Mask Image Watermarking

Runyi Hu', Jie Zhang?; Shigian Zhao', Nils Lukas?,
Jiwei Li*, Qing Guo?, Han Qiu®, Tianwei Zhang'

!Nanyang Technological University = 2CFAR and IHPC, A*STAR, Singapore
3SMBZUAI *Zhejiang University 5Tsinghua University
{runyi.hu, tianwei.zhang}@ntu.edu.sg
zhangj6Qa-star.edu.sg
https://github.com/hurunyi/MaskWM

Abstract

We present MaskWM, a simple, efficient, and flexible framework for image wa-
termarking. MaskWM has two variants: (1) MaskWM-D, which supports global
watermark embedding, watermark localization, and local watermark extraction
for applications such as tamper detection; (2) MaskWM-ED, which focuses on
local watermark embedding and extraction, offering enhanced robustness in small
regions to support fine-grined image protection. MaskWM-D builds on the clas-
sical encoder-distortion layer-decoder training paradigm. In MaskWM-D, we
introduce a simple masking mechanism during the decoding stage that enables both
global and local watermark extraction. During training, the decoder is guided by
various types of masks applied to watermarked images before extraction, helping it
learn to localize watermarks and extract them from the corresponding local areas.
MaskWM-ED extends this design by incorporating the mask into the encoding
stage as well, guiding the encoder to embed the watermark in designated local
regions, which improves robustness under regional attacks. Extensive experiments
show that MaskWM achieves state-of-the-art performance in global and local
watermark extraction, watermark localization, and multi-watermark embedding.
It outperforms all existing baselines, including the recent leading model WAM
for local watermarking, while preserving high visual quality of the watermarked
images. In addition, MaskWM is highly efficient and adaptable. It requires only 20
hours of training on a single A6000 GPU, achieving 15x computational efficiency
compared to WAM. By simply adjusting the distortion layer, MaskWM can be
quickly fine-tuned to meet varying robustness requirements.

1 Introduction

Image watermarking [15] is a crucial technique for embedding imperceptible information into images,
serving purposes such as copyright protection, content authentication, and provenance tracking.
With the proliferation of Al-generated content (AIGC) [17, 19], the boundary between real and
synthetic images has become increasingly blurred, making it especially important to develop robust
watermarking schemes for content verification and traceability.

Traditional deep image watermarking methods [32, 22, 10, 4, 26] typically perform global watermark
embedding and extraction, treating the entire image as a uniform entity. However, these global
approaches suffer from several critical limitations. 1. Lack of local watermark extraction: When an
image undergoes heavy tampering, such as inpainting [25, 28], the watermark may survive only in a
small, local region that remains untouched by manipulation. In such cases, global methods often fail

*The corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/hurunyi/MaskWM

to extract the watermark effectively. 2. Inability to localize the watermark: Even if a watermark is
successfully extracted from the image, global methods cannot localize which region actually contains
the watermark, making it difficult for fine-grained forensic analysis and fair judgment. 3. Lack of
local watermark embedding: In scenarios where only specific regions of an image are valuable and
need protection, or when different parts of the image originate from different sources and require
distinct watermarking, global embedding is inherently incapable of providing the flexibility and
granularity.

We argue that the training paradigm of traditional global watermarking methods, which treats the
entire watermarked image as a whole for both encoding and decoding, prevents the encoder and
decoder from developing spatial awareness. Specifically, the decoder cannot identify which regions
of the image contain watermark signals for effective extraction, while the encoder lacks the ability to
adaptively embed the watermark into specific spatial regions.

Based on the above analysis, we propose MaskWM, a simple, efficient, and flexible image water-
marking framework. MaskWM introduces a masking mechanism during training to guide the model
learn spatially aware embedding and extraction of local watermark signals. Depending on the stage
which the mask is introduced, MaskWM offers two variants: MaskWM-D introduces the mask only
during the decoding phase, enabling global watermark embedding while supporting local extraction.
Specifically, by applying masks to retain only the selected regions of the watermarked images during
extraction, the decoder is guided to identify which regions contain watermark signals and to focus
on them for effective local extraction. MaskWM-ED introduces the mask during the encoding and
decoding phases, allowing the embedding and extraction of the local watermark. In this setting, the
encoder is trained to embed not only the watermark bits but also the spatial mask into the image.
This allows the encoder to leverage the mask to adaptively allocate watermark strength to designated
regions, while keeping the rest of the image nearly unaffected.

Extensive experiments demonstrate that MaskWM significantly outperforms existing baselines in
both global and local watermark extraction, watermark localization, and local watermark embedding,
while preserving image quality. Specifically, for local watermark extraction, MaskWM achieves a
nearly 100% extraction accuracy even when only 5% of the image carries watermark signals. In terms
of watermark localization, MaskWM demonstrates high precision in identifying watermark regions.
Furthermore, although not explicitly trained for multi-watermark embedding, MaskWM maintains
strong extraction and localization performance even when embedding up to 5 distinct watermarks
in a single image. More importantly, MaskWM exhibits strong robustness across a wide range of
distortions, including geometric distortions that typically break many existing watermarking methods.
In addition to its effectiveness, MaskWM is highly efficient. Training the encoder-decoder model
requires only approximately 20 hours on a single A6000 GPU, which is 15x less compute than the
recent state-of-the-art local watermarking model WAM [20]. MaskWM also scales effortlessly to
different bit lengths (e.g., 32, 64, and 128), whereas WAM is inherently limited to 32-bit embedding
and does not scale beyond that. Furthermore, MaskWM supports fast fine-tuning for different use
cases. For example, MaskWM can reach a near 100% extraction accuracy against VAE-based adaptive
attacks after just 20k training steps. These advantages make MaskWM a practical, efficient, and
scalable solution for real-world applications.

2 Background

2.1 Image Watermarking

Image watermarking techniques can generally be categorized into two types: global watermarking
and local watermarking methods. Global watermarking methods aim to extract watermark
information from the entire image. Most traditional deep learning-based approaches fall into
this category. These methods focus on achieving robustness against various types of distortions,
ensuring that the embedded watermark can still be reliably recovered even when the image undergoes
degradation. For example, MBRS [10] specifically targets robustness against JPEG compression.
Methods like StegaStamp [22] and PIMoG [5] are designed to handle real-world physical distortions
such as screen-shooting and print-shooting. More recent approaches like ZoDiac [27] and SuperMark
[6] tackle adaptive attacks, while Robust-Wide [8] and VINE [14] focus on robustness against
instruction-driven image editing.

In contrast, local watermarking methods focus on extracting watermark information from a
specific region of the image. Recent methods, such as WAM [20] and our proposed MaskWM,
belong to this category. WAM treats watermark extraction as a segmentation task [12], predicting
watermark bits at the pixel level and then averaging these per-pixel predictions to obtain the final
result. While this fine-grained approach enables local watermark extraction, it also presents several
challenges. 1. Limited extraction from small regions: When the watermarked area is very small, only
a few pixels contribute to extraction, making naive averaging unreliable, especially under distortions.
2. Lack of scalability with longer messages: WAM struggles to scale beyond 32-bit messages, as
training becomes increasingly difficult with longer bit lengths. 3. High computational cost: Training
WAM is resource-intensive, requiring eight V100 GPUs for nearly a week, which limits its practicality.
4. Lack of native local embedding: WAM embeds watermarks globally and then crops for local focus,
introducing embedding losses that reduce extraction robustness.

2.2 Watermark Localization

Watermark localization [30, 7, 20] refers to the ability to determine which regions of a watermarked
image still contain watermark information after modifications. This capability enables the identifica-
tion of unaltered content, serving as an active detection mechanism for tamper localization. Currently,
image watermarking techniques primarily adopt two paradigms for watermark localization. The first
paradigm embeds a one-dimensional copyright watermark alongside a two-dimensional local-
ization watermark in the original image. During extraction, localization is based on the fragility of
the localization watermark, which cannot be fully recovered from a modified image. Key methods in
this category include EditGuard [30] and OmniGuard [31]. EditGuard embeds a solid-color template
within the host image and attempts to recover it from a modified version. The difference between the
recovered and original templates is calculated at each pixel, and a threshold-based decision identi-
fies watermark-preserved regions. OmniGuard improves upon EditGuard by embedding a natural
image as the template, enhancing fidelity. It also introduces a Degradation-aware Tamper Extractor,
improving robustness in detecting tampered regions under distortion. This paradigm requires parallel
extraction of both copyright and localization watermarks, which may affect image quality. Moreover,
both watermarks need independent robustness, and the presence of the template watermark does not
guarantee the presence of the copyright watermark.

The second paradigm, in contrast, embeds only a one-dimensional copyright bitstream and
directly determines the presence or absence of watermark information at each pixel to achieve
localization. Methods such as WAM [20] and our proposed MaskWM fall under this category.
WAM employs a decoder that simultaneously performs pixel-wise watermark presence detection
and copyright bit extraction. In contrast, our MaskWM incorporates a dedicated localization module
within the decoder, focusing solely on watermark presence detection at each pixel. This approach
is more lightweight and easier to optimize. Compared to the first watermark localization paradigm,
this method ensures that the local watermarked regions strictly correspond to the areas containing
copyright watermark information, enhancing interpretability. Additionally, it guarantees both the
robustness of copyright watermark extraction and the robustness of localization.

3 Methodology

3.1 Design Principles

In general, we have three main objectives: local watermark extraction, watermark localization,
and local watermark embedding. Among these, our primary goal is local watermark extraction,
which aims to recover the embedded message from images where only a small, spatially local region
contains the watermark signal. In practice, we find that achieving high performance on this task
naturally necessitates solving the other two problems as well. We now identify three key reasons why
traditional watermark models fail under this setting.

First, since the decoder is trained exclusively on globally watermarked images and has never encoun-
tered cases with only locally embedded watermarks, it fails to perform zero-shot extraction on such
inputs. Second, the non-watermarked portions of an image interfere with the decoder’s extraction
process, especially when the watermark occupies a small area, leading to extraction failure. Third,
because the decoder is optimized for global watermark extraction, the encoder tends to dilute the

I Watermark Embedding N Watermark Masking |

ﬁ l Distortion Pool

Tfuse Inask

Valuemetric

s it s it
S
Geometric
Ifuse

¥ bg: P

Full. Rec. Seg. rd

Candidate Masks Decoder

|
" Mask Generation Watermark Extraction

Figure 1: The overall end-to-end training pipeline of MaskWM. (1) In the Mask Generation stage,
we generate candidate masks from four predefined types and randomly select one mask M for the
subsequent stages. (2) In the Watermark Embedding stage, the encoder £ embeds the watermark
bits W, into the original image I,,;4, optionally using the mask M (for MaskWM-ED), to produce
the watermarked image I,,,,,. (3) In the Watermark Masking stage, the mask M is used to fuse
Iorig and I, (see Eq. 2), resulting in the fused image I .., which is then subjected to a randomly

selected distortion from a predefined distortion pool, yielding the distorted image I /fuse. The masked
region is then cropped using M to obtain I, 4. (4) In the Watermark Extraction stage, the decoder
D extracts the predicted mask M, from I }use and the predicted watermark bits W4 from 1,41

watermark’s intensity over the entire image. This results in local regions having either insufficient or
fragmented watermark strength, thereby exacerbating the extraction challenge.

To address these challenges, we propose MaskWM-D, which introduces a basic mask mechanism
during the decoding stage to guide the decoder in identifying and focusing on watermark-containing
regions. To solve the first issue, we retain the watermark only in the masked regions and set other
regions’ pixels to zero, training the decoder to extract watermarks from partially watermarked
images. For the second issue, we replace the non-masked regions with the original clean image
and add a watermark localization module in the decoder to differentiate between watermarked and
non-watermarked areas, reducing interference from irrelevant content. These two strategies directly
address the first two issues by enabling the decoder to extract watermarks from local regions, while
also indirectly mitigating the third issue by guiding the encoder to evenly distribute the watermark
under the end-to-end training, thus facilitating the decoder’s extraction process.

To further enhance the encoder’s ability to address the third challenge, we propose MaskWM-ED,
which incorporates the mask during the encoding stage to explicitly guide watermark placement. In
MaskWM-ED, the mask is embedded into the image along with the watermark bits during training.
This enables the encoder to learn to actively concentrate the watermark within the selected regions
based on the embedded mask, thereby further improving the robustness of local watermarking.

3.2 Training

The overall end-to-end training pipeline is shown in Figure 1. It consists of four stages: (1) Mask
Generation, (2) Watermark Embedding, (3) Watermark Masking, and (4) Watermark Extraction. In
the following, we provide a detailed description of each stage.

Mask Generation. The mask generation process constructs a pool of candidate masks with diverse
types, from which one mask M is randomly selected for each image during training. We follow a
similar mask generation strategy as LaMa [21] for image inpainting, utilizing four distinct types of
masks: Full Mask, Rectangle Mask, Irregular Mask, and Segment Mask. These masks can enhance
the model’s ability to handle watermark embedding and extraction under diverse conditions from
different perspectives: Full Mask enables the model to embed and extract watermarks across the
entire image, serving as a fundamental capability. Rectangle Mask focuses on regularly shaped local
regions, encouraging the model to operate within confined areas of varying sizes. Irregular Mask
introduces complex, arbitrarily shaped regions to improve robustness in non-uniform contexts. Lastly,

Segment Mask targets semantically meaningful areas by leveraging object masks from the MS-COCO
dataset [13], helping the model generalize to real-world scenarios.

Watermark Embedding. We describe the process of embedding both the watermark bits W, and
the optional mask M into the original image I,,;,. We first randomly sample binary watermark bits
Wyt € 0,1 of length I, which are transformed into a feature map f € RY*#>W yging a lightweight
CNN, where C'y is the number of channels in f, and H and W denote the height and width of 1,4,
respectively. This CNN consists of a linear layer that maps W, to a tensor of shape (1,,1), followed
by bilinear interpolation to (1, H, W) and several Conv-Norm-ReLU (CNR) blocks that produce the
final feature map f.

To embed the watermark, we concatenate the original image I,,.;, with the watermark feature f
along the channel dimension. For the MaskWM-D, this results in a tensor of shape (3 + Cy, H, W),
promoting global watermark embedding. For the MaskWM-ED, the optional mask M is further
concatenated, yielding a tensor of shape (3 4+ Cy + 1, H, W). The mask guides the model to focus
on the selected regions during training, enabling local embedding within those specified areas.

The concatenated tensor is then passed through a U-Net [12] to generate an intermediate encoded
image I.,.. To obtain the final watermarked image I,,.,,, we apply a Just-Noticeable-Difference
(JND) module [23], which modulates the embedding signal based on human visual sensitivity to
enhance the perceptual quality:

Lym = orig T 1 X JND(Iorig) X (Ienc - Iom'g)7 (1

where p is the JND scaling factor to control the watermark strength. We explore several strategies
to improve the visual quality of the watermarked image and find that JND modulation consistently
delivers the best performance (see Appendix D.1 for details).

Watermark Masking. We describe how the mask M is used to process the watermarked image
I, for subsequent mask prediction and watermark extraction by the decoder. First, we generate a
fused image [y, by combining I, and the original image I,,;4, where the unmasked regions are
replaced with the corresponding pixels from I;.4:

Truse = Tum © M + Iopig © (1 — M). 2)

Next, a randomly selected distortion from a predefined distortion pool is applied to 1 ¢y, producing
an augmented image [}use. This step follows a common practice in traditional watermarking methods
to improve robustness against various transformations. Finally, we use the mask M once more to
isolate the watermarked regions of 1 }use, setting all other pixels to zero to obtain the input [,,,,s for
watermark extraction:

Inask = I}use © M. (3)

Watermark Extraction. We describe how the decoder D extracts the predicted mask from [}use
and recovers the watermark bits from 7,,,,55. To achieve these two objectives, D consists of two
dedicated modules: a U?-Net [16] for mask prediction, and a U-Net [18] followed by a CNN

for watermark extraction. Specifically, the U%-Net takes [}use as input and predicts a mask M.

Meanwhile, the U-Net processes I,,qsk to produce an intermediate feature f” with shape (C o HW),
which is then passed through a CNN to obtain the predicted watermark bits 1¥,;. Unlike the CNN
used in the encoder &, the CNN in the decoder D first applies several Conv—Norm—ReLU layers
to further extract features from f’. The resulting features are then interpolated to a fixed shape of
(1,1,1) and subsequently transformed by linear layers into a bit sequence of length [, yielding the
final watermark prediction W,q.

Training Objectives. For all loss functions, we use Mean Squared Error (MSE). Specifically, the
encoder loss is defined as:

Eenc = EMSE(IU)’NH Iorig)- (4)
Note that we impose constraints only in the pixel space, as we find that this setup, combined with
JND modulation, already achieves high visual quality. Introducing constraints in the feature space or
using GAN-based losses would negatively impact the overall performance, as discussed in Appendix
D.1. The decoder loss is formulated as:

»Cdec = L:MSE(Wpda Wgt) + CV»C'MSE(-ZM-pda M)» (5)

where « is a factor controlling the weight of the mask loss. The overall objective function is:

»Ctotal = Benc ' Eenc + Bdec : ﬁdecv (6)

where Sene and Sge are the weights for the encoder and decoder losses, respectively. Compared to
conventional watermarking methods, our approach introduces only a mask loss at the decoder stage.
As aresult, it retains a simple yet effective objective, making it easy to extend.

3.3 Inference

The inference process consists of three main
stages: watermark embedding, localization, and
extraction. Embedding is performed by the en-
coder. In MaskWM-D, the encoder embeds
the watermark bits across the entire image. In
MaskWM-ED, users provide both the water- Figure 2: Watermark localization and extraction
mark bits and a mask, allowing the encoder to process in our decoder during inference.

embed the watermark into specific regions. Lo-

calization and extraction are performed by the decoder. As shown in Figure 2, unlike conventional
global extraction methods, our approach first uses the decoder’s localization module to identify
watermark-containing regions. The rest of the image is masked out by setting non-watermarked areas
to zero, reducing noise during extraction. The watermark is then recovered from the retained regions.
As discussed in Sec. 4.5, this strategy improves extraction robustness, especially when only small
regions remain watermarked.

Decoder

3.4 Usage Scenarios

This section outlines the usage scenarios of MaskWM-D and MaskWM-ED, which are tailored to
different protection requirements. MaskWM-D is designed for full-image protection. It enables
reliable watermark extraction even when parts of the image are tampered with, making it suitable for
scenarios that demand global content integrity and tamper detection, such as copyright enforcement
or image provenance verification. MaskWM-ED, on the other hand, focuses on protecting specific
regions of interest, such as faces, logos, or sensitive content. It allows targeted verification or tracing
if these regions are reused or misappropriated, without introducing watermarks across the entire
image. This strategy not only supports privacy-aware or content-specific protection, but also tends to
provide better robustness within the marked regions.

4 Experiments

4.1 Implementation Details

Training. For all experiments, we train MaskWM on 83k images from the MS-COCO 2014 training
set [13] and the training details are provided in Appendix C.1.1.

Evaluation. To ensure fair comparison, we fix the image resolution to 512 x 512. For baseline
methods that do not support this resolution, we follow the resolution scaling strategy from TrustMark
[2] to interpolate the watermark strength (see Appendix C.2.1), which has been shown to preserve
watermarking performance. To ensure comparable visual fidelity across variants, we set the JND
scaling factor p to 1.3 for MaskWM-D and 1.75 for MaskWM-ED. For robustness evaluation, we
separately assess valuemetric and geometric distortions. For valuemetric robustness, we randomly
sample from a set of ten common distortions, including JPEG Compression, Gaussian Filter, Gaussian
Noise, Median Filter, Salt&Pepper Noise, Resize, Brightness, Contrast, Hue, and Saturation. For
geometric robustness, we randomly sample from three typical transformations: Rotation, Perspective,
and Horizontal Flip. These distortions collectively cover the vast majority of real-world transfor-
mations that watermarked images are likely to encounter in practical scenarios. Detailed parameter
settings for each distortion are provided in Appendix C.2.2. We also evaluate robustness under each
specific distortion individually and the detailed results are presented in Appendix D.2.

4.2 Global and Local Watermarking Comparison

Settings. We compare MaskWM with seven recent open-source watermarking methods, including
both global (e.g., StegaStamp [22], SepMark [24], TrustMark [2], EditGuard [30], Robust-Wide
[8], VINE [14]) and local (WAM [20]) approaches. We use the clean (EditGuard-C) and degraded
(EditGuard-D) variants of EditGuard, and the robust version (VINE-R) of VINE. For global water-
marking, we evaluate on 1k images from the MS-COCO 2014 validation set using PSNR, SSIM,
and Bit Accuracy, where PSNR and SSIM measure the visual quality of watermarked images, and
Bit Accuracy evaluates watermark extraction performance. For local watermarking, we use all 41k
validation images and evaluate Bit Accuracy under different watermarked area ratios. By default,
MaskWM embeds 32 bits for fair comparison with WAM, though MaskWM supports flexible bit
lengths (see Sec. 4.5). See Appendix C.2.3 for more implementation details and evaluation settings.

Global Watermarking Results. The global watermarking results for all methods are summarized
in Table 1. First, both MaskWM-D and MaskWM-ED achieve high visual fidelity, with PSNR scores
above 39.5 and SSIM scores exceeding 0.98. These results outperform WAM and are only marginally
lower than TrustMark and Robust-Wide. More importantly, under this high-fidelity setting, both
variants of MaskWM still maintain near 100% bit accuracy, even under various valuemetric and
geometric distortions. This demonstrates significantly better robustness compared to both global
and local watermarking baselines. Notably, geometric distortions, which often break existing global
watermarking methods, are effectively handled by our robust and reliable MaskWM framework.

Table 1: Comparison with baseline watermarking methods in terms of global watermarking. The best
and the second best results are highlighted in bold and underlined, respectively.

Distortions
Method Bit Length PSNR 1 SSIM{ No Distortion 1 Valuemetric Geometric

Global Watermarking Methods

StegaStamp [22] 100 28.87 0.9019 0.9990 0.9976 0.6646

SepMark [24] 30 35.73 0.9876 0.9957 0.9643 0.5086

TrustMark [2] 100 41.19 0.9922 0.9996 0.9955 0.7868

EditGuard-C [30] 64 37.27 0.9332 0.9991 0.5482 0.4925

EditGuard-D [30] 64 32.30 0.8199 0.9999 0.5444 0.4975

Robust-Wide [8] 64 41.58 0.9923 1.0000 0.9944 0.4951

VINE [14] 100 36.04 0.9874 0.9997 0.9986 0.5012
Local Watermarking Methods

WAM [20] 32 39.32 0.9791 1.0000 0.9986 0.8979

MaskWM-D (Ours) 32 39.55 0.9814 1.0000 1.0000 0.9998

MaskWM-ED (Ours) 32 39.52 0.9828 1.0000 1.0000 1.0000

Local Watermarking Results. The local watermarking results for all methods are presented in
Figure 3. Global watermarking methods suffer a significant drop in extraction accuracy as the
watermarked region shrinks, revealing their weakness in local watermarking tasks. In contrast, both
WAM and MaskWM maintain high accuracy even with small watermarked areas, and MaskWM
consistently outperforms WAM, especially under distortions, demonstrating greater robustness.
Between our variants, MaskWM-ED performs better when the watermarked area is small, with the
performance gap narrowing as the watermarked area increases.

Visualized Results. The visualized watermark patterns embedded by MaskWM-D and MaskWM-
ED are shown in Figure 15 in Appendix D.6.

4.3 Watermark Localization Comparison

Settings. We further compare MaskWM with EditGuard [30] and WAM [20], two methods with
watermark localization capabilities. Localization performance is evaluated using the local watermark-
ing dataset described in Sec. 4.2, with Intersection-over-Union (IoU) metrics computed between the
predicted and ground-truth regions for both the watermarked and unwatermarked areas.

No Distortion Valuemetric Distortions Geometric Distortions

1.00 1.00 1.00
0.90 0.90 0.90
P
>
g 0.80 0.80 0.80
5
3
5]
<070 070 070
z
0.60 0.60 0.60
0.50 0.50 0.50
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
—8— MaskWM-ED (Ours) —— WAM —#— EditGuard-D StegaStamp —e— Robust-Wide
—— MaskWM-D (Ours) —&— EditGuard-C —&— SepMark ~¥— TrustMark —&— VINE

Figure 3: Watermark extraction performance of different methods under different ratios of water-
marked areas. The intervals of ratios are: 1-5%, 5-10%, ..., 95-99%, 99-100%. We select the average
value for each interval’s ratios to stand for the interval (e.g., 3% for 1-5%).

Results. The localization results of different methods are presented in Figure 4. First, MaskWM con-
sistently achieves the best localization performance across nearly all watermark ratios and distortion
conditions, with WAM showing a noticeable performance gap and EditGuard performing signifi-
cantly worse. Second, MaskWM-ED outperforms MaskWM-D in localizing small regions, whether
watermarked or unwatermarked, especially under distortion conditions. Interestingly, EditGuard-C
shows an unusual rise in localization performance for unwatermarked regions as the watermark area
increases under non-distorted conditions, a behavior not observed in EditGuard-D, possibly due to
overfitting from being trained solely on clean data. The visualized localization results of different
methods are provided in Appendix D.7.

No Distortion Valuemetric Distortions Geometric Distortions

1.00 1.00 1.00 -
2
2 0.80 0.80 0.80
©
[
< 0.60 0.60 0.60
o
g
& 0.40 0.40 0.40
E
L
S 0.20 0.20 0.20
= M

0.00 0.00 0.00

1.00 1.00 1.00
>
° ':':.
© 0.80 0.80 0.80
[
<
=]
goeo 0.60 0.60
£
$ 0.40 0.40 0.40
T
g
5020 0.20 0.20

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)

—8— MaskWM-ED (Ours) —#— MaskWM-D (Ours) —&— WAM —@— EditGuard-C —#— EditGuard-D
Figure 4: Localization performance of different methods under different ratios of watermarked areas.

4.4 Performance Comparisons of Embedding Multiple Watermarks

Settings. We further compare MaskWM-ED with WAM [20] under a multi-watermark setting by
embedding up to five distinct watermarks into separate masked regions. The evaluation considers
extraction accuracy and localization performance under a stricter masking constraint (5% area per
region). We report the average watermark extraction accuracy across all embedded watermarks and
the mean IoU of the predicted watermark regions. Detailed setup is provided in Appendix C.2.4.

Results. Figure 5 presents the comparison results. First, our MaskWM-ED consistently outper-
forms WAM in both watermark extraction and localization, across all tested numbers of embedded
watermarks and under various distortion conditions. Second, despite being trained solely with
single-watermark supervision, MaskWM-ED generalizes well to multi-watermark settings, demon-
strating strong scalability. However, under geometric distortions, MaskWM-ED’s extraction accuracy
degrades as the number of embedded watermarks increases. This is mainly due to spatial transfor-

mations (particularly rotation) shrinking the watermark regions in the image corners, reducing the
effective area available for extraction (see Figure 20 in Appendix D.8).

Watermark Extraction Comparison Watermark Localization Comparison
0990.980,980.980.98 0.98

[y
=)
[y
=)

0.970.96 0.97 0.96 4097 0.970.970.97

0.940. . .S . .
0.9: 0.92 0.940.94 0.94 0.92094094094094

o
©
o
®
3
o
©

4
@
)
4
@

.77
0.750.74

o
3

Bit Accuracy
o
3

Watermarked Area loU

o
o
o
o

o
o

0.5

No Distortion Valuemetric Distortions Geometric Distortions No Distortion Valuemetric Distortions Geometric Distortions

mmm MaskWM-ED (Ours) — mmm WAM

Figure 5: Performance comparison of watermark extraction and localization when embedding
multiple watermarks. The bar colors transition from light to dark from left to right, representing the
embedding of 1 to 5 different bit strings in a single image.

4.5 More Analysis

Scalability to Different Watermark Bit Lengths. While WAM is constrained to 32-bit watermarks,
our MaskWM readily scales to longer bit lengths. Detailed results are provided in Figure 12 in
Appendix D.3. MaskWM maintains high extraction accuracy across various bit lengths. Even at 64
bits, the accuracy experiences only a slight drop and still outperforms WAM at 32 bits. While the
accuracy decline becomes more noticeable at 128 bits, MaskWM consistently surpasses WAM under
both no distortion and valuemetric distortion conditions. The only exception arises under geometric
distortion, where a performance gap emerges when the watermarked region covers between 5%
and 75%. These results underscore the scalability and optimization-friendly design of our method,
emphasizing its practical advantages.

Enhancing Robustness against Adaptive Attacks via Fast Fine-tuning. While MaskWM is
trained on a broad range of common distortions, it is impractical to cover all possible scenarios.
Fortunately, our framework supports task-specific fine-tuning, allowing it to adapt to new and
emerging threats. As a demonstration, we consider adaptive attacks based on variational autoencoders
(VAEs) [11], which reconstruct images and may inadvertently remove watermark signals. To counter
this, we expand the distortion pool during fine-tuning by incorporating VAE modules from Stable
Diffusion v1-4 [17], Bmshj18 [1], and Cheng20 [3]. Training details are provided in Appendix C.1.1.
Fine-tuning for 20k steps on a single A6000 GPU (~5 hours) significantly improves robustness
against these attacks, as shown in Figure 13 in Appendix D.4, outperforming existing baselines.
While there is a slight drop in robustness to other distortions, MaskWM still maintains strong overall
performance. These results demonstrate the adaptability of our approach to specific threats.

Importance of Localization before Extracting Local Watermarks. We evaluate watermark
extraction performance using three masking strategies when processing the watermarked image
for extraction: (1) a full mask, which uses the entire image; (2) a predicted mask, which focuses
on regions predicted to contain the watermark; and (3) a ground-truth mask, which focuses on the
actual watermark-embedded regions. As shown in Figure 14 in Appendix D.5, when watermarks
are embedded in small regions, using the full mask significantly reduces accuracy. In contrast, the
predicted and ground-truth masks progressively improve performance. This highlights the importance
of localizing watermarked regions before extraction to reduce interference from irrelevant content.

Computation Overhead Evaluation. We compare training and inference costs of MaskWM with
EditGuard [30] and WAM [20], both supporting watermark extraction and localization, summarized
in Table 2. MaskWM has fewer parameters than WAM, with similar encoder and decoder sizes; WAM
allocates most parameters to the decoder due to its more complex task. In training, MaskWM requires
only about 1/15 of WAM’s TFLOPs. EditGuard doesn’t report training cost, but its data consumption
(stepsxbatch) already reaches 60% of MaskWM s, despite using fewer strong distortions for
robustness. Fewer parameters don’t always mean lower inference overhead, as different image
processing methods affect memory and speed. Although EditGuard has the fewest parameters, it uses

more memory and runs slower due to embedding both localization and copyright watermarks. In
contrast, MaskWM and WAM have lower latency with similar memory use.

Table 2: Training and inference costs of different methods. The inference time is evaluated on a
single A6000 with a batch size of 1 by averaging the total processing time over 1000 images.

Params (M) Train Inference
Enc Dec Total Steps Batch GPU Time TFLOPs Memory Enc Time Dec Time Total Time Memory

EditGuard [30] 36 26 6.2 250K 4 - - - 0.074 s 0.080 s 0.154 s 2.15GB
WAM [20] 1.1 960 97.1 3,680K 16 8VI00 90h 1.13 x 100 - 0.015s 0.017 s 0.032s 233GB
MaskWM (Ours) 31.1 322 633 100K 16 1A6000 20h 7.74 x 10" 2584 GB 0.009 s 0.022 s 0.031s 221GB

Method

5 Conclusion

In this paper, we propose MaskWM, a simple and efficient framework for both global and local image
watermarking. Its core design introduces masks in encoding and decoding stages to guide the encoder
and decoder to learn local embedding and extraction. Extensive experiments demonstrate MaskWM
’s superior performance in local watermark extraction and localization, along with high efficiency and
adaptability. We hope our simple design can inspire future research to further enhance the practicality
and functionality of watermarking models.

Acknowledgments

This research / project is supported by the National Research Foundation, Singapore and Infocomm
Media Development Authority under its Trust Tech Funding Initiative. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore, and Infocomm Media Development
Authority.

References

[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational image
compression with a scale hyperprior. In International Conference on Learning Representations, 2018.

[2] Tu Bui, Shruti Agarwal, and John Collomosse. Trustmark: Universal watermarking for arbitrary resolution
images. arXiv preprint arXiv:2311.18297,2023.

[3] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 7939-7948, 2020.

[4] Han Fang, Dongdong Chen, Qidong Huang, Jie Zhang, Zehua Ma, Weiming Zhang, and Nenghai Yu.
Deep template-based watermarking. IEEE Transactions on Circuits and Systems for Video Technology,
31(4):1436-1451, 2020.

[5] Han Fang and et al. Pimog: An effective screen-shooting noise-layer simulation for deep-learning-based
watermarking network. In ACM MM, pages 2267-2275, 2022.

[6] Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Supermark: Robust and
training-free image watermarking via diffusion-based super-resolution. arXiv preprint arXiv:2412.10049,
2024.

[7] Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:
Regulating diffusion-based video generation models via watermarking. In International Conference on
Learning Representations (ICLR), 2025.

[8] Runyi Hu, Jie Zhang, Ting Xu, Jiwei Li, and Tianwei Zhang. Robust-wide: Robust watermarking against
instruction-driven image editing. In European Conference on Computer Vision, pages 20-37. Springer,
2024.

[9] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional

adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1125-1134, 2017.

10

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Zhaoyang Jia, Han Fang, and Weiming Zhang. Mbrs: Enhancing robustness of dnn-based watermarking
by mini-batch of real and simulated jpeg compression. In Proceedings of the 29th ACM international
conference on multimedia, pages 41-49, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4015-4026, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision—-ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages
740-755. Springer, 2014.

Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, and Adams Wai-Kin Kong. Robust watermarking using
generative priors against image editing: From benchmarking to advances. arXiv preprint arXiv:2410.18775,
2024.

Vidyasagar M Potdar, Song Han, and Elizabeth Chang. A survey of digital image watermarking techniques.
In INDIN’05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005., pages 709-716.
IEEE, 2005.

Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar R Zaiane, and Martin Jagersand.
U2-net: Going deeper with nested u-structure for salient object detection. Pattern recognition, 106:107404,
2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684—-10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part Il 18, pages 234-241.
Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. Advances in neural information processing
systems, 35:36479-36494, 2022.

Tom Sander, Pierre Fernandez, Alain Durmus, Teddy Furon, and Matthijs Douze. Watermark anything
with localized messages. In International Conference on Learning Representations (ICLR), 2025.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei
Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-robust large
mask inpainting with fourier convolutions. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 2149-2159, 2022.

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical photographs.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2117-2126,
2020.

Jinjian Wu, Leida Li, Weisheng Dong, Guangming Shi, Weisi Lin, and C-C Jay Kuo. Enhanced just
noticeable difference model for images with pattern complexity. IEEE Transactions on Image Processing,
26(6):2682-2693, 2017.

Xiaoshuai Wu, Xin Liao, and Bo Ou. Sepmark: Deep separable watermarking for unified source tracing
and deepfake detection. In Proceedings of the 31st ACM International Conference on Multimedia, pages
1190-1201, 2023.

Tao Yu, Runseng Feng, Ruoyu Feng, Jinming Liu, Xin Jin, Wenjun Zeng, and Zhibo Chen. Inpaint
anything: Segment anything meets image inpainting. arXiv preprint arXiv:2304.06790, 2023.

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Huamin Feng, Gang Hua, and Nenghai Yu. Deep
model intellectual property protection via deep watermarking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(8):4005-4020, 2021.

11

[27]

(28]

[29]

(30]

(31]

(32]

Lijun Zhang, Xiao Liu, Antoni Viros Martin, Cindy Xiong Bearfield, Yuriy Brun, and Hui Guan. Attack-
resilient image watermarking using stable diffusion, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF international conference on computer vision, pages 3836-3847,
2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586-595, 2018.

Xuanyu Zhang, Runyi Li, Jiwen Yu, Youmin Xu, Weiqi Li, and Jian Zhang. Editguard: Versatile image
watermarking for tamper localization and copyright protection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11964-11974, 2024.

Xuanyu Zhang, Zecheng Tang, Zhipei Xu, Runyi Li, Youmin Xu, Bin Chen, Feng Gao, and Jian Zhang.
Omniguard: Hybrid manipulation localization via augmented versatile deep image watermarking. arXiv
preprint arXiv:2412.01615, 2024.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks. In
Proceedings of the European conference on computer vision (ECCV), pages 657-672, 2018.

12

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are consistent with the actual
contributions of the paper. They accurately summarize the proposed method, its motivations,
and the key experimental findings presented in the main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of MaskWM in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [NA]
Justification: We do not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the experimental setup, including
model architectures, training procedures, hyperparameters, evaluation metrics, and baselines.
This information is sufficient to reproduce the main experimental results and verify the
paper’s core claims, even without access to the code or data.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Both the code and data have been publicly released and detailed instructions
are provided to enable faithful reproduction of the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are provided in Sec. 4.1 and Appendix C.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main evaluation metrics (PSNR, SSIM, and Bit Accuracy) exhibit neg-
ligible variance across multiple runs in our setting, as they are deterministic or nearly
deterministic given fixed seeds and models. As such, we did not include error bars, since
their inclusion would not significantly affect the interpretation of the results or the validity
of the main claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of compute workers, memory and time of execution are reported in
Table 2.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with NeurIPS Code of Ethics and we provide impact
statement in Appendix B.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide impact statement in Appendix B.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited existing datasets and pre-trained models we used.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

17

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

18

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used as part of the core methodology or experimental pipeline.
Any use of LLMs was limited to writing assistance and did not impact the scientific contri-
butions or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Limitations

Despite the relatively high PSNR and SSIM of the watermarked images produced by our method,
noticeable artifacts are still present in some cases. To address this issue, we explored multiple
approaches and ultimately adopted a JND-based method [23] to effectively suppress artifacts (as
shown in Appendix D.1). Nevertheless, some images still exhibit visible artifacts after watermark
embedding, particularly in smooth background regions. This issue is also present in WAM [20]
and reflects a common limitation in local watermarking methods, possibly arising from the inherent
trade-off between imperceptibility and local robustness. Our focus in this work is to propose a
watermarking framework centered on a mask mechanism, rather than to exhaustively pursue visual
quality improvements. We have not further explored advanced strategies such as improved loss
functions, auxiliary modules for visual enhancement, or more effective algorithms for watermark
strength modulation. These aspects are left for future work to enhance the practicality and visual
fidelity of our method.

B Impact Statement

We propose a simple, efficient, and flexible image watermarking framework whose core component,
a masking mechanism, can be easily integrated into existing watermarking models. This mechanism
enhances both the functionality and robustness of watermarking systems, significantly improving
their practicality in real-world scenarios. The support for local watermark extraction allows reliable
recovery of watermark information even when large portions of the image are tampered with. This is
particularly valuable for forensic verification in areas such as misinformation mitigation and evidence
integrity analysis. The ability to localize watermark regions enables systems to identify precisely
which parts of an image contain embedded signals, facilitating transparent content attribution and
enabling fair decision-making in legal and copyright-related contexts. Furthermore, local watermark
embedding allows protection of specific regions within an image, which is useful when only certain
parts require ownership marking or when content from multiple sources needs independent tracking
and licensing. By improving spatial controllability while maintaining low computational cost and
compatibility with existing architectures, our approach makes robust and fine-grained watermarking
more accessible and deployable across diverse applications.

C More Details

C.1 Training
C.1.1 Details

All images are resized and center-cropped to 256 x 256 during training. Training is conducted for
100k steps with a batch size of 16 on a single NVIDIA A6000 GPU. We use the AdamW optimizer
with a learning rate of 1 x 10~%, and apply a cosine learning rate scheduler with 2k warm-up steps.
We adopt an easy-to-hard training strategy inspired by TrustMark [2]. During the first 0.5k steps, the
mask is set to full (i.e., all ones) and no distortion is applied. From step 0.5k to 1k, we introduce
all types of masks. After 1k steps, distortions are added. The encoder loss weight [y is fixed at 1,
while the decoder loss weight S, is initially set to 20 and linearly decayed to 0.2 over the first Sk
steps. The mask loss weight « is set to 0.5. The JND module in the encoder is introduced and tuned
starting from step 5k, with the scaling factor p set to 1.

During fine-tuning with adaptive attacks, VAE-based distortions are applied with a 50% probability,
while the original distortion types are retained for the remaining 50%. The hyperparameters are set as
follows: Bgec = 0.3, learning rate = 1 x 10~%, and the quality levels for Bmshjl8 and Cheng20 are
both set to 5.

C.1.2 Distortions

Valuemetric Distortions. During training, valuemetric robustness is enhanced by randomly sam-
pling from a set of ten common distortions: JPEG Compression, Gaussian Filter, Gaussian Noise,
Median Filter, Salt&Pepper Noise, Resize, Brightness, Contrast, Hue, and Saturation. The distortion
parameters are set as follows:

20

NS N A W N -

JPEG Compression: quality factor = 50.
* Gaussian Filter: kernel size = 1, sigma = 5.

¢ Gaussian Noise: mean = 0, standard deviation = 0.1.

Median Filter: kernel size = 5.

L]

Salt&Pepper Noise: noise ratio = 0.1.

Geometric Distortions. To improve geometric robustness, we randomly sample from three typical
geometric transformations: Rotation, Perspective, and Horizontal Flip. The specific configurations
are:

* Rotation: angle sampled from [—90°,90°].
* Perspective: distortion scale sampled from [0.1, 0.5].

* Horizontal Flip: no parameters.

C.2 Evaluation

C.2.1 Resolution Scaling

Algorithm 1 is adapted from the resolution scaling method described in TrustMark [2]. This algorithm
enables a watermark model trained on images with a fixed resolution to be applied at arbitrary
resolutions without sacrificing performance.

Algorithm 1: Resolution scaling - watermark embedding on arbitrary resolution images

Input: Original image x, [binary watermark vector w]
Output: Watermarked image y
Data: Embedding network E trained on the resolution of m x n

H, W + x.height, x.width

X x/1275—-1; // Normalize to range [-1, 1]
X « interpolate(x, (m,n))

r+— E(x,w)—x; // residual image
r + interpolate(r, (H, W))

y « clamp(x +r, —1, 1)

y ¢y x 127.5 + 127.5

C.2.2 Distortions

Valuemetric Distortions. We apply ten types of valuemetric distortion with the following parameter
settings to evaluate robustness:

¢ JPEG Compression: quality factor = 60.

* Gaussian Filter: kernel size = 1, sigma = 3.

¢ Gaussian Noise: mean = 0, standard deviation = 0.05.
* Median Filter: kernel size = 3.

¢ Salt&Pepper Noise: noise ratio = 0.05.

* Resize: scaling factor = 0.5.

* Brightness Adjustment: range (0.7, 1.3).

* Contrast Adjustment: range (0.7,1.3).

* Hue Adjustment: range (—0.1,0.1).

* Saturation Adjustment: range (0.7, 1.3).

21

Geometric Distortions We apply three types of geometric distortion with the following parameter
settings to evaluate robustness:

* Rotation: angle sampled from [—30°, 30°].
* Perspective: distortion scale sampled from [0.1, 0.3].

* Horizontal Flip: no parameters.

C.2.3 Global and Local Watermarking Comparison

Evaluation Setup. For global watermarking, we sample 1,000 images from the MS-COCO 2014
validation set. We report PSNR and SSIM to assess visual quality, and Bit Accuracy to measure
watermark extraction performance. For local watermarking, we construct a comprehensive evaluation
set from all 41,000 images in the validation split. We divide the dataset into 12 subsets based on the
ratio of masked area to the full image: 1-5%, 5-10%, 10-20%, ..., 80-90%, 90-95%, and 95-99%.
From each subset, 400 images are randomly selected. To simulate both inpainting and outpainting
scenarios, we also include inverted masks, i.e., if the original mask covers a—b% of the image, the
inverted mask covers (100—b)—(100—a)%. This yields 800 image-mask pairs per subset and a total
of 9,600 for evaluation.

Embedding Strategy. Baselines and MaskWM-D embed watermarks across the entire image, but
the unmasked regions are replaced with the original image to localize the watermark. MaskWM-ED
embeds watermark bits only within the masked region and similarly restores the unmasked parts,
ensuring true region-specific watermarking.

C.2.4 Multi-Watermark Embedding Setup

Figure 6 illustrates the spatial arrangement of the
five non-overlapping masked regions used in our
multi-watermark experiments. These regions are
fixed at the center, top-left, top-right, bottom-
left, and bottom-right of the image, forming a
checkerboard-like layout when all five are active.
Unlike WAM, which allocates 10% of the image
area to each region, we restrict each region to
5%, making the watermark extraction task more
challenging. For each configuration (1 to 5 water-
marks), we randomly sample 400 images from the
MS-COCO 2014 validation set. During evaluation,
we use OpenCV’s cv2. connectedComponents
to segment the predicted mask into disjoint compo-
nents, enabling region-wise watermark extraction
and scoring.

Figure 6: Checkerboard-like arrangement of
masked regions for multi-watermark embedding.
Different colors indicate regions where different
watermarks bits are embedded, while black re-
gions contain no embedded information.

D More Results

D.1 Effects of Different Visual Quality Enhancement Methods

Our experiments demonstrate that using only an MSE loss in the pixel space to constrain the difference
between the watermarked and original images (referred to as the Base version) already yields high
PSNR and SSIM scores. However, despite the favorable metrics, the resulting images often contain
visible artifacts that may compromise perceived visual quality. To address this issue, we investigate
several enhancement strategies: (1) incorporating a GAN [9] loss, (2) adding a perceptual constraint
via LPIPS [29] loss in the feature space, and (3) modulating the watermark signal using a Just
Noticeable Difference (JND) [23] module. We conduct experiments on the MaskWM-D variant, but
the findings similarly hold for MaskWM-ED.

As shown in Figure 7, when the weights of the GAN and LPIPS losses are low, they fail to effectively
suppress artifacts. Increasing these weights reduces artifacts but adversely affects the performance

22

+GAN (0.001) +GAN (0.01) +LPIPS (0.01) +LPIPS (0.05)

[enpisoy

POdIRILIO)EA

[enpisoy PaIBUIO)EAN [enpisoy

POSIBIIIS)EAN

[enpisoy

Origina

POSIBULIONEAN

[enpIsoy

1 I x
Original

POSIBULIOJEA

Figure 7: Visualization results of watermark using different visual quality enhancement methods.
Zoom in to see more details. The numbers in parentheses indicate the corresponding loss weights.
For example, GAN (0.001) means the GAN loss is assigned a weight of 0.001 in the total loss
function, i.e., Lol = BencLenc + BaecLdec + 0.001Lgan, and LPIPS (0.01) indicates that the LPIPS
loss is weighted by 0.01, i.e., Lene = Lmsg(Lwm, Lorig) + 0.01LLpps. To ensure a fair comparison,
we adjust either the strength of the added watermark residual or the JND modulation coefficient to
maintain comparable PSNR and SSIM across different settings.

23

No Distortion Valuemetric Distortions Geometric Distortions

1.00 1.00 1.00
0.90 0.90 0.90

>

& 0.80 0.80 0.80

3

<

=070 0.70 0.70
0.60 0.60 0.60
0.50 0.50 0.50

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

1.00 1.00 - 1.00

0.80 0.80

0.20 0.20 0.20

Watermarked Area loU
o o o
S [} =<
5 3 8
o o
B [}
5 3
o o
N 2
5 3

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

1.00

o =
@ =)
<} S
=3 g
@ =)
3 S

3080 080 080

[l

<
<
T 0.60
=<

©

E
$ 0.40 0.40 0.40

<]

S

g
=)

0.20 0.20 0.20

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
—e— Base —@— +GAN(0.001) —A— +GAN (0.01) —4— +LPIPS (0.01) +LPIPS (0.05) ~ —¥— +JND

Figure 8: Local watermark extraction and localization performance of MaskWM-D trained with
different visual quality enhancement methods.

of local watermark extraction and localization, as illustrated in Figure 8. In contrast, applying JND-
based modulation proves more effective: it significantly reduces visible artifacts while maintaining
performance comparable to the Base version. These findings suggest that, unlike global perceptual
losses such as GAN or LPIPS, JND offers a more adaptive and content-aware modulation strategy. It
effectively suppresses visual artifacts while preserving the watermark’s integrity, making it a practical
choice for visual quality enhancement.

D.2 Results under Specific Distortions

See Figure 9, Figure 10, Figure 11.

D.3 Scalability to Different Watermark Bit Lengths

See Figure 12.

D.4 Enhancing Robustness against Adaptive Attacks via Fast Fine-tuning

See Figure 13.

D.5 Importance of Localization before Extracting Local Watermarks

See Figure 14.

D.6 Visualization Results of Global and Local Watermark Embedding

See Figure 15.

24

JPEG Gaussian Filter Gaussian Noise

1.00 1.00
. 0.90
. 0.80

0.70 0.70

Bit Accuracy
o o o I
S ® ©)
3 8 8 8
o o
© ©
8 8

0.60 0.60 0.60
0.50 0.50 0.50
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Median Filter Salt&Pepper Noise Resize
1.00 1.00 1.00
0.90 0.90 0.90
>
3 0.80 0.80 0.80
3
3
3
<o 070 070
o
0.60 0.60 0.60
0.50 0.50 0.50
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Brightness Contrast Hue
1.00 1.00 1.00
0.90 0.90 0.90
Iy
@ 0.80 0.80 0.80
5
2
3
Ton 070 070
@
0.60 0.60 0.60
0.50 0.50 0.50
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Saturation Rotation Horizontal Flip
1.00 1.00 1.00
0.90 0.90 0.90
o)
& 0.80 0.80 0.80
5
3
3]
Sor0 0.70 0.70
[
0.60 0.60 0.60
0.50 0.50 m 0.50
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Perspective

=
=)
S}

Bit Accuracy
o o o o
2 S ® ©
3 3 8 8

o
@
S

10 20 30 40 50 60 70 80 90
Watermarked Area (%)

—8— MaskWM-ED (Ours) —— MaskWM-D (Ours) —A— WAM

Figure 9: Watermark extraction performance under various specific distortions.

JPEG Gaussian Filter Gaussian Noise

1.00 1.00
0.80 0.80
0.60 0.60
0.40 0.40

1.00

Watermarked Area loU
o o o
B [~ @
S 3 8

0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Median Filter Salt&Pepper Noise Resize

1.00 1.00 1.00 —nn
3080 0.80 0.80

©

o

< 0.60 0.60 0.60

o

Q

=

©

£ 0.40 0.40 0.40

Q

£

0.20 0.20 0.20

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Brightness Contrast Hue

1.00

o
=
S
o
=
S
o
=
S

Watermarked Area loU
o o
Y ©
3 8
o o =
2 © o
3 8 8
c o o |y
Y © o
3 8 8

0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Saturation Rotation Horizontal Flip

1.00

Watermarked Area loU
o o
@ ®
= g
S o o Iy
@ ® o
2 g 8
o o N
@ ® o
2 g 8

0.40 0.40 0.40
0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Perspective

1.00

Watermarked Area loU
o o o
N o @
5 3 8

0.20

10 20 30 40 50 60 70 80 90
Watermarked Area (%)

—8— MaskWM-ED (Ours) —— MaskWM-D (Ours) —A— WAM

Figure 10: Localization performance of the watermarked area under various specific distortions.

26

JPEG Gaussian Filter Gaussian Noise

1.00 1.00 1.00
0.90 0.90 0.90
o)
2 0.80 0.80 0.80
g
Z 070 0.70 0.70
E 060 060 060
g 050 050 050
3]
g 0.40 0.40 0.40
5030 0.30 0.30
0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Median Filter Salt&Pepper Noise Resize
1.00 1.00 1.00
0.90 0.90 0.90
>
ﬁ 0.80 0.80 0.80
Q
Z o070 0.70 0.70
=]
goeo 0.60 0.60
£ 0.50 050 050
5]
2 0.40 0.40 0.40
5030 0.30 0.30
0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Brightness Contrast Hue
1.00 1.00 1.00
0.90 0.90 0.90
2
2 0.80 0.80 0.80
8
Z 070 0.70 0.70
E 0.60 0.60 0.60
g 050 050 050
€040 0.40 0.40
s
c
Soz0 0.30 0.30
0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Saturation Rotation Horizontal Flip
1.00 1.00 1.00
0.90 0.90 0.90
o)
2 0.80 0.80 0.80
g
Z 070 0.70 0.70
E 060 060 060
g 050 050 050
I}
g 0.40 0.40 0.40
5030 0.30 0.30
0.20 0.20 0.20
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
Perspective

1.00 Ee—-

0.90 H*—:\H*W
>

2 0.80
8
£ 0.70

°
K] 0.60

g 050

£ 040

H

5 0.30
0.20

10 20 30 40 50 60 70 80 90
Watermarked Area (%)

—8— MaskWM-ED (Ours) —— MaskWM-D (Ours) —A— WAM

Figure 11: Localization performance of the unwatermarked area under various specific distortions.

No Distortion Valuemetric Distortions Geometric Distortions

=
o
S}

0.90
>
2
I
5 0.80
3
3
<
50‘70
0.60 0.60
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)

—8— MaskWM-D (32 bits) ~ —— MaskWM-D (64 bits) ~ —A— MaskWM-D (128 bits) ~ —@- WAM (32 bits)

1.00 =
/
9
090 [}
>
3 1
< 1
§0480 l‘
< ¢
50.70
0.60
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)

—e— MaskWM-ED (32 bits) ~ —— MaskWM-ED (64 bits) ~ —&— MaskWM-ED (128 bits) ~ —@- WAM (32 bits)

Figure 12: Watermark extraction performance of MaskWM-D and MaskWM-ED with different bits
length. We also show the results of WAM for comparison.

VAE Attacks No Distortion Valuemetric Distortions Geometric Distortions
1.00 1,00 1.00 =
0.90 090 0.90
z
goso 080 0.80
3
8
<070 070 070
=
0.60 060 0.60
050 050 050 050
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)
MaskWM-ED (Ours) MaskWM-D (Ours) —h— WAM ~#— EdiGuardD —*— StegaStamp —@— Robust-Wide
—@— MaskWM-ED-FT (Ours) ~ —B— MaskWM-D-FT (Ours) ~ —#— EditGuard-C —— SepMark —¥— TrustMark —e— VINE

Figure 13: The effect of VAE fine-tuning on the robustness of MaskWM. Fine-tuning the VAE en-
hances robustness against VAE attacks, with minimal impact on the original robustness performance.

No Distortion Valuemetric Distortions Geometric Distortions
0.90 0.90 : 0.90
>
9
I
5
8075 0.75 0.75
<
@
0.60 0.60 0.60
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Watermarked Area (%) Watermarked Area (%) Watermarked Area (%)

—o— Ful —— Pred —&— GT

Figure 14: Watermark extraction performance using different masking strategies during decoding.

D.7 Visualization Results of Localization

See Figure 16, Figure 17, Figure 18, Figure 19.

D.8 Visualization Results of Multiple Watermarks Embedding

See Figure 20.

28

Residual

Original Watermarked Residual Mask

Original Watermarked

Global Watermarking
Local Watermarking

lMaskWM—D MaskWM—ED
Figure 15: Visualization results of global watermark embedding using MaskWM-D and local
watermark embedding using MaskWM-ED. The residual image is acquired by 10 X |Lym — Iorig]
for observation, highlighting the residual more clearly. The same residual visualization strategy is
applied in the following figures as well.

29

GT EditGuard-C EditGuard-D ~ WAM MaskWM-D MaskWM-ED

MF GN GF Jpeg Clean

SP Noise

Original

Hue Contrast Brightness Resize

Saturation

Perspective Horizontal Flip Rotation

Inpainting: A man in helmet riding a horse next to trees.

Figure 16: Visualization results of watermark localization using different methods. The inpainting
results are obtained by applying stable-diffusion-2-inpainting [17] to the masked regions for content
reconstruction.

30

Tampered EditGuard-C EditGuard-D ~ WAM MaskWM-D MaskWM-ED

MF GN GF Jpeg Clean

SP Noise

Original

Resize

Hue Contrast Brightness

Saturation

Perspective Horizontal Flip Rotation

Inpainting: A green train going up the tracks, lots of trees around.

Figure 17: Visualization results of watermark localization using different methods. The inpainting
results are obtained by applying stable-diffusion-2-inpainting [17] to the masked regions for content
reconstruction.

31

Tampered GT EditGuard-C EditGuard-D ~ WAM MaskWM-D MaskWM-ED

Original

Brightn

o)

&

Contrast

HEEEEEEEE
CICICICICIC I I

DO CICICICICICICICICIC)
saPSSSSIIIIIISS

Perspective Horizol

Outpainting: A cat is sitting in a small bowl on the table.

Figure 18: Visualization results of watermark localization using different methods. The outpainting
results are obtained by applying stable-diffusion-2-inpainting [17] to the masked regions for content
reconstruction.

Tampered GT EditGuard-C EditGuard-D ~ WAM MaskWM-D MaskWM-ED

GN

MF

SP Noise

Original

Resize

Brightness

Hue Contrast

Saturation

Perspective Horizontal Flip Rotation

Outpainting: A group of zebra standing on top of a grass covered hillside.

Figure 19: Visualization results of watermark localization using different methods. The outpainting
results are obtained by applying stable-diffusion-2-inpainting [17] to the masked regions for content
reconstruction.

Original Watermarked ~ Residual Distorted GT Pred

Hue Contrast Brightness Resize SP Noise MF GN GF

Saturation

Perspective Horizontal Flip Rotation

Figure 20: Visualization of multi-watermark embedding and localization results. In the GT column,
different colors in the mask indicate different watermark messages.

	Introduction
	Background
	Image Watermarking
	Watermark Localization

	Methodology
	Design Principles
	Training
	Inference
	Usage Scenarios

	Experiments
	Implementation Details
	Global and Local Watermarking Comparison
	Watermark Localization Comparison
	Performance Comparisons of Embedding Multiple Watermarks
	More Analysis

	Conclusion
	Limitations
	Impact Statement
	More Details
	Training
	Details
	Distortions

	Evaluation
	Resolution Scaling
	Distortions
	Global and Local Watermarking Comparison
	Multi-Watermark Embedding Setup

	More Results
	Effects of Different Visual Quality Enhancement Methods
	Results under Specific Distortions
	Scalability to Different Watermark Bit Lengths
	Enhancing Robustness against Adaptive Attacks via Fast Fine-tuning
	Importance of Localization before Extracting Local Watermarks
	Visualization Results of Global and Local Watermark Embedding
	Visualization Results of Localization
	Visualization Results of Multiple Watermarks Embedding

