, ...], j ∈ [1, nw] (5)

sc = [..., pcj,1, ..., pcj,k, ..., pcj,mj︸ ︷︷ ︸
mj

, ...] (6)

The sentence level structure like positions have unique representation for each token and do not
need any further processing for the alignment. With the alignment process, multi-granularity and
multi-type of sequence structure can be incorporated and controlled in the generation.

An illustration of multi-granularity structure information for a natural language sentence can be
shown in Fig. 1.

3.3 STRUCTURE AWARE TRANSFORMER

We propose a Structure Aware Transformer (SAT) to implement the multi-granularity structure
controlling in text generation. The encoder stacks multi-layer Transformer encoder (Vaswani et al.,
2017) with Multi-Head Self Attention in each layer to represent the extracted structure. The ex-
tracted structure information are first embedded and then summarized together as the structure input
representation H0

4, which allows for controlling multiple types of structure in text generation
simultaneously. The structure representation for each layer Hle , le = 1, ..., Ne can be obtained

2n, v, r represent the noun, verb, pronoun respectively; for complete symbols can refer to http-
s://github.com/fxsjy/jieba.

3P represent the pc structure of special token, S represent a word only contains a single character, B,M,E
represent the beginning, middle and ending of the word respectively.

4positions are regarded as sentence-level structure and are also added into the structure representation.
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 I    /   love   /   chips
Sequence       我   /   喜欢  /  炸薯条

pc S B E B M E

pos r v n

Figure 1: An alignment illustration of word-level and character-level structure for a Chinese
sequence. The final pc structure is spc = [S,B,E,B,M,E], and the final pos structure is
spos = [r, v, v, n, n, n].

according to the following formulas:

H0 =

m∑
i=0

Esi(si) (7)

(
Qs

Ks

Vs

)
= Hle−1

W q
s

W k
s

W v
s

 (8)

As = softmax(
QsKs

T

√
d

)Vs (9)

H ′le = LN(As +Hle−1) (10)

Hle = LN(FFN(H ′le) +H ′le) (11)
where Es is the structure embedding matrix, m is the number of structure types, le is the number
of encoder layers, and Hle is the output structure representation for layer le. softmax(•), LN(•),
FFN(•) represent the softmax function, layer normalization and feed-forward network respectively.

The final layer output of structure encoder HNe
is then utilized by the decoder, and the decoder is

similar to the Transformer decoder (Vaswani et al., 2017) with two attention blocks in each layer.
The below attention block is a Masked Multi-Head Self Attention, which obtains the token xt
representation without considering the information from its subsequent tokens x>t. The upper
attention block is the Structure-Aware Attention, which incorporates the structure information
(HNe) into the token representation.

F0 = Ex(x) +Ep (12)

F ′ld = Mask-Att(Fld−1) (13)

Q = F ′ldW
q (14)

K,V = HNeW
k,HNeW

v (15)

Asx = softmax(
QKT

√
d

)V (16)

F ′′ld = LN(Asx + F ′ld) (17)

Fld = LN(FFN(F ′′ld) + F ′′ld) (18)
where Ex is the token embedding matrix, Ep is the position embedding matrix, Mask-Att represents
the Masked Multi-Head Self Attention mechanism, ld ∈ [1, Nd] is the number of decoder layer,
Fld is regarded as the structure-aware token representation.

The final output of the decoder FNd
can be utilized to calculate the probabilities pθ(xt|x<t, s),

and the parameters in the architecture can be learned by maximizing the likelihood in Equation
equation 3.

3.4 STRUCTURE CONTROLLABLE GENERATION

With our proposed SAT, we can controlling multi-granularity and multiple types of structure in text
generation simultaneously. Both the specified structure information s and the template sequence x
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can be utilized to control the structure of the generated text. The input context xc, which can be any
precede words for continue generation (or topic words for topic related text generation), is utilized
to guide the content generation. If no input context is specified, the model will start the generation
from start token until the end token is generated.

4 EXPERIMENTS AND EVALUATIONS

4.1 SETUP

We follow the GPT2 source code from huggingface repository (Wolf et al., 2019) and add an addi-
tional structure encoder with multi-head self attention to implement our proposed SAT. The number
of encoder layer Ne is 2,5 and the number of decoder layer Nd is 6. The other configurations are the
same with the GPT2 except vocabulary size and structure size for embedding matrix. The structure
information is extracted by Jieba 6 and Stanza (Qi et al., 2020) for Chinese and English text respec-
tively. The extracted structure information is reagrded as the conditional structure, which are not
optimized by our language model. However, the structure embeddings (Es) or representation vector
(Hle ) can be learned by the proposed SCLM.

4.2 DATASETS

We conduct the experiments on both Chinese lyrics corpus and English Penn Treebank (PTB)
dataset. Over 80,000 Chinese lyrics are crawled from a set of online music websites, and the number
of lyrics sentences without repetition is about 1.38 million. Every two adjacent lyric lines within one
song are concatenated with comma to increase the structure complexity, which is prepared for the
generation task. We randomly split them into three parts for model training(90%), validation(5%)
and testing(5%). The statistics of data corpus for Chinese Lyrics and PTB dataset are shown in
Appendix.

4.3 MODEL COMPARISONS

We conduct the model comparisons on both Chinese lyrics corpus and English PTB dataset. The
pos structure is considered as the mainly structure for the structure conditional language model, and
we compare the GPT2 and SAT-pos on the continue text generation with both Chinese lyrics corpus
and PTB dataset. The continue text generation utilizes the prompt words to guide the following
sequence generation. The length of each prompt is randomly varied from 0 7 to the half length of
the whole template sequence.

We also investigate multi-granularity types of structure individually and simultaneously for the S-
CLM on Chinese lyrics corpus. The additional structure is the participial construction (pc), which
can also be extracted by Jieba analyzer. Two other models SAT-pc (conditioned with pc structure)
and SAT-p2 (conditioned with both pc and pos structure) are also compared on Chinese lyrics cor-
pus. To better compare the generation capability of these language models, a topic related generation
task are also performed based on Chinese lyrics corpus. The topic words are extracted by Jieba with
TF-IDF method. For fair comparisons, we train the SAT and GPT2 from scratch without utilizing
any pre-trained model.

4.4 EVALUATION METRICS

Both automatic evaluation metrics and human evaluations are adopted for model comparisons. The
PPL is to evaluate the performance of language model, and the BLEU score (Papineni et al., 2002)
is utilized to measure the content similarity of the generated text with its referred sequence text.

The structure controlling capability, like the sentence length, the pos and participial construction are
also compared. The length controllability is measured by the prediction accuracy. Assume the length

5We have conduct experiments on different number of encoder layers, and the gain of larger number of layer
is trivial, please refer to Appendix for the result and analysis.

6https://github.com/fxsjy/jieba
7Indicators no prompt word is specified, and the generation starts from the start token.
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of the input template is l and the predicted sequence length is l′. If the length difference δ = |l−l′| is
within specified threshold, we regard the predicted length is accurate with this tolerance. We report
the Accuracy of length control with tolerance δ ≤ 0, δ ≤ 2 and δ ≤ 4.

The BLEU score can also be utilized to measure the pos and pc controllability. We extract the pos
and pc structure from both test template and predicted sequence with the same lexical tool (Jieba or
Stanza), and the BLEU score of pos or pc can be calculated accordingly.

Human evaluation is inevitable for evaluating the quality of the generated text, especially in the
meaningfulness and fluency. However, human evaluation is time-consuming and costing. We con-
duct the human evaluation for model comparisons on the continue generation task of Chinese lyrics.
Four well educated annotators are recruited to evaluate the continue generation of Chinese lyric-
s sentence in three dimensions, namely Fluency, Meaningfulness and Structure Matching. The
Fluency and Meaningfulness are easy to understand and have been utilized by many previous works
Deng et al. (2020). The Structure Matching is to evaluate the matching degree of generated text
structure and template structure in several aspects, which considers the global structure (like subjec-
tive, predicates and objective structure) matching , constitute structure matching and pos matching
for local words. The rating scores are 1 to 5 to represent the quality from bad to excellent for all the
criteria. Each model generates 500 lyric lines and with the same random length prompt. Total 1000
lyric lines are generated and randomly shuffled, and the four annotators rated on the shuffled lyrics
lines. Therefore, we can obtain 4000 (4 × 2 × 500) ratings.

4.5 RESULTS & DISCUSSIONS

Table 1 shows the perplexity of the language models on both Chinese lyrics corpus and English
PTB dataset. The results demonstrates that the pos structure can improve the language modeling
performance on both Chinese and English sequence. And the language model performance can be
further improved when additional structures are also incorporated, as shown in the table that the PPL
of SAT-p2 with the lowest scores. We can observe that the pos condition gains more improvements
than the pc structure condition when compared SAT-pos model with SAT-pc model on Chinese
lyrics corpus. The probably reason is that the pos structure (with dictionary size 58) contains richer
structure information than pc structure (with dictionary size 5).

Table 1: Perplexity scores for model comparisons.

Model Chinese Lyrics PTB
Val. Test Val. Test

GPT2 10.57 11.24 8.60 8.12
SAT-pc 7.51 8.01 – –
SAT-pos 4.07 4.34 3.56 3.39
SAT-p2 3.92 4.19 – –

The text generation performance can also be improved by our proposed model, as demonstrated in
Table 5, and 2. The generation performance of our proposed structure conditional models obtains
obvious improvements on the BLEU scores of text sequence. The improvements of text BLEU
scores are with similar improvement paradigms as the PPL scores, which are 1) the prior structure
information is useful for the modeling and generation; 2) the more the structure information incorpo-
rated, the better the modeling performance and generation results. Our proposed model SAT shows
the superior structure controllability as demonstrated by the BLEU scores on pc and pos structure.
The BLEU scores of structure can be significantly improved when the corresponding structures are
conditioned and incorporated into the language model.

It is interesting to observe that the pos structure can improve the BLEU scores on pc significantly
(SAT-pos versus GPT2), while the pc structure only slightly improves the BLEU scores on pos
(SAT-pc versus GPT2). These phenomena are consistent with the fact that the pos structure can
reflect the segmentation border of words. The pc structure is more coarse structure information
than pos. We also observe that the pos structure can not improve the BLEU scores on pc when
the pc structure is already incorporated (SAT-p2 versus SAT-pc), while the pc structure can further
improve BLEU scores when the pos structure is already incorporated (SAT-p2 versus SAT-pos).
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Table 2: The BLEU scores for model comparisons on the continue generation of Chinese lyrics.

Task Model Text pc pos
BL-1 BL-2 BL-1 BL-2 BL-1 BL-2

Continue

GPT2 0.144 0.015 0.653 0.608 0.396 0.241
SAT-pc 0.174 0.028 0.98 0.975 0.486 0.323
SAT-pos 0.268 0.115 0.939 0.919 0.949 0.939
SAT-p2 0.269 0.115 0.97 0.962 0.952 0.941

Topic

GPT2 0.247 0.133 0.676 0.643 0.449 0.309
SAT-pc 0.279 0.151 0.981 0.976 0.553 0.395
SAT-pos 0.356 0.226 0.936 0.915 0.941 0.925
SAT-p2 0.36 0.231 0.966 0.957 0.948 0.935

The probably explanation is that the pos structure is a type of fine-grained (or micro scale) structure
compares to the pc structure, and the fine-grained information is too details for clarifying coarse
information 8.

The length controllability of our proposed model is demonstrated by Table 6 (in Appendix). Al-
though the text length is not explicitly incorporated as the condition, the generated text length is
controlled effectively by the sequence length of conditioned pos and pc.

The Human evaluation results, as shown in Table 3, also demonstrate that the proposed model is
superior in controlling the structure of the generated text. Although the strict structure constraints,
our model can also achieve even better performance in terms of Fluency and Meaningfulness. As
for the case and ablation studies please refer to the Appendix.

Table 3: The Human evaluation results for continue generation of Chinese lyrics. Flu., Mea., Mat.
represent the Fluency, Meaningfulness and Structure Matching.

Model Flu. Mea. Mat.
GPT2 3.12 3.25 2.01

SAT-p2 3.59 3.82 4.01

5 CONCLUSION

In this paper, we propose a straightforward, interpretability and effective framework to control a
wide range of language structures from character-level, word-level to sentence-level structure in text
generation. These kinds of structure regarded as prior knowledge are explicitly extracted by external
models and aligned together, which allows for both individually and simultaneously controlled in
text generation. The structures are decoupled from word information and the structure represen-
tations are learned by bi-directional transformer encoder, which is powerful to learn the structure
representations sufficiently. Subsequently, the structure representations are globally queried by the
transformer decoder and are incorporated into contextualized word representations to guide the text
generation with corresponding types of structure.

Extensive experiments on both Chinese lyrics corpus and English Penn Treebank dataset have been
conducted. Without pre-training on large amount of dataset, the results demonstrate the powerful
structure controllability of our method in terms of the sequence length, pos, and pc. The superior
performance of text quality with respect to fluency and meaningfulness are also achieved significant
improvements than the free text generation model. Our method can be easily applied to control other
kinds of structure in text generation and may even reduce the uncertainty and improve the quality of
the generated text.

8Let’s analogy this with an example, the micro-scale shape of an object is not helpful or may even disturbing
the identification of a macro-scale shape of the object.
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A DATA DESCRIPTION

The statistic of utilized data is summarized in Table 4. The size of pos structure for Chinese lyrics
datasets extracted from Jieba is 58, and the size of participial construction for lyrics words is 5.
The vocabulary size of the lyrics dataset including the special tokens (like [PAD], [START], [END],
[TOPIC]) is 4102, and some low frequency characters are replaced with [UNK]. The special tokens
that indicate the start, end or pad of the sentence are regarded as a special structure. The vocabulary
size of PTB is 10005 (with some special tokens), and the structure size of pos extracted by Stanza
is 43.

Table 4: The Statistics of the utilized data corpus.
Corpus #Train #Validation #Test

Chinese Lyrics 6088,90 33830 33902
Penn Treebank 42068 3370 3761

B SUPPLEMENTARY RESULTS

Table 5: The BLEU scores for model comparisons on the continue generation of PTB dataset.

Model Text pos
BL-1 BL-2 BL-1 BL-2

GPT2 0.093 0.028 0.277 0.128
SAT-pos 0.309 0.138 0.903 0.788
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Table 6: The length accuracy results on both Chinese lyrics test corpus and PTB test datasets. Topic
in the bracket represent the topic related generation task, and Continue in the bracket represents the
continue generation task.

Model Lyrics (Topic) Lyrics (Continue) PTB (Continue)
δ ≤0 δ ≤2 δ ≤4 δ ≤0 δ ≤2 δ ≤4 δ ≤0 δ ≤2 δ ≤4

GPT2 0.08 0.37 0.61 0.10 0.47 0.73 0.11 0.36 0.56
SAT-pc 1.00 1.00 1.00 1.00 1.00 1.00 – – –
SAT-pos 1.00 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00
SAT-p2 1.00 1.00 1.00 1.00 1.00 1.00 – – –

C CASE STUDY

Figure 2 and 3 compare several cases generated by GPT2 and our proposed SAT on Chinese lyrics
corpus and PTB dataset. We can notice that our model is capable of controlling the sentence-level
structure (length), word-level structure (pos) (and character-level structure pc for lyrics generation)
simultaneously, and the quality of the generated texts are also qualified and understandable. It is
should be noted that the auxiliary model or tool utilized for extracting the structure is not optimized
by our language model, and the accuracy of these tool will affect the quality of the generated text.

Prompt
蓦然回⾸Template：

GPT

Prediction pc

：

：

ns / n / d / x / i / p / s

ns / n / d / x / i / p / s

ns / n / d / x / i / p / s

SAT-pos

B M M E / S / S / S / S / S / S / B M M E / B E / S / B E

pos

望 / 着 / 你 / 的 / 脸 /，/ 在我⼼中 / 永远 / 不 / 分离

 B M M E / S / B E / S / B M M E / S / B E情 / 已远 /，/ 身不由已 / 在 / 天边

情 / 不断 /，/ 千⾔万语 / 在 / ⼼头

 B M M E / S / B E / S / B M M E / S / B E

 B M M E / S / B E / S / B M M E / S / B E

B M M E / S / B E / S / B M M E / S / B E

ns / v / uz / r / uj / n / x / i / d / d / v蓦然回⾸

蓦然回⾸

蓦然回⾸：

ns / uj / n / x / i / vn / n的 / 情歌 /，/ 千⾔万语 / 诉 / 衷肠

TextSuddenly looking back the love is far away, 
and I can't help myself.

A love song for looking back, 
thousands of words are spoken sincerely.

Suddenly looking back the infinite love,
thousands of words in my heart.

SAT-p2 泪 / 不停 /，/ 千⾔万语 / 在 / ⼼间： 蓦然回⾸

Suddenly looking back in tears,
thousands of words in my heart.

Suddenly looking back at your face,
you will never be separated in my heart.

SAT-pc

：

：

：

：

Figure 2: Cases generated by different models with the same input prompt.

Prompt
Template：

GPT

Prediction

：

SAT-pos

the   company   said   the   new   facility
will   begin   to   earnings   for   fiscal   N

the   market   was   falling   at   this   point：

a   dog   was   running   in   a   room

Template：

GPT ：

SAT-pos

unk   spokesman   said   the   company
is   still   trying   to   sell   N   million   australian
dollars   us   $   N   billion   of   assets

：

dog     is     walking     in     a     room

Template：

GPT

SAT-pos

says     mr     bush     is     n't   worried   whether
a     unk    in     this     way     about   taking

is    working    on   the   problem

is    walking     in    the   room

a

a

the   cat

a

the   woman

the   woman

(DT  NN   VBD    VBG     IN  DT  NN)

(DT      NN      VBD   VBG    IN   DT    NN)

(NN   VBZ    VBG       IN    DT    NN)

VBZ   VBG      IN    DT    NN)(DT   NN

DT
problem   is   coming   at   that   rate
(NN        VBZ  VBG     IN    DT    NN)DT

VBZ   VBG      IN    DT    NN)(DT    NN
：

：

：

GPT

：：

Figure 3: Cases comparisons on different models with different length of prompt and different
templates. The template is utilized to provide pos information for SAT-pos, and the corresponding
pos are in the bracket. The notations of the pos are provided by Stanza.
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D ABLATION STUDY

We conduct ablation study experiments on Chinese lyrics corpus to investigate the effects of encoder
layer number. The PPL scores are compared for layer 2, 4, and 6 for different types of structure
information. As shown in table 7, we cannot observe the obvious improvement due to the larger
number of encoder layer. The probably explanation is that the structure information is comparative
small (with dictionary size 5 for pc structure and 58 for pos, while vocabulary size is 4102) and 2
layer encoder is enough to process nd represent the information.

Table 7: Perplexity scores of different encoder layer number for different structure information.

Model 2 layer 4 layer 6 layer
Val. Test Val. Test Val. Test

SAT-pc 7.508 8.013 7.491 8.606 8.105 8.686
SAT-pos 4.068 4.342 4.058 4.765 4.554 4.847
SAT-p2 3.923 4.190 3.912 4.563 4.310 4.604
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