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ABSTRACT

Achieving generalizable and well-aligned multimodal representation remains a
core challenge in artificial intelligence. While recent approaches have attempted to
align modalities by modeling conditional or higher-order statistical dependencies,
they often fail to capture the structural coherence across modalities. In this work,
we propose a novel multimodal alignment method that augments existing con-
trastive losses with a geometry-aware Gromov-Wasserstein (GW) distance-based
regularization. To this end, we encode intra-modality geometry with modality-
specific similarity matrices and extend the GW distance to minimize their dis-
crepancies from a dynamically learned barycenter, thereby enforcing structural
alignment across modalities beyond what is captured by InfoNCE-like mutual in-
formation objectives. We apply this optimal-transport-based alignment strategy
to robot perception tasks involving underexplored modalities such as force and
tactile signals, where modality data often exhibit varying sample densities. Ex-
perimental results show that our method yields superior inter-modal coherence
and significantly improves downstream robot perception tasks such as robot and
environment state prediction. Moreover, our GW-based augmentation term is ver-
satile and can be seamlessly integrated into most InfoNCE-like objectives.

1 INTRODUCTION

The integration of information from diverse sources or modalities has received increasing attention
across a wide range of AI applications, including image/video/text generation (Rombach et al., 2022;
Mirza & Osindero, 2014), healthcare (Acosta et al., 2022), autonomous systems (Feng et al., 2021),
and scientific discovery (Steyaert et al., 2023). Recent advances in contrastive self-supervised learn-
ing (CSSL) (He et al., 2020; Chen et al., 2020; Grill et al., 2020; Chen & He, 2021), particularly
those leveraging InfoNCE losses (Oord et al., 2018), have shown strong performance in aligning
heterogeneous modalities into a shared representation space (Radford et al., 2021). Such alignment
has enabled zero-shot cross-modal retrieval, transfer, generation, and completion (Radford et al.,
2021; Girdhar et al., 2023; Chen et al., 2023; Zhu et al., 2023; Luo et al., 2022). By maximiz-
ing agreement between paired modalities of the same instance while minimizing similarity between
distinct instances, CSSL encourages the learning of invariant and semantically meaningful features.

While effective, InfoNCE-style objectives operate as binary classification losses that only discrim-
inate positives from negatives (Wang & Isola, 2020), without explicitly modeling the continuous
pairwise distance geometry within each modality. In multimodal alignment, this limitation produces
what we call a structural alignment gap (Liang et al., 2022): embeddings may appear statistically
aligned across modalities yet fail to preserve their intrinsic structural topologies. Our key insight
is that multimodal alignment should not be limited to maximizing population-level statistical de-
pendence between distributions of modality representations. It must also preserve instance-level
geometric relationships within each modality. In other words, if xi is close to xj , then their coun-
terparts yi and yj should also remain close. Classic InfoNCE objectives, which are essentially a
lower bound of Shannon’s mutual information (Kraskov et al., 2004; Poole et al., 2019), rely on
binary discrimination between positive and negative pairs. While effective at capturing population-
level dependence, this approach is theoretically incapable of preserving intra-modal geometry, often
leading to representations that are statistically aligned but structurally inconsistent.
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(a) 1D synthetic data (b) 2D synthetic data

Figure 1: Structural alignment gap. (a) 1D synthetic data. Although x and y have high mutual
information and thus a low InfoNCE loss Lc, their intra-modal similarity matrices differ: (b) 2D
synthetic data with instances (dashed gray circles). Blue and red denote two modalities. Pointwise
correspondences are close in both cases (thus InfoNCE-like lossLCLIP changes only +1.5%), but the
GW distance jumps by +125%. Also, Ky in Case 2 shows block structure absent from Kx.

We illustrate the gap with two synthetic examples in Fig. 1. (a) Let the latent variable be z ∼
Uniform[0, 1], from which we generate two modalities x = z and y = sin(10πz). Although x and
y are highly dependent, their intra-modal geometries differ markedly. In x, distances are simply
|xi − xj |, whereas the high-frequency oscillation in y disrupts local neighborhoods, so nearby x
can map to distant y, leading to dissimilar intra-modal similarity matrices. (b) modality x forms
a regular grid, while modality y is either a globally shifted/noisy copy (case 1, left figure) or an
unevenly shifted version that clusters points into triplets (case 2, right figure). Both cases preserve
pointwise correspondences, leading to a lower InfoNCE loss. However, case 2 distorts the global
structure, which is reflected in block patterns in Ky (kernel similarity matrix) that are absent in Kx.

This structural alignment gap is particularly critical in robotics, where multimodal sensor streams
are neither i.i.d. nor structureless: trajectories form subclusters (Sermanet et al., 2017), contact
events induce discontinuities (Stewart & Trinkle; Guo et al., 2023), and proprioceptive signals follow
physical constraints (Lee et al., 2020; Welch & Bishop, 1995). Failing to account for these structures
limits the effectiveness of learned representations for downstream robotic tasks.

To address the identified structural alignment gap, we introduce UniOMA—a Unified Optimal-
transport Multi-modal structural Alignment framework that scales naturally to three or more modal-
ities. UniOMA augments contrastive learning with a structure-aware regularization based on Gro-
mov–Wasserstein (GW) distances and barycenters (Peyré et al., 2016; Gong et al., 2022). In our
formulation, observations from each modality are represented as a metric space through intra-modal
similarity matrices. A dynamic GW barycenter is then computed as the structural consensus across
modalities, and each modality is softly aligned to this consensus by minimizing weighted GW dis-
tances. The modality weights are optimized end-to-end alongside encoder parameters, enabling
adaptive contributions of different modalities to the structural consensus. This barycentric formula-
tion avoids pairwise couplings across modalities, reducing the complexity from O(M2) to O(M),
where M is the number of modalities, and thus scales naturally to three or more modalities.

In summary, our main contributions are:

C1 We propose UniOMA, a structure-aware multimodal alignment framework based on Gro-
mov–Wasserstein distance and barycenters, which naturally scales to 3+ modalities.

C2 We identify and formalize the structural alignment gap, demonstrating why InfoNCE-style
objectives fail to preserve intra-modal geometry, supported by synthetic analysis.

We evaluate UniOMA on diverse robotic benchmarks across vision, audio, tactile, force, and propri-
oception modalities, including robot state prediction, environment state prediction, and cross-modal
retrieval. Comprehensive experiments show that UniOMA improves downstream performance and
preserves intra-modal structural consistency across diverse modalities.

2 BACKGROUND AND RELATED WORK

In this section, we first introduce the background of contrastive learning-based multimodal align-
ment and review its extensions to settings with three or more modalities, highlighting their inherent
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connections and limitations. We then briefly review existing approaches to multimodal representa-
tion learning in robotics, with a focus on multimodal fusion.

2.1 ALIGNMENT VIA INFONCE AND EXTENSIONS TO MORE THAN TWO MODALITIES

Unlike multimodal fusion (Lu et al., 2019; Li et al., 2019), which typically requires all modalities to
be present at inference, alignment into a shared embedding space remains functional even if some
modalities are missing, enabling zero-shot retrieval, generation, and modality completion (Jia et al.,
2021). A representative example is CLIP (Radford et al., 2021), which trains modality-specific
encoders f (1)

θ , f
(2)
θ using an InfoNCE-style objective to identify the correct cross-modal pair among

N candidates:

ℓ
(1→2)
CLIP (θ) = − 1

N

N∑
i=1

log
exp

(
sim(z

(1)
i , z

(2)
i )/τ

)
∑N

j=1 exp
(

sim(z
(1)
i , z

(2)
j )/τ

) , (1)

where sim(·, ·) is the similarity between the embeddings z(m) = f
(m)
θ (x(m)),m = 1, 2 and τ de-

notes a temperature parameter. The final CLIP objective symmetrizes Eq. (1) by taking the average:

L(1,2)
CLIP (θ) =

1

2
(ℓ

(1→2)
CLIP (θ) + ℓ

(2→1)
CLIP (θ)), (2)

where L(2→1)
CLIP is the reverse direction 2→ 1. In general, this InfoNCE-based objective captures the

statistical correlation, providing lower-bound of the mutual information (MI; Kraskov et al. (2004);
Poole et al. (2019)) between the anchor modality 1 X (1) and modality 2 X (2)

I(X (1);X (2)) ≥ logN − 2L(1,2)
CLIP (θ). (3)

Despite their success, InfoNCE-like objectives reduce continuous similarity structure among sam-
ples into a binary signal (positive vs. negative), leading to the learned embedding space containing
modality-wise co-located yet structurally isolated instances, neglecting intra-modal geometry.

Real-world systems, particularly in robotics, often involve three or more modalities. Aligning these
multimodal sources within a shared embedding space enables richer cross-modal interactions. Ex-
isting approaches typically extend CLIP to three modalities by summing all pairwise contrastive
losses (Tian et al., 2020; Girdhar et al., 2023; Akbari et al., 2021; Chen et al., 2023; Alayrac et al.,
2020; Chen et al., 2021; Liu et al., 2024; Huang et al., 2023; Mai et al., 2022; Moon et al., 2022;
Shvetsova et al., 2022; Xue et al., 2022; Guzhov et al., 2022):

L(1,2,3)
CMC (θ) = L(1,2)

CLIP (θ) + L
(1,3)
CLIP (θ) + L

(2,3)
CLIP (θ). (4)

Such pairwise extensions neglect higher-order dependencies among modalities. To address this
issue, Symile (Saporta et al., 2024) formulates triple-wise contrastive objectives as:

L(1,2,3)
Symile (θ) =

1

3
[ℓ(1→2,3)(θ) + ℓ(2→1,3)(θ) + ℓ(3→1,2)(θ)]. (5)

Here, ℓ(1→2,3) is the InfoNCE-like loss for one positive triple and N − 1 negative triples given by

ℓ(1→2,3)(θ) = − 1

N

N∑
i=1

log
exp(⟨z(1)i , z

(2)
i , z

(3)
i ⟩/τ)∑N

j=1 exp(⟨z
(1)
i , z

(2)
j , z

(3)
j ⟩/τ)

, (6)

where each term ℓ(1→2,3) compares one positive triple against N − 1 negatives, ⟨·, ·, ·⟩ is the
coordinate-wise sum of the element-wise product. More recently, GRAM (Cicchetti et al., 2024)
replaces the dot product similarity with the Gramian volume spanned by embeddings from multiple
modalities, providing a higher-order, groupwise compatibility score (rather than pairwise similarity)

L(1,...,M)
GRAM (θ) =

1

2
(ℓ

(1→2,...,M)
D2A (θ) + ℓ

(1→2,...,M)
A2D (θ)) + λℓDAM(θ), (7)

ℓ
(1→2,...,M)
D2A (θ) = − 1

N

N∑
i=1

log
exp(−Vol(z(1)i , z

(2)
i , . . . , z

(M)
i )/τ)∑N

j=1 exp(−Vol(z(1)j , z
(2)
i , . . . , z

(M)
i )/τ)

, (8)

ℓ
(1→2,...,M)
A2D (θ) = − 1

N

N∑
i=1

log
exp(−Vol(z(1)i , z

(2)
i , . . . , z

(M)
i )/τ)∑N

j=1 exp(−Vol(z(1)i , z
(2)
j , . . . , z

(M)
j )/τ)

. (9)
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Figure 2: UniOMA in two stages. Stage 1 (left): for each modality X (m) we form an input-space
similarity matrix K

(m)
x and estimate a GW barycenter C∗

x as the structural consensus. Stage 2
(right): encoders produce embeddings z(m) inducing K

(m)
z , which are aligned to the consensus

by minimizing
∑

m λm dgw(C
∗
x,K

(m)
z ) (with a standard contrastive loss; omitted). Aligning each

modality to a single consensus avoids pairwise O(M2) couplings and scales to M ≥ 3.

where LD2A,LA2D are the GRAM contrastive loss (data-to-anchor for D2A and anchor-to-data for
A2D) with modality 1 as the anchor. LDAM is the data-caption matching loss to match the modality
labels (Cicchetti et al., 2024). Vol(·, . . . , ·) is the volume of the M -dimensional parallelotope formed
by the embedding vectors z(m).

These methods mark progress toward multi-modal (M > 2) alignment but still remain limited to
instance-level dependencies, overlooking intra-modal structure. Zhu & Luo (2024) address this by
adding an optimal transport (OT; Villani et al. (2008)) regularizer to enforce cross-modal consis-
tency. Yet, their approach still treats modalities as holistic distributions, ignoring relational struc-
tures within each modality, and applies OT directly on embeddings rather than raw data geometry,
limiting interpretability and flexibility.

2.2 MULTIMODAL REPRESENTATION LEARNING IN ROBOTICS

Robotics is inherently multimodal: vision, force–torque, tactile sensing, and proprioception provide
complementary views of the robot–environment system. While multimodal representation learning
has been extensively studied in vision–language settings, its exploration in robotics remains limited.
Existing work, including the recent Vision–Language–Action (VLA) model, has primarily focused
on modality fusion or transfer (Lee et al., 2019a;b; Shridhar et al., 2020; Brohan et al., 2022; Driess
et al., 2023; Kim et al., 2024; Octo Model Team et al., 2024; Intelligence et al., 2025).

By comparison, alignment of robotic perception modalities into a shared space remains underex-
plored. Recent efforts (Wojcik et al., 2024; Dutta et al., 2024) demonstrate cross-modal retrieval
and perception, while Zambelli et al. (2021); Sermanet et al. (2017) demonstrate how cross-modal
or cross-temporal alignment can yield transferable representations. These developments underscore
that robot perception data is highly structured (trajectories, contact events, physical constraints), mo-
tivating alignment methods that preserve intra-modal geometry across modalities rather than relying
solely on fusion.

3 METHOD

Our proposed UniOMA aligns three or more heterogeneous modalities by preserving both statis-
tical correspondence and structural coherence across modalities. Leveraging the optimal transport
geometry, UniOMA augments contrastive-based binary instance-wise correlations (positive or neg-
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ative pair) with structural properties by minimizing the Gromov-Wasserstein (GW) distance across
the modalities. In this section, we first explain the multimodal alignment problem, and then we
define the intra-modal structure information and the cross-modal structure consensus, followed by
the definition of the UniOMA objective and the alignment algorithm.

3.1 PROBLEM STATEMENT

Let X (1),X (2), . . . ,X (M) denote M modalities. The goal of multimodal alignment is to learn
modality-specific encoders f (m) : X (m) → Rd, m = 1, . . . ,M that project inputs x(m) ∈ X (m)

into a shared latent space z(m) = f (m)(x(m)) ∈ Rd. The key objective is that embeddings of
the same underlying instance across modalities map to nearby latent vectors, i.e., z(1)i ≈ z

(2)
i ≈

· · · ≈ z
(M)
i . In robotics, the modalities X (m) may include vision (third-person or wrist-mounted),

audio commands, force–torque signals, proprioception (joints, inertial measurement unit (IMU),
end-effector pose), tactile sensing, and environment states (e.g., object pose). Aligning them into
a shared latent space enables cross-modal reasoning and zero-shot transfer: for example, vision of
an end-effector trajectory should yield embeddings consistent with the same trajectory from pro-
prioception or touch. Such unified representations enable downstream tasks such as robot/environ-
ment state prediction, action prediction or generation, and modality completion when certain sensor
streams are missing.

3.2 GROMOV-WASSERSTEIN DISTANCE

The Gromov–Wasserstein (GW) distance (Peyré et al., 2016; Gong et al., 2022) is a natural extension
of Optimal Transport (OT) (Villani et al., 2008) to settings where distributions lie in different metric
spaces. The classic OT problem seeks the minimum cost of transporting one probability measure
into another within the same metric space. Given two measures µ and ν and a cost function c :
X × X → R, the Kantorovich formulation of the OT problem is

dw(µ, ν) := inf
π∈Π(µ,ν)

∫
X×X

c(x,y)dπ(x,y), (10)

where π is a transport plan with marginals µ and ν. When both measures are supported on the same
space X , c(·, ·) is a distance metric (e.g., ℓ2), and Eq. 10 defines the Wasserstein distance.

However, in multimodal learning the two distributions often live in different spaces (e.g., images vs.
tactile signals). In such cases, defining a cross-modal cost c(x,y) is generally impossible. The GW
distance addresses this by replacing the direct cross-modal cost with a relational cost that compares
intra-modal similarities.
Definition 1 (Gromov-Wasserstein Distance). Let Xdx,µ and Ydy,ν be two metric–measure spaces
(mm-spaces), with distance metrics dx, dy and probability measures µ, ν. The GW distance between
them is defined as:

dgw(µ, ν) := inf
π∈Π(µ,ν)

∫
X 2×Y2

c (dx(x,x
′), dy(y,y

′)) dπ(x,y)dπ(x′,y′),

where c (dx(x,x
′), dy(y,y

′)) is relational distance measuring the discrepancy between the sample
pairs (x,x′) and (y,y′).

Intuitively, minimizing GW distance aligns two distributions by matching their relational geometry
(pairwise structures), rather than raw coordinates. This is crucial in robotics, where modalities
such as vision and force–torque are in incomparable metric spaces but have meaningful internal
geometries. For discrete samples, consider the two mm-spaces X = {xi}Ii=1 and Y = {yj}Jj=1

with uniform sample distributions p̂x = 1
I 1I and p̂y = 1

J 1J , we calculate the empirical GW
distance (Gong et al., 2022) in the following definition.
Theorem 1 (Empirical GW Distance). Let the kernel matrices Kx ∈ RI×I and Ky ∈ RJ×J be
the similarity matrices conducted by the samples x,y from two mm-spaces X ,Y , the empirical GW
distance between the samples is:

d̂gw(Kx,Ky) := max
T∈Π(p̂x,p̂y)

tr(Kx
⊤T⊤KyT),

where T is the doubly-stochastic matrix to model the transport between the two sets of samples.
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See Appx. A.5 for the proof. In practice, we estimate T∗ via iterative OT solvers (Alg. 2), and
compute d̂gw(Kx,Ky) = tr(Kx

⊤T∗⊤KyT
∗). This formulation enables cross-modal alignment

directly from intra-modal similarity structures, without the need of an explicit cross-modal cost
function or extra neural potential models (Korotin et al., 2022b;a; Arjovsky et al., 2017).

3.3 STRUCTURAL CONSENSUS

To preserve intra-modal structure during alignment, we treat each modality X (m) as a metric
space and represent its geometry via a kernel matrix K

(m)
x ∈ RNm×Nm , where (K

(m)
x )ij =

sim(x
(m)
i ,x

(m)
j ) encodes the pairwise similarity between samples. Such kernel matrices provide

a unified representation of relational structure across heterogeneous modalities, independent of raw
dimensionality. The construction of K(m)

x depends on the modality: for visual signals (e.g., RGB
or depth), we embed inputs with a pretrained encoder and compute similarities using an RBF ker-
nel; for sequential or time-series modalities common in robotics (e.g., force–torque), we adopt a
time-series clustering kernel (TCK; Mikalsen et al. (2018)) to better capture temporal structure.
Additional details are provided in Appx. B.3.

The central idea is to identify a structural consensus: a latent geometry that captures the common
similarity patterns across all modalities. Formally, we define it as a Gromov–Wasserstein (GW)
barycenter (Gong et al., 2022) of the intra-modal structures.

Definition 2 (Structural Consensus of Multimodal Data). Given intra-modal kernel matrices
{K(m)

x }Mm=1, the structural consensus is defined as the barycenter:

C∗
x = arg min

Cx∈M

M∑
m=1

λm · dgw(Cx,K
(m)
x ), (11)

whereM denotes the space of symmetric positive definite (SPD) matrices, dgw is the GW distance
(Def. 1), and λm are learnable modality weights.

Practically, C∗
x is estimated via an iterative optimization scheme (Alg. 3 in Appx. B.2). During

training, we align each modality by minimizing the GW discrepancy between its embedding-induced
kernel K(m)

z and the consensus C∗
x, as described in the next section.

3.4 UNIOMA OBJECTIVE AND ALGORITHM

Given the batch-wise structural consensus C∗
x in Sec. 3.3, UniOMA augments a standard contrastive

term with a structure-aware regularizer

LUniOMA(θ) = Lc(θ) + α

M∑
m=1

λm · dgw(C∗
x,K

(m)
z ), (12)

where K(m)
z is the embedding-space similarity matrix of z(m) = f

(m)
θ (x(m)). The scalar α balances

contrastive discrimination and structural coherence, and the learnable weights {λm} quantify each
modality’s contribution to the consensus. Implementation details for estimating C∗

x and evaluating
dgw(·, ·) are in Appx. B.2–A.5 (see also Fig. 2).

Why this design? (1) Scalable to M ≥ 3. Aligning every modality to one consensus avoids
O(M2) pairwise couplings. (2) Flexible to heterogeneous and asynchronous modalities. GW
distance compares intra-modal similarity matrices, not raw coordinates, thus is naturally robust to
modalities with different dimensionalities. Also, GW barycenter naturally handles unequal sample
counts across modalities, which is particularly advantageous in robot perception. We empirically
validate (3) in Sec. 4.6.
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Algorithm 1 UniOMA Training({X (m)}Mm=1, γ, α)

Input: Multimodal dataset {X (m)}Mm=1, learning rate γ, structural weight α, entropy weight α′

Initialize encoders {f (m)(·)}Mm=1, modality weights {λm}Mm=1,
while not converged do

// Stage 1: structural consensus estimation

Sample a batch {x(m)
i }Nm

i=1 for each modality {X (m)}Mm=1
for m← 1 to M do

Compute the structural information K
(m)
x ∈ RNm×Nm for the batch {x(m)

i }Nm
i=1

Estimate the structural consensus C∗
x via Alg. 3

// Stage 2: alignment update

z
(m)
i ← f

(m)
θ (x

(m)
i ) for all i,m

for m← 1 to M do
T(m)∗ ← OTEstimation(C∗

x,K
(m)
z ) via Alg. 2

d̂gw(C
∗
x,K

(m)
z )← tr((C∗

x)
⊤(T(m)∗)⊤K

(m)
z T(m)∗)

Compute the contrastive learning loss Lc

LUniOMA(θ)← Lc(θ) + α
∑M

m=1 λmd̂gw(C
∗
x,K

(m)
z )

θ ← θ − α∇θLUniOMA
λm ← λm − α∇λm

LUniOMA for m = 1, . . . ,M

return {f (m)
θ }Mm=1, {λm}Mm=1

The training procedure is summarized in Alg. 1. Each iteration proceeds in two stages:

Stage 1 (Consensus Estimation): Compute kernel matrices K
(m)
x from a mini-batch using

modality-specific similarity measures (e.g., RBF kernel for images, TCK for time series), then
estimate the batch-wise consensus C∗

x via an iterative GW barycenter algorithm (Appx. B.2).

Stage 2 (Alignment Update): Encode the same mini-batch into z(m), form kernel matrices K(m)
z ,

and compute their GW distances to the consensus. The UniOMA loss is then minimized by
stochastic gradient descent, jointly updating encoder parameters θ and modality weights λm.

4 EXPERIMENTS

We evaluate UniOMA on four multimodal robot perception settings: (i) VFD (Vision–Force–Depth)
from the VisionTouch dataset (Lee et al., 2019b; Liang et al., 2021); (ii) VFP (Vi-
sion–Force–Proprioception) from the same source; (iii) MuJoCo Push (Lee et al., 2020; Todorov
et al., 2012) (Vision–Force–End-effector pose); and (iv) VAT (Vision–Audio–Tactile) derived from
ObjectFolder 2.0 (Gao et al., 2022; Wojcik et al., 2024). Downstream tasks include regression,
classification, and cross-modal retrieval.

4.1 TASKS AND DATASETS

VFD (Vision–Force–Depth). We evaluate two tasks: (1). Next-step end-effector orientation pre-
diction (regression, 4D): Inputs are third-person RGB ([b×3×128×128]), force–torque histories
([b×32×6]), and depth ([b×1×128×128]). (2). Trajectory-pair discrimination (classification, bi-
nary): given a pair of triplets (vision-force-depth), identify whether the pair is from the the same
trajectory. We report Top-1 accuracy in Table 1.

VFP (Vision–Force–Proprioception). We evaluate next-step contact prediction (classification,
binary). Inputs are RGB, force–torque histories, and end-effector pose ([b×7]). We classify whether
the end-effector is in contact to the object.

7
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Table 1: Comparative results on downstream tasks (regression, classification, and cross-modal re-
trieval). Performance is measured by MSE (×10−3 ↓), Top-1 Acc. (% ↑), and MAP (↑). Arrows
denote retrieval direction. Gray rows correspond to baselines augmented with our GW regularizer.
Overall, our method consistently improves its corresponding baselines across most tasks, and all
methods achieving the best performance for each task are UniOMA variants (highlighted in brown).

Regression ↓(×10−3) Classification ↑(%) VAT MAP Score ↑
Method V&F&D MuJoCo V&F&D V&F&P Vis→Aud Vis→Tact Tact→Aud

Pairwise 1.27±0.14 0.44±0.07 89.59±0.05 94.51±0.02 0.25±0.07 0.41±0.11 0.10±0.01

Pairwise+OT 1.26±0.11 0.40±0.07 92.41±0.02 94.66±0.02 0.37±0.05 0.58±0.04 0.09±0.01

Pairwise+GW 1.22±0.12 0.38±0.09 92.44±0.02 94.68±0.03 0.36±0.05 0.60±0.03 0.12±0.02

Symile 2.81±0.10 0.28±0.04 90.02±0.04 93.94±0.06 0.10±0.02 0.21±0.05 0.08±0.01

Symile+GW 2.15±0.08 0.23±0.02 92.81±0.02 93.87±0.03 0.13±0.03 0.15±0.03 0.14±0.03

GRAM 3.37±0.09 0.52±0.07 92.47±0.04 93.65±0.05 0.13±0.02 0.34±0.05 0.15±0.01

GRAM+GW 2.31±0.05 0.30±0.06 93.30±0.01 93.91±0.04 0.79±0.10 0.58±0.04 0.16±0.01

CoMM 1.51±0.05 0.26±0.04 92.39±0.01 94.13±0.03 — — —

Table 2: Scalability analysis with 4–7 modalities. We report trajectory-pair classification accuracy
(mean ± std over 10 seeds) together with wall-clock time per epoch for all three methods: Pairwise
contrastive learning, Pairwise+OT, and Pairwise+GW (UniOMA). UniOMA achieves consistently
higher accuracy and becomes faster than OT when M ≥ 6.

Modality Combination M
Pairwise Pairwise+OT Pairwise+GW

Acc. Time Acc. Time Acc. Time

V+F+P+D 4 89.94±0.03 110.38±1.74s 92.07±0.03 135.57±2.92s 92.39±0.02 201.36±7.61s
V+F+P+D+A 5 90.72±0.03 129.44±1.92s 92.51±0.03 178.63±3.11s 93.04±0.02 225.89±5.44s
V+F+P+D+A+C 6 89.12±0.04 150.77±2.51s 91.03±0.03 268.41±6.83s 92.11±0.03 248.52±6.12s
V+F+P+D+A+C+O 7 87.95±0.05 171.42±3.12s 89.84±0.04 382.77±10.44s 91.02±0.03 273.36±7.40s

MuJoCo Push. A planar pushing task with a Franka Emika Panda arm interacting with a puck.
Inputs are low-resolution gray-scale image ([b×1×32×32]), current force–torque ([b×6]), and end-
effector pose ([b×7]). The task is to predict the next-step object’s 2-D position on the table.

VAT (Vision–Audio–Tactile). We evaluate cross-modal retrieval using mean average precision
(MAP). Queries and retrievals are built across {Vis,Aud,Tact}; we report direction-specific MAP
(e.g., Vis→Tact). The dataset provides per-object visual, sound, and tactile observations.

Scalability to 4–7 Modalities. To evaluate the scalability of UniOMA beyond three modalities,
we introduce a new downstream classification task on the Vision&Touch dataset training on 4, 5, 6,
and 7 modalities (vision, force, proprioception, depth, action, contact, and optical flow). The task is
to classify whether two multimodal/single-modal samples originate from the same trajectory.

4.2 IMPLEMENTATION DETAILS

Encoders, optimizer, temperature, and schedules are shared across methods (fusion heads differ
in CoMM). We compute input-space kernels {K(m)

x } (RBF for images with tuned γ; TCK for
time-series/force; RBF for other signals) and estimate the batch-wise consensus C∗

x using itera-
tive barycenter updates (Appx. B.2). We then align embedding-space kernels {K(m)

z } to C∗
x via

the UniOMA loss. Hyperparameters, TCK settings, and convergence diagnostics are detailed in
Appx. B.3–B.3.

4.3 RESULTS: COMPARISONS ON DOWNSTREAM TASKS

We compare against: (i) Pairwise (CMC) (Tian et al., 2020) using summed pairwise InfoNCE; (ii)
Symile (Saporta et al., 2024) using triple-wise InfoNCE variants; (iii) GRAM (Cicchetti et al., 2024)
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using Gramian volume similarity for M ≥ 3; and (iv) CoMM (Dufumier et al., 2024) as a strong
fusion-based baseline. For (i)–(iii) we also report “ +GW” variants by adding our GW regularizer to
show the marginal value of structural alignment. We match optimizer, batch size, temperature, and
training epochs across comparable methods; see Appx. B.3.

Table 1 summarizes results across the 3-modality tasks in Sec. 4.1. Overall, UniOMA with its GW-
augmented variants consistently outperform purely contrastive objectives. In particular, adding our
GW regularizer ( +GW) yields stable gains across all objectives, confirming that structure-aware
alignment provides benefits orthogonal to instance discrimination. In the two cells where a baseline
is slightly higher (Symile on VFP classification and Vis→Tact), the GW term trades a bit of con-
trastive correlation for structural coherence. All hyperparameters were kept fixed across methods.

4.4 RESULTS: EFFICIENCY AND SCALABILITY

Table 2 reports the results of the new-introduced task with 4-7 modalities. Because additional modal-
ities introduce greater distributional heterogeneity, aligning them becomes increasingly challenging.
As a result, traditional pairwise contrastive and OT-based approaches do not exhibit improved clas-
sification accuracy as the number of modality increases. In contrast, our GW-based method main-
tains stable performance and consistently achieves the highest accuracy compare to the pairwise /
pairwise+OT baseline, demonstrating better scalability in high-modality scenarios. A detailed de-
scription of the 4–7 modality setup is provided in Appx. C.

UniOMA is designed to avoid the quadratic complexity inherent in pairwise multimodal alignment,
which computes O(M2) cross-modal couplings across M modalities. UniOMA aligns each modal-
ity independently to a learned structural consensus, yielding linear complexity O(M). We measure
runtime and peak memory as a function of the number of modalities (3–7). Table 2 shows wall-clock
time per epoch of UniOMA grows approximately linearly with the number of modalities M , while
pairwise and OT-based baselines have quadratic scaling. For M ≥ 6, UniOMA becomes strictly
faster per epoch than the pairwise+OT baseline, while peak memory usage remains identical. We
also observe in Fig. 6 that the GW barycenter converges stably with Tmax = 5 iterations across all
settings (with runtime mildly increased as shown in Table 2). Ablations with Tmax ∈ {2, 5, 10} in
Table 3 confirm that performances are stable with respect to solver iterations. These results indi-
cate that minibatch GW inference introduces only moderate overhead and does not impair training
practicality.

4.5 RESULTS: MODALITY WEIGHTS

UniOMA learns modality weights {λm} that quantify each modality’s contribution to the consensus
(Appx. B.2). Fig. 3 shows that vision dominates VAT retrieval (high discriminative content); propri-
oception dominates VFP contact prediction (contact reasoning); depth is critical for VFD orientation
regression, and force contributes marginally.

4.6 ABLATION STUDY: UNEQUAL MODALITY SAMPLING

To evaluate UniOMA’s robustness to realistic asynchrony in robot perception, we perform an abla-
tion on the VFD classification task. Specifically, we downsample one modality per batch (vision,
force, or depth) by a factor of two, e.g. we downsample one modality (e.g., b=32) while keep-
ing others at b=64, inducing unequal sample counts and breaking strict one-to-one pairing across
modalities. We compare UniOMA against its contrastive-only variant (pairwise vs. pairwise+GW).
Fig. 3(f) shows that UniOMA (Pairwise+GW) outperforms the contrastive-only baseline (Pairwise)
across all downsampling cases. This confirms that aligning each modality to the GW barycenter
consensus, rather than enforcing pairwise matches, enables the model to effectively leverage hetero-
geneous modality even under sampling-rate mismatch.

Interpretability. Beyond accuracy, UniOMA provides insights into modality importance through
its learned weights. Figure 3(e) visualizes the weight distributions under each downsampling setting,
showing how the framework adaptively shifts reliance toward intact modalities while still retaining
useful signal from the under-sampled one. For comparison, Figure 3(a-d) aggregates the learned
weights across the four benchmark datasets (VFP, VFD, MuJoCo, VAT), illustrating task-dependent
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modality dominance. These results highlight UniOMA’s ability to not only maintain structural align-
ment under unequal sampling but also to yield interpretable modality relevance.

Figure 3: (a–d) Final learned modality weights {λm} for each task (VFD, VFP, MuJoCo Push, VAT).
Each radar chart shows per-modality weights that sum to 1, highlighting dataset-specific salience
(e.g., depth in VFD, proprioception in VFP) and the interpretability of UniOMA’s structural-
consensus weighting. (e) ablation on VFD. One modality is downsampled by × 1

2 per batch. The
plot shows UniOMA’s adaptive redistribution of {λm} toward intact modalities while retaining sig-
nal from the undersampled one. (f) Accuracy under the same ablation (Top-1, %). Pairwise vs.
Pairwise+GW (UniOMA). The outer polygon indicates consistent gains from the GW regularizer
across all downsampled cases.

5 DISCUSSION AND CONCLUSION

Interpreting the GW barycenter and its applicability. Our visualizations (Appx. G) show that
batch-wise GW barycenters recover intuitive geometric patterns across modalities, reflecting that
GW aligns structural relations rather than raw features. This behavior is well suited to robotics,
where trajectories naturally form meaningful intra-modal graphs. In structurally poor domains
such as vision–language–audio with i.i.d. samples, however, useful barycenters require constructing
richer intra-modal graphs first—an explicit limitation and a promising extension for more general
multimodal learning.

Shared vs. modality-specific information under alignment. Our theory (Appx. A) and experi-
ments support a classical view from multimodal information bottleneck and Partial Information De-
composition: alignment should extract only the shared structure while preserving modality-specific
(high-frequency) information. UniOMA achieves this by constraining embeddings only through
low-frequency consensus, leaving modality-specific components to be shaped by the contrastive ob-
jective. This also clarifies a limitation in vision–language settings: most VLM datasets are instance-
wise and lack trajectory-style intra-modal geometry, making GW barycenters less meaningful with-
out an additional graph-construction step.

Conclusion. We revisit multimodal alignment through the lens of structural consistency: while
pointwise correspondences are statistically strong in existing alignment methods, the intra-modal
geometries can disagree across modalities. UniOMA closes this gap by combining standard con-
trastive learning with a GW-barycenter regularizer that aligns 3+ modalities to a shared structural
consensus. Across VFP, VFD, MuJoCo Push, VAT, and 4–7 modality settings, UniOMA improves
regression, classification, and cross-modal retrieval while learning interpretable, dataset-specific
modality weights. Limitations include the additional computational cost of barycentric GW up-
dates and sensitivity to kernel choices. Our mini-batch barycenter and kernel ablations mitigate
these costs but do not fully remove them. Promising future directions include large-scale real-robot
alignment under heterogeneous sampling rates and extensions to asymmetric similarity kernels (e.g.,
directed or causal structures).

6 REPRODUCIBILITY STATEMENT

For the method’s implementation, we include the details in B.3. For the used datasets, Appx. C
provides a complete description of preprocessing and splits for VFP, VFD, MuJoCo Push, VAT,
and the 4-7 modality task. For theory, Appx. A.5–B.2 contain clear assumptions, derivations, and
algorithmic details used in UniOMA.
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A ADDITIONAL THEORETICAL DISCUSSION

In this appendix, we give a theoretical view of our structural alignment, which explains its feasibil-
ity: (i) the GW-based term acts locally like a graph-smoothing force on the shared, low-frequency
structure of the embeddings; and (ii) this does not force a information-rich modality (e.g., image)
to discard its modality-specific, high-frequency information. To specific, we discuss in three steps:
firstly, near the structural consensus C∗

x, the gradient of the GW distance is aligned with the gra-
dient of the Dirichlet energy (Belkin & Niyogi, 2003; Chung, 1996) on the Laplacian (Lemma 1);
we then analyze that the Dirichlet energy is spectrally biased towards low-frequency eigenmodes
(Lemma 2); finally, we combine these findings to argue that our UniOMA regularizer aligns only
the shared low-frequency geometry while leaving higher-frequency components available to encode
modality-specific information (Theorem 2).

A.1 SETUP

Let n be the batch size and Z ∈ Rn×d the embedding matrix of one modality, with rows z1, . . . , zn.
We construct a similarity matrix

Kz(i, j) = k(∥zi − zj∥2),
where k : R+ → R+ is a kernel that is strictly decreasing (e.g., an RBF kernel). Let C∗

x ∈
Rn×n be a fixed barycenter similarity matrix (our structural consensus), and let L∗ be the associated
normalized Laplacian:

L∗ = D−C∗
x,

where D = I is the degree matrix with Dii =
∑

j C
∗
x(i, j). The Dirichlet energy of Z on this

consensus geometry is

EDir(Z) = tr(Z⊤L∗Z) =
1

2

∑
i,j

L∗(i, j) ∥zi − zj∥2,

For the structural term, we consider the squared-loss Gromov–Wasserstein discrepancy between Kz

and C∗
x:

d2GW(Kz,C
∗
x) = min

π∈Π(p,q)

∑
i,j,k,ℓ

(
Kz(i, j)−C∗

x(k, ℓ)
)2

πik πjℓ, (13)

where Π(p, q) is the set of transport plans with fixed marginals p, q. In the batch setting we consider
here, p = q = 1

n1 and the OT plan π⋆ is typically close to a permutation matrix.

A.2 LEMMA 1: LOCAL DIRECTIONAL ALIGNMENT OF GW AND DIRICHLET GRADIENTS

We first show that, in a neighbourhood where the consensus geometry is approximately respected,
minimizing the GW discrepancy encourages embeddings with low Dirichlet energy on the consensus
graph, linking GW alignment to smoothness of Z with respect to the consensus geometry.
Lemma 1 (Local directional alignment of GW and Dirichlet gradients). Under the setup of
Eq. equation 13 and EDir(Z) = tr(Z⊤L∗Z) (Chung, 1996). Let

G(Z) = ∇Zd
2
GW(Kz,C

∗
x), H(Z) = ∇ZEDir(Z) = 2L∗Z.

Assume that:

1. Kz → C∗
x and π⋆(Z) → Π as Z → Z̄, for a permutation Π and the reference embedding

Z̄, which is the embedding to exactly represent structural consensus;

2. G and H are nonzero at Z̄ and positively colinear, i.e. G(Z̄) = λH(Z̄) for some λ > 0.

Then for every ε > 0 there exists η > 0 such that whenever
∥Kz −C∗

x∥F + ∥π⋆(Z)−Π∥F < η, G(Z) ̸= 0, H(Z) ̸= 0,

we have the directional approximation∥∥∥∥ G(Z)

∥G(Z)∥F
− H(Z)

∥H(Z)∥F

∥∥∥∥
F

≤ ε.

That is, in a small neighbourhood of the reference configuration Z̄, the GW gradient and the Dirich-
let gradient point in almost the same direction.
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Proof. Under the assumptions on k and the squared loss, the GW objective can be written as a
smooth function of the similarity matrix Kz and the transport plan π⋆(Z) (?):

d2GW(Kz,C
∗
x) =

∑
i,j,k,ℓ

(
Kz(i, j)−C∗

x(k, ℓ)
)2

π⋆
ik(Z)π

⋆
jℓ(Z).

Each entry Kz(i, j) = k(∥zi − zj∥2) is a function of Z, and the expression above is a finite sum of
smooth functions of (Kz, π

⋆(Z)). Hence G(Z) is continuous in a neighbourhood of Z̄. Likewise,
H(Z) = 2L∗Z is linear in Z and therefore continuous.

On the set where G(Z) ̸= 0 and H(Z) ̸= 0, the normalized gradients

u(Z) :=
G(Z)

∥G(Z)∥F
, v(Z) :=

H(Z)

∥H(Z)∥F
are continuous functions of Z. By the colinearity assumption, u(Z̄) = v(Z̄). By continuity of
u and v, the standard ε–δ argument implies that for every ε > 0, there exists η > 0 such that
∥Kz − C∗

x∥F + ∥π⋆(Z) − Π∥F < η entails ∥u(Z) − v(Z)∥F ≤ ε. This is precisely the claimed
inequality.

Lemma 1 formalizes the statement that, in a near-alignment regime, the GW term pushes Z in almost
the same direction as the Dirichlet energy: infinitesimal gradient steps for the GW loss act like graph
smoothing on the consensus geometry.

Intuitively, the Dirichlet energy (Belkin & Niyogi, 2003)

EDir(Z) =
1

2

∑
i,j

L∗(i.j)∥zi − zj∥2

measures the total “elastic tension” of a spring network with edge weights aij . Minimizing GW
distance drives Kz to match C∗

x, i.e. to embed this graph faithfully. Once this is achieved, no
Laplacian-type perturbation can further reduce the tension without breaking the matched structure,
which is the content of Lemma 1.

A.3 LEMMA 2: DIRICHLET ENERGY AND LOW-FREQUENCY STRUCTURE

We now recall a standard spectral decomposition of the Dirichlet energy, which makes explicit that
minimizing EDir places most of the “mass” of Z on the low-frequency eigenvectors of the consensus
Laplacian.
Lemma 2 (Spectral decomposition and low-frequency bias). Let L∗ = UΛU⊤ with 0 = λ1 ≤
λ2 ≤ · · · ≤ λn. Define Z̃ = U⊤Z. Under a norm constraint ∥Z∥2F = c, one has

EDir(Z) = tr(Z⊤L∗Z) =

n∑
ℓ=1

λℓ∥Z̃ℓ,:∥22.

Minimizers therefore place maximal energy on the eigenspaces corresponding to the smallest eigen-
values, i.e. on the low-frequency modes of the consensus geometry.

Proof. Using L∗ = UΛU⊤ and Z̃ = U⊤Z,

EDir(Z) = tr
(
Z⊤UΛU⊤Z

)
= tr

(
Z̃⊤ΛZ̃

)
=

n∑
ℓ=1

λℓ∥Z̃ℓ,:∥22.

The Frobenius norm constraint reads

∥Z∥2F = tr(Z⊤Z) = tr(Z̃⊤Z̃) =

n∑
ℓ=1

∥Z̃ℓ,:∥22 = c.

Thus we minimize a weighted sum
∑

ℓ λℓaℓ subject to
∑

ℓ aℓ = c with aℓ = ∥Z̃ℓ,:∥22 ≥ 0 (von
Luxburg, 2007). Since 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, we have

EDir(Z)− λ1c =

n∑
ℓ=2

(λℓ − λ1) aℓ ≥ 0,
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with strict inequality whenever some aℓ > 0 for λℓ > λ1. Hence any minimizer of EDir under the
norm constraint concentrates as much energy as possible on indices with the smallest eigenvalues,
i.e., the low-frequency eigenvectors of L∗.

Interpretation. Since Z̃ℓ,: = U⊤
ℓ Z is the projection of the embedding onto the ℓ-th eigenvector

of L∗, the expression
EDir(Z) =

∑
ℓ

λℓ∥Z̃ℓ,:∥2

states that high-frequency components (large λℓ) are heavily penalized. Thus any Z minimizing
Dirichlet energy must align itself with the low-frequency eigenvectors of L∗; equivalently, Z be-
comes “most compatible” with the smooth, large-scale geometry encoded by these eigenvectors.

In particular, if Z̃ℓ,: is large for small λℓ, then the rows of Z must be close to the eigenvectors
Uℓ, meaning the learned embeddings inherit the global structure of L∗. This formalizes why the
structural term preserves shared low-frequency structure.

A.4 MAIN THEOREM: CONSENSUS ALIGNMENT WITHOUT COLLAPSING RICH MODALITIES

We now combine the two lemmas to articulate our main conceptual point: in this idealized set-
ting, aligning a information-rich modality to a consensus geometry via our GW-based structural
regularizer does not force the encoder to discard its modality-specific (high-frequency) information.
Instead, it primarily constrains the shared low-frequency structure.

Theorem 2 (GW-based consensus alignment preserves modality-specific information). Consider a
rich modality R and a poorer modality P with embeddings ZR,ZP , similarity matrices KR,KP ,
and barycenter C∗

x. Assume embeddings are trained with a contrastive loss and the GW regularizer
d2GW(Kz,C

∗
x), under the norm control ∥Z∥2F = c.

Then, in any neighbourhood where KZm
≈ C∗

x:

1. By Lemma 1, minimizing GW forces Zm to descend in (almost) the same direction as the
Dirichlet gradient L∗Zm, thus enforcing agreement on the low-frequency structure of the
consensus Laplacian.

2. By Lemma 2, this alignment constrains only the projections of Zm onto the low-frequency
eigenspaces of L∗; all components in high-frequency eigenspaces (λℓ large) remain weakly
constrained by the structural term.

3. The contrastive objective acts primarily on shared structure and, as observed in multimodal
representation learning, does not by itself eliminate modality-specific information: shared
information is aligned, while modality-specific details are naturally retained.

Consequently, the GW regularizer enforces a consensus low-frequency geometry without collapsing
the rich modality to the poor one. Modality-specific (high-frequency) information in ZR is preserved
and remains available for contrastive discrimination, while only the shared geometric structure is
aligned.

A.5 EMPIRICAL GW DISTANCE

Theorem 1 (Empirical GW Distance). Let the kernel matrices Kx ∈ RI×I and Ky ∈ RJ×J be
the similarity matrices conducted by the samples x,y from two mm-spaces X ,Y , the empirical GW
distance between the samples is:

d̂gw(Kx,Ky) := max
T∈Π(p̂x,p̂y)

tr(Kx
⊤T⊤KyT),

where T is the doubly-stochastic matrix to model the transport between the two sets of samples.

Proof. Let X = {xi}Ii=1 and Y = {yj}Jj=1 be the two finite mm-spaces with uniform empirical
marginals p̂x = 1

I 1I and p̂y = 1
J 1J . Denote their intra-modal similarity matrices by Kx ∈ RI×I

18
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and Ky ∈ RJ×J , where (Kx)ii′ = sim(xi,xi′) and (Ky)jj′ = sim(yj ,yj′). A cross-domain soft
matching is a coupling

T ∈ Π(p̂x, p̂y) :=
{
T≥0

∣∣ T1J = p̂x, T
⊤1I = p̂y

}
.

The empirical GW distance can be written as the minimum expected squared discrepancy of within-
domain relations:

d̂2gw(Kx,Ky) = min
T∈Π(p̂x,p̂y)

∑
i,i′

∑
j,j′

(
(Kx)ii′ − (Ky)jj′

)2
Tij Ti′j′ . (14)

Expand the square in Eq. 14 and group terms:∑
i,i′,j,j′

(
(Kx)ii′ − (Ky)jj′

)2
TijTi′j′ = A+B − 2

∑
i,i′,j,j′

(Kx)ii′ (Ky)jj′ Tij Ti′j′ ,

where A,B are constants

A =
∑
i,i′

(Kx)
2
ii′ p̂x(i) p̂x(i

′), B =
∑
j,j′

(Ky)
2
jj′ p̂y(j) p̂y(j

′).

Therefore, minimizing Eq. 14 is equivalent to maximizing the quadratic term

max
T∈Π(p̂x,p̂y)

∑
i,i′,j,j′

(Kx)ii′ (Ky)jj′ Tij Ti′j′ .

In matrix notation, this becomes the quadratic type objective as is in Thrm. 1

d̂gw(Kx,Ky) = max
T∈Π(p̂x,p̂y)

tr
(
K⊤

x T⊤ Ky T
)
. (15)

Consequently, given an optimal plan T∗ estimated by Alg. 2,

d̂gw(Kx,Ky) = tr
(
K⊤

x T∗⊤ Ky T
∗). (16)

B IMPLEMENTATION DETAILS

B.1 OPTIMAL TRANSPORT PLAN ESTIMATION

Algorithm 2 OTEstimation(K̂,K)

Input: Kernel matrices K̂ ∈ RN̂×N̂ ,K ∈ RN×N

Output: Optimal transport matrix T∗

Initialize p← 1
N 1N , p̂← 1

N̂
1N̂ , T← p̂p⊤

while not converged do
// Apply Network simplex algorithm:

T̂← argmaxT∈Π(p̂,p) tr(K̂
⊤T⊤KT)

// Line search method to find the minimum:

a← −2 tr(K̂⊤T̂⊤KT)

b← tr((K̂⊙ K̂)p̂p⊤ + p̂p⊤(K⊙K)⊤)

c← −2
(
tr(K̂⊤T⊤KT̂) + tr(K̂⊤T̂⊤KT)

)
if a > 0 then

τ ← min(1,max(0,− b+c
2a ))

else

τ ←
{
1, if a+ b+ c < 0,

0, otherwise.

T← (1− τ)T+ τT̂

return T
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Algorithm 2 computes an empirical OT plan T by solving the quadratic program

max
T∈Π(p̂,p)

f(T) := tr
(
K̂⊤ T⊤ KT

)
,

where K̂,K ∈ RN×N are intra-domain similarity (or distance) matrices and Π(p̂,p) = {T ≥
0 | T1 = p̂, T⊤1 = p} is the transportation polytope (doubly-stochastic when p̂ = 1

N̂
1N̂ ,p =

1
N 1N ). Here ⊙ is the Hadamard product, so (K̂ ⊙ K̂) and (K ⊙ K) are elementwise squares of
the corresponding kernels, which makes b compact. We initialize with the independent coupling
T = p̂p⊤ and iterate a Conditional Gradient (Frank–Wolfe; FW) update.

Network simplex algorithm. At each iteration, we linearize f and solve

T̂ ∈ arg max
T∈Π(p̂,p)

〈
T, ∇f(T)

〉
.

For f(T) = tr(K̂⊤T⊤KT), we use the gradient form

∇f(T) = KTK̂ + K⊤ TK̂⊤,

which reduces to 2KTK̂ when K, K̂ are symmetric. The oracle is a linear transportation problem.
We implement it using a network simplex (Flamary et al., 2021; Bonneel et al., 2011).

Line search. Define the search segment T(τ) = (1 − τ)T + τT̂, τ ∈ [0, 1]. Substituting T(τ)
into f yields a univariate quadratic f(τ) = a τ2+b τ+c whose coefficients admit closed forms. The
code computes (a, b, c) and picks the maximizer on [0, 1]: τ⋆ = min

(
1,max(0,−(b+ c)/(2a))

)
if

a > 0, otherwise τ⋆ ∈ {0, 1} by comparing endpoints. We then set T = T(τ⋆).

B.2 GW BARYCENTER ESTIMATION

Algorithm 3 GW Barycenter Estimation (mini-batch)

Input: Intra-modal similarity matrices {K(m)
x }Mm=1 (batch size Nm per modality with min{Nm} =

N ), modality weights {λm}Mm=1 with λm ≥ 0,
∑

m λm = 1, uniform marginal p̂ =
1
N 1N ,p(m) = 1

Nm
1Nm

, max iters Tmax

Output: Batch-wise structural consensus (GW barycenter) C∗
x ∈ RN×N

Initialize Cx as the weighted average of K(m)
x

for t← 0 to Tmax − 1 do
for m← 1 to M do

T(m) ← OTEstimation
(
Cx, K

(m)
x

)
; // Alg. 2

C̃←
∑M

m=1 λm T(m) K
(m)
x T(m)⊤

Cx ← C̃⊘
(
p̂ p(m)⊤

)
return C∗

x ← Cx

Consider the barycenter objective (Def. 2):

C∗
x = arg min

Cx∈M

M∑
m=1

λm · dgw(Cx,K
(m)
x ), λm ≥ 0,

M∑
m=1

λm = 1.

According to the discrete empirical GW distance form (Thrm. 1), each term differs from a constant
by a (negative) maximized trace. Fix couplings {T(m)}Mm=1 with T(m)∈Π(p̂,p(m)) for the current
consensus Cx, and define

A(m) := T(m) K(m)
x T(m)⊤ ∈ RN×N .
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as Cx-independent constants, the objective reduces to

J (Cx) = − 2

M∑
m=1

λm tr
(
C⊤

xA
(m)

)
.

Following the standard GW-barycenter normalization (as in Eq. (8) of Gong et al. (2022)), we take
the derivative with respect to C and set it to zero

∂J (Cx)

∂Cx
= 0 ⇒ Cx =

( M∑
m=1

λm A(m)
)
⊘

(
p̂ p̂⊤),

i.e.

Cx ← C̃ ⊘
(
p̂ p̂⊤), C̃ =

M∑
m=1

λm T(m) K(m)
x T(m)⊤. (17)

Here ⊘ denotes the element-wise division.

Figure 4: GW barycenter of input–space kernels on the VFP dataset. Left: intra–modal sim-
ilarity matrices K

(1)
x (Vision), K

(2)
x (Force), and K

(3)
x (Proprioception), each min–max nor-

malized for display. Right: the batch-wise structural consensus C∗
x obtained by solving

min
Cx

3∑
m=1

λm dgw
(
Cx,K

(m)
x

)
(with λm=1 here). The barycenter preserves recurrent block/trajec-

tory patterns shared across modalities while smoothing modality-specific artifacts, and is later used
to regularize the embedding-space geometry in Stage 2. The batch size is 64.

B.3 IMPLEMENTATION DETAILS

Implementation: Time-Series Cluster Kernel We use the Time-series Cluster Kernel (TCK;
Mikalsen et al. (2018)) to build intra-modal similarity matrices for time-series modalities (e.g.,
force/torque). TCK fits an ensemble of diagonal covariance Gaussian mixture models (GMMs)
with informative priors and computes a posterior membership vector per sample

Πi(q) =
(
π
(i)
1 (q), . . . , π

(i)
Gq

(q)
)⊤

,

Gq∑
g=1

π(i)
g (q) = 1,

where each component π(i)
g (q) is the posterior responsibility of mixture g for sequence i under the

q-th GMM, i.e.
π(i)
g (q) = p

(
z=g

∣∣∣ x(q)
i ; θ̂q

)
,

where z is the latent mixture index, θ̂q is the MAP-EM estimate of the q-th model parameters,
and x

(q)
i is the subsequence of i restricted to the time window and variable subset chosen by that

ensemble member. The final kernel is the sum of posterior inner products over the ensemble:

(KTCK)ij ←
∑
q∈Q

Πi(q)
⊤Πj(q),
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which is positive semidefinite as a sum of linear kernels. In practice, for time–critical training, we
precompute the full TCK matrix for the entire force dataset (about 105 sequences) to get a single
symmetric matrix KTCK ∈ RN×N . During mini-batch training, the intra-modal similarity submatrix
for an index set I ⊆ {1, . . . , N} is obtained by simple indexing

Kbatch = KTCK[I, I],

thus avoiding repeated TCK fits inside the inner learning loop. We follow the original TCK protocol
to induce ensemble diversity (random time windows and variable subsets, random initializations, and
varying mixture counts), and we cache per-member posteriors to enable fast posterior lookups at test
time. See §4.1–4.4 of Mikalsen et al. (2018) for modeling details. In practice, we set the maximal
number of mixtures C and the number of randomizations Q as the only user-set hyperparameters.
We set C=30 and Q=15 for force/torque signals in the VFP and VFD settings.

Implementation: Pre-trained features We use pre-trained feature extractors for some modali-
ties to produce modality-specific features whose pairwise similarities form the input-space kernels
{K(m)

x }Mm=1 used by our structural consensus C∗
x. For the time-series modality (e.g., force/torque),

we directly use the TCK method to obtain the input-space kernels.

Pre-trained feature extractors (frozen).

• Vision / Depth / Tactile / Optical Flow: Vision Transformer (ViT-B/16; ?) via timm (?),
taking the final [CLS] embedding. Single-channel inputs (e.g., depth) are replicated to 3
channels before preprocessing.

• Force: Time-Series Cluster Kernel (TCK; Mikalsen et al. 2018) directly forms K
(force)
x

(Sec. B.3).
• Audio (VAT): A frozen Audio Spectrogram Transformer (AST-B, AudioSet-pretrained; ?)

on log-mel spectrograms; we take the [CLS] embedding and build K
(aud)
x with a simple

similarity (cosine or RBF).
• Other modalities: RBF kernel on frozen features.

Implementation: Modality Encoders To avoid architectural confounds, all methods share identi-
cal backbones and training schedules. In UniOMA (Stage 2), each modality encoder E(m)

θ produces
a feature h(m) ∈Rdh , which is passed through a modality-specific MLP projector g

(m)
θ to a shared

embedding size d=256:

z(m) = g
(m)
θ

(
E(m)
θ (x(m))

)
∈ Rd, f

(m)
θ = g

(m)
θ · E(m)

θ

and the embedding-space kernel within a mini-batch is(
K(m)

z

)
ij
= exp

(
− γ ∥z(m)

i − z
(m)
j ∥22

)
, γ =

20

d
,

unless stated otherwise. (Stage 1 input-space kernels {K(m)
x } are computed independently using

frozen extractors; see Sec. B.3.)

Backbones.

• Vision / Depth / Tactile (image-based). A 2D CNN (ResNet-18). Single-channel inputs
(e.g., depth, some tactile images) are replicated to 3 channels before feeding into the back-
bone.

• Force (time series). A 1D temporal ConvNet built from stacked causal Conv1D layers
(kernel size 2, stride 2) with LeakyReLU activations; the final feature map is flattened to
obtain a fixed-length embedding.

• Proprioception. A 3-layer MLP with LeakyReLU activations, mapping the low-
dimensional pose / joint vector to the shared embedding space.

• Audio (VAT). A 1D CNN with three convolutional blocks (channels 1 → 64 → 128 →
256, kernel size 5, stride 2), each followed by ReLU, then AdaptiveAvgPool1d(1),
flatten(), and a final Linear(256→dh).
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• Action. A small MLP mapping the action vector to a compact embedding, implemented
as Linear(da→32)–LeakyReLU–Linear(32→32)–LeakyReLU, matching the code in
ActionEncoder.

• Contact. A lightweight MLP applied to the binary contact state, using a structure
analogous to the action branch (two Linear layers with LeakyReLU) to obtain a 32-
dimensional embedding.

• Optical Flow. We take one channel of the dense optical-flow field (e.g., horizontal compo-
nent or magnitude), resize it to 128×128, replicate it to 3 channels, and feed it through the
same ResNet-18 image encoder as for RGB and depth.

We fix the projector output to d=256, use the same temperature τ for the contrastive term, and
share optimizer, batch size, and schedule across methods. UniOMA augments the contrastive
loss with a GW-barycenter regularizer (weight α) and learnable modality weights {λm} (softmax-
parameterized to enforce λm≥0 and

∑
m λm=1). Encoders and projectors are trained end-to-end

with the UniOMA objective; the structure-aware term is computed on {K(m)
z }, while Stage 1 kernels

{K(m)
x } remain fixed within each epoch.

Implementation: Hyper-parameters Shared training. Unless otherwise noted, all methods use
the same backbone–projector settings. We optimize with AdamW (learning rate 3×10−4, weight
decay 10−4, β1=0.9, β2=0.999), batch size 64, and temperature τ=0.1. Each modality head outputs
a d=256-dimensional embedding via a lightweight MLP projector (shared width across modalities).
We train for 200 epochs with early stopping on the validation metric when applicable, and report
mean±std over 10 independent seeds.

Stage-1 input-space kernels. Pre-trained feature extractors for vision/depth/tactile (ViT-B/16 via
timm) are frozen to compute {K(m)

x }. For force/torque we use TCK with max mixtures C=30
and randomizations Q=15 following §B.3. For VAT audio, we use AST-B as in Sec. B.3 to form
features and then an RBF kernel. To avoid repeated online estimation during Stage 2, we compute
force’s full dataset kernel once and cache it; mini-batch kernels K(force)

batch are obtained by submatrix
indexing.

Stage-2 embedding-space kernels. All modalities use the same Gaussian kernel(
K(m)

z

)
ij
= exp

(
− γ ∥z(m)

i − z
(m)
j ∥22

)
,

with a shared, modality-invariant scale γ = 20/d, d = 256.

UniOMA-specific. The GW regularization weight α = 1000. Modality weights {λm} are learnable
with a softmax parameterization (λm≥ 0,

∑
m λm=1) and initialized uniformly. For the coupling

oracle in OTEstimation we use a Frank–Wolfe linearization; the linear subproblem is solved
with a network-simplex transportation solver. The line search on the FW segment uses the closed-
form quadratic coefficients (a, b, c) derived in Appx. B.1. GW barycenter iterations are run with a
maximum of Tmax=5 per inner-loop (in §D.1 we analyze the solidity of this choice).

To further justify these design choices, we provide a hyper-parameter ablation in Appx. ??, where
we evaluate the effects of γ, α, Tmax, and alternative kernel choices.

C DATASETS AND PREPROCESSING

We detail the exact splitting, windowing, and per–modality preprocessing used in our experiments.
Unless specified, all randomization uses a fixed seed (seed=42), and splits are performed at the
file/trajectory level to avoid leakage.

VFD / VFP (Vision–Force–Depth / Vision–Force–Proprioception). We use test ratio =
0.2 at the file level with seed = 42 (train vs. test); validation set shares the test set. Each episode
has a length 32. For time step t, we form a fixed history window of length L for force (default L=32)
and read targets at t+1. RGB images are center–cropped to 128×128, normalized by ImageNet
statistics (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]). Depth is stored as (128, 128, 1),
normalized by mean 0.5/std 0.5, and used as single–channel tensors. Force–torque histories are
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truncated to the last L steps. The resulting tensor has shape [b×L×6]. Proprioception is parsed from
the first 7 pose components (end effector position/orientation) in the loader and returned as [b×7] at
the current step.

Tasks. For VFD, we follow the main text: (1) next–step end–effector orientation regression (4D), us-
ing (RGBt,F/Tt−L+1:t,Deptht) as inputs; (2) modality–consistency discrimination with negatives
produced by cross–time/trajectory shuffles at 50/50 balance. For VFP, we perform next–step con-
tact prediction (binary) using (RGBt,F/Tt−L+1:t,Propriot); class balance is enforced by uniform
sampling across trajectories.

Figure 5: VFD overview. Synchronized windows of RGB images, force–torque signals (last L=32
steps), and depth camera images. Images are center–cropped to 128×128 and normalized. Depth
images are normalized with mean/std 0.5.

MuJoCo Push. A planar pushing task with a Franka Panda arm interacting with a puck. Image
modality: we use sequences of grayscale frames. Each sample contains a length S = 32 subse-
quence of 32×32 frames, forming tensors of shape (B,S, 1, 32, 32). Force-torque modality uses the
current signal to form tensors of shape (B, 6), and end-effector pose modality forms (B, 7).

VAT (Vision–Audio–Tactile). We assemble object–level triplets from per–class folders. We use
predefined train/val/test directory structures over a fixed object list. Labels for the retrieval tasks are
integer–encoded. Visual and tactile images are resized to 246×246 and normalized by ImageNet
statistics. Audio is loaded at its native sampling rate; at test time, the raw waveform is truncated to
TARGET LENGTH = 132,300 samples. The final shape of the tensors is (B, 132,000)

Task. Cross–modal retrieval with relevance at the object identity level; we report direction–specific
MAP on the test set.

MultiBench 4–7 Modality Scalability. To evaluate whether UniOMA scales beyond three modal-
ities, we construct an additional downstream classification benchmark using a multi-sensor subset
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of the MultiBench dataset. This setting allows us to progressively increase the number of modalities
and test whether the learned structural consensus remains stable as modality count grows.

Modalities. We select seven heterogeneous sensing streams commonly used in robotic manipulation:

Vision (RGB) : [3×128×128], Depth : [1×128×128],
Force–Torque : [6], Proprioception : [7], Action : [da],

Contact state : [1], Optical Flow : [2×128×128].

For a given experiment with M ∈ {4, 5, 6, 7} modalities, we take the first M modalities from
this list. All modalities are independently normalized using training-set statistics following the
MultiBench protocol.

Task: trajectory-consistency classification. Given two multimodal or single-modal samples, the
model must classify whether they originate from the same trajectory. Positive pairs are sampled
from two timesteps of the same trajectory; negatives are sampled across distinct trajectories. This
task directly evaluates whether embeddings preserve the trajectory-level structure across multiple
modalities.

D ADDITIONAL EXPERIMENTS

D.1 HYPER-PARAMETER ANALYSIS

RBF kernel scale γ. We use an RBF kernel in the embedding space:(
K(m)

z

)
ij
= exp

(
− γm ∥z(m)

i − z
(m)
j ∥22

)
.

Because distance scales differ by modality, we set γm per modality based on empirical pairwise
distances at convergence: γvision/depth/tactile = 5, γproprio = 20, and γ = 10 for other learnable streams
unless stated. Performance is stable within a ×0.5∼×2 range; very small γ over-smooths similari-
ties, while very large γ over-peaks them.

Number of GW barycenter iterations Tmax. Let C(t) be the consensus at inner-loop iteration
t in Alg. 3. We monitor the relative Frobenius change ∆t = ∥C(t) − C(t−1)∥F /∥C(t−1)∥F and
the trace objective

∑
m λm tr

(
C(t)⊤T(m)⊤K

(m)
x T(m)

)
. Both stabilize rapidly; after t=5 further

changes are negligible (∆t < 10−3). We therefore fix Tmax = 5 for all reported results.

Ablation: hyper-parameter effects. We empirically ablate three key hyper-parameters of
UniOMA—the RBF kernel scale γ, the GW regularization weight λ, and the number of barycenter
iterations Tmax as well as the choice of graph-based kernels (RBF, Laplacian affinity, and UMAP
fuzzy simplicial set). Table 3 summarizes results on the VFD classification task (Top-1 accuracy,
mean ± std over 10 seeds). Performance is stable across a broad range of values around our de-
fault settings; extremely small or large γ mildly hurts performance by over-smoothing or over-
peaking similarities, while too small λ under-utilizes structural alignment and too large λ marginally
over-regularizes the embeddings. The solver iteration number Tmax shows a clear plateau around
Tmax = 5, confirming that a small number of GW barycenter iterations is sufficient in practice.
Finally, replacing the RBF kernel with Laplacian or UMAP-based kernels yields comparable or
slightly lower accuracy, supporting RBF as a simple and competitive default.

D.2 ADDITIONAL QUALITATIVE VISUALIZATIONS

For the benefit of the reader, we provide further qualitative visualizations of the structural alignment
induced by UniOMA. Figure 7 summarizes four aspects on the 7-modality benchmark: (a) input-
space similarity matrices for each modality; (b) the corresponding batch-wise GW barycenter; (c)
a t-SNE embedding of the learned representations; and (d) the learned modality weights. Together,
these views illustrate how UniOMA preserves shared structure while remaining interpretable.
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Figure 6: GW barycenter inner-loop: structural consensus across iterations t in Alg. 3. By t=5, both
geometry and objective are effectively stable, thus we choose Tmax=5 and the batch size is 64.

Table 3: Ablation of UniOMA hyper-parameters and graph-based kernels on the VFD classification
task (Top-1 accuracy, %, mean ± std over 10 seeds). We vary the RBF kernel scale γ of the image
modality, GW weight λ, and the number of barycenter iterations Tmax around the default settings,
and compare to median-rule RBF kernel. UniOMA is robust across a wide range of values; our
default choices (in bold) lie near the center of each stable regime.

RBF kernel scale γ

γ = 1 91.87± 0.05
γ = 2 92.15± 0.04
γ = 5 92.44± 0.02
γ = 10 92.42± 0.02
γ = 20 92.10± 0.03

GW weight λ

λ = 200 92.12± 0.02
λ = 500 92.32± 0.02
λ = 1000 92.44± 0.02
λ = 2000 92.40± 0.04
λ = 5000 92.28± 0.05

Barycenter iterations Tmax

Tmax = 3 92.05± 0.03
Tmax = 4 92.27± 0.03
Tmax = 5 92.44± 0.02
Tmax = 6 92.45± 0.02
Tmax = 7 92.44± 0.02

Adaptive kernel choice

RBF (median-rule) 92.53± 0.03

E LLM USAGE STATEMENT

This work does not incorporate large language models (LLMs) as a key, novel, or unconventional
component of the method, experiments, or analysis. Any LLM assistance was limited to the writ-
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Figure 7: Qualitative visualizations of UniOMA on the VTP classification benchmark. We choose a
mini-batch with size 256 to illustrate the interpretation of the GW barycenter and the aligned embed-
dings. First row: t-SNE visualizations of the input modalities (vision, force, and proprioception),
showing clear sub-cluster structures indicating different trajectories (6 colors of the points indicating
6 trajectories). Second row: Input-space similarity matrices for vision, force, and depth, showing
trajectory-wise block structure and modality-specific artifacts. Middle-bottom: The batch-wise
GW barycenter C∗

x, which preserves the shared block structure while smoothing modality-specific
noise. Last row: t-SNE of the learned embeddings, where trajectories form coherent clusters across
modalities, indicating successful structural alignment beyond pairwise correspondence.

ing refinement (grammar, clarity, and copy-editing). All technical formulation, algorithms, proofs,
hyperparameters, implementations, and results were created and validated by the authors.
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