

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIOMA: UNIFIED OPTIMAL-TRANSPORT MULTI-MODAL STRUCTURAL ALIGNMENT FOR ROBOT PERCEPTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Achieving generalizable and well-aligned multimodal representation remains a core challenge in artificial intelligence. While recent approaches have attempted to align modalities by modeling conditional or higher-order statistical dependencies, they often fail to capture the structural coherence across modalities. In this work, we propose a novel multimodal alignment method that augments existing contrastive losses with a geometry-aware Gromov-Wasserstein (GW) distance-based regularization. To this end, we encode intra-modality geometry with modality-specific similarity matrices and extend the GW distance to minimize their discrepancies from a dynamically learned barycenter, thereby enforcing structural alignment across modalities beyond what is captured by InfoNCE-like mutual information objectives. We apply this optimal-transport-based alignment strategy to robot perception tasks involving underexplored modalities such as force and tactile signals, where modality data often exhibit varying sample densities. Experimental results show that our method yields superior inter-modal coherence and significantly improves downstream robot perception tasks such as robot and environment state prediction. Moreover, our GW-based augmentation term is versatile and can be seamlessly integrated into most InfoNCE-like objectives.

1 INTRODUCTION

The integration of information from diverse sources or modalities has received increasing attention across a wide range of AI applications, including image/video/text generation (Rombach et al., 2022; Mirza & Osindero, 2014), healthcare (Acosta et al., 2022), autonomous systems (Feng et al., 2021), and scientific discovery (Steyaert et al., 2023). Recent advances in contrastive self-supervised learning (CSSL) (He et al., 2020; Chen et al., 2020; Grill et al., 2020; Chen & He, 2021), particularly those leveraging InfoNCE losses (Oord et al., 2018), have shown strong performance in aligning heterogeneous modalities into a shared representation space (Radford et al., 2021). Such alignment has enabled zero-shot cross-modal retrieval, transfer, generation, and completion (Radford et al., 2021; Girdhar et al., 2023; Chen et al., 2023; Zhu et al., 2023; Luo et al., 2022). By maximizing agreement between paired modalities of the same instance while minimizing similarity between distinct instances, CSSL encourages the learning of invariant and semantically meaningful features.

While effective, InfoNCE-style objectives operate as binary classification losses that only discriminate positives from negatives (Wang & Isola, 2020), without explicitly modeling the continuous pairwise distance geometry within each modality. In multimodal alignment, this limitation produces what we call a *structural alignment gap* (Liang et al., 2022): embeddings may appear statistically aligned across modalities yet fail to preserve their intrinsic structural topologies. Our key insight is that multimodal alignment should not be limited to maximizing *population-level* statistical dependence between distributions of modality representations. It must also preserve *instance-level* geometric relationships within each modality. In other words, if x_i is close to x_j , then their counterparts y_i and y_j should also remain close. Classic InfoNCE objectives, which are essentially a lower bound of Shannon’s mutual information (Kraskov et al., 2004; Poole et al., 2019), rely on binary discrimination between positive and negative pairs. While effective at capturing population-level dependence, this approach is theoretically incapable of preserving intra-modal geometry, often leading to representations that are statistically aligned but structurally inconsistent.

Figure 1: Structural alignment gap. (a) 1D synthetic data. Although x and y have high mutual information and thus a low InfoNCE loss \mathcal{L}_c , their intra-modal similarity matrices differ: (b) 2D synthetic data with instances (dashed gray circles). Blue and red denote two modalities. Pointwise correspondences are close in both cases (thus InfoNCE-like loss \mathcal{L}_{CLIP} changes only +1.5%), but the GW distance jumps by +125%. Also, K_y in Case 2 shows block structure absent from K_x .

We illustrate the gap with two synthetic examples in Fig. 1. **(a)** Let the latent variable be $z \sim \text{Uniform}[0, 1]$, from which we generate two modalities $x = z$ and $y = \sin(10\pi z)$. Although x and y are highly dependent, their intra-modal geometries differ markedly. In x , distances are simply $|x_i - x_j|$, whereas the high-frequency oscillation in y disrupts local neighborhoods, so nearby x can map to distant y , leading to dissimilar intra-modal similarity matrices. **(b)** modality x forms a regular grid, while modality y is either a globally shifted/noisy copy (*case 1*, left figure) or an unevenly shifted version that clusters points into triplets (*case 2*, right figure). Both cases preserve pointwise correspondences, leading to a lower InfoNCE loss. However, *case 2* distorts the global structure, which is reflected in block patterns in K_y (kernel similarity matrix) that are absent in K_x .

This *structural alignment gap* is particularly critical in robotics, where multimodal sensor streams are neither i.i.d. nor structureless: trajectories form subclusters (Sermanet et al., 2017), contact events induce discontinuities (Stewart & Trinkle; Guo et al., 2023), and proprioceptive signals follow physical constraints (Lee et al., 2020; Welch & Bishop, 1995). Failing to account for these structures limits the effectiveness of learned representations for downstream robotic tasks.

To address the identified *structural alignment gap*, we introduce **UniOMA**—a **Unified Optimal-transport Multi-modal structural Alignment** framework that scales naturally to three or more modalities. UniOMA augments contrastive learning with a structure-aware regularization based on Gromov–Wasserstein (GW) distances and barycenters (Peyré et al., 2016; Gong et al., 2022). In our formulation, observations from each modality are represented as a metric space through intra-modal similarity matrices. A dynamic GW barycenter is then computed as the structural consensus across modalities, and each modality is softly aligned to this consensus by minimizing weighted GW distances. The modality weights are optimized end-to-end alongside encoder parameters, enabling adaptive contributions of different modalities to the structural consensus. This barycentric formulation avoids pairwise couplings across modalities, reducing the complexity from $\mathcal{O}(M^2)$ to $\mathcal{O}(M)$, where M is the number of modalities, and thus scales naturally to three or more modalities.

In summary, our main contributions are:

- C1 We propose UniOMA, a structure-aware multimodal alignment framework based on Gromov–Wasserstein distance and barycenters, which naturally scales to 3+ modalities.
- C2 We identify and formalize the structural alignment gap, demonstrating why InfoNCE-style objectives fail to preserve intra-modal geometry, supported by synthetic analysis.

We evaluate UniOMA on diverse robotic benchmarks across vision, audio, tactile, force, and proprioception modalities, including robot state prediction, environment state prediction, and cross-modal retrieval. Comprehensive experiments show that UniOMA improves downstream performance and preserves intra-modal structural consistency across diverse modalities.

2 BACKGROUND AND RELATED WORK

In this section, we first introduce the background of contrastive learning-based multimodal alignment and review its extensions to settings with three or more modalities, highlighting their inherent

108 connections and limitations. We then briefly review existing approaches to multimodal representation
 109 learning in robotics, with a focus on multimodal fusion.
 110

111 2.1 ALIGNMENT VIA INFONCE AND EXTENSIONS TO MORE THAN TWO MODALITIES 112

113 Unlike multimodal fusion (Lu et al., 2019; Li et al., 2019), which typically requires all modalities to
 114 be present at inference, alignment into a shared embedding space remains functional even if some
 115 modalities are missing, enabling zero-shot retrieval, generation, and modality completion (Jia et al.,
 116 2021). A representative example is CLIP (Radford et al., 2021), which trains modality-specific
 117 encoders $f_\theta^{(1)}, f_\theta^{(2)}$ using an InfoNCE-style objective to identify the correct cross-modal pair among
 118 N candidates:

$$119 \ell_{\text{CLIP}}^{(1 \rightarrow 2)}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(\mathbf{z}_i^{(1)}, \mathbf{z}_i^{(2)})/\tau)}{\sum_{j=1}^N \exp(\text{sim}(\mathbf{z}_i^{(1)}, \mathbf{z}_j^{(2)})/\tau)}, \quad (1)$$

122 where $\text{sim}(\cdot, \cdot)$ is the similarity between the embeddings $\mathbf{z}^{(m)} = f_\theta^{(m)}(\mathbf{x}^{(m)})$, $m = 1, 2$ and τ de-
 123 notes a temperature parameter. The final CLIP objective symmetrizes Eq. (1) by taking the average:

$$124 \mathcal{L}_{\text{CLIP}}^{(1,2)}(\theta) = \frac{1}{2}(\ell_{\text{CLIP}}^{(1 \rightarrow 2)}(\theta) + \ell_{\text{CLIP}}^{(2 \rightarrow 1)}(\theta)), \quad (2)$$

126 where $\mathcal{L}_{\text{CLIP}}^{(2 \rightarrow 1)}$ is the reverse direction $2 \rightarrow 1$. In general, this InfoNCE-based objective captures the
 127 statistical correlation, providing lower-bound of the mutual information (MI; Kraskov et al. (2004);
 128 Poole et al. (2019)) between the anchor modality 1 $\mathcal{X}^{(1)}$ and modality 2 $\mathcal{X}^{(2)}$

$$130 I(\mathcal{X}^{(1)}; \mathcal{X}^{(2)}) \geq \log N - 2\mathcal{L}_{\text{CLIP}}^{(1,2)}(\theta). \quad (3)$$

131 Despite their success, InfoNCE-like objectives reduce continuous similarity structure among sam-
 132 ples into a binary signal (positive vs. negative), leading to the learned embedding space containing
 133 modality-wise co-located yet structurally isolated instances, neglecting intra-modal geometry.
 134

135 Real-world systems, particularly in robotics, often involve three or more modalities. Aligning these
 136 multimodal sources within a shared embedding space enables richer cross-modal interactions. Ex-
 137 isting approaches typically extend CLIP to three modalities by summing all pairwise contrastive
 138 losses (Tian et al., 2020; Girdhar et al., 2023; Akbari et al., 2021; Chen et al., 2023; Alayrac et al.,
 139 2020; Chen et al., 2021; Liu et al., 2024; Huang et al., 2023; Mai et al., 2022; Moon et al., 2022;
 140 Shvetsova et al., 2022; Xue et al., 2022; Guzhov et al., 2022):

$$141 \mathcal{L}_{\text{CMC}}^{(1,2,3)}(\theta) = \mathcal{L}_{\text{CLIP}}^{(1,2)}(\theta) + \mathcal{L}_{\text{CLIP}}^{(1,3)}(\theta) + \mathcal{L}_{\text{CLIP}}^{(2,3)}(\theta). \quad (4)$$

142 Such pairwise extensions neglect higher-order dependencies among modalities. To address this
 143 issue, Symile (Saporta et al., 2024) formulates triple-wise contrastive objectives as:

$$145 \mathcal{L}_{\text{Symile}}^{(1,2,3)}(\theta) = \frac{1}{3}[\ell^{(1 \rightarrow 2,3)}(\theta) + \ell^{(2 \rightarrow 1,3)}(\theta) + \ell^{(3 \rightarrow 1,2)}(\theta)]. \quad (5)$$

146 Here, $\ell^{(1 \rightarrow 2,3)}$ is the InfoNCE-like loss for one positive triple and $N - 1$ negative triples given by

$$148 \ell^{(1 \rightarrow 2,3)}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\langle \mathbf{z}_i^{(1)}, \mathbf{z}_i^{(2)}, \mathbf{z}_i^{(3)} \rangle/\tau)}{\sum_{j=1}^N \exp(\langle \mathbf{z}_i^{(1)}, \mathbf{z}_j^{(2)}, \mathbf{z}_j^{(3)} \rangle/\tau)}, \quad (6)$$

151 where each term $\ell^{(1 \rightarrow 2,3)}$ compares one positive triple against $N - 1$ negatives, $\langle \cdot, \cdot, \cdot \rangle$ is the
 152 coordinate-wise sum of the element-wise product. More recently, GRAM (Cicchetti et al., 2024)
 153 replaces the dot product similarity with the Gramian volume spanned by embeddings from multiple
 154 modalities, providing a higher-order, groupwise compatibility score (rather than pairwise similarity)

$$155 \mathcal{L}_{\text{GRAM}}^{(1,\dots,M)}(\theta) = \frac{1}{2}(\ell_{\text{D2A}}^{(1 \rightarrow 2,\dots,M)}(\theta) + \ell_{\text{A2D}}^{(1 \rightarrow 2,\dots,M)}(\theta)) + \lambda \ell_{\text{DAM}}(\theta), \quad (7)$$

$$157 \ell_{\text{D2A}}^{(1 \rightarrow 2,\dots,M)}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(-\text{Vol}(\mathbf{z}_i^{(1)}, \mathbf{z}_i^{(2)}, \dots, \mathbf{z}_i^{(M)})/\tau)}{\sum_{j=1}^N \exp(-\text{Vol}(\mathbf{z}_j^{(1)}, \mathbf{z}_i^{(2)}, \dots, \mathbf{z}_i^{(M)})/\tau)}, \quad (8)$$

$$160 \ell_{\text{A2D}}^{(1 \rightarrow 2,\dots,M)}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(-\text{Vol}(\mathbf{z}_i^{(1)}, \mathbf{z}_i^{(2)}, \dots, \mathbf{z}_i^{(M)})/\tau)}{\sum_{j=1}^N \exp(-\text{Vol}(\mathbf{z}_i^{(1)}, \mathbf{z}_j^{(2)}, \dots, \mathbf{z}_j^{(M)})/\tau)}. \quad (9)$$

Figure 2: **UniOMA in two stages.** *Stage 1* (left): for each modality $\mathcal{X}^{(m)}$ we form an input-space similarity matrix $\mathbf{K}_X^{(m)}$ and estimate a GW barycenter \mathbf{C}_X^* as the *structural consensus*. *Stage 2* (right): encoders produce embeddings $\mathbf{z}^{(m)}$ inducing $\mathbf{K}_z^{(m)}$, which are aligned to the consensus by minimizing $\sum_m \lambda_m d_{gw}(\mathbf{C}_X^*, \mathbf{K}_z^{(m)})$ (with a standard contrastive loss; omitted). Aligning each modality to a single consensus avoids pairwise $O(M^2)$ couplings and scales to $M \geq 3$.

where $\mathcal{L}_{D2A}, \mathcal{L}_{A2D}$ are the GRAM contrastive loss (data-to-anchor for D2A and anchor-to-data for A2D) with modality 1 as the anchor. \mathcal{L}_{DAM} is the data-caption matching loss to match the modality labels (Cicchetti et al., 2024). $\text{Vol}(\cdot, \dots, \cdot)$ is the volume of the M -dimensional parallelopiped formed by the embedding vectors $\mathbf{z}^{(m)}$.

These methods mark progress toward multi-modal ($M > 2$) alignment but still remain limited to instance-level dependencies, overlooking intra-modal structure. Zhu & Luo (2024) address this by adding an optimal transport (OT; Villani et al. (2008)) regularizer to enforce cross-modal consistency. Yet, their approach still treats modalities as holistic distributions, ignoring relational structures within each modality, and applies OT directly on embeddings rather than raw data geometry, limiting interpretability and flexibility.

2.2 MULTIMODAL REPRESENTATION LEARNING IN ROBOTICS

Robotics is inherently multimodal: vision, force–torque, tactile sensing, and proprioception provide complementary views of the robot–environment system. While multimodal representation learning has been extensively studied in vision–language settings, its exploration in robotics remains limited. Existing work, including the recent Vision–Language–Action (VLA) model, has primarily focused on modality fusion or transfer (Lee et al., 2019a;b; Shridhar et al., 2020; Brohan et al., 2022; Driess et al., 2023; Kim et al., 2024; Octo Model Team et al., 2024; Intelligence et al., 2025).

By comparison, alignment of robotic perception modalities into a shared space remains underexplored. Recent efforts (Wojcik et al., 2024; Dutta et al., 2024) demonstrate cross-modal retrieval and perception, while Zambelli et al. (2021); Sermanet et al. (2017) demonstrate how cross-modal or cross-temporal alignment can yield transferable representations. These developments underscore that robot perception data is highly structured (trajectories, contact events, physical constraints), motivating alignment methods that preserve intra-modal geometry across modalities rather than relying solely on fusion.

3 METHOD

Our proposed UniOMA aligns three or more heterogeneous modalities by preserving both statistical correspondence and structural coherence across modalities. Leveraging the optimal transport geometry, UniOMA augments contrastive-based binary instance-wise correlations (positive or neg-

216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1

270 See Appx. A.5 for the proof. In practice, we estimate \mathbf{T}^* via iterative OT solvers (Alg. 2), and
 271 compute $\hat{d}_{gw}(\mathbf{K}_x, \mathbf{K}_y) = \text{tr}(\mathbf{K}_x^\top \mathbf{T}^{*\top} \mathbf{K}_y \mathbf{T}^*)$. This formulation enables cross-modal alignment
 272 directly from intra-modal similarity structures, without the need of an explicit cross-modal cost
 273 function or extra neural potential models (Korotin et al., 2022b;a; Arjovsky et al., 2017).
 274

275 3.3 STRUCTURAL CONSENSUS

276 To preserve intra-modal structure during alignment, we treat each modality $\mathcal{X}^{(m)}$ as a metric
 277 space and represent its geometry via a kernel matrix $\mathbf{K}_x^{(m)} \in \mathbb{R}^{N_m \times N_m}$, where $(\mathbf{K}_x^{(m)})_{ij} =$
 278 $\text{sim}(\mathbf{x}_i^{(m)}, \mathbf{x}_j^{(m)})$ encodes the pairwise similarity between samples. Such kernel matrices provide
 279 a unified representation of relational structure across heterogeneous modalities, independent of raw
 280 dimensionality. The construction of $\mathbf{K}_x^{(m)}$ depends on the modality: for visual signals (e.g., RGB
 281 or depth), we embed inputs with a pretrained encoder and compute similarities using an RBF ker-
 282 nel; for sequential or time-series modalities common in robotics (e.g., force–torque), we adopt a
 283 time-series clustering kernel (TCK; Mikalsen et al. (2018)) to better capture temporal structure.
 284 Additional details are provided in Appx. B.3.
 285

286 The central idea is to identify a structural consensus: a latent geometry that captures the common
 287 similarity patterns across all modalities. Formally, we define it as a Gromov–Wasserstein (GW)
 288 barycenter (Gong et al., 2022) of the intra-modal structures.
 289

290 **Definition 2** (Structural Consensus of Multimodal Data). *Given intra-modal kernel matrices*
 291 $\{\mathbf{K}_x^{(m)}\}_{m=1}^M$, *the structural consensus is defined as the barycenter:*

$$294 \quad \mathbf{C}_x^* = \arg \min_{\mathbf{C}_x \in \mathcal{M}} \sum_{m=1}^M \lambda_m \cdot d_{gw}(\mathbf{C}_x, \mathbf{K}_x^{(m)}), \quad (11)$$

295 where \mathcal{M} denotes the space of symmetric positive definite (SPD) matrices, d_{gw} is the GW distance
 296 (Def. 1), and λ_m are learnable modality weights.
 297

300 Practically, \mathbf{C}_x^* is estimated via an iterative optimization scheme (Alg. 3 in Appx. B.2). During
 301 training, we align each modality by minimizing the GW discrepancy between its embedding-induced
 302 kernel $\mathbf{K}_z^{(m)}$ and the consensus \mathbf{C}_x^* , as described in the next section.
 303

304 3.4 UNIOMA OBJECTIVE AND ALGORITHM

305 Given the batch-wise structural consensus \mathbf{C}_x^* in Sec. 3.3, UniOMA augments a standard contrastive
 306 term with a structure-aware regularizer
 307

$$310 \quad \mathcal{L}_{\text{UniOMA}}(\theta) = \mathcal{L}_c(\theta) + \alpha \sum_{m=1}^M \lambda_m \cdot d_{gw}(\mathbf{C}_x^*, \mathbf{K}_z^{(m)}), \quad (12)$$

313 where $\mathbf{K}_z^{(m)}$ is the embedding-space similarity matrix of $\mathbf{z}^{(m)} = f_\theta^{(m)}(\mathbf{x}^{(m)})$. The scalar α balances
 314 contrastive discrimination and structural coherence, and the learnable weights $\{\lambda_m\}$ quantify each
 315 modality’s contribution to the consensus. Implementation details for estimating \mathbf{C}_x^* and evaluating
 316 $d_{gw}(\cdot, \cdot)$ are in Appx. B.2–A.5 (see also Fig. 2).
 317

318 **Why this design?** (1) **Scalable** to $M \geq 3$. Aligning every modality to one consensus avoids
 319 $O(M^2)$ pairwise couplings. (2) **Flexible** to heterogeneous and asynchronous modalities. GW
 320 distance compares intra-modal similarity matrices, not raw coordinates, thus is naturally robust to
 321 modalities with different dimensionalities. Also, GW barycenter naturally handles unequal sample
 322 counts across modalities, which is particularly advantageous in robot perception. We empirically
 323 validate (3) in Sec. 4.6.

324 **Algorithm 1** UniOMA Training($\{\mathcal{X}^{(m)}\}_{m=1}^M, \gamma, \alpha$)
 325 **Input:** Multimodal dataset $\{\mathcal{X}^{(m)}\}_{m=1}^M$, learning rate γ , structural weight α , entropy weight α'
 326 Initialize encoders $\{f^{(m)}(\cdot)\}_{m=1}^M$, modality weights $\{\lambda_m\}_{m=1}^M$,
 327 **while** not converged **do**
 328

// Stage 1: structural consensus estimation
 329 Sample a batch $\{\mathbf{x}_i^{(m)}\}_{i=1}^{N_m}$ for each modality $\{\mathcal{X}^{(m)}\}_{m=1}^M$
 330 **for** $m \leftarrow 1$ **to** M **do**
 331

| Compute the structural information $\mathbf{K}_{\mathbf{x}}^{(m)} \in \mathbb{R}^{N_m \times N_m}$ for the batch $\{\mathbf{x}_i^{(m)}\}_{i=1}^{N_m}$

 332 Estimate the structural consensus $\mathbf{C}_{\mathbf{x}}^*$ via Alg. 3

 333

// Stage 2: alignment update
 334 $\mathbf{z}_i^{(m)} \leftarrow f_{\theta}^{(m)}(\mathbf{x}_i^{(m)})$ for all i, m
 335 **for** $m \leftarrow 1$ **to** M **do**
 336

| $\mathbf{T}^{(m)*} \leftarrow \text{OTEstimation}(\mathbf{C}_{\mathbf{x}}^*, \mathbf{K}_{\mathbf{z}}^{(m)})$ via Alg. 2

 337

| $\hat{d}_{gw}(\mathbf{C}_{\mathbf{x}}^*, \mathbf{K}_{\mathbf{z}}^{(m)}) \leftarrow \text{tr}((\mathbf{C}_{\mathbf{x}}^*)^\top (\mathbf{T}^{(m)*})^\top \mathbf{K}_{\mathbf{z}}^{(m)} \mathbf{T}^{(m)*})$

 338 Compute the contrastive learning loss \mathcal{L}_c
 339 $\mathcal{L}_{\text{UniOMA}}(\theta) \leftarrow \mathcal{L}_c(\theta) + \alpha \sum_{m=1}^M \lambda_m \hat{d}_{gw}(\mathbf{C}_{\mathbf{x}}^*, \mathbf{K}_{\mathbf{z}}^{(m)})$
 340 $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\text{UniOMA}}$
 341 $\lambda_m \leftarrow \lambda_m - \alpha \nabla_{\lambda_m} \mathcal{L}_{\text{UniOMA}}$ for $m = 1, \dots, M$

 342

349
 350 The training procedure is summarized in Alg. 1. Each iteration proceeds in two stages:

351

Stage 1 (Consensus Estimation): Compute kernel matrices $\mathbf{K}_{\mathbf{x}}^{(m)}$ from a mini-batch using
 352 modality-specific similarity measures (e.g., RBF kernel for images, TCK for time series), then
 353 estimate the batch-wise consensus $\mathbf{C}_{\mathbf{x}}^*$ via an iterative GW barycenter algorithm (Appx. B.2).

354
 355

Stage 2 (Alignment Update): Encode the same mini-batch into $\mathbf{z}^{(m)}$, form kernel matrices $\mathbf{K}_{\mathbf{z}}^{(m)}$,
 356 and compute their GW distances to the consensus. The UniOMA loss is then minimized by
 357 stochastic gradient descent, jointly updating encoder parameters θ and modality weights λ_m .

358
 359 **4 EXPERIMENTS**

360 We evaluate UniOMA on four multimodal robot perception settings: (i) VFD (Vision–Force–Depth)
 361 from the VisionTouch dataset (Lee et al., 2019b; Liang et al., 2021); (ii) VFP (Vi-
 362 sion–Force–Proprioception) from the same source; (iii) MuJoCo Push (Lee et al., 2020; Todorov
 363 et al., 2012) (Vision–Force–End-effector pose); and (iv) VAT (Vision–Audio–Tactile) derived from
 364 ObjectFolder 2.0 (Gao et al., 2022; Wojcik et al., 2024). Downstream tasks include regression,
 365 classification, and cross-modal retrieval.

366
 367 **4.1 TASKS AND DATASETS**

368 **VFD (Vision–Force–Depth).** We evaluate two tasks: (1). Next-step end-effector orientation pre-
 369 diction (regression, 4D): Inputs are third-person RGB ($[b \times 3 \times 128 \times 128]$), force–torque histories
 370 ($[b \times 32 \times 6]$), and depth ($[b \times 1 \times 128 \times 128]$). (2). Trajectory-pair discrimination (classification, bi-
 371 nary): given a pair of triplets (vision-force-depth), identify whether the pair is from the the same
 372 trajectory. We report Top-1 accuracy in Table 1.

373
 374 **VFP (Vision–Force–Proprioception).** We evaluate next-step contact prediction (classification,
 375 binary). Inputs are RGB, force–torque histories, and end-effector pose ($[b \times 7]$). We classify whether
 376 the end-effector is in contact to the object.

378
 379 Table 1: Comparative results on downstream tasks (regression, classification, and cross-modal re-
 380 trieval). Performance is measured by MSE ($\times 10^{-3} \downarrow$), Top-1 Acc. (% \uparrow), and MAP (\uparrow). Arrows
 381 denote retrieval direction. Gray rows correspond to baselines augmented with our GW regularizer.
 382 Overall, our method consistently improves its corresponding baselines across most tasks, and all
 383 methods achieving the best performance for each task are UniOMA variants (highlighted in brown).
 384

385 Method	386 Regression $\downarrow (\times 10^{-3})$		387 Classification $\uparrow (\%)$		388 VAT MAP Score \uparrow		
	389 V&F&D	390 MuJoCo	391 V&F&D	392 V&F&P	393 Vis→Aud	394 Vis→Tact	395 Tact→Aud
Pairwise	1.27 \pm 0.14	0.44 \pm 0.07	89.59 \pm 0.05	94.51 \pm 0.02	0.25 \pm 0.07	0.41 \pm 0.11	0.10 \pm 0.01
Pairwise+OT	1.26 \pm 0.11	0.40 \pm 0.07	92.41 \pm 0.02	94.66 \pm 0.02	0.37 \pm 0.05	0.58 \pm 0.04	0.09 \pm 0.01
Pairwise+GW	1.22 \pm 0.12	0.38 \pm 0.09	92.44 \pm 0.02	94.68 \pm 0.03	0.36 \pm 0.05	0.60 \pm 0.03	0.12 \pm 0.02
Symile	2.81 \pm 0.10	0.28 \pm 0.04	90.02 \pm 0.04	93.94 \pm 0.06	0.10 \pm 0.02	0.21 \pm 0.05	0.08 \pm 0.01
Symile+GW	2.15 \pm 0.08	0.23 \pm 0.02	92.81 \pm 0.02	93.87 \pm 0.03	0.13 \pm 0.03	0.15 \pm 0.03	0.14 \pm 0.03
GRAM	3.37 \pm 0.09	0.52 \pm 0.07	92.47 \pm 0.04	93.65 \pm 0.05	0.13 \pm 0.02	0.34 \pm 0.05	0.15 \pm 0.01
GRAM+GW	2.31 \pm 0.05	0.30 \pm 0.06	93.30 \pm 0.01	93.91 \pm 0.04	0.79 \pm 0.10	0.58 \pm 0.04	0.16 \pm 0.01
CoMM	1.51 \pm 0.05	0.26 \pm 0.04	92.39 \pm 0.01	94.13 \pm 0.03	—	—	—

396 Table 2: **Scalability analysis with 4–7 modalities.** We report trajectory-pair classification accuracy
 397 (mean \pm std over 10 seeds) together with wall-clock time per epoch for all three methods: Pairwise
 398 contrastive learning, Pairwise+OT, and Pairwise+GW (UniOMA). UniOMA achieves consistently
 399 higher accuracy and becomes faster than OT when $M \geq 6$.
 400

401 Modality Combination	402 M	403 Pairwise		404 Pairwise+OT		405 Pairwise+GW	
		406 Acc.	407 Time	408 Acc.	409 Time	410 Acc.	411 Time
V+F+P+D	4	89.94 \pm 0.03	110.38 \pm 1.74s	92.07 \pm 0.03	135.57 \pm 2.92s	92.39 \pm 0.02	201.36 \pm 7.61s
V+F+P+D+A	5	90.72 \pm 0.03	129.44 \pm 1.92s	92.51 \pm 0.03	178.63 \pm 3.11s	93.04 \pm 0.02	225.89 \pm 5.44s
V+F+P+D+A+C	6	89.12 \pm 0.04	150.77 \pm 2.51s	91.03 \pm 0.03	268.41 \pm 6.83s	92.11 \pm 0.03	248.52 \pm 6.12s
V+F+P+D+A+C+O	7	87.95 \pm 0.05	171.42 \pm 3.12s	89.84 \pm 0.04	382.77 \pm 10.44s	91.02 \pm 0.03	273.36 \pm 7.40s

406
 407 **MuJoCo Push.** A planar pushing task with a Franka Emika Panda arm interacting with a puck.
 408 Inputs are low-resolution gray-scale image ($[b \times 1 \times 32 \times 32]$), current force–torque ($[b \times 6]$), and end-
 409 effector pose ($[b \times 7]$). The task is to predict the next-step object’s 2-D position on the table.
 410

411 **VAT (Vision–Audio–Tactile).** We evaluate **cross-modal retrieval** using mean average precision
 412 (MAP). Queries and retrievals are built across {Vis, Aud, Tact}; we report direction-specific MAP
 413 (e.g., Vis→Tact). The dataset provides per-object visual, sound, and tactile observations.
 414

415 **Scalability to 4–7 Modalities.** To evaluate the **scalability** of UniOMA beyond three modalities,
 416 we introduce a new downstream classification task on the **Vision&Touch** dataset training on 4, 5, 6,
 417 and 7 modalities (vision, force, proprioception, depth, action, contact, and optical flow). The task is
 418 to classify whether two multimodal/single-modal samples originate from the same trajectory.
 419

420 4.2 IMPLEMENTATION DETAILS

421 Encoders, optimizer, temperature, and schedules are shared across methods (fusion heads differ
 422 in CoMM). We compute input-space kernels $\{\mathbf{K}_x^{(m)}\}$ (RBF for images with tuned γ ; TCK for
 423 time-series/force; RBF for other signals) and estimate the batch-wise consensus \mathbf{C}_x^* using iter-
 424 ative barycenter updates (Appx. B.2). We then align embedding-space kernels $\{\mathbf{K}_z^{(m)}\}$ to \mathbf{C}_x^* via
 425 the UniOMA loss. Hyperparameters, TCK settings, and convergence diagnostics are detailed in
 426 Appx. B.3–B.3.

427 4.3 RESULTS: COMPARISONS ON DOWNSTREAM TASKS

428 We compare against: (i) **Pairwise** (CMC) (Tian et al., 2020) using summed pairwise InfoNCE; (ii)
 429 **Symile** (Saporta et al., 2024) using triple-wise InfoNCE variants; (iii) **GRAM** (Cicchetti et al., 2024)

432 using Gramian volume similarity for $M \geq 3$; and (iv) **CoMM** (Dufumier et al., 2024) as a strong
 433 fusion-based baseline. For (i)–(iii) we also report “+GW” variants by adding our GW regularizer to
 434 show the marginal value of structural alignment. We match optimizer, batch size, temperature, and
 435 training epochs across comparable methods; see Appx. B.3.

436 Table 1 summarizes results across the 3-modality tasks in Sec. 4.1. Overall, UniOMA with its GW-
 437 augmented variants consistently outperform purely contrastive objectives. In particular, adding our
 438 GW regularizer (+GW) yields stable gains across all objectives, confirming that structure-aware
 439 alignment provides benefits orthogonal to instance discrimination. In the two cells where a baseline
 440 is slightly higher (Symile on VFP classification and Vis→Tact), the GW term trades a bit of con-
 441 trastive correlation for structural coherence. All hyperparameters were kept fixed across methods.

443 4.4 RESULTS: EFFICIENCY AND SCALABILITY

445 Table 2 reports the results of the new-introduced task with 4–7 modalities. Because additional modal-
 446 ities introduce greater distributional heterogeneity, aligning them becomes increasingly challenging.
 447 As a result, traditional pairwise contrastive and OT-based approaches do not exhibit improved clas-
 448 sification accuracy as the number of modality increases. In contrast, our GW-based method main-
 449 tains stable performance and consistently achieves the highest accuracy compare to the pairwise /
 450 pairwise+OT baseline, demonstrating better scalability in high-modality scenarios. A detailed de-
 451 scription of the 4–7 modality setup is provided in Appx. C.

452 UniOMA is designed to avoid the quadratic complexity inherent in pairwise multimodal alignment,
 453 which computes $O(M^2)$ cross-modal couplings across M modalities. UniOMA aligns each modal-
 454 ity independently to a learned structural consensus, yielding linear complexity $O(M)$. We measure
 455 runtime and peak memory as a function of the number of modalities (3–7). Table 2 shows wall-clock
 456 time per epoch of UniOMA grows approximately linearly with the number of modalities M , while
 457 pairwise and OT-based baselines have quadratic scaling. For $M \geq 6$, UniOMA becomes strictly
 458 faster per epoch than the pairwise+OT baseline, while peak memory usage remains identical. We
 459 also observe in Fig. 6 that the GW barycenter converges stably with $T_{\max} = 5$ iterations across all
 460 settings (with runtime mildly increased as shown in Table 2). Ablations with $T_{\max} \in \{2, 5, 10\}$ in
 461 Table 3 confirm that performances are stable with respect to solver iterations. These results indi-
 462 cate that minibatch GW inference introduces only moderate overhead and does not impair training
 463 practicality.

464 4.5 RESULTS: MODALITY WEIGHTS

466 UniOMA learns modality weights $\{\lambda_m\}$ that quantify each modality’s contribution to the consensus
 467 (Appx. B.2). Fig. 3 shows that vision dominates VAT retrieval (high discriminative content); propri-
 468 oception dominates VFP contact prediction (contact reasoning); depth is critical for VFD orientation
 469 regression, and force contributes marginally.

471 4.6 ABLATION STUDY: UNEQUAL MODALITY SAMPLING

473 To evaluate UniOMA’s robustness to realistic asynchrony in robot perception, we perform an abla-
 474 tion on the VFD classification task. Specifically, we downsample one modality per batch (vision,
 475 force, or depth) by a factor of two, e.g. we downsample one modality (e.g., $b=32$) while keep-
 476 ing others at $b=64$, inducing unequal sample counts and breaking strict one-to-one pairing across
 477 modalities. We compare UniOMA against its contrastive-only variant (pairwise vs. pairwise+GW).
 478 Fig. 3(f) shows that UniOMA (Pairwise+GW) outperforms the contrastive-only baseline (Pairwise)
 479 across all downsampling cases. This confirms that aligning each modality to the GW barycenter
 480 consensus, rather than enforcing pairwise matches, enables the model to effectively leverage hetero-
 481 geneous modality even under sampling-rate mismatch.

482 **Interpretability.** Beyond accuracy, UniOMA provides insights into modality importance through
 483 its learned weights. Figure 3(e) visualizes the weight distributions under each downsampling setting,
 484 showing how the framework adaptively shifts reliance toward intact modalities while still retaining
 485 useful signal from the under-sampled one. For comparison, Figure 3(a-d) aggregates the learned
 486 weights across the four benchmark datasets (VFP, VFD, MuJoCo, VAT), illustrating task-dependent

486 modality dominance. These results highlight UniOMA’s ability to not only maintain structural alignment
 487 under unequal sampling but also to yield interpretable modality relevance.
 488

496 Figure 3: (a–d) Final learned modality weights $\{\lambda_m\}$ for each task (VFD, VFP, MuJoCo Push, VAT).
 497 Each radar chart shows per-modality weights that sum to 1, highlighting dataset-specific salience
 498 (e.g., depth in VFD, proprioception in VFP) and the interpretability of UniOMA’s structural-
 499 consensus weighting. (e) ablation on VFD. One modality is downsampled by $\times \frac{1}{2}$ per batch. The
 500 plot shows UniOMA’s adaptive redistribution of $\{\lambda_m\}$ toward intact modalities while retaining sig-
 501 nals from the undersampled one. (f) Accuracy under the same ablation (Top-1, %). Pairwise vs.
 502 Pairwise+GW (UniOMA). The outer polygon indicates consistent gains from the GW regularizer
 503 across all downsampled cases.

5 DISCUSSION AND CONCLUSION

504
 505
 506
 507 **Interpreting the GW barycenter and its applicability.** Our visualizations (Appx. G) show that
 508 batch-wise GW barycenters recover intuitive geometric patterns across modalities, reflecting that
 509 GW aligns *structural relations* rather than raw features. This behavior is well suited to robotics,
 510 where trajectories naturally form meaningful intra-modal graphs. In structurally poor domains
 511 such as vision–language–audio with i.i.d. samples, however, useful barycenters require constructing
 512 richer intra-modal graphs first—an explicit limitation and a promising extension for more general
 513 multimodal learning.

514
 515 **Shared vs. modality-specific information under alignment.** Our theory (Appx. A) and experi-
 516 ments support a classical view from multimodal information bottleneck and Partial Information De-
 517 composition: alignment should extract only the *shared* structure while preserving modality-specific
 518 (high-frequency) information. UniOMA achieves this by constraining embeddings only through
 519 low-frequency consensus, leaving modality-specific components to be shaped by the contrastive ob-
 520 jective. This also clarifies a limitation in vision–language settings: most VLM datasets are instance-
 521 wise and lack trajectory-style intra-modal geometry, making GW barycenters less meaningful with-
 522 out an additional graph-construction step.

523
 524 **Conclusion.** We revisit multimodal alignment through the lens of *structural* consistency: while
 525 pointwise correspondences are statistically strong in existing alignment methods, the intra-modal
 526 geometries can disagree across modalities. UniOMA closes this gap by combining standard con-
 527 trastive learning with a GW-barycenter regularizer that aligns 3+ modalities to a shared structural
 528 consensus. Across VFP, VFD, MuJoCo Push, VAT, and 4–7 modality settings, UniOMA improves
 529 regression, classification, and cross-modal retrieval while learning interpretable, dataset-specific
 530 modality weights. Limitations include the additional computational cost of barycentric GW up-
 531 dates and sensitivity to kernel choices. Our mini-batch barycenter and kernel ablations mitigate
 532 these costs but do not fully remove them. Promising future directions include large-scale real-robot
 533 alignment under heterogeneous sampling rates and extensions to asymmetric similarity kernels (e.g.,
 534 directed or causal structures).

535 6 REPRODUCIBILITY STATEMENT

536 For the method’s implementation, we include the details in B.3. For the used datasets, Appx. C
 537 provides a complete description of preprocessing and splits for VFP, VFD, MuJoCo Push, VAT,
 538 and the 4–7 modality task. For theory, Appx. A.5–B.2 contain clear assumptions, derivations, and
 539 algorithmic details used in UniOMA.

540 REFERENCES
541

542 Julián N. Acosta, Guido J. Falcone, Pranav Rajpurkar, and Eric J. Topol. Multimodal biomed-
543 cal ai. *Nature Medicine*, 28(9):1773–1784, September 2022. ISSN 1546-170X. doi: 10.1038/
544 s41591-022-01981-2.

545 Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing
546 Gong. Vatt: Transformers for multimodal self-supervised learning from raw video, audio and
547 text. *Advances in neural information processing systems*, 34:24206–24221, 2021.

548 Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider, Relja Arandjelović, Jason Ramapuram,
549 Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisserman. Self-supervised mul-
550 timodal versatile networks. *Advances in neural information processing systems*, 33:25–37, 2020.

551

552 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
553 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

554

555 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
556 representation. *Neural Computation*, 15(6):1373–1396, June 2003. ISSN 1530-888X. doi: 10.
557 1162/089976603321780317.

558 Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement inter-
559 polation using lagrangian mass transport. *ACM Transactions on Graphics*, 30(6):1–12, December
560 2011. ISSN 1557-7368. doi: 10.1145/2070781.2024192.

561

562 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
563 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
564 Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
565 nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
566 sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
567 Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
568 Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
569 Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
570 Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2022.

571

572 Brian Chen, Andrew Rouditchenko, Kevin Duarte, Hilde Kuehne, Samuel Thomas, Angie Boggust,
573 Rameswar Panda, Brian Kingsbury, Rogerio Feris, David Harwath, et al. Multimodal clustering
574 networks for self-supervised learning from unlabeled videos. In *Proceedings of the IEEE/CVF
international conference on computer vision*, pp. 8012–8021, 2021.

575

576 Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Mingzhen Sun, Xinxin Zhu, and Jing Liu. Vast:
577 A vision-audio-subtitle-text omni-modality foundation model and dataset. *Advances in Neural
Information Processing Systems*, 36:72842–72866, 2023.

578

579 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
580 contrastive learning of visual representations. In *International conference on machine learning*,
581 pp. 1597–1607. PMLR, 2020.

582

583 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.

584

585 Fan Chung. *Spectral Graph Theory*. American Mathematical Society, December 1996. ISBN
9781470424527. doi: 10.1090/cbms/092.

586

587 Giordano Cicchetti, Eleonora Grassucci, Luigi Sigillo, and Danilo Comminiello. Gramian multi-
588 modal representation learning and alignment. *arXiv preprint arXiv:2412.11959*, 2024.

589

590 Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
591 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
592 Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
593 Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: an embodied
multimodal language model. In *Proceedings of the 40th International Conference on Machine
Learning*, ICML’23. JMLR.org, 2023.

594 Benoit Dufumier, Javiera Castillo-Navarro, Devis Tuia, and Jean-Philippe Thiran. What to align in
 595 multimodal contrastive learning? *arXiv preprint arXiv:2409.07402*, 2024.

596

597 Anirvan Dutta, Etienne Burdet, and Mohsen Kaboli. Visuo-tactile based predictive cross modal
 598 perception for object exploration in robotics, 2024.

599

600 Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Gläser, Fabian Timm,
 601 Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection and semantic seg-
 602 mentation for autonomous driving: Datasets, methods, and challenges. *IEEE Transactions on*
603 Intelligent Transportation Systems, 22(3):1341–1360, 2021. doi: 10.1109/TITS.2020.2972974.

604

605 RÃ©mi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, AurÃ©lie Boisbunon,
 606 Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, LÃ©o
 607 Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, An-
 608 toine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
 609 Tong, and Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*,
 610 22(78):1–8, 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

611

612 Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette Bohg, Li Fei-Fei, Wenzhen Yuan,
 613 and Jiajun Wu. Objectfolder 2.0: A multisensory object dataset for sim2real transfer. In *Pro-
 614 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10598–10608,
 615 2022.

616

617 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 618 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Pro-
 619 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.

620

621 Fengjiao Gong, Yuzhou Nie, and Hongteng Xu. Gromov-wasserstein multi-modal alignment and
 622 clustering. In *Proceedings of the 31st ACM International Conference on Information & Knowl-
 623 edge Management*, CIKM ’22, pp. 603–613. ACM, October 2022. doi: 10.1145/3511808.
 624 3557339.

625

626 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
 627 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
 628 Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent
 629 a new approach to self-supervised learning. In *Proceedings of the 34th International Confer-
 630 ence on Neural Information Processing Systems*, NIPS ’20, Red Hook, NY, USA, 2020. Curran
 631 Associates Inc. ISBN 9781713829546.

632

633 Michelle Guo, Yifeng Jiang, Andrew Everett Spielberg, Jiajun Wu, and Karen Liu. Benchmarking
 634 rigid body contact models. In Nikolai Matni, Manfred Morari, and George J. Pappas (eds.),
 635 *Proceedings of The 5th Annual Learning for Dynamics and Control Conference*, volume 211
 636 of *Proceedings of Machine Learning Research*, pp. 1480–1492. PMLR, 15–16 Jun 2023. URL
 637 <https://proceedings.mlr.press/v211/guo23b.html>.

638

639 Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Audioclip: Extending clip to
 640 image, text and audio. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
 641 and Signal Processing (ICASSP)*, pp. 976–980. IEEE, 2022.

642

643 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 644 unsupervised visual representation learning. In *Pro-
 645 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9729–9738, 2020.

646

647 Jingjia Huang, Yinan Li, Jiashi Feng, Xinglong Wu, Xiaoshuai Sun, and Rongrong Ji. Clover:
 648 Towards a unified video-language alignment and fusion model. In *Pro-
 649 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14856–14866, 2023.

650

651 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 652 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, Manuel Y. Galliker, Dibya Ghosh,
 653 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
 654 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 655 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 656 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. 0.5: a
 657 vision-language-action model with open-world generalization, 2025.

648 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 649 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 650 with noisy text supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th*
 651 *International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning*
 652 *Research*, pp. 4904–4916. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/jia21b.html>.

653

654 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 655 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
 656 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 657 Openvla: An open-source vision-language-action model, 2024.

658

659 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Kernel neural optimal transport.
 660 *arXiv preprint arXiv:2205.15269*, 2022a.

661 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Neural optimal transport. *arXiv*
 662 *preprint arXiv:2201.12220*, 2022b.

663

664 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. *Physical*
 665 *Review E*, 69(6):066138, June 2004. ISSN 1550-2376. doi: 10.1103/physreve.69.066138.

666 Jet-Tsyn Lee, Danushka Bollegala, and Shan Luo. “touching to see” and “seeing to feel”:
 667 Robotic cross-modal sensory data generation for visual-tactile perception. In *2019 International*
 668 *Conference on Robotics and Automation (ICRA)*, pp. 4276–4282. IEEE, May 2019a. doi:
 669 10.1109/icra.2019.8793763.

670

671 Michelle A Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh
 672 Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning of multi-
 673 modal representations for contact-rich tasks. In *2019 International conference on robotics and*
 674 *automation (ICRA)*, pp. 8943–8950. IEEE, 2019b.

675

676 Michelle A Lee, Brent Yi, Roberto Martín-Martín, Silvio Savarese, and Jeannette Bohg. Multi-
 677 modal sensor fusion with differentiable filters. In *2020 IEEE/RSJ International Conference*
 678 *on Intelligent Robots and Systems (IROS)*, pp. 10444–10451. IEEE, IEEE, October 2020. doi:
 10.1109/iros45743.2020.9341579.

679

680 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
 681 and performant baseline for vision and language, 2019.

682

683 Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Chen, Peter Wu,
 684 Michelle A. Lee, Yuke Zhu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Multibench:
 685 Multiscale benchmarks for multimodal representation learning, 2021.

686

687 Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Zou. Mind the gap: under-
 688 standing the modality gap in multi-modal contrastive representation learning. In *Proceedings*
 689 *of the 36th International Conference on Neural Information Processing Systems, NIPS '22*, Red
 690 Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

691

692 Jing Liu, Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, and Jinhui Tang.
 693 Valor: Vision-audio-language omni-perception pretraining model and dataset. *IEEE Transactions*
 694 *on Pattern Analysis and Machine Intelligence*, 2024.

695

696 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. *ViLBERT: pretraining task-agnostic visiolin-*
 697 *guistic representations for vision-and-language tasks*. Curran Associates Inc., Red Hook, NY,
 698 USA, 2019.

699

700 Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
 701 empirical study of clip for end to end video clip retrieval and captioning. *Neurocomputing*, 508:
 293–304, 2022.

702

703 Sijie Mai, Ying Zeng, Shuangjia Zheng, and Haifeng Hu. Hybrid contrastive learning of tri-modal
 704 representation for multimodal sentiment analysis. *IEEE Transactions on Affective Computing*, 14
 705 (3):2276–2289, 2022.

702 Karl Øyvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz, and Robert Jenssen. Time
 703 series cluster kernel for learning similarities between multivariate time series with missing data.
 704 *Pattern Recognition*, 76:569–581, April 2018. ISSN 0031-3203. doi: 10.1016/j.patcog.2017.11.
 705 030.

706 Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

707 Seungwhan Moon, Andrea Madotto, Zhaojiang Lin, Alireza Dirafzoon, Aparajita Saraf, Amy Bear-
 708 man, and Babak Damavandi. Imu2clip: Multimodal contrastive learning for imu motion sensors
 709 from egocentric videos and text. *arXiv preprint arXiv:2210.14395*, 2022.

710

711 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 712 Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
 713 Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
 714 Octo: An open-source generalist robot policy. In *Proceedings of Robotics: Science and Systems*,
 715 Delft, Netherlands, 2024.

716

717 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 718 tive coding, 2018.

719

720 Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
 721 distance matrices. In *International conference on machine learning*, pp. 2664–2672. PMLR,
 722 2016.

723

724 Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
 725 bounds of mutual information. In *International conference on machine learning*, pp. 5171–5180,
 726 2019.

727

728 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 729 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 730 models from natural language supervision. In *International conference on machine learning*, pp.
 731 8748–8763. PmLR, 2021.

732

733 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 734 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 735 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

736

737 Adriel Saporta, Aahlad Manas Puli, Mark Goldstein, and Rajesh Ranganath. Contrasting with
 738 symile: Simple model-agnostic representation learning for unlimited modalities. *Advances in
 739 Neural Information Processing Systems*, 37:56919–56957, 2024.

740

741 Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and
 742 Sergey Levine. Time-contrastive networks: Self-supervised learning from video. *2018 IEEE
 743 International Conference on Robotics and Automation (ICRA)*, pp. 1134–1141, 2017. URL
 744 <https://api.semanticscholar.org/CorpusID:3997350>.

745

746 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
 747 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
 748 for everyday tasks. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 749 (CVPR)*. IEEE, June 2020. doi: 10.1109/cvpr42600.2020.01075.

750

751 Nina Shvetsova, Brian Chen, Andrew Rouditchenko, Samuel Thomas, Brian Kingsbury, Rogerio S
 752 Feris, David Harwath, James Glass, and Hilde Kuehne. Everything at once-multi-modal fusion
 753 transformer for video retrieval. In *Proceedings of the ieee/cvf conference on computer vision and
 754 pattern recognition*, pp. 20020–20029, 2022.

755

D. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body dynamics with
 756 coulomb friction. In *Proceedings 2000 ICRA. Millennium Conference. IEEE International Con-
 757 ference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)*, volume 1 of
 758 *ROBOT-00*, pp. 162–169. IEEE. doi: 10.1109/robot.2000.844054.

756 Sandra Steyaert, Marija Pizurica, Divya Nagaraj, Priya Khandelwal, Tina Hernandez-Boussard, An-
 757 drew J. Gentles, and Olivier Gevaert. Multimodal data fusion for cancer biomarker discovery with
 758 deep learning. *Nature Machine Intelligence*, 5(4):351–362, April 2023. ISSN 2522-5839. doi:
 759 10.1038/s42256-023-00633-5.

760 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In *European*
 761 *conference on computer vision*, pp. 776–794. Springer, 2020.

763 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 764 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*. IEEE, October
 765 2012. doi: 10.1109/iros.2012.6386109.

766 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.

767 Ulrike von Luxburg. A tutorial on spectral clustering. *Statistics and Computing*, 17(4):395–416,
 768 August 2007. ISSN 1573-1375. doi: 10.1007/s11222-007-9033-z.

769 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 770 ment and uniformity on the hypersphere. In *Proceedings of the 37th International Conference on*
 771 *Machine Learning*, ICML’20. JMLR.org, 2020.

772 Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report, USA, 1995.

773 Jagoda Wojcik, Jiaqi Jiang, Jiacheng Wu, and Shan Luo. A case study on visual-audio-tactile cross-
 774 modal retrieval. In *2024 IEEE/RSJ International Conference on Intelligent Robots and Systems*
 775 (*IROS*), pp. 12472–12478. IEEE, 2024.

776 Hongwei Xue, Yuchong Sun, Bei Liu, Jianlong Fu, Ruihua Song, Houqiang Li, and Jiebo Luo. Clip-
 777 vip: Adapting pre-trained image-text model to video-language representation alignment. *arXiv*
 778 preprint *arXiv:2209.06430*, 2022.

779 Martina Zambelli, Yusuf Aytar, Francesco Visin, Yuxiang Zhou, and Raia Hadsell. Learning rich
 780 touch representations through cross-modal self-supervision. In Jens Kober, Fabio Ramos, and
 781 Claire Tomlin (eds.), *Proceedings of the 2020 Conference on Robot Learning*, volume 155 of
 782 *Proceedings of Machine Learning Research*, pp. 1415–1425. PMLR, 16–18 Nov 2021. URL
 783 <https://proceedings.mlr.press/v155/zambelli21a.html>.

784 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, HongFa Wang, Yatian Pang, Wenhao Jiang,
 785 Junwu Zhang, Zongwei Li, et al. Languagebind: Extending video-language pretraining to n-
 786 modality by language-based semantic alignment. *arXiv preprint arXiv:2310.01852*, 2023.

787 Sidan Zhu and Dixin Luo. *Enhancing Multi-modal Contrastive Learning via Optimal Transport-
 788 Based Consistent Modality Alignment*, pp. 157–171. Springer Nature Singapore, November 2024.
 789 ISBN 9789819787951. doi: 10.1007/978-981-97-8795-1_11.

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A ADDITIONAL THEORETICAL DISCUSSION 811

812 In this appendix, we give a theoretical view of our structural alignment, which explains its feasibility:
813 (i) the GW-based term acts locally like a graph-smoothing force on the shared, low-frequency
814 structure of the embeddings; and (ii) this does *not* force a information-rich modality (e.g., image)
815 to discard its modality-specific, high-frequency information. To specific, we discuss in three steps:
816 firstly, near the structural consensus \mathbf{C}_x^* , the gradient of the GW distance is aligned with the gra-
817 dient of the Dirichlet energy (Belkin & Niyogi, 2003; Chung, 1996) on the Laplacian (Lemma 1);
818 we then analyze that the Dirichlet energy is spectrally biased towards low-frequency eigenmodes
819 (Lemma 2); finally, we combine these findings to argue that our UniOMA regularizer aligns only
820 the shared low-frequency geometry while leaving higher-frequency components available to encode
821 modality-specific information (Theorem 2).

822 A.1 SETUP 823

824 Let n be the batch size and $\mathbf{Z} \in \mathbb{R}^{n \times d}$ the embedding matrix of one modality, with rows $\mathbf{z}_1, \dots, \mathbf{z}_n$.
825 We construct a similarity matrix

$$826 \mathbf{K}_z(i, j) = k(\|\mathbf{z}_i - \mathbf{z}_j\|^2),$$

827 where $k : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a kernel that is strictly decreasing (e.g., an RBF kernel). Let $\mathbf{C}_x^* \in$
828 $\mathbb{R}^{n \times n}$ be a fixed barycenter similarity matrix (our structural consensus), and let \mathbf{L}^* be the associated
829 normalized Laplacian:

$$830 \mathbf{L}^* = \mathbf{D} - \mathbf{C}_x^*,$$

831 where $\mathbf{D} = \mathbf{I}$ is the degree matrix with $\mathbf{D}_{ii} = \sum_j \mathbf{C}_x^*(i, j)$. The Dirichlet energy of \mathbf{Z} on this
832 consensus geometry is

$$833 E_{\text{Dir}}(\mathbf{Z}) = \text{tr}(\mathbf{Z}^\top \mathbf{L}^* \mathbf{Z}) = \frac{1}{2} \sum_{i, j} \mathbf{L}^*(i, j) \|\mathbf{z}_i - \mathbf{z}_j\|^2,$$

836 For the structural term, we consider the squared-loss Gromov–Wasserstein discrepancy between \mathbf{K}_z
837 and \mathbf{C}_x^* :

$$838 d_{\text{GW}}^2(\mathbf{K}_z, \mathbf{C}_x^*) = \min_{\pi \in \Pi(p, q)} \sum_{i, j, k, \ell} (\mathbf{K}_z(i, j) - \mathbf{C}_x^*(k, \ell))^2 \pi_{ik} \pi_{j\ell}, \quad (13)$$

840 where $\Pi(p, q)$ is the set of transport plans with fixed marginals p, q . In the batch setting we consider
841 here, $p = q = \frac{1}{n} \mathbf{1}$ and the OT plan π^* is typically close to a permutation matrix.

843 A.2 LEMMA 1: LOCAL DIRECTIONAL ALIGNMENT OF GW AND DIRICHLET GRADIENTS 844

845 We first show that, in a neighbourhood where the consensus geometry is approximately respected,
846 minimizing the GW discrepancy encourages embeddings with low Dirichlet energy on the consensus
847 graph, linking GW alignment to smoothness of \mathbf{Z} with respect to the consensus geometry.

848 **Lemma 1** (Local directional alignment of GW and Dirichlet gradients). *Under the setup of*
849 *Eq. equation 13 and $E_{\text{Dir}}(\mathbf{Z}) = \text{tr}(\mathbf{Z}^\top \mathbf{L}^* \mathbf{Z})$ (Chung, 1996). Let*

$$850 G(\mathbf{Z}) = \nabla_{\mathbf{Z}} d_{\text{GW}}^2(\mathbf{K}_z, \mathbf{C}_x^*), \quad H(\mathbf{Z}) = \nabla_{\mathbf{Z}} E_{\text{Dir}}(\mathbf{Z}) = 2\mathbf{L}^* \mathbf{Z}.$$

851 Assume that:

- 853 1. $\mathbf{K}_z \rightarrow \mathbf{C}_x^*$ and $\pi^*(\mathbf{Z}) \rightarrow \Pi$ as $\mathbf{Z} \rightarrow \bar{\mathbf{Z}}$, for a permutation Π and the reference embedding
854 $\bar{\mathbf{Z}}$, which is the embedding to exactly represent structural consensus;
- 855 2. G and H are nonzero at $\bar{\mathbf{Z}}$ and positively colinear, i.e. $G(\bar{\mathbf{Z}}) = \lambda H(\bar{\mathbf{Z}})$ for some $\lambda > 0$.

857 Then for every $\varepsilon > 0$ there exists $\eta > 0$ such that whenever

$$858 \|\mathbf{K}_z - \mathbf{C}_x^*\|_F + \|\pi^*(\mathbf{Z}) - \Pi\|_F < \eta, \quad G(\mathbf{Z}) \neq 0, \quad H(\mathbf{Z}) \neq 0,$$

859 we have the directional approximation

$$860 \left\| \frac{G(\mathbf{Z})}{\|G(\mathbf{Z})\|_F} - \frac{H(\mathbf{Z})}{\|H(\mathbf{Z})\|_F} \right\|_F \leq \varepsilon.$$

863 That is, in a small neighbourhood of the reference configuration $\bar{\mathbf{Z}}$, the GW gradient and the Dirich-
864 let gradient point in almost the same direction.

864 *Proof.* Under the assumptions on k and the squared loss, the GW objective can be written as a
 865 smooth function of the similarity matrix \mathbf{K}_z and the transport plan $\pi^*(\mathbf{Z})$ (?):
 866

$$867 \quad d_{\text{GW}}^2(\mathbf{K}_z, \mathbf{C}_x^*) = \sum_{i,j,k,\ell} (\mathbf{K}_z(i,j) - \mathbf{C}_x^*(k,\ell))^2 \pi_{ik}^*(\mathbf{Z}) \pi_{j\ell}^*(\mathbf{Z}).$$

869 Each entry $\mathbf{K}_z(i,j) = k(\|\mathbf{z}_i - \mathbf{z}_j\|^2)$ is a function of \mathbf{Z} , and the expression above is a finite sum of
 870 smooth functions of $(\mathbf{K}_z, \pi^*(\mathbf{Z}))$. Hence $G(\mathbf{Z})$ is continuous in a neighbourhood of $\bar{\mathbf{Z}}$. Likewise,
 871 $H(\mathbf{Z}) = 2\mathbf{L}^*\mathbf{Z}$ is linear in \mathbf{Z} and therefore continuous.
 872

873 On the set where $G(\mathbf{Z}) \neq 0$ and $H(\mathbf{Z}) \neq 0$, the normalized gradients

$$874 \quad u(\mathbf{Z}) := \frac{G(\mathbf{Z})}{\|G(\mathbf{Z})\|_F}, \quad v(\mathbf{Z}) := \frac{H(\mathbf{Z})}{\|H(\mathbf{Z})\|_F}$$

876 are continuous functions of \mathbf{Z} . By the colinearity assumption, $u(\bar{\mathbf{Z}}) = v(\bar{\mathbf{Z}})$. By continuity of
 877 u and v , the standard ε - δ argument implies that for every $\varepsilon > 0$, there exists $\eta > 0$ such that
 878 $\|\mathbf{K}_z - \mathbf{C}_x^*\|_F + \|\pi^*(\mathbf{Z}) - \Pi\|_F < \eta$ entails $\|u(\mathbf{Z}) - v(\mathbf{Z})\|_F \leq \varepsilon$. This is precisely the claimed
 879 inequality. \square
 880

881 Lemma 1 formalizes the statement that, in a near-alignment regime, the GW term pushes \mathbf{Z} in almost
 882 the same direction as the Dirichlet energy: infinitesimal gradient steps for the GW loss act like graph
 883 smoothing on the consensus geometry.
 884

885 Intuitively, the Dirichlet energy (Belkin & Niyogi, 2003)

$$886 \quad E_{\text{Dir}}(\mathbf{Z}) = \frac{1}{2} \sum_{i,j} \mathbf{L}^*(i,j) \|\mathbf{z}_i - \mathbf{z}_j\|^2$$

888 measures the total ‘‘elastic tension’’ of a spring network with edge weights a_{ij} . Minimizing GW
 889 distance drives \mathbf{K}_z to match \mathbf{C}_x^* , i.e. to embed this graph faithfully. Once this is achieved, no
 890 Laplacian-type perturbation can further reduce the tension without breaking the matched structure,
 891 which is the content of Lemma 1.
 892

893 A.3 LEMMA 2: DIRICHLET ENERGY AND LOW-FREQUENCY STRUCTURE

894 We now recall a standard spectral decomposition of the Dirichlet energy, which makes explicit that
 895 minimizing E_{Dir} places most of the ‘‘mass’’ of \mathbf{Z} on the low-frequency eigenvectors of the consensus
 896 Laplacian.
 897

898 **Lemma 2** (Spectral decomposition and low-frequency bias). *Let $\mathbf{L}^* = \mathbf{U}\Lambda\mathbf{U}^\top$ with $0 = \lambda_1 \leq$
 899 $\lambda_2 \leq \dots \leq \lambda_n$. Define $\tilde{\mathbf{Z}} = \mathbf{U}^\top \mathbf{Z}$. Under a norm constraint $\|\mathbf{Z}\|_F^2 = c$, one has*

$$900 \quad E_{\text{Dir}}(\mathbf{Z}) = \text{tr}(\mathbf{Z}^\top \mathbf{L}^* \mathbf{Z}) = \sum_{\ell=1}^n \lambda_\ell \|\tilde{\mathbf{Z}}_{\ell,:}\|_2^2.$$

903 *Minimizers therefore place maximal energy on the eigenspaces corresponding to the smallest eigenvalues, i.e. on the low-frequency modes of the consensus geometry.*
 904

905 *Proof.* Using $\mathbf{L}^* = \mathbf{U}\Lambda\mathbf{U}^\top$ and $\tilde{\mathbf{Z}} = \mathbf{U}^\top \mathbf{Z}$,

$$906 \quad E_{\text{Dir}}(\mathbf{Z}) = \text{tr}(\mathbf{Z}^\top \mathbf{U}\Lambda\mathbf{U}^\top \mathbf{Z}) = \text{tr}(\tilde{\mathbf{Z}}^\top \Lambda \tilde{\mathbf{Z}}) = \sum_{\ell=1}^n \lambda_\ell \|\tilde{\mathbf{Z}}_{\ell,:}\|_2^2.$$

910 The Frobenius norm constraint reads

$$911 \quad \|\mathbf{Z}\|_F^2 = \text{tr}(\mathbf{Z}^\top \mathbf{Z}) = \text{tr}(\tilde{\mathbf{Z}}^\top \tilde{\mathbf{Z}}) = \sum_{\ell=1}^n \|\tilde{\mathbf{Z}}_{\ell,:}\|_2^2 = c.$$

914 Thus we minimize a weighted sum $\sum_\ell \lambda_\ell a_\ell$ subject to $\sum_\ell a_\ell = c$ with $a_\ell = \|\tilde{\mathbf{Z}}_{\ell,:}\|_2^2 \geq 0$ (von
 915 Luxburg, 2007). Since $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$, we have

$$916 \quad E_{\text{Dir}}(\mathbf{Z}) - \lambda_1 c = \sum_{\ell=2}^n (\lambda_\ell - \lambda_1) a_\ell \geq 0,$$

918 with strict inequality whenever some $a_\ell > 0$ for $\lambda_\ell > \lambda_1$. Hence any minimizer of E_{Dir} under the
 919 norm constraint concentrates as much energy as possible on indices with the smallest eigenvalues,
 920 i.e., the low-frequency eigenvectors of \mathbf{L}^* . \square
 921

922 **Interpretation.** Since $\tilde{\mathbf{Z}}_{\ell,:} = \mathbf{U}_\ell^\top \mathbf{Z}$ is the projection of the embedding onto the ℓ -th eigenvector
 923 of \mathbf{L}^* , the expression
 924

$$E_{\text{Dir}}(\mathbf{Z}) = \sum_\ell \lambda_\ell \|\tilde{\mathbf{Z}}_{\ell,:}\|^2$$

925 states that high-frequency components (large λ_ℓ) are heavily penalized. Thus any \mathbf{Z} minimizing
 926 Dirichlet energy must align itself with the low-frequency eigenvectors of \mathbf{L}^* ; equivalently, \mathbf{Z} be-
 927 comes “most compatible” with the smooth, large-scale geometry encoded by these eigenvectors.
 928

929 In particular, if $\tilde{\mathbf{Z}}_{\ell,:}$ is large for small λ_ℓ , then the rows of \mathbf{Z} must be close to the eigenvectors
 930 of \mathbf{U}_ℓ , meaning the learned embeddings inherit the global structure of \mathbf{L}^* . This formalizes why the
 931 structural term preserves shared low-frequency structure.
 932

933 A.4 MAIN THEOREM: CONSENSUS ALIGNMENT WITHOUT COLLAPSING RICH MODALITIES

934 We now combine the two lemmas to articulate our main conceptual point: in this idealized set-
 935 ting, aligning a information-rich modality to a consensus geometry via our GW-based structural
 936 regularizer does *not* force the encoder to discard its modality-specific (high-frequency) information.
 937 Instead, it primarily constrains the shared low-frequency structure.
 938

939 **Theorem 2** (GW-based consensus alignment preserves modality-specific information). *Consider a*
 940 *rich modality R and a poorer modality P with embeddings $\mathbf{Z}_R, \mathbf{Z}_P$, similarity matrices $\mathbf{K}_R, \mathbf{K}_P$,*
 941 *and barycenter \mathbf{C}_x^* . Assume embeddings are trained with a contrastive loss and the GW regularizer*
 942 *$d_{\text{GW}}^2(\mathbf{K}_z, \mathbf{C}_x^*)$, under the norm control $\|\mathbf{Z}\|_F^2 = c$.*
 943

944 *Then, in any neighbourhood where $\mathbf{K}_{\mathbf{Z}_m} \approx \mathbf{C}_x^*$:*

- 945 *1. By Lemma 1, minimizing GW forces \mathbf{Z}_m to descend in (almost) the same direction as the*
 946 *Dirichlet gradient $\mathbf{L}^* \mathbf{Z}_m$, thus enforcing agreement on the low-frequency structure of the*
 947 *consensus Laplacian.*
- 948 *2. By Lemma 2, this alignment constrains only the projections of \mathbf{Z}_m onto the low-frequency*
 949 *eigenspaces of \mathbf{L}^* ; all components in high-frequency eigenspaces (λ_ℓ large) remain weakly*
 950 *constrained by the structural term.*
- 951 *3. The contrastive objective acts primarily on shared structure and, as observed in multimodal*
 952 *representation learning, does not by itself eliminate modality-specific information: shared*
 953 *information is aligned, while modality-specific details are naturally retained.*

954 *Consequently, the GW regularizer enforces a consensus low-frequency geometry without collapsing*
 955 *the rich modality to the poor one. Modality-specific (high-frequency) information in \mathbf{Z}_R is preserved*
 956 *and remains available for contrastive discrimination, while only the shared geometric structure is*
 957 *aligned.*

958 A.5 EMPIRICAL GW DISTANCE

959 **Theorem 1** (Empirical GW Distance). *Let the kernel matrices $\mathbf{K}_x \in \mathbb{R}^{I \times I}$ and $\mathbf{K}_y \in \mathbb{R}^{J \times J}$ be*
 960 *the similarity matrices conducted by the samples \mathbf{x}, \mathbf{y} from two mm-spaces \mathcal{X}, \mathcal{Y} , the empirical GW*
 961 *distance between the samples is:*

$$\hat{d}_{\text{gw}}(\mathbf{K}_x, \mathbf{K}_y) := \max_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}_x, \hat{\mathbf{p}}_y)} \text{tr}(\mathbf{K}_x^\top \mathbf{T}^\top \mathbf{K}_y \mathbf{T}),$$

962 *where \mathbf{T} is the doubly-stochastic matrix to model the transport between the two sets of samples.*

963 *Proof.* Let $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^I$ and $\mathcal{Y} = \{\mathbf{y}_j\}_{j=1}^J$ be the two finite mm-spaces with uniform empirical
 964 marginals $\hat{\mathbf{p}}_x = \frac{1}{I} \mathbf{1}_I$ and $\hat{\mathbf{p}}_y = \frac{1}{J} \mathbf{1}_J$. Denote their intra-modal similarity matrices by $\mathbf{K}_x \in \mathbb{R}^{I \times I}$

972 and $\mathbf{K}_y \in \mathbb{R}^{J \times J}$, where $(K_x)_{ii'} = \text{sim}(\mathbf{x}_i, \mathbf{x}_{i'})$ and $(K_y)_{jj'} = \text{sim}(\mathbf{y}_j, \mathbf{y}_{j'})$. A cross-domain soft
973 matching is a coupling
974

$$975 \quad \mathbf{T} \in \Pi(\hat{\mathbf{p}}_x, \hat{\mathbf{p}}_y) := \{ \mathbf{T} \geq 0 \mid \mathbf{T} \mathbf{1}_J = \hat{\mathbf{p}}_x, \mathbf{T}^\top \mathbf{1}_I = \hat{\mathbf{p}}_y \}.$$

976 The empirical GW distance can be written as the minimum expected squared discrepancy of within-
977 domain relations:
978

$$979 \quad \hat{d}_{gw}^2(\mathbf{K}_x, \mathbf{K}_y) = \min_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}_x, \hat{\mathbf{p}}_y)} \sum_{i,i'} \sum_{j,j'} ((K_x)_{ii'} - (K_y)_{jj'})^2 \mathbf{T}_{ij} \mathbf{T}_{i'j'}. \quad (14)$$

980 Expand the square in Eq. 14 and group terms:
981

$$982 \quad \sum_{i,i',j,j'} ((K_x)_{ii'} - (K_y)_{jj'})^2 \mathbf{T}_{ij} \mathbf{T}_{i'j'} = A + B - 2 \sum_{i,i',j,j'} (K_x)_{ii'} (K_y)_{jj'} \mathbf{T}_{ij} \mathbf{T}_{i'j'},$$

983 where A, B are constants
984

$$985 \quad A = \sum_{i,i'} (K_x)_{ii'}^2 \hat{\mathbf{p}}_x(i) \hat{\mathbf{p}}_x(i'), \quad B = \sum_{j,j'} (K_y)_{jj'}^2 \hat{\mathbf{p}}_y(j) \hat{\mathbf{p}}_y(j').$$

986 Therefore, minimizing Eq. 14 is equivalent to maximizing the quadratic term
987

$$988 \quad \max_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}_x, \hat{\mathbf{p}}_y)} \sum_{i,i',j,j'} (K_x)_{ii'} (K_y)_{jj'} \mathbf{T}_{ij} \mathbf{T}_{i'j'}.$$

989 In matrix notation, this becomes the quadratic type objective as is in Thrm. 1
990

$$991 \quad \hat{d}_{gw}(\mathbf{K}_x, \mathbf{K}_y) = \max_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}_x, \hat{\mathbf{p}}_y)} \text{tr}(\mathbf{K}_x^\top \mathbf{T}^\top \mathbf{K}_y \mathbf{T}). \quad (15)$$

992 Consequently, given an optimal plan \mathbf{T}^* estimated by Alg. 2,
993

$$994 \quad \hat{d}_{gw}(\mathbf{K}_x, \mathbf{K}_y) = \text{tr}(\mathbf{K}_x^\top \mathbf{T}^{*\top} \mathbf{K}_y \mathbf{T}^*). \quad (16)$$

995 \square
1000

1001 B IMPLEMENTATION DETAILS

1002 B.1 OPTIMAL TRANSPORT PLAN ESTIMATION

1003 **Algorithm 2** OTEstimation($\hat{\mathbf{K}}, \mathbf{K}$)

1004 **Input:** Kernel matrices $\hat{\mathbf{K}} \in \mathbb{R}^{\hat{N} \times \hat{N}}, \mathbf{K} \in \mathbb{R}^{N \times N}$

1005 **Output:** Optimal transport matrix \mathbf{T}^*

1006 Initialize $\mathbf{p} \leftarrow \frac{1}{N} \mathbf{1}_N, \hat{\mathbf{p}} \leftarrow \frac{1}{\hat{N}} \mathbf{1}_{\hat{N}}, \mathbf{T} \leftarrow \hat{\mathbf{p}} \mathbf{p}^\top$

1007 **while** not converged **do**

1008 // Apply Network simplex algorithm:

1009 $\hat{\mathbf{T}} \leftarrow \arg \max_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}, \mathbf{p})} \text{tr}(\hat{\mathbf{K}}^\top \mathbf{T}^\top \mathbf{K} \mathbf{T})$

1010 // Line search method to find the minimum:

1011 $a \leftarrow -2 \text{tr}(\hat{\mathbf{K}}^\top \hat{\mathbf{T}}^\top \mathbf{K} \mathbf{T})$

1012 $b \leftarrow \text{tr}((\hat{\mathbf{K}} \odot \hat{\mathbf{K}}) \hat{\mathbf{p}} \mathbf{p}^\top + \hat{\mathbf{p}} \mathbf{p}^\top (\mathbf{K} \odot \mathbf{K})^\top)$

1013 $c \leftarrow -2 (\text{tr}(\hat{\mathbf{K}}^\top \mathbf{T}^\top \mathbf{K} \hat{\mathbf{T}}) + \text{tr}(\hat{\mathbf{K}}^\top \hat{\mathbf{T}}^\top \mathbf{K} \mathbf{T}))$

1014 **if** $a > 0$ **then**

1015 $\tau \leftarrow \min(1, \max(0, -\frac{b+c}{2a}))$

1016 **else**

1017 $\tau \leftarrow \begin{cases} 1, & \text{if } a + b + c < 0, \\ 0, & \text{otherwise.} \end{cases}$

1018 $\mathbf{T} \leftarrow (1 - \tau) \mathbf{T} + \tau \hat{\mathbf{T}}$

1019 **return** \mathbf{T}

1026 Algorithm 2 computes an empirical OT plan \mathbf{T} by solving the quadratic program
 1027

$$1028 \quad \max_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}, \mathbf{p})} f(\mathbf{T}) := \text{tr}(\hat{\mathbf{K}}^\top \mathbf{T}^\top \mathbf{K} \mathbf{T}),$$

1030 where $\hat{\mathbf{K}}, \mathbf{K} \in \mathbb{R}^{N \times N}$ are intra-domain similarity (or distance) matrices and $\Pi(\hat{\mathbf{p}}, \mathbf{p}) = \{\mathbf{T} \geq$
 1031 $0 \mid \mathbf{T}\mathbf{1} = \hat{\mathbf{p}}, \mathbf{T}^\top \mathbf{1} = \mathbf{p}\}$ is the transportation polytope (doubly-stochastic when $\hat{\mathbf{p}} = \frac{1}{N}\mathbf{1}_{\hat{N}}, \mathbf{p} =$
 1032 $\frac{1}{N}\mathbf{1}_N$). Here \odot is the Hadamard product, so $(\hat{\mathbf{K}} \odot \hat{\mathbf{K}})$ and $(\mathbf{K} \odot \mathbf{K})$ are elementwise squares of
 1033 the corresponding kernels, which makes b compact. We initialize with the independent coupling
 1034 $\mathbf{T} = \hat{\mathbf{p}}\mathbf{p}^\top$ and iterate a Conditional Gradient (Frank–Wolfe; FW) update.
 1035

1036 **Network simplex algorithm.** At each iteration, we linearize f and solve
 1037

$$1038 \quad \hat{\mathbf{T}} \in \arg \max_{\mathbf{T} \in \Pi(\hat{\mathbf{p}}, \mathbf{p})} \langle \mathbf{T}, \nabla f(\mathbf{T}) \rangle.$$

1040 For $f(\mathbf{T}) = \text{tr}(\hat{\mathbf{K}}^\top \mathbf{T}^\top \mathbf{K} \mathbf{T})$, we use the gradient form
 1041

$$1042 \quad \nabla f(\mathbf{T}) = \mathbf{K} \mathbf{T} \hat{\mathbf{K}} + \mathbf{K}^\top \mathbf{T} \hat{\mathbf{K}}^\top,$$

1044 which reduces to $2 \mathbf{K} \mathbf{T} \hat{\mathbf{K}}$ when $\mathbf{K}, \hat{\mathbf{K}}$ are symmetric. The oracle is a linear transportation problem.
 1045 We implement it using a network simplex (Flamary et al., 2021; Bonneel et al., 2011).
 1046

1047 **Line search.** Define the search segment $\mathbf{T}(\tau) = (1 - \tau)\mathbf{T} + \tau\hat{\mathbf{T}}, \tau \in [0, 1]$. Substituting $\mathbf{T}(\tau)$
 1048 into f yields a univariate quadratic $f(\tau) = a\tau^2 + b\tau + c$ whose coefficients admit closed forms. The
 1049 code computes (a, b, c) and picks the maximizer on $[0, 1]$: $\tau^* = \min(1, \max(0, -(b + c)/(2a)))$ if
 1050 $a > 0$, otherwise $\tau^* \in \{0, 1\}$ by comparing endpoints. We then set $\mathbf{T} = \mathbf{T}(\tau^*)$.
 1051

1052 B.2 GW BARYCENTER ESTIMATION

1054 Algorithm 3 GW Barycenter Estimation (mini-batch)

1056 **Input:** Intra-modal similarity matrices $\{\mathbf{K}_x^{(m)}\}_{m=1}^M$ (batch size N_m per modality with $\min\{N_m\} =$
 1057 N), modality weights $\{\lambda_m\}_{m=1}^M$ with $\lambda_m \geq 0$, $\sum_m \lambda_m = 1$, uniform marginal $\hat{\mathbf{p}} =$
 1058 $\frac{1}{N}\mathbf{1}_N$, $\mathbf{p}^{(m)} = \frac{1}{N_m}\mathbf{1}_{N_m}$, max iters T_{\max}
 1059 **Output:** Batch-wise structural consensus (GW barycenter) $\mathbf{C}_x^* \in \mathbb{R}^{N \times N}$
 1060
 1061 Initialize \mathbf{C}_x as the weighted average of $\mathbf{K}_x^{(m)}$
 1062 **for** $t \leftarrow 0$ **to** $T_{\max} - 1$ **do**
 1063 **for** $m \leftarrow 1$ **to** M **do**
 1064 $\mathbf{T}^{(m)} \leftarrow \text{OTEstimation}(\mathbf{C}_x, \mathbf{K}_x^{(m)})$;
 1065 $\tilde{\mathbf{C}} \leftarrow \sum_{m=1}^M \lambda_m \mathbf{T}^{(m)} \mathbf{K}_x^{(m)} \mathbf{T}^{(m)\top}$
 1066 $\mathbf{C}_x \leftarrow \tilde{\mathbf{C}} \odot (\hat{\mathbf{p}} \mathbf{p}^{(m)\top})$
 1067
 1068 **return** $\mathbf{C}_x^* \leftarrow \mathbf{C}_x$
 1069

1070
 1071 Consider the barycenter objective (Def. 2):
 1072

$$1073 \quad \mathbf{C}_x^* = \arg \min_{\mathbf{C}_x \in \mathcal{M}} \sum_{m=1}^M \lambda_m \cdot d_{gw}(\mathbf{C}_x, \mathbf{K}_x^{(m)}), \quad \lambda_m \geq 0, \quad \sum_{m=1}^M \lambda_m = 1.$$

1076 According to the discrete empirical GW distance form (Thrm. 1), each term differs from a constant
 1077 by a (negative) maximized trace. Fix couplings $\{\mathbf{T}^{(m)}\}_{m=1}^M$ with $\mathbf{T}^{(m)} \in \Pi(\hat{\mathbf{p}}, \mathbf{p}^{(m)})$ for the current
 1078 consensus \mathbf{C}_x , and define
 1079

$$\mathbf{A}^{(m)} := \mathbf{T}^{(m)} \mathbf{K}_x^{(m)} \mathbf{T}^{(m)\top} \in \mathbb{R}^{N \times N}.$$

1080 as \mathbf{C}_x -independent constants, the objective reduces to
 1081

$$1082 \quad \mathcal{J}(\mathbf{C}_x) = -2 \sum_{m=1}^M \lambda_m \text{tr}(\mathbf{C}_x^\top \mathbf{A}^{(m)}).$$

1084 Following the standard GW-barycenter normalization (as in Eq. (8) of Gong et al. (2022)), we take
 1085 the derivative with respect to \mathbf{C} and set it to zero
 1086

$$1087 \quad \frac{\partial \mathcal{J}(\mathbf{C}_x)}{\partial \mathbf{C}_x} = \mathbf{0} \Rightarrow \mathbf{C}_x = \left(\sum_{m=1}^M \lambda_m \mathbf{A}^{(m)} \right) \oslash (\hat{\mathbf{p}} \hat{\mathbf{p}}^\top),$$

1089 i.e.

$$1090 \quad \boxed{\mathbf{C}_x \leftarrow \tilde{\mathbf{C}} \oslash (\hat{\mathbf{p}} \hat{\mathbf{p}}^\top), \quad \tilde{\mathbf{C}} = \sum_{m=1}^M \lambda_m \mathbf{T}^{(m)} \mathbf{K}_x^{(m)} \mathbf{T}^{(m)\top}.} \quad (17)$$

1093 Here \oslash denotes the element-wise division.
 1094

1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 Figure 4: GW barycenter of input-space kernels on the VFP dataset. Left: intra-modal similarity matrices $K_x^{(1)}$ (Vision), $K_x^{(2)}$ (Force), and $K_x^{(3)}$ (Proprioception), each min-max normalized for display. Right: the batch-wise structural consensus \mathbf{C}_x^* obtained by solving

$$\min_{\mathbf{C}_x} \sum_{m=1}^3 \lambda_m d_{gw}(\mathbf{C}_x, K_x^{(m)})$$
 (with $\lambda_m=1$ here). The barycenter preserves recurrent block/trajectory patterns shared across modalities while smoothing modality-specific artifacts, and is later used to regularize the embedding-space geometry in Stage 2. The batch size is 64.

B.3 IMPLEMENTATION DETAILS

1118 **Implementation: Time-Series Cluster Kernel** We use the Time-series Cluster Kernel (TCK;
 1119 Mikalsen et al. (2018)) to build intra-modal similarity matrices for time-series modalities (e.g.,
 1120 force/torque). TCK fits an ensemble of diagonal covariance Gaussian mixture models (GMMs)
 1121 with informative priors and computes a posterior membership vector per sample

$$1122 \quad \mathbf{\Pi}_i(q) = (\pi_1^{(i)}(q), \dots, \pi_{G_q}^{(i)}(q))^\top, \quad \sum_{g=1}^{G_q} \pi_g^{(i)}(q) = 1,$$

1123 where each component $\pi_g^{(i)}(q)$ is the posterior responsibility of mixture g for sequence i under the
 1124 q -th GMM, i.e.

$$1125 \quad \pi_g^{(i)}(q) = p(z=g \mid \mathbf{x}_i^{(q)}; \hat{\theta}_q),$$

1126 where z is the latent mixture index, $\hat{\theta}_q$ is the MAP-EM estimate of the q -th model parameters,
 1127 and $\mathbf{x}_i^{(q)}$ is the subsequence of i restricted to the time window and variable subset chosen by that
 1128 ensemble member. The final kernel is the sum of posterior inner products over the ensemble:

$$1129 \quad (K_{\text{TCK}})_{ij} \leftarrow \sum_{q \in \mathcal{Q}} \mathbf{\Pi}_i(q)^\top \mathbf{\Pi}_j(q),$$

which is positive semidefinite as a sum of linear kernels. In practice, for time-critical training, we precompute the full TCK matrix for the entire force dataset (about 10^5 sequences) to get a single symmetric matrix $\mathbf{K}_{\text{TCK}} \in \mathbb{R}^{N \times N}$. During mini-batch training, the intra-modal similarity submatrix for an index set $\mathcal{I} \subseteq \{1, \dots, N\}$ is obtained by simple indexing

$$\mathbf{K}_{\text{batch}} = \mathbf{K}_{\text{TCK}}[\mathcal{I}, \mathcal{I}],$$

thus avoiding repeated TCK fits inside the inner learning loop. We follow the original TCK protocol to induce ensemble diversity (random time windows and variable subsets, random initializations, and varying mixture counts), and we cache per-member posteriors to enable fast posterior lookups at test time. See §4.1–4.4 of Mikalsen et al. (2018) for modeling details. In practice, we set the maximal number of mixtures C and the number of randomizations Q as the only user-set hyperparameters. We set $C=30$ and $Q=15$ for force/torque signals in the VFP and VFD settings.

Implementation: Pre-trained features We use pre-trained feature extractors for some modalities to produce modality-specific features whose pairwise similarities form the input-space kernels $\{\mathbf{K}_{\mathbf{x}}^{(m)}\}_{m=1}^M$ used by our structural consensus $\mathbf{C}_{\mathbf{x}}^*$. For the time-series modality (e.g., force/torque), we directly use the TCK method to obtain the input-space kernels.

Pre-trained feature extractors (frozen).

- **Vision / Depth / Tactile / Optical Flow:** Vision Transformer (ViT-B/16; ?) via `timm` (?), taking the final [CLS] embedding. Single-channel inputs (e.g., depth) are replicated to 3 channels before preprocessing.
- **Force:** Time-Series Cluster Kernel (TCK; Mikalsen et al. 2018) directly forms $\mathbf{K}_{\mathbf{x}}^{(\text{force})}$ (Sec. B.3).
- **Audio (VAT):** A frozen Audio Spectrogram Transformer (AST-B, AudioSet-pretrained; ?) on log-mel spectrograms; we take the [CLS] embedding and build $\mathbf{K}_{\mathbf{x}}^{(\text{aud})}$ with a simple similarity (cosine or RBF).
- **Other modalities:** RBF kernel on frozen features.

Implementation: Modality Encoders To avoid architectural confounds, all methods share identical backbones and training schedules. In UniOMA (Stage 2), each modality encoder $\mathcal{E}_{\theta}^{(m)}$ produces a feature $\mathbf{h}^{(m)} \in \mathbb{R}^{d_h}$, which is passed through a *modality-specific MLP projector* $g_{\theta}^{(m)}$ to a *shared* embedding size $d=256$:

$$\mathbf{z}^{(m)} = g_{\theta}^{(m)}(\mathcal{E}_{\theta}^{(m)}(\mathbf{x}^{(m)})) \in \mathbb{R}^d, \quad f_{\theta}^{(m)} = g_{\theta}^{(m)} \cdot \mathcal{E}_{\theta}^{(m)}$$

and the embedding-space kernel within a mini-batch is

$$(\mathbf{K}_{\mathbf{z}}^{(m)})_{ij} = \exp\left(-\gamma \|\mathbf{z}_i^{(m)} - \mathbf{z}_j^{(m)}\|_2^2\right), \quad \gamma = \frac{20}{d},$$

unless stated otherwise. (Stage 1 input-space kernels $\{\mathbf{K}_{\mathbf{x}}^{(m)}\}$ are computed independently using frozen extractors; see Sec. B.3.)

Backbones.

- **Vision / Depth / Tactile (image-based).** A 2D CNN (ResNet-18). Single-channel inputs (e.g., depth, some tactile images) are replicated to 3 channels before feeding into the backbone.
- **Force (time series).** A 1D temporal ConvNet built from stacked causal Conv1D layers (kernel size 2, stride 2) with LeakyReLU activations; the final feature map is flattened to obtain a fixed-length embedding.
- **Proprioception.** A 3-layer MLP with LeakyReLU activations, mapping the low-dimensional pose / joint vector to the shared embedding space.
- **Audio (VAT).** A 1D CNN with three convolutional blocks (channels $1 \rightarrow 64 \rightarrow 128 \rightarrow 256$, kernel size 5, stride 2), each followed by ReLU, then `AdaptiveAvgPool1d(1)`, `flatten()`, and a final `Linear(256 → d_h)`.

- **Action.** A small MLP mapping the action vector to a compact embedding, implemented as `Linear($d_a \rightarrow 32$)`–`LeakyReLU`–`Linear($32 \rightarrow 32$)`–`LeakyReLU`, matching the code in `ActionEncoder`.
- **Contact.** A lightweight MLP applied to the binary contact state, using a structure analogous to the action branch (two `Linear` layers with `LeakyReLU`) to obtain a 32-dimensional embedding.
- **Optical Flow.** We take one channel of the dense optical-flow field (e.g., horizontal component or magnitude), resize it to 128×128 , replicate it to 3 channels, and feed it through the same `ResNet-18` image encoder as for RGB and depth.

We fix the projector output to $d=256$, use the same temperature τ for the contrastive term, and share optimizer, batch size, and schedule across methods. UniOMA augments the contrastive loss with a GW-barycenter regularizer (weight α) and learnable modality weights $\{\lambda_m\}$ (softmax-parameterized to enforce $\lambda_m \geq 0$ and $\sum_m \lambda_m = 1$). Encoders and projectors are trained end-to-end with the UniOMA objective; the structure-aware term is computed on $\{\mathbf{K}_z^{(m)}\}$, while Stage 1 kernels $\{\mathbf{K}_x^{(m)}\}$ remain fixed within each epoch.

Implementation: Hyper-parameters *Shared training.* Unless otherwise noted, all methods use the same backbone–projector settings. We optimize with AdamW (learning rate 3×10^{-4} , weight decay 10^{-4} , $\beta_1=0.9$, $\beta_2=0.999$), batch size 64, and temperature $\tau=0.1$. Each modality head outputs a $d=256$ -dimensional embedding via a lightweight MLP projector (shared width across modalities). We train for 200 epochs with early stopping on the validation metric when applicable, and report $\text{mean} \pm \text{std}$ over 10 independent seeds.

Stage-1 input-space kernels. Pre-trained feature extractors for vision/depth/tactile (`ViT-B/16` via `timm`) are *frozen* to compute $\{\mathbf{K}_x^{(m)}\}$. For force/torque we use TCK with max mixtures $C=30$ and randomizations $Q=15$ following §B.3. For VAT audio, we use AST-B as in Sec. B.3 to form features and then an RBF kernel. To avoid repeated online estimation during Stage 2, we compute force’s full dataset kernel once and cache it; mini-batch kernels $\mathbf{K}_{\text{batch}}^{(\text{force})}$ are obtained by submatrix indexing.

Stage-2 embedding-space kernels. All modalities use the same Gaussian kernel

$$(\mathbf{K}_z^{(m)})_{ij} = \exp(-\gamma \|\mathbf{z}_i^{(m)} - \mathbf{z}_j^{(m)}\|_2^2),$$

with a shared, modality-invariant scale $\gamma = 20/d$, $d = 256$.

UniOMA-specific. The GW regularization weight $\alpha = 1000$. Modality weights $\{\lambda_m\}$ are learnable with a softmax parameterization ($\lambda_m \geq 0$, $\sum_m \lambda_m = 1$) and initialized uniformly. For the coupling oracle in `OTEestimation` we use a Frank–Wolfe linearization; the linear subproblem is solved with a network-simplex transportation solver. The line search on the FW segment uses the closed-form quadratic coefficients (a, b, c) derived in Appx. B.1. GW barycenter iterations are run with a maximum of $T_{\text{max}}=5$ per inner-loop (in §D.1 we analyze the solidity of this choice).

To further justify these design choices, we provide a hyper-parameter ablation in Appx. ??, where we evaluate the effects of γ , α , T_{max} , and alternative kernel choices.

C DATASETS AND PREPROCESSING

We detail the exact splitting, windowing, and per-modality preprocessing used in our experiments. Unless specified, all randomization uses a fixed seed (`seed=42`), and splits are performed at the file/trajectory level to avoid leakage.

VFD / VFP (Vision–Force–Depth / Vision–Force–Proprioception). We use `test_ratio = 0.2` at the file level with `seed = 42` (train vs. test); validation set shares the test set. Each episode has a length 32. For time step t , we form a fixed history window of length L for force (default $L=32$) and read targets at $t+1$. RGB images are center-cropped to 128×128 , normalized by ImageNet statistics (mean $[0.485, 0.456, 0.406]$, std $[0.229, 0.224, 0.225]$). Depth is stored as $(128, 128, 1)$, normalized by mean 0.5/std 0.5, and used as single-channel tensors. Force–torque histories are

truncated to the last L steps. The resulting tensor has shape $[b \times L \times 6]$. Proprioception is parsed from the first 7 pose components (end effector position/orientation) in the loader and returned as $[b \times 7]$ at the current step.

Tasks. For **VFD**, we follow the main text: (1) next-step end-effector orientation regression (4D), using $(\text{RGB}_t, \mathbf{F}/\mathbf{T}_{t-L+1:t}, \text{Depth}_t)$ as inputs; (2) modality-consistency discrimination with negatives produced by cross-time/trajecotry shuffles at 50/50 balance. For **VFP**, we perform next-step contact prediction (binary) using $(\text{RGB}_t, \mathbf{F}/\mathbf{T}_{t-L+1:t}, \text{Proprio}_t)$; class balance is enforced by uniform sampling across trajectories.

Figure 5: **VFD overview.** Synchronized windows of RGB images, force-torque signals (last $L=32$ steps), and depth camera images. Images are center-cropped to 128×128 and normalized. Depth images are normalized with mean/std 0.5.

MuJoCo Push. A planar pushing task with a Franka Panda arm interacting with a puck. *Image modality*: we use sequences of grayscale frames. Each sample contains a length $S = 32$ subsequence of 32×32 frames, forming tensors of shape $(B, S, 1, 32, 32)$. Force-torque modality uses the current signal to form tensors of shape $(B, 6)$, and end-effector pose modality forms $(B, 7)$.

VAT (Vision-Audio-Tactile). We assemble object-level triplets from per-class folders. We use predefined train/val/test directory structures over a fixed object list. Labels for the retrieval tasks are integer-encoded. Visual and tactile images are resized to 246×246 and normalized by ImageNet statistics. Audio is loaded at its native sampling rate; at test time, the raw waveform is truncated to $\text{TARGET_LENGTH} = 132,300$ samples. The final shape of the tensors is $(B, 132,000)$

Task. Cross-modal retrieval with relevance at the object identity level; we report direction-specific MAP on the test set.

MultiBench 4-7 Modality Scalability. To evaluate whether UniOMA scales beyond three modalities, we construct an additional downstream classification benchmark using a multi-sensor subset

1296 of the MultiBench dataset. This setting allows us to progressively increase the number of modalities
 1297 and test whether the learned structural consensus remains stable as modality count grows.
 1298

1299 *Modalities.* We select seven heterogeneous sensing streams commonly used in robotic manipulation:

$$\begin{aligned} 1300 \quad \text{Vision (RGB)} &: [3 \times 128 \times 128], & \text{Depth} &: [1 \times 128 \times 128], \\ 1301 \quad \text{Force–Torque} &: [6], & \text{Proprioception} &: [7], & \text{Action} &: [d_a], \\ 1302 \quad \text{Contact state} &: [1], & \text{Optical Flow} &: [2 \times 128 \times 128]. \end{aligned}$$

1304 For a given experiment with $M \in \{4, 5, 6, 7\}$ modalities, we take the first M modalities from
 1305 this list. All modalities are independently normalized using training-set statistics following the
 1306 MultiBench protocol.

1308 *Task: trajectory-consistency classification.* Given two multimodal or single-modal samples, the
 1309 model must classify whether they originate from the **same trajectory**. Positive pairs are sampled
 1310 from two timesteps of the same trajectory; negatives are sampled across distinct trajectories. This
 1311 task directly evaluates whether embeddings preserve the trajectory-level structure across multiple
 1312 modalities.

1314 D ADDITIONAL EXPERIMENTS

1316 D.1 HYPER-PARAMETER ANALYSIS

1318 **RBF kernel scale γ .** We use an RBF kernel in the embedding space:

$$1320 \quad (\mathbf{K}_{\mathbf{z}}^{(m)})_{ij} = \exp\left(-\gamma_m \|\mathbf{z}_i^{(m)} - \mathbf{z}_j^{(m)}\|_2^2\right).$$

1322 Because distance scales differ by modality, we set γ_m per modality based on empirical pairwise
 1323 distances at convergence: $\gamma_{\text{vision}/\text{depth}/\text{tactile}} = 5$, $\gamma_{\text{proprio}} = 20$, and $\gamma = 10$ for other learnable streams
 1324 unless stated. Performance is stable within a $\times 0.5 \sim \times 2$ range; very small γ over-smooths similarities,
 1325 while very large γ over-peaks them.

1327 **Number of GW barycenter iterations T_{\max} .** Let $\mathbf{C}^{(t)}$ be the consensus at inner-loop iteration
 1328 t in Alg. 3. We monitor the relative Frobenius change $\Delta_t = \|\mathbf{C}^{(t)} - \mathbf{C}^{(t-1)}\|_F / \|\mathbf{C}^{(t-1)}\|_F$ and
 1329 the trace objective $\sum_m \lambda_m \text{tr}(\mathbf{C}^{(t)\top} \mathbf{T}^{(m)\top} \mathbf{K}_{\mathbf{x}}^{(m)} \mathbf{T}^{(m)})$. Both stabilize rapidly; after $t=5$ further
 1330 changes are negligible ($\Delta_t < 10^{-3}$). We therefore fix $T_{\max} = 5$ for all reported results.

1332 **Ablation: hyper-parameter effects.** We empirically ablate three key hyper-parameters of
 1333 UniOMA—the RBF kernel scale γ , the GW regularization weight λ , and the number of barycenter
 1334 iterations T_{\max} as well as the choice of graph-based kernels (RBF, Laplacian affinity, and UMAP
 1335 fuzzy simplicial set). Table 3 summarizes results on the VFD classification task (Top-1 accuracy,
 1336 mean \pm std over 10 seeds). Performance is stable across a broad range of values around our
 1337 default settings; extremely small or large γ mildly hurts performance by over-smoothing or over-
 1338 peaking similarities, while too small λ under-utilizes structural alignment and too large λ marginally
 1339 over-regularizes the embeddings. The solver iteration number T_{\max} shows a clear plateau around
 1340 $T_{\max} = 5$, confirming that a small number of GW barycenter iterations is sufficient in practice.
 1341 Finally, replacing the RBF kernel with Laplacian or UMAP-based kernels yields comparable or
 1342 slightly lower accuracy, supporting RBF as a simple and competitive default.

1344 D.2 ADDITIONAL QUALITATIVE VISUALIZATIONS

1346 For the benefit of the reader, we provide further qualitative visualizations of the structural alignment
 1347 induced by UniOMA. Figure 7 summarizes four aspects on the 7-modality benchmark: (a) input-
 1348 space similarity matrices for each modality; (b) the corresponding batch-wise GW barycenter; (c)
 1349 a t-SNE embedding of the learned representations; and (d) the learned modality weights. Together,
 these views illustrate how UniOMA preserves shared structure while remaining interpretable.

Figure 6: GW barycenter inner-loop: structural consensus across iterations t in Alg. 3. By $t=5$, both geometry and objective are effectively stable, thus we choose $T_{\max}=5$ and the batch size is 64.

Table 3: **Ablation of UniOMA hyper-parameters and graph-based kernels on the VFD classification task** (Top-1 accuracy, %, mean \pm std over 10 seeds). We vary the RBF kernel scale γ of the image modality, GW weight λ , and the number of barycenter iterations T_{\max} around the default settings, and compare to median-rule RBF kernel. UniOMA is robust across a wide range of values; our default choices (in **bold**) lie near the center of each stable regime.

RBF kernel scale γ	
$\gamma = 1$	91.87 ± 0.05
$\gamma = 2$	92.15 ± 0.04
$\gamma = 5$	92.44 ± 0.02
$\gamma = 10$	92.42 ± 0.02
$\gamma = 20$	92.10 ± 0.03
GW weight λ	
$\lambda = 200$	92.12 ± 0.02
$\lambda = 500$	92.32 ± 0.02
$\lambda = 1000$	92.44 ± 0.02
$\lambda = 2000$	92.40 ± 0.04
$\lambda = 5000$	92.28 ± 0.05
Barycenter iterations T_{\max}	
$T_{\max} = 3$	92.05 ± 0.03
$T_{\max} = 4$	92.27 ± 0.03
$T_{\max} = 5$	92.44 ± 0.02
$T_{\max} = 6$	92.45 ± 0.02
$T_{\max} = 7$	92.44 ± 0.02
Adaptive kernel choice	
RBF (median-rule)	92.53 ± 0.03

E LLM USAGE STATEMENT

This work does not incorporate large language models (LLMs) as a key, novel, or unconventional component of the method, experiments, or analysis. Any LLM assistance was limited to the writ-

Figure 7: **Qualitative visualizations of UniOMA on the VTP classification benchmark.** We choose a mini-batch with size 256 to illustrate the interpretation of the GW barycenter and the aligned embeddings. **First row:** t-SNE visualizations of the input modalities (vision, force, and proprioception), showing clear sub-cluster structures indicating different trajectories (6 colors of the points indicating 6 trajectories). **Second row:** Input-space similarity matrices for vision, force, and depth, showing trajectory-wise block structure and modality-specific artifacts. **Middle-bottom:** The batch-wise GW barycenter C_X^* , which preserves the shared block structure while smoothing modality-specific noise. **Last row:** t-SNE of the learned embeddings, where trajectories form coherent clusters across modalities, indicating successful structural alignment beyond pairwise correspondence.

ing refinement (grammar, clarity, and copy-editing). All technical formulation, algorithms, proofs, hyperparameters, implementations, and results were created and validated by the authors.