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ABSTRACT

Human motion stylization aims to revise the style of an input motion while keep-
ing its content unaltered. Unlike existing works that operate directly in pose space,
we leverage the latent space of pretrained autoencoders as a more expressive and
robust representation for motion extraction and infusion. Building upon this, we
present a novel generative model that produces diverse stylization results of a sin-
gle motion (latent) code. During training, a motion code is decomposed into two
coding components: a deterministic content code, and a probabilistic style code
adhering to a prior distribution; then a generator massages the random combina-
tion of content and style codes to reconstruct the corresponding motion codes.
Our approach is versatile, allowing the learning of probabilistic style space from
either style labeled or unlabeled motions, providing notable flexibility in styliza-
tion as well. In inference, users can opt to stylize a motion using style cues from a
reference motion or a label. Even in the absence of explicit style input, our model
facilitates novel re-stylization by sampling from the unconditional style prior dis-
tribution. Experimental results show that our proposed stylization models, despite
their lightweight design, outperform the state-of-the-arts in style reeanactment,
content preservation, and generalization across various applications and settings.

1 INTRODUCTION

The motions of our humans are very expressive and contain a rich source of information. For ex-
ample, by watching a short duration of one individual’s walking movement, we could quickly rec-
ognize the person, or discern the mood, age, or occupation of the person. These distinguishable
motion traits, usually thought of as styles, are therefore essential in film or game industry for re-
alistic character animation. It is unfortunately unrealistic to acquire real-world human motions of
various styles solely by motion capture. Stylizing existing motions using a reference style motion
(i.e., motion-based), or a preset style label (i.e., label-based) thus becomes a feasible solution.

Deep learning models have recently enabled numerous data-driven methods for human motion styl-
ization. These approaches, however, still find their shortfalls. A long line of existing works (Aber-
man et al., 2020; Holden et al., 2016; Jang et al., 2022; Tao et al., 2022) are limited to deterministic
stylization outcomes. (Park et al., 2021; Wen et al., 2021) though allows diverse stylization, their
results are far from being satisfactory, and the trained models struggle to generalize to other motion
datasets. Furthermore, all of these approaches directly manipulate style within raw poses, a redun-
dant and potentially noisy representation of motions. Meanwhile, they often possess rigid designs,
allowing for only supervised or unsupervised training, with style input typically limited to either
reference motions or labels, as shown in Tab. 1.

In this work, we introduce a novel generative stylization framework for 3D human motions. Inspired
by the recent success of content synthesis in latent space (Guo et al., 2022a; Chen et al., 2022; Rom-
bach et al., 2022; Ramesh et al., 2022), we propose to use latent motion features (namely motion
code) of pretrained convolutional autoencoders as the intermedia for motion style extraction and in-
fusion. Compared to raw poses, the benefits are three-folds: (i) Motion codes are more compact and
expressive, containing the most discriminative features of raw motions; (ii) Autoencoders can be
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Figure 1: (Top) Given an input motion and target style label (i.e., old), our label-based stylization generates
diverse results following provided label. (Bottom) Without any style indicators, our prior-based method ran-
domly re-stylizes the input motion using sampled prior styles zs. Five distinct stylized motions from the same
content are presented, with poses synchronized and history in gray. See Fig. 3 (b) and (d) for implementations.
learned once on a large dataset and reused for downstream datasets. Thanks to the inductive bias of
CNN (LeCun et al., 1995), the learned motion code features typically contains less noise, resulting
in improved generalization, as empirically demonstrated in Tables 2 and 11; (iii) Practically, motion
code sequences are much shorter than motions, making them more manageable in neural networks.
Building on this, our latent stylization framework decomposes the motion code into two compo-
nents: a temporal and deterministic content code, and a global probabilistic style code confined by
a prior Gaussian distribution. The subsequent generator recombines content and style to synthesize
valid motion code. During training, besides auto-encoding and decoding, we swap the contents and
styles between random pairs, and the resulting motion codes are enforced to recover the source con-
tents and styles through cycle reconstruction. To further improve content-style disentanglement, we
propose a technique called homo-style alignment, which encourages the alignment of style spaces
formed by different motion sub-clips from the same sequence. Lastly, the global velocity of resulting
motions are obtained through a pre-trained global motion regressor.

Our approach offers versatile stylization capabilities (Tab. 1), accommodating various conditioning
options during both training and inference: 1) Deterministic stylization using style from exemplar
motions; 2) In the label conditioned setting, our model can perform diverse stylization based on
provided style labels, as in Fig. 1 (top); 3) In the unconditional setting, our model can randomly
sample styles from the prior distribution to achieve stochastic stylization, as in Fig. 1 (bottom).
Benefiting from our latent stylization and lightweight model design, our approach achieves state-
of-the-art performance while being 14 times faster than the most advanced prior work (Jang et al.,
2022), as shown in Table 5.

Our key contributions can be summarized as follows. Firstly, we propose a novel generative frame-
work, using motion latent features as an advanced alternative representation, accommodating vari-
ous training and inference schemes in a single framework. Secondly, through a comprehensive suite
of evaluations on three benchmarks, our framework demonstrates robust and superior performance
across all training and inference settings, with notable efficiency gains.

2 RELATED WORK

Image Style Transfer. Image style in computer vision and graphics is typically formulated as the
global statistic features of images. Early work (Gatys et al., 2016) finds it possible to transfer the
visual style from one image to another through aligning their Gram matrices in neural networks.
On top of this, (Johnson et al., 2016; Ulyanov et al., 2016a) enable faster transferring through an
additional feed-forward neural networks. The work of (Ulyanov et al., 2016b) realizes that instance
normalization (IN) layer could lead to better performance. However, these works can only be ap-
plied on single style image. (Huang & Belongie, 2017) facilitates arbitrary image style transfer
by introducing adaptive instance normalization (AdaIN). Alternatively, in PatchGAN (Isola et al.,
2017) and CycleGAN (Zhu et al., 2017), textures and styles are translated between images by ensur-
ing the local similarity using patch discriminator. Similar idea was adopted in (Park et al., 2020),
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Supervised (w style label) Unsupervised (w/o style label) GenerativeMotion-based Label-based Motion-based Prior-based

(Xia et al., 2015) ✓
(Holden et al., 2016; 2017) ✓
(Aberman et al., 2020) ✓
(Park et al., 2021) ✓ ✓ ✓
(Tao et al., 2022) ✓
(Jang et al., 2022) ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 1: Our generative framework owns flexible design for training and inference.

which proposes patch co-occurrence discriminator that hypothesizes images with similar marginal
and joint feature statistics appear perceptually similar.

Motion Style Transfer. Motion style transfer has been a long-standing challenge in computer
animation. Early work (Xia et al., 2015) design an online style transfer system based on KNN
search. (Holden et al., 2016; Du et al., 2019; Yumer & Mitra, 2016) transfers the style from refer-
ence to source motion through optimizing style statistic features, such as Gram matrix, which are
computationally intensive. Feed-forward based approaches (Holden et al., 2017; Aberman et al.,
2020; Smith et al., 2019) properly address this problem, where (Aberman et al., 2020) finalizes
a two-branch pipeline based on deterministic autoencoders and AdaIN (Huang & Belongie, 2017)
for style-content disentanglement and composition; while (Smith et al., 2019) manages to stylize
existing motions using one-hot style label, and models it as an class conditioned generation process.
More recently, with the explosion of deep learning techniques, some works adopt graph neural net-
works (GNN) (Park et al., 2021; Jang et al., 2022), advanced time-series model (Tao et al., 2022;
Wen et al., 2021), or diffusion model (Raab et al., 2023) to the motion style transfer task. Specifi-
cally, (Jang et al., 2022) realizes a framework that extracts style features from motion body parts.

Synthesis in Latent. Deep latent have been evidenced as a promising alternative representation
for content synthesis including images (Rombach et al., 2022; Ramesh et al., 2022; Esser et al.,
2021b;a; Ding et al., 2021), motion (Guo et al., 2022a;b; Gong et al., 2023; Chen et al., 2022),
3D shape (Zeng et al., 2022; Fu et al., 2022), and video (Yan et al., 2021; Hu et al., 2023). These
works commonly adopt a two-stage synthesis strategy. At the first stage, the source contents are
encoded into continuous latent maps (e.g., using autoencoders, CLIP (Radford et al., 2021)), or
discrete latent tokens through VQ-VAE (Van Den Oord et al., 2017). Then, models are learned to
generate these latent representation explicitly which can be inverted to data space in the end. This
strategy has shown several merits. Deep latent consists of the most representative features of raw
data, which leads to a more expressive and compact representation. It also cuts down the cost of
time and computation during training and inference. These prior arts inspire the proposed latent
stylization in our approach.

3 GENERATIVE MOTION STYLIZATION

An overview of our method is described in Figure 2. Motions are first projected into the latent space
(Sec. 3.1). With this, the latent stylization framework learns to extract the content and style from the
input code (Sec. 3.2), which further support multiple applications during inference (Sec. 3.3).

3.1 MOTION LATENT REPRESENTATION

As a pre-processing step, we learn a motion autoencoder that builds the mapping between motion
and latent space. More precisely, given a pose sequence P ∈ RT×D, where T denotes the number
of poses and D pose dimension, the encoder E encodes P into a motion code z = E(P) ∈ RTz×Dz ,
with Tz and Dz the temporal length and spatial dimension respectively, and then the decoder D
recovers the input motion from the latent features, formally P̂ = D(z) = D(E(P)).

A well-learned latent space should exhibit smoothness and low variance. In this work, we experi-
ment with two kinds of regularization methods in latent space: 1) as in VAE (Kingma & Welling,
2013), the latent space is formed under a light KL regularization towards standard normal distri-
bution Ll

kld = λl
kldDKL(z||N (0, I)) ; and 2) similar to (Guo et al., 2022a), we train the classical

autoencoder and impose L1 penalty on the magnitude and smoothness of motion code sequences,
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Figure 2: Approach overview. (a) A pre-trained autoencoder E and D (Sec. 3.1) builds the mappings between
motion and latent spaces. Motion (latent) code z is further encoded into two parts: content code zc from content
encoder (Ec), and style space Ns from style encoder (Es) that take style label sl as an additional input. The
content code (zc) is decoded back to motion code (ẑ) via generator G. Meanwhile, a style code zs is sampled
from style space (Ns), together with style label (sl), which are subsequently injected to generator layers through
adaptive instance normalization (AdaIN). (b) Learning scheme, where style label (sl) is omitted for simplicity.
Our model is trained by autoencoding for content and style coming from the same input. When decoding
with content from different input (i.e., swap), we enforce the resulting motion code (ẑt) to follow the cycle
reconstruction constraint. For motion codes (z1, z2) segmented from the same sequence (homo-style), their
style spaces are assumed to be close and learned with style alignment loss Lhsa.

giving Ll
reg = λl1∥z∥1+λsms∥z1:Tz

−z0:Tz−1∥1. Our motion encoder E and decoder D are simply
1-D convolution layers with downsampling and upsampling scale of 4 (i.e., T = 4Tz), resulting in a
more compact form of data that captures temporal semantic information.

3.2 MOTION LATENT STYLIZATION FRAMEWORK

As depicted in Figure 2, our latent stylization framework aims to yield a valid parametric style
space, and meanwhile, preserve semantic information in content codes as much as possible. This is
achieved by our specific model design and dedicated learning strategies.
3.2.1 MODEL ARCHITECTURE.

There are three principal components in our framework: a style encoder Es, a content encoder Ec

and a generator G, as in Figure 2 (a).

Probabilistic Style Space. For style, existing works (Park et al., 2021; Aberman et al., 2020; Jang
et al., 2022) generate deterministic style code from motion input. In contrast, our style encoder Es,
taking z and style label sl as input, produces a vector Gaussian distribution Ns(µs, σs) to formulate
the style space, from which a style code zs ∈ RDs

z is sampled. In test-time, this probabilistic style
space enables us to generate diverse and novel style samples.

Comparing to style features, content features exhibit more locality and determinism. Therefore, we
model them deterministically to preserve the precise structure and meaning of the motion sequence.
The content encoder converts the a motion code z ∈ RTz×Dz into a content code zc ∈ RT c

z×Dc
z that

keeps a temporal dimension T c
z , where global statistic features (style) are erased through instance

normalization (IN). The asymmetric shape of content code zc and style code zs are designed of
purpose. We expect the former to capture local semantics while the latter encodes global features,
as what style is commonly thought of. Content code is subsequently fed into the convolution-based
generator G, where the mean and variance of each layer output are modified by an affine transfor-
mation of style information (i.e., style code and label), known as adaptive instance normalization
(AdaIN). The generator aims to transform valid combinations of content and style into meaningful
motion codes in the latent space.

3.2.2 LEARNING SCHEME

With the model mentioned above, we propose a series of strategies for learning disentangled content
and style representations. Figure 2 (b) illustrates our learning scheme. Note the input of style label
sl is omitted for simplicity. During training, for each iteration, we design three groups of inputs: z1,
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Figure 3: During inference, our approach can stylize input content motions with the style cues from (a, c)
motion, (b) style label and (d) unconditional style prior space.

z2 and z3, where z1 and z2 are motion code segments coming from the same sequence and z3 can
be any other segments.

AutoEncoding Lrec. We train our latent stylization framework partly through autoencoding, that
given motion latent codes, like z1 and z2, the generator learns to reconstruct the input from the
corresponding encoded content and style features, formally ẑ = G(Ec(z),Es(z)). For accurate
reconstruction, we decode the resulting motion latent codes (ẑ1 and ẑ2) back to motion space (P̂1

and P̂2) through D, and apply L1-distance reconstruction in both latent and motion space:

Lrec =
∑

i∈{1,2}

∥ẑi − zi∥1 + ∥P̂i −Pi∥1 (1)

Homo-style Alignment Lhsa. For the motion segments in one motion sequence, we could usually
assume their styles are similar in all aspects. This is a strong supervision signal especially when
style annotation is unavailable, dubbed homo-style alignment in our work. Since z1 and z2 belong
to the same sequence, their learned style spaces are enforced to be close:

Lhsa = DKL(N 1
s (µ

1
s, σ

1
s)∥N 2

s (µ
2
s, σ

2
s)) (2)

Swap and Cycle Reconstruction Lcyc. To further encourage content-style disentanglement, we
adopt a cycle consistency constraint (Zhu et al., 2017; Jang et al., 2022) when content and style are
swapped between different motion codes, such as z2 and z3 in Fig. 2. Specifically, the generator
G takes as input the content from z2 and the style from z3, and then produces a new transferred
motion code zt, which are supposed to preserve the content information from z2 and the style from
z3. Therefore, if we re-combine zt’s content and z2’s style, the generator should be able to restore
z2. The same to z̃3 that are recovered from the mix of zt’s style and z3’s content :

Lcyc =
∑

i∈{2,3}

∥z̃i − zi∥1 + ∥P̃i −Pi∥1 (3)

To ensure smooth and samplable style spaces, we apply a KL loss regularization to all style spaces:

Lkl =
∑

i∈{1,2,3,t}

DKL(N i
s(µ

i
s, σ

i
s))∥N (0, I)) (4)

Overall, our final objective is L = Lrec+λhsaLhsa+λcycLcyc+λklLkl. We also have experimented
adversarial loss for autoencoding and cycle reconstruction as in (Park et al., 2021; Aberman et al.,
2020; Tao et al., 2022), which however appears to be extremely unstable in training.

Unsupervised Scheme (w/o Style Label). Collecting style labeled motions is resource-
consuming. Our approach can simply fit in the unsupervised setting with just one-line change of
code during training—to drop out style label sl input.

Difference of Ns Learned w and w/o Style Label. While learning with style label, since both the
style encoder Es and generator G are conditioned on style label, the style space is encouraged to
learn style variables other than style label as illustrated in Fig. 8 (d). Whereas in the unsupervised
setting where the networks are agnostic to style label, in order to precisely reconstruct motions, the
style space is expected to cover the holistic style information, including style label (see Fig. 8 (c)).
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3.2.3 GLOBAL MOTION PREDICTION

Global motion (i.e., root velocity) is perceptually a more sensitive element than local joint motion
(e.g., foot skating). However, given one motion, transferring its global motion to another style
domain is challenging without supervision of paired data. Previous works commonly calculate the
target global motion directly from the content motion, or enforce them to be close in training. This
may fail when the transferred motion differs a lot from the source content. In our work, we propose
a simple yet effective alternative, which is a small 1D convolutional network that predicts the global
motion from local joint motion, simply trained on unlabeled data using objective of mean absolute
error. During inference, the global motion of output can be accurately inferred from its local motion.

3.3 INFERENCE PHASE

As displayed in Figure 3, our approach at run time can be used in multiple ways. In supervised
setting: a) motion-based stylization requires the user to provide a style motion and a style label as
the style references; and b) label-based stylization only asks for a target style label for stylization.
With sampled style codes from a standard normal distribution N (0, I), we are able to stylize source
content motion non-deterministically. In the case of unsupervised setting: c) motion-based styliza-
tion, which similarly, yields a style code from a reference motion; and d) prior-based stylization
that samples random style codes from the prior distribution N (0, I). Since there is no other pretext
style indications, the output motion could carry any style trait in the style space.

4 EXPERIMENTS

We adopt three datasets for comprehensive evaluation. (Aberman et al., 2020) is a widely used
motion style dataset, which contains 16 distinct style labels including angry, happy, Old, etc, with
total duration of 193 minute. (Xia et al., 2015) is much smaller motion style collection (25 mins) that
is captured in 8 styles, with accurate action type annotation (8 actions). The motions are typically
shorter than 3s. The other one is CMU Mocap (CMU), an unlabeled dataset with high diversity and
quantity of motion data. All motion data is retargeted to the same 21-joint skeleton structure, with a
10% held-out subset for evaluation. Our autoencoders and global motion regressor are trained on the
union of all training sets, while the latent stylization models are trained excursively on (Aberman
et al., 2020), using the other two for zero-shot evaluation. During evaluation, we use the styles
from (Aberman et al., 2020) test sets to stylize the motions from one of the three test sets. Style space
is learned based on motions of 160 poses (5.3s). Note our models supports stylization of arbitrary-
length content motions. See Appendix D for implementation details and full model architectures.

Metrics in previous motion stylization works heavily rely on a sparse set of measurements, typi-
cally human evaluation and style accuracy. Here, we design a suite of metrics to comprehensively
evaluate our approach. We firstly pre-train a style classifier on (Aberman et al., 2020) train set, and
use it as a style feature extractor to compute style recognition accuracy and style FID. For dataset
with available action annotation ( (Xia et al., 2015)), an action classifier is learned to extract content
features and calculate content recognition accuracy and content FID. We further evaluate the con-
tent preservation using geodesic distance of the local joint rotations between input content motion
and generated motion. Diversity in (Lee et al., 2019) is also employed to quantify the stochasticity
in the stylization results. Further explanations are provided in Appendix E.

Baselines. We compare our method to three state-of-the-art methods (Aberman et al., 2020; Jang
et al., 2022; Park et al., 2021) in their respective settings. Among these, (Aberman et al., 2020)
and (Park et al., 2021) are supervised methods learned within GAN framework. (Park et al., 2021)
learns per-label style space, and a mapping between Gaussian space and style space. At run time, it
supports both deterministic motion-based and diverse label-based motion stylization.

4.1 QUANTITATIVE RESULTS

Table 2 and Table 3 present the quantitative evaluation results on the test sets of (Aberman et al.,
2020), CMU Mocap (CMU) and (Xia et al., 2015). Note the latter two datasets are completely
unseen to our latent stylization models. We generate results using motions in these three test sets
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Setting Methods (Aberman et al., 2020) CMU Mocap (CMU)
Style Accuracy↑ Style FID↓ Geo Dis↓ Div↑ Style Accuracy↑ Style FID↓ Geo Dis↓ Div↑

Real Motions 0.997±002 0.002±000 - - 0.997±002 0.002±000 - -

Motion-based (S)

(Aberman et al., 2020) 0.547±016 0.379±018 0.804±003 - 0.445±009 0.508±011 0.910±002 -
(Park et al., 2021) 0.891±007 0.038±003 0.531±001 - 0.674±014 0.136±011 0.663±003 -
Ours w/o latent 0.932±008 0.022±002 0.463±003 - 0.879±008 0.046±004 0.636±004 -

Ours (V) 0.935±007 0.020±002 0.426±003 - 0.918±010 0.028±003 0.629±002 -
Ours (A) 0.945±007 0.020±002 0.344±002 - 0.918±007 0.031±003 0.569±002 -

Label-based (S)

(Park et al., 2021) 0.971±006 0.013±001 0.571±002 0.146±009 0.813±010 0.065±007 0.693±004 0.229±019

Ours w/o latent 0.933±009 0.023±002 0.447±002 0.174±017 0.882±008 0.053±003 0.611±003 0.266±021

Ours (V) 0.946±007 0.020±002 0.427±003 0.134±016 0.923±007 0.027±003 0.614±002 0.193±013

Ours (A) 0.942±006 0.019±001 0.344±003 0.050±006 0.915±005 0.031±003 0.571±003 0.067±005

Motion-based (U)

(Jang et al., 2022) 0.833±010 0.047±004 0.559±003 - 0.793±009 0.058±004 0.725±004 -
Ours w/o latent 0.780±014 0.048±003 0.466±004 - 0.761±009 0.082±005 0.645±003 -

Ours (V) 0.840±010 0.036±003 0.478±004 - 0.828±010 0.052±004 0.672±003 -
Ours (A) 0.804±011 0.040±003 0.441±003 - 0.799±009 0.056±003 0.648±004 -

Prior-based (U)
Ours w/o latent - - 0.431±003 1.169±030 - - 0.626±001 1.252±029

Ours (V) - - 0.418±003 1.069±028 - - 0.611±003 0.857±024

Ours (A) - - 0.436±004 1.187±029 - - 0.641±002 0.949±022

Table 2: Quantitative results on the (Aberman et al., 2020) and CMU Mocap test sets. ± indicates 95%
confidence interval. Bold face indicates the best result, while underscore refers to the second best. (S) and (U)
denote supervised and unsupervised setting. (V) VAE and (A) AE represent different latent models in Sec. 3.1.

Setting Methods (Xia et al., 2015)
Style Acc↑ Content Acc↑ Content FID↓ Geo Dis↓ Div↑

M-based (S)

(Aberman et al., 2020) 0.364±011 0.318±008 0.705±014 0.931±003 -
(Park et al., 2021) 0.527±006 0.441±009 0.381±010 0.698±001 -
Ours w/o latent 0.851±012 0.654±012 0.258±007 0.707±004 -

Ours (V) 0.934±006 0.579±016 0.210±004 0.716±003 -
Ours (A) 0.926±008 0.674±011 0.189±005 0.680±003 -

L-based (S)

(Park et al., 2021) 0.796±007 0.311±009 0.507±011 0.770±003 0.175±014

Ours w/o latent 0.843±012 0.655±013 0.264±008 0.691±003 0.281±032

Ours (V) 0.944±008 0.606±013 0.208±005 0.705±003 0.228±023

Ours (A) 0.933±011 0.668±014 0.193±005 0.679±002 0.095±013

M-based (U)

(Jang et al., 2022) 0.658±009 0.337±017 0.380±011 0.857±004 -
Ours w/o latent 0.734±014 0.584±011 0.272±008 0.721±003 -

Ours (V) 0.860±010 0.499±015 0.221±006 0.747±004 -
Ours (A) 0.814±011 0.588±010 0.217±006 0.735±003 -

P-based (U)
Ours w/o latent - 0.627±014 0.246±007 0.708±003 1.193±029

Ours (V) - 0.579±013 0.239±006 0.704±002 0.874±029

Ours (A) - 0.586±015 0.227±006 0.736±003 0.978±026

Table 3: Quantitative results on the (Xia et al., 2015) test set.

Setting Method Ours wins

M-based (S)
(Aberman et al., 2020) 78.69%

(Park et al., 2021) 73.67%
Ours w/o latent 65.98%

L-based (S) (Park et al., 2021) 73.06%

M-based (U) (Jang et al., 2022) 58.92%

Table 4: Human evaluation results.
Methods Runtime (ms)↓

(Aberman et al., 2020) 16.763
(Park et al., 2021)(M) 37.247
(Park et al., 2021)(L) 16.329

(Jang et al., 2022) 67.563
Ours (A)(M) 4.760

Table 5: Runtime comparisons.
as content, and randomly sample style motions and labels from (Aberman et al., 2020) test set.
For fair comparison, we repeat this experiment 30 times, and report the mean value with a 95%
confidence interval. We also consider the variants of our approach: non-latent stylization (ours w/o
latent), using VAE (Ours (V)) or AE ( Ours (A)) as the latent model (See Sec. 3.1). Ours w/o latent
employs the identical architecture as our full model, as illustrated in Fig. 2 (a), without the steps of
pretraining or training the motion encoder E and decoder D as autoencoders. Although it maintains
the same number of model parameters, it directly learns style transfer on poses, allowing us to assess
the impact of our proposed latent stylization.

Overall, our proposed approach consistently achieves appealing performance on a variety of appli-
cations across three datasets. In the supervised setting, GAN approaches, such as (Aberman et al.,
2020) and (Park et al., 2021), tend to overfit on one dataset and find it difficult to scale to other
motions. For example, (Park et al., 2021) earns the highest achievement on style recognition on
(Aberman et al., 2020), as 97.1%, while underperforms on the other two unseen datasets, with style
accuracy of 81.3% and 79.6%. Furthermore, these methods usually fall short in preserving con-
tent, as evidenced by the low content accuracy (31.8% and 44.1%) in Tab. 3. (Jang et al., 2022) is
shown to be a strong unsupervised baseline; it gains comparable and robust performance on differ-
ent datasets, which though still suffers from content preservation. On the contrary, our supervised
and unsupervised models commonly maintain high style accuracy over 90% and 80% respectively,
with minimal loss on content semantics. Among all variants, latent stylization improves the perfor-
mance on almost all aspects, including generalization ability, with slight compromise on diversity.
Ours (V) tends to own higher success rate of style transfer, while ours (A) typically outperforms on
maintaining content (i.e., Geo Dis and Content Accuracy).

User Study. In addition, a user study on Amazon Mechanical Turk is conducted to perceptually
evaluate our motion stylization results. 50 comparison pairs (on CMU Mocap (CMU)) between
each baseline model and our approach, in the corresponding setting, are generated and shown to 4
users, who are asked to choose their favored one regarding realism and stylization quality. Overall,
we collect 992 responses from 27 AMT users who have master recognition. As shown in Table 4,
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(a) Ours (supervised) (b) Ours (unsupervised)

(c) Park et al. [2021]

(d) Jang et al. [2022]

Style label: Old

Style label: Depressed

Style label: Heavy

Style label: Heavy

Figure 4: Qualitative comparisons of motion-based stylization. Given the style motion (green) and content
motion (blue), we apply stylization using our methods (orange), (Park et al., 2021) (supervised), and (Jang
et al., 2022) (unsupervised). The content motions in top two cases come from (Aberman et al., 2020), while
the bottom two from CMU Mocap (CMU) test sets. Example artifacts are highlighted using red signs.

our method earns more user appreciation over most of the baselines by a large margin. Further user
study details are provided in Appendix F.

Efficiency. Table 5 presents the comparisons of average time cost for a single forward pass with
160-frame motion inputs, evaluated on a single Tesla P100 16G GPU. Previous methods apply style
injection at each generator layer until the motion output and usually involve computationally inten-
sive operations such as multi-scale skeleton-based GCN and forward-loop kinematics. Benefiting
from our latent stylization and lightweight network design, our model appears to be much faster and
shows the potential for real-time applications.

4.2 QUALITATIVE RESULTS

Figure 4 presents the visual comparison results on test sets of (Aberman et al., 2020) (top two)
and CMU Mocap (CMU) (bottom two), in supervised (ours vs. (Park et al., 2021)) and unsupervised
(ours vs. (Jang et al., 2022)) settings. For our model, we use ours(V) by default. In the unsupervised
setting, (Jang et al., 2022) has comparable performance on transferring style from style motion to
content motion; but it sometimes changes the actions from content motion, as indicated in red circles.
Supervised baseline (Park et al., 2021) follows a similar trend. Moreover, the results of (Park et al.,
2021) on CMU Mocap (Aberman et al., 2020) commonly fail to capture the style information from
input style motion. This also agrees with the observation of the limited generalization ability of
GAN-based models in Tab. 2. Other artifacts such as unnatural poses ( (Aberman et al., 2020; Park
et al., 2021)) and foot sliding( (Jang et al., 2022)) can be better viewed in the supplementary video.
This can be partially attributed to the baselines directly applying global velocities of content motion
for stylization results. In contrast, our approach shows reliable performance in both maintaining
content semantics and capturing style characteristics for robust stylization.

Diverse and Stochastic Stylization. Our approach allows for diverse label-based and stochastic
prior-based stylization. As presented in Figure 5, for label-based stylization, taken one content
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Content motions Diverse stylizations from style labels:
Femalemodel (top), and old (bottom)

Diverse stylizations of sampled style priors 

Figure 5: Two examples of diverse label-based stylization (middle) and prior-based stylization (right).

Promt: A person walks backward in a 
small zig zag. [Femalemodel style]  

Promt: A person steps to the left sideways.
[Drunk style]
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Stylized T2M Stylized T2M

Figure 6: Two stylized text2motion examples, by applying our method behind text2motion (Guo et al., 2022a).

motion and style label as input, our model is able to generate multiple stylized results with inner-
class variations, i.e., different manners of old man walking. On the other hand, our prior-based
stylization can produce results with very distinct styles that are learned unsupervisedly from motion
data. These styles are undefined, and possibly non-existent in training data.

Stylized Text2Motion. Text-to-motion synthesis has attracted significant interests in recent
years (Guo et al., 2022a;b; Petrovich et al., 2022; Tevet et al., 2022); however, the results often ex-
hibit limited style expression. Here in Fig. 6, we demonstrate the feasibility of generating stylistic
human motions from the text prompt, by simply plugging our model behind a text2motion genera-
tor (Guo et al., 2022a). It is worth noting that the motions from (Guo et al., 2022a) differ greatly
from our learning data in terms of motion domain and frame rate (20 fps vs. ours 30 fps).

(a) Ours w/o latent 
(Unsupervised)

(c) Ours (V)
(Unsupervised) 

(d) Ours (V)
(Supervised)

(b) Ours (A)
(Unsupervised)

Figure 7: Style code visualization.

Style Code Visualization. Figure 8 displays
the t-SNE 2D projection of our extracted style
codes using four model variants, where each
sample is color-coded according to its label. In
the unsupervised setting, each style code is as-
sociated with global style features that are ex-
pected to be distinctive with respect to the style
category. It can be observed that our latent styl-
ization method produces clearer style clusters
aligned with style labels compared to our non-
latent method, with VAE-based latent model
(ours(V)) performing the best. While in the
supervised setting, as discussed in Sec. 3.2.2,
our approach learns label-invariant style fea-
tures (Fig. 8 (d)); These style features may arise from individual and environmental factors.

5 CONCLUSION

Our work looks into the problem of 3D human motion stylization, with particular emphasis on
generative stylization in the neural latent space. Our approach learns a probabilistic style space from
motion latent codes; this space allows style sampling for stylization conditioned on reference style
motion, target style label, or free-form novel re-stylization. Experiments on three mocap datasets
also demonstrate other merits of our model such as better generalization ability, flexibility in style
controls, stylization diversity and efficiency in the forward pass.
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Ethics Statement. In practice use, our method is likely to cause demographic discrimination, as it
involves stereotypical styles related to gender (Femalemodel), age (old) and occupation (soldier).

Reproducibility Statement. We have made our best efforts to ensure reproducibility, including
but not limited to: 1) detailed description of our implementation details in Appendix D; 2) detailed
description of our baseline implementation in Appendix D.3; 3) graphic illustration of our model
architecture in Figures 9 and 10; and 4) uploaded codes as supplementary files.
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This supplementary file provides additional ablation analysis of our design components (Ap-
pendix A) and weight of various loss terms (Appendix C), content and feature visualiza-
tion(Appendix B), implementation details (Appendix D), Evaluation Metric (Appendix E), cross-
style and homo-style interpolation results (Appendix G), user study introduction (Appendix F) and
failure cases (Appendix H).

Video. We also provide several supplementary videos, which contains dynamic animations of our
stylization results, visual comparisons, interpolation, stylized text2motion and failure cases. We
strongly encourage our audience to watch these videos. It will be much helpful to understand
our work. The videos are submitted along with supplementary files, or accessible online (1080P):
https://drive.google.com/drive/folders/1UeGuE1qCceLFQJa3vpYoOHC2MoLdBifK?usp=sharing

Code and Model. The code of our approach and implemented baselines are also submitted for
reference. Code and trained model will be publicly available upon acceptance.

A ABLATION ANALYSIS

S / U Method (Aberman et al., 2020) (Xia et al., 2015)
Style Acc↑ Style FID ↓ Geo Dis↓ Style Acc↑ Content Acc↑ Content FID↓ Geo Dis ↓

S Ours (A) 0.945±007 0.020±002 0.344±002 0.926±008 0.674±011 0.189±005 0.680±002

w/o latent 0.932±008 0.022±002 0.463±003 0.851±012 0.654±012 0.258±007 0.707±003

w/o prob-style 0.913±007 0.022±002 0.509±004 0.870±010 0.524±015 0.249±008 0.767±004

w/o homo-style 0.883±012 0.032±004 0.507±003 0.851±012 0.537±016 0.232±006 0.760±004

w/o autoencoding 0.900±010 0.026±002 0.427±003 0.879±010 0.634±011 0.198±005 0.720±004

w/o cycle-recon 0.917±009 0.021±002 0.385±003 0.872±006 0.627±011 0.208±004 0.699±002

U Ours (A) 0.804±011 0.040±003 0.441±003 0.814±011 0.588±010 0.217±006 0.735±003

w/o latent 0.780±014 0.048±003 0.466±004 0.734±014 0.584±011 0.272±008 0.721±003

w/o prob-style 0.734±018 0.058±004 0.461±003 0.666±016 0.597±015 0.270±010 0.718±003

w/o homo-style 0.753±016 0.050±002 0.513±003 0.730±009 0.526±013 0.250±005 0.803±002

w/o autoencoding 0.777±012 0.049±004 0.493±004 0.811±011 0.491±015 0.230±007 0.759±005

w/o cycle-recon 0.765±011 0.043±004 0.560±005 0.756±017 0.479±013 0.233±007 0.869±002

Table 6: Ablation study on different components of our model design. ± indicates 95% confidence interval.
Bold face indicates the best result, while underscore refers to the second best. (S) and (U) denote supervised and
unsupervised setting. Motion-based stylization is presented for both settings. Prob-style refers to probabilistic
style space.

Table 6 presents the results of ablation experiments investigating various components of our latent
stylization models. These components include stylization on the latent space (latent), the use of a
probabilistic style space (prob-style), homo-style alignment (homo-style), autoencoding, and cycle
reconstruction. The experiments are conducted within the framework of Ours (A) and are focused
on the task of motion-based stylization. Results are reported on two datasets (Aberman et al., 2020)
and (Xia et al., 2015). It’s important to note that the dataset of (Xia et al., 2015) is exclusively used
for testing the generalization ability of our models and has not been used during training.

Overall, we observe a notable performance improvement by incorporating different modules into
our framework. For instance, our key designs—latent stylization and the use of a probabilistic style
space—significantly enhance performance on the unseen (Xia et al., 2015) dataset, resulting in a
7% increase in stylization accuracy in the supervised setting. Additionally, homo-style alignment,
despite its simplicity, provides a substantial performance boost across all metrics. Notably, content
accuracy sees a remarkable improvement of 13% and 6% in supervised and unsupervised settings,
respectively, underscoring the effectiveness of homo-style alignment in preserving semantic infor-
mation.

In the subsequent sections, we delve into a detailed discussion of three other critical choices in
our model architecture and learning scheme: probabilistic (or deterministic) space for content and
style features, separate (or end-to-end) training of latent extractor and stylization model, and the
incorporation of a global motion predictor.

Probabilistic Modeling of Style and Content Spaces. Table 7 presents a comparison between de-
terministic and probabilistic modeling approaches for both style and content spaces. In our study, the
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Content Space Style Space (Aberman et al., 2020) (Xia et al., 2015)
Style Acc↑ Style FID ↓ Geo Dis↓ Style Acc↑ Content Acc↑ Content FID↓ Geo Dis ↓

D D 0.913±007 0.022±002 0.509±004 0.870±010 0.524±015 0.249±008 0.767±004

D P 0.945±007 0.020±002 0.344±002 0.926±008 0.674±011 0.189±005 0.680±002

P P 0.947±001 0.017±001 0.489±003 0.891±003 0.417±012 0.322±011 0.758±003

Table 7: Ablation study on the choice of probabilistic (P) or deterministic (D) space for content and style, in
supervised setting. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore
refers to the second best. Motion-based stylization is presented.

introduction of a probabilistic style space not only provides remarkable flexibility during inference,
enabling diverse stylization and multiple applications, but it also consistently enhances performance
and generalization capabilities. An intriguing aspect to explore is the impact of modeling the content
space non-deterministically. As highlighted in Tab. 7, we observe that a probabilistic content space
achieves superior stylization accuracy on in-domain datasets (Aberman et al., 2020). However, it
exhibits sub-optimal generalization performance on out-domain cases (Xia et al., 2015).

Training Strategy (Aberman et al., 2020) (Xia et al., 2015)
Style Acc↑ Style FID ↓ Geo Dis↓ Style Acc↑ Content Acc↑ Content FID↓ Geo Dis ↓

Separately 0.945±007 0.020±002 0.344±002 0.926±008 0.674±011 0.189±005 0.680±002

End-to-end 0.125±010 1.521±024 0.577±001 0.174±014 0.293±002 1.417±009 0.700±001

Table 8: Ablation study on separately or end-to-end training the latent model and stylization model, in
supervised setting. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore
refers to the second best. (S) and (U) denote supervised and unsupervised setting. Motion-based stylization is
presented.

Separate / End-to-end Training. Our two-stage framework can alternatively be trained in an end-
to-end fashion. We also conduct ablation analysis to evaluate the impact of such choice of training
strategy. The results are presented in Table 8. In practice, we observed that end-to-end training
posed significant challenges. The model struggled to simultaneously learn meaningful latent motion
representation and effectively transfer style traits between stages. Experimental results align with
this observation, revealing that stylization accuracy is merely around 15% on both datasets in the
end-to-end training scenario, in contrast to the accuracy of 92% achieved by stage-by-stage training.

Method (Aberman et al., 2020) CMU Mocap (CMU) (Xia et al., 2015)
Style Acc↑ Foot Skating↓ Style Acc↑ Foot Skating↓ Style Acc↑ Foot Skating↓

Ours (S) 0.945±007 0.130±001 0.918±007 0.140±001 0.926±008 0.263±003

Ours w/o GMP (S) 0.942±003 0.141±001 0.920±006 0.160±001 0.882±008 0.331±002

Ours (U) 0.840±010 0.102±001 0.828±010 0.099±001 0.860±010 0.179±002

Ours w/o GMP (U) 0.817±013 0.116±001 0.820±009 0.122±001 0.777±018 0.307±002

Table 9: Ablation study on global motion prediction (GMP, see Sec. 3.2.3). The symbol ± indicates the
95% confidence interval. Bold indicates the best result. (S) and (U) denote supervised and unsupervised
settings, respectively. Results of motion-based stylization are presented. Foot skating is measured by the
average velocity of foot joints on the XZ-plane during foot contact.

Global Motion Prediction (GMP). The primary objective of our global motion prediction is to
facilitate adaptive pacing for diverse motion contents and styles. As illustrated in Tab. 10, we quan-
tify the mean square error of GMP in predicting root positions across three test sets, measured in
millimeters. Notably, even on the previously unseen dataset Xia et al. (2015), the lightweight GMP
performs admirably, with an error of 57.7 mm.

To assess the impact of GMP on stylization performance, we compare against a contrast setting
(Ours w/o GMP), where global motions are directly obtained from the source content input, akin to
previous approaches. Additionally, we introduce a foot skating metric to gauge foot sliding artifacts,
calculated by the average velocity of foot joints on the XZ-plane during foot contact.Table 9 show-
cases motion-based results on (Aberman et al., 2020; CMU; Xia et al., 2015) test sets. Across all
comparisons, our proposed GMP effectively mitigates foot skating issues. Although 2-dimensional
global motion features constitute only a small fraction of the entire 260-dimensional pose vectors,
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(Aberman et al., 2020) CMU Mocap (CMU) (Xia et al., 2015)

46.2 48.7 57.7

Table 10: Mean Square Error of Root Position Prediction. The metric is measured in millimeters. Note the
dataset of (Xia et al., 2015) is untouched during the training of the global motion predictor.

it makes considerable difference on the dataset of (Xia et al., 2015), improving the stylization ac-
curacy by around 9%. In our 3rd and 4th supplementary videos, we also illustrate how our GMP
enables adaptive pacing in different stylization outcomes (label-based and motion-based) for the
same content.

B FEATURE VISUALIZATION

(a) Content Codes Colored by Content Label (left), and Style Label (right). (b) Style Codes Colored by Style Label.

Figure 8: Latent Visualization. Panel (a) displays the projection of the identical set of content codes onto a
2D space using t-SNE, colored according to content labels (left) and style labels (right). This visualization sug-
gests that content codes faithfully capture content traits, while style information has been effectively removed.
In panel (b), style codes are projected onto a 2D space using t-SNE and colored by their corresponding style
labels. Notably, clear style clusters emerge unsupervisedly, aligning with style labels.

Given that our content encoder accommodates motions of arbitrary length, we extract content codes
from the Xia et al. (2015) dataset. This dataset, unseen by our models, provides annotations for both
style and content labels. Notably, the motions in this dataset are usually short, typically within 3s,
which is insufficient to our style encoder. Therefore, for style codes, we takes the motions from
dataset (Aberman et al., 2020) for visualization. The models are learned in unsupervised setting,
using VAE as latent model.

Content Code Visualization. Figure 8 (a) visually presents 2D projections of our content codes.
The content codes are colored by their content labels on the left and by their style labels on the
right. To generate these projections, the temporal content codes are aggregated along the tempo-
ral dimension and then mapped to 2D space using t-SNE. When the content codes are colored by
content label (e.g., walking, kicking), distinct clusters aligned with the corresponding labels become
apparent. However, when the same set of content codes is colored by their style label, these labels
are evenly distributed within these clusters. This observation suggests that the content code adeptly
captures the characteristics of various contents while effectively erasing style information.

Style Code Visualization. Figure 8 (b) visualizes the style codes in a 2D space, color-coded by
their style labels. Notably, these style labels were never used during model training. In contrast to
the content code visualization in Fig. 8 (a), the projected style codes exhibit a strong connection
with the external style label annotations. This observation underscores the effectiveness of our style
encoder in extracting style features from the motion corpus.

C LOSS WEIGHT ANALYSIS

Tab. 11 presents more quantitative results of our models on (Aberman et al., 2020) and (Xia et al.,
2015) test sets. Specifically, we provide the ablation evaluations in both supervised (S) and unsuper-
vised setting (U). For supervised setting, we conduct experiments on label-based stylization which
also compares the diversity; and for unsupervised setting we adopt motion-based stylization. Note
the base models are not necessarily our final models, here they are set only for reference.
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S / U λcyc λkl λhsa
(Aberman et al., 2020) (Xia et al., 2015)

Style Acc↑ Geo Dis↓ Div↑ Style Acc↑ Content Acc↑ Content FID↓
S (base) 0.1 0.01 0.1 0.937±008 0.415±003 0.153±016 0.913±008 0.669±013 0.202±006

0.5 0.936±008 0.369±003 0.091±011 0.924±007 0.706±010 0.197±007

0.001 0.962±006 0.429±004 0.125±016 0.933±009 0.619±014 0.197±005

0.1 0.940±008 0.414±004 0.141±015 0.914±009 0.634±013 0.209±005

0.01 0.955±006 0.419±003 0.107±011 0.957±007 0.609±011 0.207±006

1 0.880±011 0.423±003 0.302±026 0.833±011 0.625±013 0.236±006

U (base) 1 0.01 0.1 0.804±011 0.441±003 - 0.814±014 0.588±010 0.217±006

0.01 0.790±015 0.489±004 - 0.761±012 0.567±016 0.224±007

0.1 0.659±018 0.430±004 - 0.701±014 0.619±013 0.190±005

0.01 0.669±013 0.388±003 - 0.671±015 0.641±012 0.206±006

0.1 0.739±015 0.420±004 - 0.762±016 0.619±014 0.214±007

Table 11: Effect of hyper-parameters of ours (A) on the (Aberman et al., 2020) and (Xia et al., 2015) test
sets. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore refers to the
second best. (S) and (U) denote supervised and unsupervised setting. For (S), we present results of label-based
stylization; and for (U), we present motion-based stylization.

Effect of λhsa. Homo-style alignment ensures the style space of the sub-clips from one motion se-
quence to be close to each other; it is an important self-supervised signal in our approach. Increasing
the weight of homo-style commonly helps style modeling (style accuracy) and content preservation
(content accuracy, FID), which however also comes with lower diversity. A common observation is
that the performance on style and content always contradicts with the diversity. It could be possibly
attributed to the inherently limited diversity in our training dataset (Aberman et al., 2020), which is
collected by one person performing several styles.

Effect of λkl. λkl weighs how much the overall style space aligns with the prior distribution
N (0, I). Smaller λkl usually increases the capacity of the model exploiting styles, which on the
other hand deteriorate the performance on content maintenance and diversity.

Effect of λcyc. Cycle reconstruction constraint plays an important role in unsupervised setting.
In supervised setting, strong cycle reconstruction constraint is detrimental to style modeling. In
contrast, while learning unsupervisedly, strengthening the cycle constraint enhances the performance
on style transferring, and at the same time compromises the preservation of content.

λl1 λsms
(Aberman et al., 2020) (Xia et al., 2015)

MPJPE (Recon)↓ Style Acc↑ Style FID↓ MPJPE (Recon)↓ Style Acc↑ Content Acc↑ Content FID↓
0.001 0.001 39.4 0.945±007 0.020±002 62.5 0.926±008 0.674±011 0.189±005

0.1 0.1 360.1 0.862±010 0.041±004 431.8 0.804±011 0.589±012 0.276±007

0.01 0.01 180.4 0.873±010 0.041±004 250.5 0.830±009 0.656±012 0.244±007

0.0001 0.0001 77.6 0.857±010 0.042±003 130.9 0.901±011 0.661±013 0.239±007

Table 12: Effect of hyper-parameters of autoencoder on the (Aberman et al., 2020) and (Xia et al., 2015) test
sets. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore refers to the
second best. Results of motion-based stylization in supervised setting are presented. MPJPE is measured in
millimeter.

Effect of Autoencoder Hyper-Parameters. In Tab. 12, we investigate the impact of autoen-
coder hyper-parameters (λl1 and λsms) on both motion reconstruction and stylization performance.
Specifically, λl1 encourages sparsity in latent features, while λsms enforces the smoothness of
temporal features. Through experimentation, we identify an optimal set of hyper-parameters with
λl1 = 0.001 and λsms = 0.001, which yields optimal performance in both reconstruction and styl-
ization tasks. Notably, imposing excessive penalties on smoothness and sparsity proves detrimental
to the model’s capabilities, resulting in lower reconstruction quality. Additionally, we observe a
substantial correlation between reconstruction and stylization performance, indicating that better
reconstruction often translates to improved stylization.
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D IMPLEMENTATION DETAILS

Our models are implemented by Pytorch. Motion encoder E and decoder D consists of 2 1-D convo-
lution layers; global motion regressor is a 3-layer 1D convolution network. The content encoder Ec

and style encoder Es are also downsampling convolutional networks, where style encoder contains
a average pooling layer before the output dense layer. The spatial dimensions of content and style
code are both 512. Detailed model architecture is provided in Figs. 9 and 10. The values of λl

kld, λl1

and λsms are all set to 0.001, and dimension Dz of z is 512. During training our latent stylization
network, the value of λhsa, λcyc and λkl are (1, 0.1, 0.1) and (0.1, 1, 0.01) in supervised setting and
unsupervised setting, respectively.

D.1 MODEL STRUCTURE

The detailed architectures of our motion latent auto-encoder and motion latent stylization model
are illustrated in Figure 9 and Figure 10 respectively, where ”w/o N”, ”IN” and ”AdaIN” re-
fer to without-Normalization, Instance Normalization and Adaptive Instance Normalization oper-
ations (Huang & Belongie, 2017). Dropout and Activation layer are omitted for simplicity.

D.2 DATA PROCESSING

We mostly adopt the pose processing procedure in (Guo et al., 2022a). In short, a single pose is
represented by a tuple of root angular velocity, root linear velocity, root height, local joint positions,
velocities, 6D rotations (Zhou et al., 2019) and foot contact labels, resulting in 260-D pose represen-
tation. Meanwhile, all data is downsampled to 30 FPS, augmented by mirroring, and applied with
Z-nomalization.
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512 512 512 384 256
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T=160
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Figure 9: Detailed architecture of our VAE based motion latent model. The AE based latent model
keeps only one convolution branch before the latent space. All convolutions, except the last layer of
encoder, decoder and generator, use kernel size of 3.

D.3 BASELINE IMPLEMENTATION

For a fair comparison, we adapt the baseline models with minimal changes from their official imple-
mentations, training them on the same data splits. More specifically, without violating their design
of input representation and networks, all the re-implemented baseline methods strictly load the same
preprocessed data for training.

(Aberman et al., 2020). Due to the intentional dual representations for style and content inputs in
(Aberman et al., 2020), we make some modifications in the dataloader. We first recover the raw 21-
joints structural motion data from the preprocessed data, and convert them into 84-D rotation-based
content feature along with 4-D global motion, and 63-D position-based style feature, using their
motion parsing function. In addition, we modified the channels of network input/output layers to fit
the adapted data. Since our experiments solely consider style from 3-D motions, we disable the 2-D
branch as well as the related loss functions. However, we suffer from extremely unstable training
process and poor results using the same hyper-parameters. It may result from the length extension
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Figure 10: Detailed architecture of our motion latent stylization model in supervised setting. In
unsupervised setting, the style label input is dropped. All convolutions, except the last layer of
encoders and generator, use kernel size of 3.

of motion sequence (now 160 vs original 32) and inherent flaws of GANs (Zhu et al., 2017; Karras
et al., 2019). Thus, empirically, we lower the coefficient for adversarial loss αadv from 1 to 0.5, and
update the frequency of discriminator training from 1 per-iteration to 0.2 per-iteration.

Figure 11: User study interface on Amazon Mechanical Turk.

(Park et al., 2021). We extract 63-D joint position feature and 126-D joint rotation feature from
our preprocessed data, catering for the designated dataloader in (Park et al., 2021). Meanwhile,
we replace the original 4-D quaternion with the equally functional 6-D rotation (Zhou et al., 2019)
without any loss of capability. Their model design is limited to fixed motion length, due to the un-
scalable linear layer. Therefore, during evaluation on (Xia et al., 2015) test set, we duplicate the
sequence to meet the 160-length setting and then extract the corresponding result from the output.

(Jang et al., 2022) takes the motion representation building from per-joint’s 6-D position-based fea-
ture (i.e. position, velocity) and 6-D rotation-based feature (i.e. upward direction, forward direction)
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which is almost coherent with our preprocessed data. Thus, we directly re-organize our data to serve
the baseline (Jang et al., 2022), keeping everything else unchanged.

E EVALUATION METRIC

Why certain metrics are not used across all datasets? Given our latent stylization models are
trained on (Aberman et al., 2020), CMU Mocap (CMU) and (Xia et al., 2015) aims to emphasize
zero-shot performance on Style Precision and Content Preservation respectively. Style classifier is
trained on (Aberman et al., 2020), where all style motions come from. Compared to (Aberman
et al., 2020) and CMU Mocap, (Xia et al., 2015) is quite small (570 clips), comprising variable-
length short motions (< 3s). Style FID isn’t computed for (Xia et al., 2015) due to substantial length
differences between the style motion (from (Aberman et al., 2020), 5.3s) and output motion (< 3s).
Content classifier is trained only on (Xia et al., 2015) to evaluate the Content Preservation as content
labels are only available on this dataset. Since there is no evidence that this content classifier can
generalize to other datasets, we only use it for (Xia et al., 2015).

F USER STUDY

The interface of the user study on Amazon Mechanical Turk for our experiments is shown in Fig-
ure 11. Since motion style is not as obvious as other qualitative attributes for common users, to
simplify the study, we only compare one baseline result with ours each time. Moreover, for intro-
duction, we briefly explain the concept of motion stylization, presenting the content motion as well
as style motion for reference. Users are instructed to choose their preferred results over two gener-
ated stylization results based on judgement on naturalism, content preservation and style visibility.
This study only involves users that are recognized as master by AMT.

G INTERPOLATION

We present the results of interpolation in the respective style spaces learned unsupervisedly
Fig. 12(a) and supervisedly Fig. 12(b). We are able to interpolate between styles from different
labels in unsupervised setting. Specifically, two style codes are extracted from sneaky motion and
heavy motion respectively. Then we mix these two style codes through linear interpolation, and
apply them to stylize the given content motion. In supervised setting, the generator is conditioned
on a specific style label. Here, we interpolate styles between two random style codes sampled from
the prior distribution N (0, I). Stylization results are produced conditioned a common style label,
heavy. From Figure 12, we can observe the smooth transitions along the interpolation trajectory of
two different style codes. Please refer to our supplementary video for better visualization.

(a) Cross-style Interpolation

(b) Homo-style Interpolation

Figure 12: Style Interpolation. (a)
Cross-style interpolation in unsupervis-
edly learned style space. Styles are
interpolated between style codes of
sneaky (left) and heavy (right) motions.
(b) Homo-style interpolation in super-
visedly learned style space. With style
label heavy as condition input, styles are
interpolated between two style codes
that randomly sampled from N (0, I).
One key pose for each motion is dis-
played.

19



Published as a conference paper at ICLR 2024

Figure 13: Failure cases.
Top row shows content
motion; bottom row shows
our corresponding results.
Stylization results of
breaking dance motion
(left) and push-up motion
(right) using happy style
label are displayed.

H LIMITATIONS AND FAILURE CASES

Firstly, our model may encounter difficulties when the input motion substantially deviates from
our training data. Figure 13 presents two failed stylization results on rare content actions, i.e.,
breaking dance and push-up. Given that our model has only seen standing motions during training,
it commonly fails to reserve the lower-body movements in these two cases. Interestingly, our model
can still retain the general motions of upper-body.

Secondly, the underlying reason for different performance of ours(V) and ours(A) on for example,
diversity, style and content accuracy, remains unclear.

Lastly, certain styles are inherently linked to specific content characteristics, particularly within the
datasets of (Aberman et al., 2020; Xia et al., 2015). For instance, styles like old, depressed and lazy
typically relate to slow motions, while happy, hurried, angry motions tend to be fast. As our styl-
ization process aims to preserve content information, including speed, there could be contradictions
with these style attributes. For instance, stylizing an slow motion with a hurried style might not yield
an outcome resembling a hurried motion. We acknowledge this aspect for potential exploration in
future studies.
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