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ABSTRACT

The transition matrix reveals the transition relationship between clean labels and
noisy labels. It plays an important role in building statistically consistent classi-
fiers. In real-world applications, the transition matrix is usually unknown and has
to be estimated. It is a challenging task to accurately estimate the transition matrix,
especially when it depends on the instance. Given that both instances and noisy
labels are available, the major difficulty of learning the transition matrix comes
from the missing of clean information. A lot of methods have been proposed to
infer clean information. The self-supervised learning has demonstrated great suc-
cess. These methods could even achieve comparable performance with supervised
learning on some datasets but without requiring any labels during the training. It
implies that these methods can efficiently infer clean labels. Motivated by this,
in this paper, we have proposed a practical method that leverages self-supervised
learning to obtain nearly clean labels to help the learning of instance-dependent
transition matrix. Empirically, the proposed method has achieved state-of-the-art
performance on different datasets.

1 INTRODUCTION

Recently, more researchers in the deep learning community place emphasis on learning with noisy
labels (Jiang et al., 2018; Liu, 2021; Yao et al., 2021b; Bai et al., 2021; Ciortan et al., 2021). This is
because manually annotating large-scale datasets is labor-intensive and time-consuming. Then some
cheap but imperfect methods, e.g., crowdsourcing and web crawling, have been used to collect large-
scale datasets which usually contain label errors. Existing work shows that training deep learning
models on these datasets can lead to performance degeneration, because deep models can memorize
the noisy labels easily (Han et al., 2018; Bai et al., 2021). How to improve the robustness of deep
models when training data containing label errors becomes an important research topic.

To learn a classifier robust to label noise, there are two streams of methods, i.e., statistically in-
consistent methods and statistically consistent methods. The statistically inconsistent methods
mainly focus on designing heuristics to reduce the negative effect of label noise (Nguyen et al.,
2019; Li et al., 2019; 2020; Wei et al., 2020; Bai et al., 2021; Yao et al., 2021a). These meth-
ods have demonstrated strong empirical performance but usually require expensive hyper-parameter
tuning and do not provide statistical guarantees. To address the limitation, another stream of meth-
ods focusing on designing classifier-consistent algorithms (Liu & Tao, 2015; Patrini et al., 2017;
Xia et al., 2020; Li et al., 2021) by exploiting the noise transition matrix T (x) ∈ RC×C , where
Tij(x) = P (Ỹ = j|Y = i,X = x), X denotes the random variable for instances or features, Ỹ
denotes the noisy label, Y denotes the clean label, and C denotes the number of classes. When
the transition matrix is given, the optimal classifier defined on the clean domain can be learned by
utilizing noisy data only (Liu & Tao, 2015; Xia et al., 2019).

In real-world applications, the instance-dependent transition matrix T (x) is usually unknown and
has to be learned. It is still a challenging task to accurately learn T (x) (Li et al., 2019; Yao et al.,
2020). The reason is that to accurately learn T (x), the instance X , the noisy label Ỹ and the clean
label Y generally have to be given. However, for the dataset containing label errors, clean labels
usually are not available. In general, without any other assumptions, to learn the transition matrix
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for an instance, its clean-label information has to be given. Then existing methods hope some clean-
label information can be inferred to learn T (x) (Xia et al., 2019; Yang et al., 2022; Li et al., 2021).
We will discuss the details in Section 2.

Recently, the classification model based on self-supervised learning has demonstrated comparable
performance with supervised learning on some benchmark datasets (He et al., 2020; Niu et al.,
2021). This implies that self-supervised learning has a strong ability to infer clean labels. Motivated
by this, in this paper, we propose CoNL (Contrastive label-Noise Learning), which leverages the
self-supervised technique to learn the instance-dependent transition matrix. In CoNL, it contains
two main stages: contrastive co-selecting and constraint T (x) revision which are as follows:

• We propose contrastive co-selecting, which utilizes the visual representations learned by
contrastive learning to select confident examples without employing noisy labels. In such a
way, the learned visual representations will be less influenced by label errors. To select con-
fident examples defined on the clean domain, we learn two classifiers estimating P (Y |X)
and two transition matrices simultaneously by employing noisy labels and learned repre-
sentations. We also encourage the two classifiers to have different learning abilities by
training them with the representations obtained from strong and weak data augmentations,
respectively. Then they can learn different types of confident examples and be robust to
different noise rates. Combining two classifiers can obtain more confident examples.

• We propose constraint T (x) revision, which refines the learned transition matrix by em-
ploying the selected confident examples. Based on the philosophy that the favorable tran-
sition matrix would make the classification risks on both clean data and noisy data small.
We fine-tune T (x) by encourage the loss w.r.t. the estimated P (Y |X) and the estimated
P (Ỹ |X) be small on the selected confident examples.

The empirical results for both transition-matrix learning and classification have demonstrated the
strong performance with different types and levels of label noise on three synthetic IDN datasets
(MNIST, CIFAR10, SVHN) and one real-world noisy dataset (CIFAR-10N). The rest of this paper is
organized as follows. In Sec. 2, we review related work on label-noise learning especially modeling
noisy labels and contrastive learning. In Sec. 3, we discuss how to leverage contrastive learning to
learn the instant-dependent transition matrix better. In Sec. 4, we provide the empirical evaluations
of the proposed method. In Sec. 5, we conclude our paper.

2 LABEL-NOISE LEARNING AND CONTRASTIVE LEARNING

Problem setting. Let D̃ be the distribution of a noisy example (X, Ỹ ) ∈ X ×{1, . . . , C}, where X
denotes the variable of instances, Ỹ the variable of noisy labels, X the feature space, {1, . . . , C} the
label space, and C the size of classes. In learning with noisy labels, clean labels are not available,
given a noisy training sample S̃ = {xi, ỹi}Ni=1 independently drawn from D̃, the aim is to learn a
robust classifier from the sample S̃.

The noise transition matrix T (x). The transition matrix T (x) has been widely used to model
label-noise generation. The ij-th entry of the transition matrix Tij(x) = P (Ỹ = j|Y = i,X = x)

represents the possibility of the clean label Y = i of instance x flip to the noisy label Ỹ = j. Existed
methods can learn statistically consistent classifiers when the transition matrix is given (Liu & Tao,
2015; Goldberger & Ben-Reuven, 2017; Yu et al., 2018; Xia et al., 2019; 2020; Li et al., 2021). The
reason is that, the clean-class posterior P (Y |X) can be inferred by using the transition matrix and
the noisy-class posterior P (Ỹ |X) (Patrini et al., 2017), i.e.,

T (x)[P (Y = 1|x), . . . , P (Y = C|x)]⊤ = [P (Ỹ = 1|x), . . . , P (Ỹ = C|x)]⊤.

In general, the transition matrices are not given and need to be estimated. Without any other as-
sumptions, to learn the transition matrix for an instance, its clean-label information has to be given
(Xia et al., 2019; Yang et al., 2022)

Learning the transition matrix T (x). The clean-label information is crucial for learning the
transition matrix. To learn transition matrices for all instances, 1). existing methods first learn some
of the transition matrices in a training sample by inferring the clean-label information. 2). Then, by
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making additional assumptions, the learned transition matrices can be used to help learn the other
instance-dependent transition matrices.

Specifically, to learn some of the transition matrices in a training sample, existing methods try to
infer clean-label information of some instances. Then the transition matrices of these instances
can be learned. For example, if some instances can be identified which belong to a specific class
almost surely (i.e., anchor points), the transition matrices of these instances can be learned (Liu &
Tao, 2015). If Bayes optimal labels of some instances can be identified, their Bayes-label transition
matrices can be learned (Yang et al., 2022). If clean-class posteriors are far from uniform (i.e.,
sufficiently scattered), the transition matrices enclosing P (Ỹ |X) with minimum volume is unique
and can be learned (Li et al., 2021).

Once some of the transition matrices are learned, different assumptions have been proposed to utilize
the learned transition matrices to help learn transition matrices of other instances. For example, the
manifold assumption, where the instances that are close in manifold distance have similar transition
matrices Cheng et al. (2022); class-dependent assumption, where instances with the same clean
labels have the same transition matrices (Liu & Tao, 2015; Patrini et al., 2017; Li et al., 2021);
part-dependent assumption (Xia et al., 2020), where the instances with similar parts have similar
transition matrices.

Contrastive learning. Contrastive learning (Sermanet et al., 2018; Dwibedi et al., 2019; Chen
et al., 2020a; He et al., 2020), which could learn semantically meaningful features without human
annotations (Hadsell et al., 2006; Wu et al., 2018), is an important branch of unsupervised represen-
tative learning using methods related to the contrastive loss (Hadsell et al., 2006).

Existing methods have shown that semantically meaningful features are a very important character-
istic in the human visual system. Humans usually use their existing knowledge of visual categories
to learn about new categories of objects, where the visual categories are often encoded as high-level
semantic attributes (Rosch et al., 1976; Su & Jurie, 2012). Contrastive learning, which helps in
learning semantically meaningful features, is therefore very useful in inferring clean labels. Empir-
ically, contrastive learning shows superior performance to other unsupervised-learning techniques
on different datasets on the classification task (Chen et al., 2020b; Niu et al., 2021).

In this paper, we adopt an unsupervised instance discrimination-based representative learning ap-
proach, MoCo (He et al., 2020). The basic idea of contrastive learning is that the query representa-
tion should be similar to its matching key representation and dissimilar to other key representations,
i.e., contrastive learning can be formulated as a dictionary look-up problem. Given an image x, the
corresponding images obtained by using different augmentations are xq and xk. The query repre-
sentation generated by the backbone fθ is fθ(xq), The corresponding key representation generated
by another backbone fθmo

is fθmo
(xk). The key representation will be stored in a queue. To learn

the representation, for each iteration, MoCo optimize θ according to the following loss function (He
et al., 2020):

Lmo = − 1

N

∑
xq

log
exp(fθ(xq) · fθmo

(xk)/τ)

exp(fθ(xq) · fθmo
(xk)/τ) +

∑
x′
k
exp(fθ(xq) · fθmo

(x′
k)/τ)

(1)

where x′
k is another image different from x, fθmo

(x′
k) is the key representation for x′

k, and τ is the
temperature. Then θmo is updated by according to the parameter θ, i.e., θmo ← µθmo + (1 − µ)θ,
where µ ∈ [0, 1) is the hyper-parameter momentum.

3 CONTRASTIVE LABEL-NOISE LEARNING

Motivated by the success of contrastive learning on the classification task. Previous work shows
that some methods based on contrastive learning even could achieve comparable performance with
supervised methods on some datasets (He et al., 2020; Chen et al., 2020b). In this section, we intro-
duce Contrastive label-Noise Learning (CoNL), which aims to effectively leverage the advantage of
contrastive learning. An overview of the method is shown in Fig. 1 and described in Algo. 1.
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Figure 1: A working flow of our method CoNL.

3.1 LEVERAGING CONTRASTIVE LEARNING FOR CO-SELECTING

We aim to accurately select confident examples by leveraging contrastive learning. To achieve it, we
utilize the contrastive method MOCO to learn the visual representations on training instances. Then,
the learned representations obtained by applying strong and weak data augmentations are employed
to learn two classifiers and transition metrics, respectively. To select confident examples, we exploit
both the estimated clean-class posterior and consistency predicted clean labels of its neighbors. The
details of contrastive co-selecting are as follows.

Firstly, to produce the visual representations, a backbone neural network fθ̂ : X → Z is trained by
only using the training instance via Eq. (1). By employing the fθ̂, we can obtain the representations
Zs = {zsi }ni=1 and Zw = {zwi }ni=1 based on strong and weak data augmentations Φs and Φw,
respectively, where zsi = fθ̂(Φ

s(xi)) and zwi = fθ̂(Φ
w(xi)).

Let gϕ1
and gϕ2

be two classifier heads modeling Pϕ1
(Y |X) and Pϕ2

(Y |X) with learnable param-
eters ϕ1 and ϕ2, respectively. Let Tζ1 and Tζ2 be two transition matrices that modeled by neural
networks with learnable parameters ζ1 and ζ2, respectively. To help learn transition matrix by em-
ploying the visual representations Zs and Zw. We train two classifier heads gϕ1

and gϕ2
and two

transition matrices Tζ1 and Tζ2 simultaneously on Z1 and Z2 by minimizing the cross-entropy loss,
respectively. Specifically, the objective is as follows.

{ϕ̂1, ϕ̂2, ζ̂1, ζ̂2} = argmin
ϕ1,ϕ2,ζ1,ζ2

(
− 1

N

N∑
i=1

(ỹi log(gϕ1(z
s
i )Tζ1(z

s
i )) + ỹi log(gϕ2(z

w
i )Tζ2(z

w
i )))

)
. (2)

In this training process, the parameter of backbone fθ̂ is fixed. There are several advantages. 1).
By employing the representations that are independent of label errors, the classifiers can be better
learned. Intuitively, previous work shows that representations learned by self-supervised learning
contain the semantic information which usually correlates with clean labels (Wu et al., 2018; Niu
et al., 2021). It implies that the representations contain some information about clean labels. In the
training process, the visual representations are used as inputs of the classifier head. Then the learned
classifier head also contains some information about these representations and clean labels. 2). By
keeping fθ̂ fixed, the learning difficulty of the transition matrix is reduced. In the learning process,
only two simple models, i.e., the classifier head and the transition matrix, need to be learned. Since
the visual representations could contain some information about clean labels, by also employing the
noisy labels, the transition matrix can be effectively estimated.

Moreover, we train two classifier heads gϕ1
and gϕ2

with different data augmentations. In such a
way, the two classifier heads are encouraged to be diverse and have different learning abilities. Then
they can filter out different types of label errors and select different confident examples. We will
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Algorithm 1: Contrastive label-Noise Learning (CoNL)

Input: A noisy training sample S̃, a noisy validation sample S̃v

1 Get fθ̂ by employing MoCo and all training instances in S̃ ;
2 Minimize the Eq. (2) to learn the parameters ϕ̂1, ϕ̂2, ζ̂1, ζ̂2 ;
3 Get the confident sample Sl = Sw

l

⋃
Ss
l , where Ss

l and Sw
l are generated according to Eq. (4)

and Eq. (5) ;
4 Select the best transition matrix Tζ̂ and corresponding classifier head fθ̂ by employing the

validation sample S̃v ;
5 Get revised parameters θ̂′, ϕ̂′ and ζ̂ ′ on the training sample S̃ and the confident sample Sl by

employing Eq. (7) ;
Output: fθ̂′ , gϕ̂′ , Tζ̂′

illustrate our confident sample-selection method on gϕ̂1
which is trained on the representations with

strong augmentations. The same sample-selection method are employed for gϕ̂2
.

Specifically, the trained classifier head gϕ̂1
is employed to relabel all instances and get a set of

examples Ss = {(xi, ỹi, ŷ
s
i )}Ni=1. To select confident examples, we employ the combination of two

criteria. The basic idea is that an instance is reliable if 1). The confidence of the predicted clean
label is high 2). Its corresponding predicted clean labels are consistent with its neighbor examples’
predicted clean labels.

To determine whether an example (xi, ỹi, ŷ
s
i ) should be the confident example or not, the confidence

of the predicted clean label and the predicted clean label consistency of xi have to be calculated. The
confidence of the predicted clean labels can be directly obtained via gϕ̂1

(xi)ŷs
i

which is the ŷsi -th
coordinate of the output gϕ̂1

(xi). The predicted clean label consistency ri of xi is calculated as
follows.

rsi =
1

Ks

∑
y∈N s

i

1(y = ŷi), (3)

where N s(xi) contains neighbors of the instance xi, when the strong augmentations are applied.
It is obtained according to the cosine similarity of features extracted from the backbone. The Ks

nearest neighbors with high cosine similarity are selected as the neighbors of xi.

By combining two criteria together, the example (xi, ỹi, ŷi) is considered to be an confident example
if both criteria gϕ̂1

(xi)ŷs
i
> λ and ri > τ satisfy, where λ and τ are hyper-parameters. Finally, the

confident sample Ss
l selected by the trained classifier heads gϕ̂1

is as follows.

Ss
l = {(xi, ỹi, ŷi)|ri > τ, gϕ̂1

(xi)ŷs
i
> λ,∀i = 1, 2, . . . , N}. (4)

By applying the weak data augmentation on training instances and using the same selection method
for gϕ̂2

, the confident sample Sw
l selected by gϕ̂2

can also be obtained, i.e.,

Sw
l = {(xi, ỹi, ŷi)|ri > τ, gϕ̂1

(xi)ŷw
i
> λ,∀i = 1, 2, . . . , N}. (5)

Then, to utilize different confident examples obtained by applying different data augmentations, we
union two confident samples, i.e., Sl = Sw

l

⋃
Ss
l which will be used for constraint T (x) revision.

3.2 CONSTRAINT T(x) REVISION

We improve T -revision (Xia et al., 2019) by utilizing the confident sample Sl to refine the transi-
tion matrix which depends on the instance. The philosophy of constraint T (x) revision is that the
favorable transition matrix would make the classification losses on both clean labels and noisy la-
bels small. Once we have the confident sample Sl containing both noisy labels and predicted clean
labels. We could regularize and refine the transition matrix by minimizing classification losses of
both noisy labels and predicted clean labels of the selected confident examples. After fine-tuning the
transition matrix, it can also help learn better the representation and the classifier head. Therefore,
in this stage, we also fine-tune the representation and the classifier head.
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Specifically, By comparing the the validation accuracy of gϕ̂1
(·)Tζ̂1

(·) and gϕ̂2
(·)Tζ̂2

(·), we select
the best transition matrix and the classifier which denote as Tζ̂ and gϕ̂, respectively. Let M be the
number of confident examples. Reminding that Φs and Φw are strong and weak data augmentations,
respectively. To minimize the classification loss Lc on the predicted clean labels, the confident
sample Sl is employed. The loss function is as follows.

LŶ (Sl, gϕ̂, fθ̂) = −
1

M

∑
(x,ỹ,ŷ)∈Sl

(
ŷ log(gϕ̂(fθ̂(Φ

s(x)))) + ŷ log(gϕ̂(fθ̂(Φ
w(x))))

)
. (6)

To minimize the classification loss on noisy labels, the noisy training sample S̃ is employed, i.e.,

LỸ (S̃, gϕ̂, fθ̂,Tζ̂) = −
1

N

∑
(x,ỹ)∈S̃

(
ỹ log(gϕ̂(fθ̂(Φ

s(x)))Tζ̂

(
fθ̂(Φ

s(x))
)
)

+ỹ log(gϕ̂(fθ̂(Φ
w(x)))Tζ̂(fθ̂(Φ

w(x))))
)
.

By combining two losses LŶ and LỸ together, we fine-tune the transition matrix Tζ̂ , the classifica-
tion head gϕ̂ and the backbone model fθ̂ by employing the objective function:

{θ̂′, ϕ̂′, ζ̂′} = argmin
θ̂,ϕ̂,ζ̂

(
LŶ (Sl, gϕ̂, fθ̂) + LỸ (S̃, gϕ̂, fθ̂, Tζ̂)

)
. (7)

In Section 4, we show that by employing constraint T (X) revision, both the estimation of the
transition matrix and the classification accuracy can be dramatically improved.

4 EXPERIMENTS

In this section, we present the empirical results of the proposed method and state-of-the-art methods
on synthetic and real-world noisy datasets. We also conduct ablation studies to demonstrate the
effectiveness of contrastive co-selecting and constraint T (x) revision.

4.1 EXPERIMENT SETUP

Datasets. We empirically verify the performance of our method on three synthesis datasets, i.e.,
Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky et al.,
2009), and one real-world dataset, i.e., CIFAR-10N (Wei et al., 2022). Fashion-MNIST contains
70,000 28x28 grayscale images with 10 classes total, and 60,000 images for training and 10,000
images for testing. SVHN contains 73,257 training images and 26,032 testing images. CIFAR-
10 contains 50,000 training images and 10,000 testing images. Both SVHN and CIFAR-10 have
10 classes of images, and the image size is 32x32. The three datasets contain clean labels. We
corrupted the training data manually according to the instance-dependent label noise generation
method proposed in (Xia et al., 2020). All experiments are repeated five times. CIFAR-10N is
a real-world label-noise version of CIFAR-10, it contains human-annotated noisy labels with five
different types of noise (Worst, Aggregate, Random 1, Random 1, and Random 3). For all datasets,
we leave out 10% of training examples as a noisy validation set.

Baselines. The baselines used in our experiments for comparison are: 1). CE, training the model
using standard cross-entropy loss on noisy data directly; 2), GCE (Zhang & Sabuncu, 2018), which
use standard cross-entropy loss and mean absolute error to train model on noisy data; 3), Mentor-
Net (Jiang et al., 2018), which pretrains a model to select reliable samples for the main model; 4),
Co-teaching (Han et al., 2018), which trains two models simultaneously to select reliable samples
for each other; 5), Reweight (Liu & Tao, 2015), which exploits importance reweighting method to
estimate a unbiased risk defined on clean data using noisy data; 6), Forward (Patrini et al., 2017), us-
ing class-dependent transition matrix to correct loss function; 7), PTD (Xia et al., 2020), estimating
instance-dependent transition matrix through part-dependent transition matrices; 8) CausalNL (Yao
et al., 2021b), which explores using causal mechanism to excavate clean-label information on noisy
data; 9), MEIDTM (Cheng et al., 2022), which uses Lipschitz continuity to constrain the transition
matrix; 10), BLTM (Yang et al., 2022), which using Bayes optimal label to learn instance-dependent
transition matrix; 11), NPC (Bae et al., 2022), which proposes a post-processing scheme to calibrate
the prediction of a noise-robust classifier.
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Table 1: Means and standard deviations (percentage) of classification accuracy on Fashion-MNIST.

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 93.16 ± 0.02 92.68 ± 0.16 91.41 ± 0.16 87.60 ± 0.33 71.76 ± 0.77
GCE 92.52 ± 0.14 92.52 ± 0.09 91.49 ± 0.09 88.49 ± 0.23 76.29 ± 0.82

MentorNet 93.16 ± 0.01 91.57±0.29 90.52 ± 0.41 88.14 ± 0.76 61.62 ± 1.42
CoTeaching 94.26 ± 0.06 91.21±0.31 90.30 ± 0.42 89.10 ± 0.29 63.22 ± 1.56

Reweight 93.42 ± 0.16 93.12 ± 0.18 92.19 ± 0.18 88.51 ± 1.52 75.00 ± 5.28
Forward 93.48 ± 0.11 92.82 ± 0.12 91.05 ± 1.44 87.82 ± 1.81 78.34 ± 2.98

PTD 91.55 ± 2.47 87.68 ± 5.50 82.78 ± 5.29 75.21 ± 1.81 66.21 ± 5.15
CausalNL 91.63 ± 0.18 90.84 ± 0.31 90.68 ± 0.37 90.01 ± 0.45 78.19 ± 1.01

BLTM 91.28 ± 1.93 91.20 ± 0.27 85.51 ± 4.77 82.42 ± 1.51 67.65 ± 5.65
MEIDTM 86.00 ± 0.84 80.99 ± 0.64 73.12 ± 2.34 63.81 ± 3.02 58.60 ± 3.32

NPC 88.78 ± 0.30 88.05 ± 0.02 84.99 ± 1.20 82.59 ± 1.22 70.58 ± 4.43

CoNL-NR 92.14 ± 0.07 91.86 ± 0.26 91.40 ± 0.15 90.09 ± 0.41 85.84 ± 0.71
CoNL 94.98 ± 0.14 94.20 ± 0.23 92.92 ± 1.05 91.01 ± 1.83 86.01 ± 1.83

Table 2: Means and standard deviations (percentage) of classification accuracy on SVHN.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 95.75 ± 0.07 95.33 ± 0.18 93.74 ± 0.29 91.13 ± 0.32 72.43 ± 2.78
GCE 95.09 ± 0.03 94.37 ± 0.13 86.39 ± 5.12 81.95 ± 1.45 63.20 ± 2.75

MentorNet 95.54 ± 0.12 94.76 ± 0.16 92.39 ± 0.18 90.41 ± 0.49 61.23 ± 2.82
CoTeaching 94.66 ± 0.36 93.93 ± 0.31 92.06 ± 0.31 91.93 ± 0.81 67.62 ± 1.99

Reweight 95.91 ± 0.44 94.23 ± 2.53 91.06 ± 4.09 87.92 ± 6.46 85.30 ± 0.10
Forward 96.12 ± 0.11 95.84 ± 0.07 94.07 ± 2.14 87.38 ± 3.85 82.02 ± 4.81

PTD 72.90 ± 1.31 75.68 ± 9.43 75.01 ± 1.98 31.59 ± 5.58 30.58 ± 2.32
CausalNL 94.20 ± 0.09 94.06 ± 0.23 93.86 ± 0.37 93.82 ± 0.45 85.41 ± 2.95

BLTM 93.88 ± 0.55 92.66 ± 1.53 92.18 ± 0.61 84.33 ± 5.44 76.19 ± 5.17
MEIDTM 94.76 ± 0.10 93.56 ± 0.22 91.11 ± 0.42 86.11 ± 0.34 72.66 ± 2.50

NPC 94.36 ± 0.06 93.41 ± 0.07 90.31 ± 0.59 84.81 ± 1.80 70.15 ± 0.76

CoNL-NR 92.64 ± 0.17 92.84 ± 0.03 92.48 ± 0.16 89.68 ± 1.35 78.90 ± 3.05
CoNL 96.81 ± 0.09 96.29 ± 0.47 95.37 ± 0.88 91.73 ± 2.53 86.51 ± 1.14

Implementation. We implement our algorithm using PyTorch and conduct all our experiments on
RTX 3090. We use a ResNet-18 as the backbone for Fashion-MNIST, a ResNet-34 as the backbone
for SVHN and CIFAR-10. For the classifier head and transition matrix generator, we use a two layers
MLP with ReLU activation function. The final layer of the transition matrix generator is initialized
to generate a diagonal largest transition matrix. To learn the backbone, we follow the same settings
of MoCo (He et al., 2020). We set the temperature τ = 0.2 and set µ = 0.999. The size of the queue
is 12800. Total epochs are 1000. When training the classifier heads and transition matrices, we use
SGD with momentum 0.9, weight decay 10−4, batch size 128 and an initial learning rate of 10−2 to
optimize the networks. The learning rate is divided by 10 at the 5th epochs and 7th epochs. We set
10 epochs in total. When revising the transition matrix, we use Adam with an initial learning rate
10−4. The learning rate is divided by 10 at the 5th epochs and 7th epochs. We set 10 epochs in total.
After that, we optimize the backbone and classifier head using SGD with momentum 0.9, weight
decay 10−4, batch size 128 and an initial learning rate of 10−2. At the same time, we optimize
the transition matrix generator using Adam with an initial learning rate 10−4. The learning rate is
divided by 10 at the 10th epochs and 20th epochs. We set 30 epochs in total.

4.2 CLASSIFICATIONS ACTUARIES ON DIFFERENT DATASETS

We conduct experiments on Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-10N. The noise rate
for Fashion-MNIST, SVHN and CIFAR-10 is ranged from 0.1 to 0.5. The ones with CoNL-NR rep-
resent the results of our algorithm without constraint T (X) revision. The ones with CoNL represent
the results after constraint T (X) revision. As shown in Tab. 1, Tab. 2 and Tab. 3, The proposed
method is have outperform to other methods by a large margin when the noise rate is large.

We also conduct experiments on the real-world label-noise dataset CIFAR-10N. The results of full
types of noise (Worst, Aggregate, Random 1, Random 1, and Random 3) are shown in Tab. 4. The
experiment results show that our method also works well on the real-world label-noise dataset.
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Table 3: Means and standard deviations (percentage) of classification accuracy on CIFAR-10.

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 87.81 ± 0.15 85.90 ± 0.30 82.67 ± 0.31 74.49 ± 0.95 46.81 ± 2.52
GCE 84.24 ± 0.38 80.22 ± 1.30 69.31 ± 0.18 56.86 ± 0.92 53.44 ± 1.28

MentorNet 86.87 ± 0.14 83.89 ± 0.16 77.83 ± 0.28 61.96 ± 0.97 47.89±2.03
CoTeaching 90.06 ± 0.32 87.16 ± 0.50 81.80 ± 0.26 63.95 ± 2.87 45.92±2.21

Reweight 89.63 ± 0.27 87.85 ± 0.97 81.29 ± 6.49 80.33 ± 3.75 75.14 ± 2.40
Forward 88.89 ± 0.18 87.83 ± 0.30 82.01 ± 3.29 79.49 ± 1.85 71.11 ± 8.78

PTD 73.50 ± 3.04 71.64 ± 3.13 64.34 ± 12.38 62.53 ± 10.93 51.04 ± 8.28
CausalNL 83.39 ± 0.34 80.91 ± 1.14 79.05 ± 0.54 79.08 ± 0.50 76.56 ± 0.02

BLTM 80.16 ± 0.37 77.50 ± 1.30 71.47 ± 2.33 63.20 ± 4.52 48.12 ± 9.03
MEIDTM 86.52 ± 0.38 82.93 ± 0.44 77.35 ± 0.21 68.21 ± 2.09 57.84 ± 3.51

NPC 84.83 ± 0.22 83.13 ± 0.28 79.48 ± 0.31 73.85 ± 0.41 67.04 ± 0.06

CoNL-NR 90.04 ± 0.18 90.23 ± 0.16 89.44 ± 0.30 87.03 ± 1.41 74.14 ± 6.46
CoNL 94.37 ± 0.16 93.88 ± 0.17 91.37 ± 3.38 89.09 ± 3.05 84.79 ± 1.63

Table 4: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.

Worst Aggregate Random 1 Random 2 Random 3

CE 79.39 ± 0.35 87.91 ± 0.18 86.05 ± 0.13 86.12 ± 0.12 86.12 ± 0.16
GCE 75.45 ± 0.31 82.77 ± 0.13 81.18 ± 0.22 80.39 ± 0.54 80.89 ± 0.82

MentorNet 77.91 ± 0.38 75.56 ± 0.25 77.12 ± 0.05 76.03 ± 0.81 76.57 ± 0.18
CoTeaching 81.86 ± 0.40 82.45 ± 0.08 82.90 ± 0.46 82.95 ± 0.26 82.66 ± 0.12

Reweight 77.68 ± 2.46 89.34 ± 0.09 88.44 ± 0.001 88.15 ± 0.13 88.21 ± 0.28
Forward 79.27 ± 1.18 89.22 ± 0.21 86.84 ± 0.97 86.99 ± 0.10 87.63 ± 0.39

PTD 67.72 ± 3.33 78.20 ± 0.25 84.19 ± 0.51 84.36 ± 0.55 69.31 ± 0.43
CausalNL 73.09 ± 2.01 82.74 ± 0.38 80.80 ± 0.50 81.26 ± 0.69 81.02 ± 1.48

BLTM 68.21 ± 1.67 79.41 ± 1.00 78.09 ± 1.03 76.99 ± 1.23 76.34 ± 0.58
MEIDTM 79.59 ± 0.89 90.15 ± 0.27 87.81 ± 0.52 88.07 ± 0.18 87.86 ± 0.21

NPC 75.53 ± 1.64 84.44 ± 0.47 81.87 ± 0.80 81.47 ± 0.95 82.22 ± 0.58

CoNL-NR 86.52 ± 0.19 89.81 ± 0.31 89.63 ± 0.19 89.43 ± 0.27 89.07 ± 0.33
CoNL 87.07 ± 0.68 93.17 ± 0.17 91.65 ± 0.32 91.51 ± 0.15 91.28 ± 0.36

4.3 ABLATION STUDIES

We perform ablation studies on Fashion-MNIST, SVHN and CIFAR10 including the performance
of contrastive co-selecting, constraint T (x) revision and the influence of contrastive learning on the
accuracy. We leave results on Fashion-MNIST in our appendix due to the limited space.

4.3.1 CONFIDENT EXAMPLE SELECTION

We illustrate the performance of contrastive co-selecting in Tab. 5, Tab. 6 and Tab. 11. The results
demonstrate that contrastive co-selecting can accurately select confident examples. Specifically,
under 50% of instance-dependent noise, it can select at least 35.56% of examples with the clean
ratio of at least 97.88%. Moreover, the noise rate of the selected example set Sl is also close to the
real noise rate. This could make a great contribution to the revision of transition matrix T (x).

4.3.2 THE ESTIMATION ERROR OF THE TRANSITION MATRIX

We show the estimation error of transition matrix before and after constraint T (X) revision. To
caculate the estimation error, we compare the difference between the ground-truth transition matrix
and the estimated transition matrix by employing l1 norm For each instance, we only analyze the
estimation error of a specific low since the noise is generated by one row of T (x). The experiment
results are showed in Tab. 7, Tab. 8 and Tab. 13. The results show that constraint T (X) revision can
effectively reduce the estimation error of transition matrix.
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Table 5: Performance of contrastive co-selecting on SVHN.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

selection ratio 37.18 ± 0.49 37.71 ± 0.16 37.25 ± 0.09 36.85 ± 0.19 35.56 ± 0.57
Noise rate 13.31 ± 0.12 21.01 ± 0.07 30.63 ± 0.08 40.29 ± 0.14 49.86 ± 0.30
clean ratio 99.40 ± 0.02 99.38 ± 0.02 99.40 ± 0.03 99.33 ± 0.13 97.88 ± 2.82

Table 6: Performance of contrastive co-selecting on CIFAR-10.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

selection ratio 66.33 ± 2.33 69.06 ± 0.84 63.54 ± 0.47 57.70 ± 0.99 47.90 ± 0.83
Noise rate 13.64 ± 0.09 21.37 ± 0.06 31.49 ± 2.10 40.53 ± 0.22 49.73 ± 0.12
clean ratio 99.14 ± 0.04 99.15 ± 0.05 96.89 ± 4.83 98.45 ± 1.95 99.18 ± 0.36

Table 7: Transition matrix estimation error on SVHN.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL (w/o MoCo) 0.193 ± 0.008 0.204 ± 0.020 0.229 ± 0.026 0.251 ± 0.001 0.285 ± 0.014

CoNL-NR 0.256 ± 0.061 0.193 ± 0.006 0.214 ± 0.006 0.240 ± 0.008 0.305 ± 0.015
CoNL 0.177 ± 0.020 0.188 ± 0.005 0.206 ± 0.009 0.226 ± 0.011 0.231 ± 0.019

Table 8: Transition matrix estimation error on CIFAR-10.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL (w/o MoCo) 0.217 ± 0.006 0.221 ± 0.008 0.253 ± 0.003 0.303 ± 0.001 0.384 ± 0.003

CoNL-NR 0.206 ± 0.011 0.198 ± 0.001 0.252 ± 0.029 0.285 ± 0.022 0.350 ± 0.018
CoNL 0.168 ± 0.009 0.195 ± 0.003 0.229 ± 0.019 0.255 ± 0.009 0.262 ± 0.005

Table 9: The test accuracy of with MoCo and without MoCo on SVHN.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL (w/o MoCo) 94.88 ± 0.13 94.56 ± 0.12 93.85 ± 0.24 86.47 ± 1.17 82.75 ± 2.33

CoNL-NR 92.64 ± 0.17 92.84 ± 0.03 92.48 ± 0.16 89.68 ± 1.35 78.90 ± 3.05
CoNL 96.81 ± 0.09 96.29 ± 0.47 95.37 ± 0.88 91.73 ± 2.53 86.51 ± 1.14

Table 10: The test accuracy of with MoCo and without MoCo on CIFAR-10.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL (w/o MoCo) 83.88 ± 0.17 82.53 ± 0.46 80.51 ± 0.22 75.34 ± 0.62 68.62 ± 3.56

CoNL-NR 90.04 ± 0.18 90.23 ± 0.16 89.44 ± 0.30 87.03 ± 1.41 74.14 ± 6.46
CoNL 94.37 ± 0.16 93.88 ± 0.17 91.37 ± 3.38 89.09 ± 3.05 84.79 ± 1.63

4.3.3 ACCURACIES WITH OR WITHOUT EMPLOYING CONTRASTIVE LEARNING

We conduct the experiments with or without employing contrastive learning on different datasets.
For CoNL (w/o MoCo), the backbone method fθ is not trained by employing MoCo, but during
the co-selecting stage, we do not fix its parameter. The other settings are same as CoNL. The
experiment results are showed in Tab. 9, Tab. 10 and Tab. 12. The empirical results clearly show that
the contrastive learning technique dramatically improves the robustness of the learning model and
is powerful for inferring the clean-label information.

5 CONCLUSION

Since both instances and noise labels are available, the main difficulty in learning instance-dependent
transition matrices is due to the lack of clean-label information. Motivated by the great success of
self-supervised learning in inferring clean labels. In this article, we propose CoNL (Contrastive
Label-Noise Learning), which can effectively utilize self-supervised learning to learn instance-
dependent transition matrices. Empirically, the proposed method have achieved state-of-the-art per-
formance on different datasets.
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A ABLATION STUDIES ON FASHION-MNIST

We demonstrate results of ablation studies on Fashion-MNIST including the performance of con-
trastive co-selecting, constraint T (x) revision and the influence of contrastive learning on the accu-
racy in Tab. 11, Tab. 13 and Tab. 12, respectively.

Table 11: Performance of contrastive co-selecting on Fashion-MNIST.

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

selection ratio 23.28 ± 0.84 26.00 ± 1.09 23.46 ± 1.10 22.37 ± 1.42 11.94 ± 1.87
Noise rate 11.82 ± 0.20 20.18 ± 0.13 30.12 ± 0.21 39.47 ± 0.26 49.21 ± 0.42
clean ratio 99.76 ± 0.11 99.81 ± 0.06 99.88 ± 0.03 99.87 ± 0.06 99.74 ± 0.32

Table 12: Test accuracy of with MoCo and without MoCo on Fashion-MNIST.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL (w/o MoCo) 91.79 ± 0.15 90.76 ± 0.14 87.46 ± 2.32 84.43 ± 1.43 75.16 ± 5.13

CoNL-NR 92.14 ± 0.07 91.86 ± 0.26 91.40 ± 0.15 90.09 ± 0.41 85.84 ± 0.71
CoNL 94.98 ± 0.14 94.20 ± 0.23 92.92 ± 1.05 91.01 ± 1.83 86.01 ± 1.83

Table 13: Transition matrix estimation error on Fashion-MNIST.
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL (w/o MoCo) 0.247 ± 0.005 0.360 ± 0.012 0.450 ± 0.011 0.582 ± 0.023 0.674 ± 0.020

CoNL-NR 0.236 ± 0.003 0.327 ± 0.021 0.409 ± 0.010 0.528 ± 0.013 0.674 ± 0.018
CoNL 0.238 ± 0.006 0.324 ± 0.005 0.391 ± 0.008 0.467 ± 0.013 0.540 ± 0.003

B EXPERIMENTS ON CIFAR-100 AND WEBVISION

To verify whether the proposed method can still work well when the number of class increase, we
conduct the experiments on CIFAR-100 and WebVision datasets. Specifically, for CIFAR-100, we
keep the same experiment setting as CIFAR-10. For WebVision, we trained a standard ResNet-18
and an inception-resnet v2 (Szegedy et al., 2017) on WebVision for 1000 epochs using MoCo v2 to
obtain the pretrained model. We follow the previous work (Chen et al., 2019) to select the first 50
classes of the Google image subset as the training set and leave out 10% of training examples as a
noisy validation set. Then we train the model with the proposed CoNL. Other experiment settings
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are as same as the experiment on CIFAR-10. We test the model on the human-annotated WebVision
validation set. The test accuracy of CoNL with ResNet backbone is 64.88% and the test accuracy
of CoNL with inception-resnet v2 backbone is 70.80%. The experiment results of CIFAR-100 are
shown in Tab. 14.

Table 14: Test accuracy of CoNL on CIFAR-100.

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CoNL-NR 40.78 ± 1.07 39.94 ± 1.51 38.30 ± 1.77 36.25 ± 1.69 32.25 ± 0.85
CoNL 74.13 ± 0.34 72.15 ± 0.52 69.96 ± 0.71 65.40 ± 2.76 59.09 ± 1.78

C DIFFERENCES BETWEEN CONTRASTIVE CO-SELECTING AND PREVIOUS
WORK

Previous work Co-Teaching (Han et al., 2018) learn two classifiers to select confident examples
for each other, and filter errors from the biased selection in the first mini-batch. In our work, two
classifiers are only used in the co-selection stage and do not provide supervised signals for each
other. We aim to design a method that can select examples as many as possible. Previous work
AugDesc (Nishi et al., 2021) explores how to use data augmentation techniques for different permu-
tations and combinations to improve the generalization and robustness of models without impacting
the memorization effect negatively, i.e., weak augmentation techniques for pseudo labels generation
and strong augmentation techniques for the back-propagation step to update model’s parameters. In
this paper, different data augmentation strategies are used to enable contrastive co-selecting to select
more reliable examples under different noise rates.
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