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Abstract

Adversarial attacks can deceive neural networks by adding tiny perturbations
to their input data. Ensemble defenses, which are trained to minimize attack
transferability among sub-models, offer a promising research direction to improve
robustness against such attacks while maintaining a high accuracy on natural
inputs. We discover, however, that recent state-of-the-art (SOTA) adversarial attack
strategies cannot reliably evaluate ensemble defenses, sizeably overestimating their
robustness. This paper identifies the two factors that contribute to this behavior.
First, these defenses form ensembles that are notably difficult for existing gradient-
based method to attack, due to gradient obfuscation. Second, ensemble defenses
diversify sub-model gradients, presenting a challenge to defeat all sub-models
simultaneously, simply summing their contributions may counteract the overall
attack objective; yet, we observe that ensemble may still be fooled despite most
sub-models being correct. We therefore introduce MORA, a model-reweighing
attack to steer adversarial example synthesis by reweighing the importance of sub-
model gradients. MORA finds that recent ensemble defenses all exhibit varying
degrees of overestimated robustness. Comparing it against recent SOTA white-box
attacks, it can converge orders of magnitude faster while achieving higher attack
success rates across all ensemble models examined with three different ensemble
modes (i.e., ensembling by either softmax, voting or logits). In particular, most
ensemble defenses exhibit near or exactly 0% robustness against MORA with
£°° perturbation within 0.02 on CIFAR-10, and 0.01 on CIFAR-100. We make
MORA open source with reproducible results and pre-trained models; and provide
a leaderboard of ensemble defenses under various attack strategie

1 Introduction

Many safety-critical applications, such as autonomous robots [34], self-driving [8], search en-
gines [24], etc. are becoming increasingly powerful and reliant on deep neural networks (DNNs).
Despite the monumental success of DNNs on these applications, they are highly susceptible to
adversarial examples — an attacker can add tiny delibrate perturbations to the input data, misleading
the model into giving incorrect results 23} 9]]. Such adversarial attacks could pose a significant threat
to the safety and reliability of deep learning applications.

To mitigate this threat, many defense strategies [17,133} 4] based on adversarial training [[17] have
been proposed to improve model robustness. Adversarial training, however, gains robustness at the
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Figure 1: ) Existing attacks [[17, 3, 15} [18} [16] with strong baselines are neither efficient in the
number of model forward/backward passes, nor reliable in the estimation of ensemble robustness
when compared with MORA. GAL [14] and Dverge [30] defenses are trained on CIFAR-10 with
8 sub-models. We used £°° attacks within ¢ = 0.01, “Nominal” is self-reported. @ MORA can
successfully fool logit-based ensembles (ADP [19], GAL and Dverge) even with the majority of their
sub-models giving correct outputs (“A — B” means using A to attack B for up to 100 iterations).

expense of model accuracy on clean natural images [27]. Ensemble defenses [[19, 14} 30, 131] have
thus emerged to combine multiple predictions from independent sub-models. The intuition is that an
ensemble of models can often lead to higher accuracy, while learning to stop adversarial example
transfer among sub-models may improve robustness against adversarial attacks. This approach could
potentially offer a promising research direction to improve model robustness while preserving high
accuracy on natural inputs.

Yet surprisingly, under the white-box threat model, existing state-of-the-art (SOTA) adversarial
attacks with strong performance on conventional DNN models performed poorly on ensemble
models, sizeably overestimating their robustness (Figures[Ta)and[Ib). This also suggests, to some
extent, that ensemble defenses may rely on two potential design flaws below that cause obfuscated
gradients [[1], i.e., they are either deliberately non-differentiable, or give no useful gradients, thus
inducing overestimated robustness:

(a) Gradient obfuscation via ensemble-forming strategy. They typically form ensembles by averaging
probability vectors (softmax) of sub-models, and softmax operations can easily cause gradient
obfuscation. While the model’s actual robustness is pertinent to the strategy used to form an ensemble,
this indicates that gradient-based attacks have to also leverage this effectively.

(b) Gradient diversification. Motivated by the reasoning that a majority of sub-models may need to be
fooled for successful attacks, they learn to reduce adversarial transferability among sub-models, often
via gradient diversification. This intuitively causes sub-models to counteract each other, averaging to
a small or inaccurate overall gradient. Attacking only the ensemble loss would fool most sub-models,
but the ensemble may remain still correct; conversely, it is actually possible to fool an ensemble,
despite the majority of its sub-models giving correct predictions (Figure [Ic).

From the above observations, it is perceivable that the practical evaluation of ensemble robustness
cannot be solely done by treating such models holistically. To this end, this paper introduces MORA,
model-reweighing attack, to adaptively adjust the importance of sub-models in attack iterations.
Sub-models are reweighed according to their respective “ease of attack™, which is in turn evaluated
by the gradient of the difference of ensemble classification outputs w.rt. the ones of individual
sub-models. Pushing the limits of the current SOTA in ensemble robustness evaluation, it draws
inspiration from recent effective attack tactics, e.g., momentum [7, 5], step size schedule [5,|16], loss
normalization [32]], and multiple targets [} 25]. We summarize our contributions:

* This paper presents the first extensive study on the robustness of ensemble defenses under
multiple ensemble-forming strategies.

* By reweighing the importance weights of sub-models to steer adversarial example synthesis,
we show that gradient-based attacks on ensemble defenses can often be orders of magnitude
faster, while enjoying a higher success rate.



* Empirical results on a wide variety of different ensemble defenses show that MORA out-
performs competing attacks in both performance and convergence rate. Finally, this paper
provides extensive ablation of its components and sensitivity analyses of hyperparameters.

To our best knowledge, MORA is currently the strongest attack against a wide range of ensemble
defenses. We make MORA open source with reproducible results and pre-trained models; moreover,
we maintain a leaderboard of ensemble defenses under various attack strategies.

2 Preliminaries & Related Work

2.1 Adversarial Attacks

An adversarial example adds a small perturbation, typically bounded a small value with ¢P norms, to
the original image, such that the model under attack can be deceived into giving incorrect results. The
advent of adversarial attacks [23]] has piqued the interest of deep learning practitioners, and revealed
security concerns of deep learning [26} 21], improved GAN training [2]] transfer learning [28| 6],
and DNN interpretability [22], etc. Formally, assuming a defending classifier f : Z — R, taking

an input image x € Z = |0, 1}CXHXW as input, and arg max f(x) predicts the correct class label
y € C, then an attacker attempts to find an adversarial example X in the set:

{% € Acx: argmax f(%) # y}. (M

Here, X € A, x constrains the adversarial example X to be within both the input space Z and a
small e-ball of ¢P-distance from the original image x, or equivalently ||x — X||, < e. Satisfying the
condition arg max f(x) # y means that f(x) fails to give the expected correct classification y. We
focus on the ¢>° white-box threat model commonly considered by the defenses examined in this
paper, which grants the attacker completely access to the internals of the defender, including, for
instance, its model architecture, parameters, training algorithms, efc.

One of the popular and effective white-box attacks used by many defenders to evaluate their robustness
is projected gradient descent (PGD) [17], which finds adversarial examples by maximizing the
classification loss with gradient descent:

)A(H,l = ’Pe,x(f(i + Q5 Slgn(v ‘C(f(f(l)a y)))v (2)

where L is typically the softmax cross-entropy (SCE) loss used to train the model, o; is the step size,
and we let the initial Xo = P, x(x + ). The projection function P, (V) constrains its input v to be
within the feasible region A, x, and finally g ~ U (—e, €) is a uniformly distributed noise bounded by
[—¢, €]. Besides PGD, C&W [3] is also a gradient-based attack which, instead of projection, indirectly
constrains the search space by regularization.

As PGD gains popularity, many defense mechanisms rely on it to evaluate their robustness. Unfortu-
nately, AutoAttack (AA) [5] finds that many of the defenses may inadvertently break PGD-based
attacks, which result in drastic overestimation of their robustness, and proposes to combine an
ensemble of diverse attacks to minimize robustness overestimation. LAFEAT [32] learns to leverage
intermediate layers of the DNN, and shows that attacking multiple layers can produce stronger
attacks, but unfortunately it cannot be applied to ensemble defenses. Adaptive Auto Attack (A?) [16]
improves attack success rates by using the gradient directions to prescribe a more effective initial
random perturbation. As defenders may design mechanisms to circumvent existing attacks, Adap-
tive attacks [25] manually tailor specific attack strategies for an extensive set of defenses. Finally,
Composite Adversarial Attacks (CAA) [18] further combine a large selection of attack methods,
and use a genetic algorithm to learn an optimal attacking sequence. In comparison, MORA is a
unified approach which uses only one attack algorithm, does not require a compute-intensive learning
procedure, and yet it still achieves fast and SOTA estimation of ensemble robustness.

2.2 Defending Against Adversarial Attacks

Defending against adversarial attacks can be defined as a saddle-point problem to minimize the
training loss on adversarial examples [17] with samples (x, y) drawn from the training set:

ming E(x ) [maxgea, , L(f(%), )], 3)



where L is the training loss, e.g., the SCE loss. A direct optimization-based approach to approximately
solving the above problem is adversarial training [17], i.e., to train the DNN model with its own
adversarial examples. Training DNNs to be robust is, however, a challenging endeavor. First, it may be
much more compute intensive as training examples are typically generated with PGD [17]], requiring
a few forward/backward passes of the DNN. Second, to avoid overfitting, it requires stopping training
early, a much larger size of the training set [4], and using improved data augmentation [20] or
generated data [[10]]. Thirdly, as noted by other literatures [} 32], currently no other design choices
can rival the robustness provided by adversarial training, and notably, many defense strategies are
considered harmful to model robustness [25]]. Finally, the resulting models often cannot achieve high
clean accuracy [27].

2.3 Ensemble Defenses & Ensemble-forming Strategies

Ensemble-based defense techniques may pave an alternative path to address the challenges of
adversarial robustness, as they could potentially work around the above limitations of adversarial
training. Adopting the theme of minimizing adversarial example transferability across sub-models,
each ensemble defense proposed unique solutions. ADP [19] increases the orthogonality of non-
maximal class logits among sub-models to encourage diversity. GAL [14] minimizes a gradient
alignment loss, which directly reduces the cosine-similarity between sub-models. Building on top of
this, TRS [31] further regularizes the smoothness of the loss function, as gradient orthogonality with
smoothness may further diversify sub-models. Dverge [30] instead uses the adversarial examples
of a sub-model to train another sub-model, thus lowering transferability. Ensemble defenses are
also particularly interesting, as they are the last line of defense against even the strongest existing
white-box attacks without resorting to adversarial training, showing a certain degree of robustness.

Besides the above mechanisms for training a successful ensemble defense, there exists different ways
to combine sub-model predictions. Let us assume that an ensemble defense trains M sub-models,
fm :Z — RE form € [1: M], an ensemble fg : Z — R thus forms a final classification result by
combining individual decisions from the sub-models, namely:

fE(X) = ﬁ ZmG[l:M] ens(fm(x)), (4)

where ens is the ensemble-forming operator. In this paper, we investigate ens € {softmax, wta, id},
where the potential choices respectively denoting forming an ensemble from sub-model outputs
fm (x) by either summing predicted probabilities (evaluated with softmax), or majority votes (using
wta, the winner-take-all operator), or simply summing the logits (with id, the identity operator).
Defending ensemble methods 19,114,130, 131] tested in this paper all employed the softmax-based
strategy to report their robustness. Methods that are exceptions to these options exist, for instance,
ECOC [29] allows sub-models to produce binary predictions, and use error correcting codes based
on the Hamming distance to combine the predictions into classification outputs. This approach is
unfortunately not robust, and the added complexity is error-prone and may harm robustness [25].

Moreover, as the voting (wta) strategy is non-differentiable, an attacker can soften it approximately
using a softmax operation with temperature 7, where we used 7 = 0.1 universally:

softwta, (x) £ softmax(x/7). Q)

3 The Model-Reweighing Attack (MORA)

3.1 Problem Formulation & High-Level Overview

As discussed in Section|[T, existing ensemble defenses may obfuscate gradients with the ensemble-
forming mode and gradient diversification, such that the final loss of the ensemble model can no
longer provide effective signals for gradient descent. It is therefore desirable to find an alternative
L to the original SCE loss £5°° on the ensemble, such that for a given number of iterations I, the
original £5°° loss can be maximized:

max, L5°(%X7,y) where %o = Pex(x+ p),
Xit1 = PGD(L(fE(X:), fli:m)(X:), %)),

and PGD(-) denotes a PGD step along the gradient of loss function £( fg(X;), f{1:a1)(X:), ), which
not only takes the ensemble predictions fz(X;) as input, but can further utilize sub-model predictions

(6)



Ji1: to guide the PGD iterations. The challenge at hand is, therefore, to find a suitable £ which can
generate attacks on ensemble defenses efficiently and effectively.
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Figure 2: A high-level overview of MORA. Existing attack methods focus on maximizing the £
of the ensemble predictions z!™!. MORA further introduces a model-reweighing mechanism, which
takes as input sub-models predictions z™*", and the ensemble output z™, forming a combined loss
L3577 MORA generates adversarial examples by maximizing the resulting loss.

MORA aims to provide a potential optimization route towards the above problem formulation.
Namely, in addition to the original output of the ensemble fr(%), we leverage the sub-model
predictions f[1.7)(X) to facilitate the optimization. By way of illustration, Figure [2 shows a high-
level overview of the model-reweighing attack, where we compliment the ensemble loss, with a
newly added sub-model reweighing loss £3'7™, as an auxiliary attack vector alongside the original
objective. Not only can the new loss bypass the ensemble-forming strategy to work around its
obfuscated gradients, but it further exploits information present in the individual sub-model and
ensemble predictions to steer the direction of adversarial example synthesis.

3.2 Adaptive Sub-model Importance

Before we begin, assume that z™ £ f,, (x) represents the m™ sub-model output, and let z;"™ denote
the corresponding logit of label t. We define the difference of logits (DL) [3] k™ £ z," —zy",
which is the difference between the predictions of the ground truth zg'z] and the maximum of the

remaining classes z%m £ max;cc Jy zg’”], where C/y is the set of all class labels except y. Similarly,

we let z® £ fg(x), and z}” and k™ be the respective variants of the ensemble prediction. It is
notable that a successful attack happens when k™ < 0, and similarly k™ < 0 means the m™
sub-model is producing incorrect classification.

Ensemble defenses tend to diversify sub-model gradients, for instance, ADP [19] minimizes the
cosine-similarity (V¢(z!*), V£(z!)) among each loss function gradient pairs of sub-models ¢(z!*!)
and £(z!""). Their intuition is that it may lower transferability among these sub-models, such that
attacks with the overall gradient of the ensemble, i.e., V/{(z®) = - Y omepi:n VE(2!™), are
becoming less effective in misleading all sub-models simultaneously, as individual gradients in
V{(z™) are encouraged to be orthogonal to each other. To this end, we propose to reweigh the
importance of sub-models, by instead considering the modified gradient:

—

VZ(Z[E]) =M ZmE[l:M] )‘g' ](Z[ ])Vé(z[ ])’ @)
where A" assigns weights to important sub-models to contribute more heavily to the attack gradient.

While the adversarial examples of the ensemble could present a challenge to discover, individual
sub-models are weak defenders which can be easily defeated. Based on this property, we propose to
weigh sub-models importance with the rate of change in k™! w.r.t. that of k™), i.e., sub-models would
be given higher weights if attacking it would bring a significant change to the ensemble’s prediction.
Following this idea, for all ensemble-forming strategies (softmax, voting, logits), we rewrite k™! as a
function of k™!, where the term below can become a function of k!™:

[m]

k™ = ens(z™), — ens(z™); = ens(z"™ — z;

)y — ens(z™ — z);
=ens(k™, ), —ens(k"™, )5 £ hy, (K).

®)



Algorithm 1 The MORA white-box robust evaluation for ensemble defenses.

1: function MORA_ Attack(fii.m), X, Y, 8,7, v, €, 1)

2: Xg ¢ Pex (x+u), whereu ~ U (—¢,¢) > Random init
3 o <0

4 fori€[0:1—1]do

5: z"™ — [ (%;) forallm € [1: M] > Sub-model predictions
6: 2l > mepi:ar ens(z™) > Ensemble prediction
7 K zlP — 2

8: if kB <0 then return x; > Successful attack
9: gi+1 < sign(Vx, LG (2, 217 y)) > Sign-gradient with the MORA loss
10: a + €(1 + cos(i7/1)) > Cosine step-size schedule
11: Pit1 ¢ Pex (pi +agiy1) > Iterative update
12: )A(H_l — Pe,x ()A(l +v (I-lfi-l-l — )A(l) + (1 — I/) ()A(, — )A(i_l)) > ...with momentum
13: end for
14: return X; > Give up after [ iterations

15: end function

The weights are thus defined as follows:

ml (im]y _ OEENE™y g 1 Ohm (™) 1 0k, (kM)
Ar(zim) = SRmT . = BElml ﬂzme[l;z\/[] Oklm] =M orml - )
While it is possible to compute the weights using gradient back-propagation, we can simply derive

the following closed-form solution of the weights for each of the three ensemble-forming strategies.
For wta, we use the softened version of wta as defined in (5)) and can derive the weights as follows:

Al (glm) = 1[k!™ > 0] - detach(—g7s5(1 + sy —s5)), where s = softmax(zl""]/r). (10)
Here 1[kl™ > 0] is the indicator function that equals 1 if k™ > 0, or 0 otherwise, effectively
stopping the attack on the m™ sub-model upon success, and the detach operator admits no backward
propagation to its input. In the case of using sums of sub-model softmax outputs to form an ensemble
decision, i.e., ens = softmax, it is a special case of softwta, where the temperature coefficient can
be fixed at 7 = 1. Finally, when ens = id, i.e., forming ensembles by summing logits, Al"™(z!™1)
simply reduces to 1[k!™! > 0] for the m'™ sub-model.

3.3 The MORA Loss

For reference, defenses mechanisms we examine in this paper aim to find X which maximizes the
SCE loss Ebce(z[E ), to evaluate the ensemble robustness. The MORA loss improves this further
by proposing two additional modifications to the untargeted loss function used to attack ensembles:

Lo (2", 2%, y) £ L2 (Fnorm (3,10 A7 (@) - 2) + (1 = B) norm (™), ).
1D
First, it additionally introduces a sum of the A"l-weighted variant of sub-model logits, in order to
expose sub-model logits with adaptive reweighing described in Section[3.2| Second, 3 interpolates
the importance of the newly added auxiliary logits and the original ensemble logits. Finally, inspired
by the effective surrogate loss in [32], it further normalizes the logits by their respective DL using:

norm(z) £ 1z, — z; > 0] - z/detach(z, — zy). (12)

Finally, the targeted variant of the MORA loss simply replaces y with ¢ where ¢ is the intended target.

3.4 Improving the State-of-the-art

While the new L350 loss is highly effective against ensemble defenses we test in this paper, we strive
for further advances in MORA's ability to generate faster and better adversarial examples. Inspired
by recent publications, we borrow ideas from related adversarial attack tactics, which includes
adopting a cosine step-size schedule [16], momentum [7, S]], random restarts [25] and multiple target
attacks [5) 25]]. We provide the overall algorithm in Algorithm [T, which computes an adversarial
image X as return, by taking as input the sub-models f;.,], natural image x, ground truth label y,
B to interpolate between the auxiliary logits and the original, 7 controls the temperature, momentum
1 = 0.75 following [32, 5], € perturbation bound, and finally the maximum number of iterations /.



Table 1: Comparing accuracies among iterative methods [17} 3], learned attacks (CAA [18]]), AutoAt-
tack (AA) [5], adaptive auto attack (AB) [[L6], and MORA across various ensemble defense strategies
under 3 ensembling modes (softmax, voting and logits), and e = 0.01. The “Complexity” row shows
the worst-case complexity in iteration counts. The “A” column shows the accuracy overestimation
from self-reported/reproduced “Nominal” values to MORA™". Baselines with 1 are reproduced with
source code. All results are re-run 5 times and within +0.05% standard deviation.

Defense Clean Nominal | PGD CW MORA A3 AA CAA MORA™ A
Complexity 1 — 500 500 500 12k 4.9k 1.8k 1.4k
Softmax
3] 92.88 29.12 598 772 0.59 2.12 098 334 0.34 28.78
ADP 5| 93.34 25.14 7.10  8.70 0.97 3.62 218 425 0.67 24.47
8 | 93.48 20.20 922 9.59 1.70 484 394 6.04 1.32 18.88
3] 91.99 47.42 44.49 40.17  25.77 33.36  30.58 32.98 25.26 22.16
Dverge 5] 92.38 55.72 54.61 52.83 40.02 | 4841 43.29 46.65 39.50 16.22
8 | 91.65 59.63 59.13 58.25 55.68 | 5729 56.71 56.89 55.57 4.06
3| 89.41 19.48 8.13 11.57 0.67 0.70  0.85 1.00 0.51 18.97
GAL 5| 90.93 41.38 37.59 3552 1745 | 2694 2390 25.11 16.05 25.33
8 | 92.45 56.31 53.39 52,56  28.71 36.51 37.46 35.30 27.44 28.87
3| 70.02 19.71 14.01 10.87 8.11 872 846 9.75 7.60 12.11
TRS' 5| 69.00 23.17 1591 15.28 12.67 13.22 1320 13.78 12.47 10.70
8 | 73.01 23.64 18.02 17.59 15.90 1622 1651 16.73 15.64 8.00
Voting
31| 91.84 41.62F 932 11.84 0.64 3.06 6.13 8.29 0.29 41.33
ADP 5| 93.13 40.29% 1242 12.05 1.17 6.03 10.13 0.67 0.62 39.67
8 | 93.28 30.107 12.53 10.50 3.16 6.11 9.21 1.69 1.65 28.45
31| 91.72 39.057 31.48 28.00 2357 | 2495 2498 27.65 2291 16.14
Dverge 51 92.18 49.36" 4428 4228  35.06 | 39.15 39.20 40.85 34.46 14.90
8 | 91.58 56.85% 53.72 5235 47.12 | 50.58 50.04 51.15 46.10 10.75
3| 89.09 21.48% 5.85 7.64 0.87 0.71 0.56 0.78 0.35 21.13
GAL 51 90.77 37.32% 29.33 27.62 12.96 18.55 20.82 22.17 12.25 25.07
8 | 92.37 55.39% 49.56 48.02 21.66 | 30.35 31.39 3093 20.16 35.23
3] 6895 13.79 10.19 8.71 5.73 11.89 6.69 8.08 5.44 8.35
TRS* 5| 68.31 15.36 12.71 11.88 8.82 10.08 1030 11.21 8.38 6.98
8 | 72.05 17.00 14.57 13.48 11.39 11.99 11.85 12.80 10.69 6.31
Logits
31 92.86 3.447 0.87 2.05 0.48 025 022 031 0.21 3.23
ADP 5] 9348 4,577 197 424 1.12 1.00 0.97 1.09 0.89 3.68
8 | 93.38 5.397 357 477 2.13 220 205 211 1.93 3.46
31 9219 38.317 3799 38.60 36.89 | 3694 3696 37.07 36.84 1.47
Dverge 5| 92.28 50.77" 50.57 5128 49.65 | 49.72 49.66 49.75 49.59 1.18
8 | 91.73 61.06" 60.95 61.51 60.52 | 60.59 60.52 60.55 60.49 0.57
3] 89.50 15.47% 10.01 10.53 0.52 0.02 0.02 0.08 0.03 15.44
GAL 5| 90.93 36.36" 3397 35.14 2224 | 3343 2024 21.66 19.40 16.96
8 | 9254 56.08" 53.67 54.69  31.52 | 4090 30.89 31.17 30.66 25.42
3] 69.72 13.31 13.06 13.80 12.11 12.13  12.16 12.21 12.07 1.24
TRS 5| 68.90 16.89 16.65 17.34 15.88 1586 1590 15.95 15.82 1.07
8 | 72.24 19.40 19.20 19.67 18.20 18.18 18.27 18.34 18.17 1.23

4 Experimental Results

We compare MORA against SOTA attacks for a wide range of ensemble defenses under three
ensemble-forming strategies (softmax, voting, and logits). We use pre-trained ResNet-20 [12] models
from ADP [19], Dverge [30], GAL [14], and reproduced TRS [31] using the same architecture with
official source code, as pre-trained models were unavailable. Our robustness evaluation considers
the £°° white-box attacks on the CIFAR-10 test set [[15]], with perturbation e = 0.01 unless specified.
The full comparison results can be found in Table [T} larger ¢ comparisons, and similar results on
CIFAR-100 models are in Appendix[A. We provide our key observations below.



Traditional attacks may fail to break through gradient obfuscation. We reproduce two traditional
white-box attacks, i.e., projected gradient descent (PGD) [17] and C&W [3] with 5 random restarts,
each with a maximum of 100 iterations, giving a total of 500 iterations. PGD uses a fixed step size
of €/4. For a fair comparison, MORA with 500 iterations sweeps § € {0,0.25,0.5,0.75, 1}, with
each 8 up to 100 iterations. Even with a 500 iteration budget, it is clear that PGD and C&W may
substantially overestimate robustness, especially when tested under the softmax and voting ensemble-
forming options, and MORA can work around this obstacle thanks to its attacks on sub-models.

Diversified gradients can hamper even integrated attacks with large arsenals. Moreover, we
test the defenses against recent integrated attacks with SOTA baselines on robustness evaluation,
namely Adaptive Auto Attack (A®) [16], AutoAttack (AA) [5], and Composite Adversarial Attacks
(CAA) [18]], which comprise large arsenals of various attack strategies. We reproduce CAA fol-
lowing [[18]] to search for the attack policy before evaluating the defending models. Note that its
computational complexity is thus much higher than the other attacks, but we only report its test-time
complexity. In particular, while they enjoyed much higher success rates than PGD and C&W, some
defenses render their tactics ineffective. We observe, e.g., sizeable robustness overestimation on
ADP [19] under softmax and voting, which explicitly diversifies sub-model gradients. As MORA can
dynamically re-adjust sub-model importance w.r.t. their “ease-of-attack”, it performs substantially
better with much fewer iterations. In addition to the earlier 500 iterations, the multi-targeted MORA™
targets the remaining 9 class labels with 100 iterations for each label and 3 fixed at 0.5. Others also
use multi-targeted attacks along with respective tactics.

Robustness of most sub-models vs. robustness of ensemble. We find that robustness of a majority of
sub-models (fooling 3/8 for softmax and 2/8 for logits) usually do not translate to the overall robustness
of the ensemble (Figures [lc|and . As voting requires breaking 1/2 sub-models simultaneously
(Figure [3b), it is perceivable that using voting may give rise to a higher overall robustness. Yet
surprisingly, for most defending ensembles, voting performs worse than softmax and logits.

Ensemble-forming strategies may give a false sense of security. On one hand, softmax and voting
strategies exhibit substantially larger overestimated robustness (up to 40%) than logits. On the other
hand, in stark contrast to the proposed use of softmax from [14, 19, 30, 31], we find summing by
logits can form ensembles that are notably more robust than the other two (Figure[3c), while attackers
only needs to successfully deceive a few sub-models (referring back to Figure[Ic).

Up to 60x faster convergence under 500 iterations. Figure[4 compares the convergence speed of
MORA against AA losses, C&W, and PGD on defending ensembles. MORA converges substantially
faster than the other attacks, using only up to 31 steps to match AA losses with 500 iterations.

Ensemble defense mechanisms may be at odds with robustness. In Table|2| we compare respective
attacks on adversarially trained Dverge models. To our surprise, forming larger ensembles is actually
harmful to the robustness of ensemble.
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Figure 3: @ @) MORA can successfully fool ensemble-forming methods (ADP [19]], GAL [14] and
Dverge [30]) even with the majority of their sub-models giving correct outputs under softmax and
logits (Figure . While voting requires > 1/2 sub-models to be incorrect, it is unfortunately the
least robust option in all defenses. “A — B” means using A to attack B for up to 100 iterations.
Dverge with 5 sub-models w.r.z. the € bound on ¢°° perturbation. Contrary to existing literatures, we
find logits to be the most robust option of the three ensemble-forming strategies.
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Figure 4: @ @ Comparing the convergence speed of MORA against a variant of MORA without
sub-model reweighing, C&W, PGD and AA losses (APGD-{DLR,CE}) on Dverge and GAL with
softmax. While “No reweigh” converge faster initially, it struggles to improve after 10 iterations; in
contrast, adaptive reweighing (MORA) continues to converge at a much faster rate. The horizontal and
vertical axes respectively show the iteration count used, and the percentage of unsuccessful images
remaining. We annotated the number of iterations for MORA to overtake all with 500 iterations.

Table 2: Attacking adversarially trained Dverge [30] models under the same setting as Table except
we let € = 0.03. Notably, forming larger ensembles can actually be detrimental to robustness.

Dverge # Clean Nominal | PGD CW MORA | A® AA  CAA MORA™ A
Complexity 1 — 500 500 500 12k 49k 1.8k 1.4k
3| 83.78 45.09 44.85 4421 4291 | 42.66 4270 42.69 42.65 2.44
Softmax 5 | 86.09 42.57 4240 4251 41.05 | 40.74 40.85 40.84 40.75 1.79
8 | 86.69 40.80 40.58 4094  39.49 | 39.33 3940 39.39 39.35 1.41
3 | 83.67 59.137 | 5535 5585 3859 | 38.78 39.97 4031 38.24 20.89
Voting 5| 8605 47727 | 4432 4518 36.19 | 3642 3729 37.89 36.01 11.71
8| 86.54 38937 | 37.16 38.17 3420 | 34.89 3554 36.19 34.03 4.90
3| 83.74 44837 | 44.69 4424 4283 | 4266 4270 42.70 42.63 2.20
Logits 5| 86.03 42477 | 4222 42.63 41.00 | 4091 4092 40.92 40.87 1.60
8| 86.65  40.53" | 40.33 41.14 3953 | 3943 3950 39.47 39.43 1.09

Additional results, ablation, and sensitivity analyses. Due to the page limit, we provide full
results of relevant figures in Appendix [A] note that the above key observations still hold true for all
ensemble defenses we test under different ensemble-forming strategies and e perturbation bounds. In
addition, we provide extensive ablation study on the design choices we made, and sensitivity analysis
on the temperature constant 7.

5 Conclusions

This paper identifies severe robustness overestimation in many ensemble defense techniques, and
further investigates problem the robustness evaluation under three ensemble-forming strategies. To
efficiently and accurately evaluate the robustness of ensembles, we introduce MORA, a new attack
technique which reweighs sub-model importance adaptively by their respective “ease-of-attack”
during attack iterations. MORA enjoys a much improved success rate and convergence rate compared
with other SOTA attacks. Moreover, we found several surprising observations related to ensemble
defenses, for instance, (1) misleading a minority of sub-models is sufficient to fool the ensemble,
(2) summing by logits is the simplest yet most robust way to form ensembles, (3) with adversarial
training, ensemble defenses may actually harm robustness, efc. We hope the above observations may
help to guide future avenue on ensemble defenses, and provide a strong attack baseline for potential
approaches. Finally, MORA is open source with reproducible results and pre-trained models; and we
continually update a leaderboard of ensemble defenses under various attack strategies.
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