
TRITONBENCH: Benchmarking Large Language Model Capabilities for
Generating Triton Operators

Anonymous ACL submission

Abstract

Triton, a high-level Python-like language de-001
signed for building efficient GPU kernels, is002
widely adopted in deep learning frameworks003
due to its portability, flexibility, and accessi-004
bility. However, programming and parallel op-005
timization still require considerable trial and006
error from Triton developers. Despite advances007
in large language models (LLMs) for conven-008
tional code generation, these models struggle009
to generate accurate, performance-optimized010
Triton code, as they lack awareness of its speci-011
fications and the complexities of GPU program-012
ming. More critically, there is an urgent need013
for systematic evaluations tailored to Triton. In014
this work, we introduce TRITONBENCH, the015
first comprehensive benchmark for Triton oper-016
ator generation. TRITONBENCH features two017
evaluation channels: a curated set of 184 real-018
world operators from GitHub and a collection019
of operators aligned with PyTorch interfaces.020
Unlike conventional code benchmarks priori-021
tizing functional correctness, TRITONBENCH022
also profiles efficiency performance on widely023
deployed GPUs aligned with industry applica-024
tions. Our study reveals that current state-of-025
the-art code LLMs struggle to generate efficient026
Triton operators, highlighting a significant gap027
in high-performance code generation.028

1 Introduction029

Triton (Tillet et al., 2019) language, a high-level030

Python-like programming language designed for031

implementing efficient GPU kernels, is playing an032

increasingly pivotal role in the ever-scaling deep033

learning ecosystems (Abadi et al., 2016; Paszke034

et al., 2019). Due to the superior portability, flex-035

ibility, lightweight design, and accessibility to036

less proficient programmers, Triton is prevalently037

adopted in modern Large Language Model (LLM)038

frameworks such as vLLM (Kwon et al., 2023),039

LightLLM (ModelTC, 2025), Liger-kernel (Hsu040

et al., 2024) and unsloth (Daniel Han and team,041

2023). However, crafting high-performance oper- 042

ators remains challenging, especially for the intri- 043

cate balance between memory hierarchy manage- 044

ment, parallel thread coordination, and hardware- 045

specific optimizations. Even though Triton ab- 046

stracts away many complexities of low-level pro- 047

gramming architectures like CUDA, it still requires 048

developers to manually handle critical aspects such 049

as pointer arithmetic and memory access patterns, 050

making performance tuning a labor-intensive pro- 051

cess that often involves extensive trial and error. 052

Current research in AI-assisted coding has 053

reached a human-competitive level (Hui et al., 054

2024; Zhu et al., 2024), yet it is primarily restricted 055

to general-purpose languages like Python. How- 056

ever, LLMs still face challenges in generating Do- 057

main Specific Language (DSL) code. Specifically 058

for Triton, current models might be unfamiliar with 059

Triton specification and the intricacies of GPU pro- 060

gramming (Nichols et al., 2024). Most importantly, 061

the ability of these models to produce high-quality 062

Triton code remains unassessed. Therefore, a high- 063

quality benchmark paired with performance-aware 064

metrics is urgently required. 065

In this study, we present TRITONBENCH, a 066

performance-aware benchmark framework for Tri- 067

ton generation, which contains two channels, 068

namely TRITONBENCH-G and TRITONBENCH- 069

T. Specifically, TRITONBENCH-G contains 184 070

carefully curated operators from existing GitHub 071

repositories, reflecting the realistic demand for 072

Triton operator development. As a complement, 073

TRITONBENCH-T is composed of operator de- 074

velopment tasks aligned with PyTorch interfaces, 075

covering operators under-represented by public 076

sources. Moreover, unlike the majority of code 077

benchmarks merely prioritizing functional correct- 078

ness (Chen et al., 2021; Austin et al., 2021a), TRI- 079

TONBENCH emphasizes efficiency performance 080

profiling against reference programs on NVIDIA 081

GPUs, better aligning industrial demands. 082

1

TRITONBENCH-T

Evaluation

CodeBLEU

Construction

Call Execution

Accuracy

Speed Up

Performance

GPU Efficiency

Generated OperatorReference Operator

Collection

Operator

Statis Sample

Fusing

Uncommon

Common

…

TRITONBENCH-G

GPU

Runtime

Quality

Rating

Instruction

Test Code Operator

Crawl ExtractFilter

Collection

Output

Output

Instruction

Test Code

@triton.jit

def add_kernel(x_ptr, …)

...

def add_wrapper(x, y)

...

Similarity
@triton.jit

def add_kernel(x_p, …)

...

def add_wrapper(x, y)

...

Figure 1: Illustration of the construction and evaluation of TRITONBENCH.

As shown in Figure 1, for TRITONBENCH-083

G, we follow three steps: 1) scrape and collect084

high-quality operators, 2) generate instructions via085

prompts, and 3) annotate test code with LLMs.086

Moreover, HPC experts evaluate GPU performance087

for all triton codes. For TRITONBENCH-T, we088

provide operator generation tasks aligned with Py-089

Torch. To construct these tasks, we first perform a090

frequency analysis to select torch operators, com-091

bine them into diverse sets, and provide paired092

instructions and test code. Our evaluation met-093

rics include similarity, call and execution accuracy,094

speed up, and GPU efficiency.095

We conduct extensive experiments across a096

broad range of LLMs. Overall, the difficulty097

of TRITONBENCH-G is greater than that of098

TRITONBENCH-T. The highest execution accuracy099

on TRITONBENCH-G can reach 23.91%, while100

on TRITONBENCH-T, it can reach 53.01%. For101

all correctly executed operators generated by the102

models, the best speed up on TRITONBENCH-G103

is 1.56×, whereas, on TRITONBENCH-T, it is104

1.91×. Additionally, we perform in-depth analyses105

of LLMs’ behavior on TRITONBENCH and summa-106

rize the challenges in Triton generation. The results107

reveal that current LLMs are not yet fully capable108

of handling TRITONBENCH, underscoring the chal-109

lenge of enabling LLMs to generate Triton code110

effectively. We hope this work initiates evaluation111

in this under-explored area and fosters advance-112

ments in LLM-driven operator development.113

2 Related Work114

2.1 Triton Development115

Triton (Mitkov et al., 2021) is an open-source,116

Python-like language and a compiler designed to117

simplify GPU programming in AI and HPC. It 118

abstracts the complexities of CUDA by introduc- 119

ing a block-based programming model, automat- 120

ing low-level optimizations such as memory coa- 121

lescing and tensor core utilization, and making it 122

more accessible to researchers without HPC back- 123

ground. Nonetheless, Triton provides explicit con- 124

trol over memory access patterns and parallelism. 125

This balance of productivity and flexibility makes 126

it prevalently adopted in both academia and indus- 127

try (Kwon et al., 2023; ModelTC, 2025; Hsu et al., 128

2024; Daniel Han and team, 2023). However, Tri- 129

ton developers must still laboriously tune critical 130

parameters to exploit hardware capabilities. LLM 131

code generation poses prospects for automating 132

Triton development, which calls for a systematic 133

evaluation of generated operators. 134

2.2 Code Benchmarks 135

The demand for proper measurement of coding ca- 136

pability arises as the program synthesis research 137

advances. The primary practice of coding bench- 138

marks is functional correctness testing, usually re- 139

alized by test case construction and sandbox exe- 140

cution. For example, HUMANEVAL (Belz et al., 141

2021) curate hand-written programs and test cases, 142

and MBPP (Austin et al., 2021b) create program- 143

ming problems by crowd-sourcing. The function- 144

ality test has recently extended to automated test 145

generation for better coverage (Liu et al., 2023) 146

and broader applications, including software en- 147

gineering (Jimenez et al., 2024). Another vital 148

aspect of coding benchmarking is performance 149

profiling (Shypula et al.; Liu et al., 2023; Huang 150

et al., 2024; Qiu et al., 2024). However, most 151

existing frameworks focus on competition-style, 152

single-process execution. While there are some 153

2

frameworks for evaluating parallel programming154

on CPUs (Nichols et al., 2024; Chaturvedi et al.,155

2024), benchmarks targeting GPU code remain156

scarce. As the deployment of deep learning models157

scales up, a comprehensive evaluation framework158

that considers both correctness and performance on159

GPU code becomes increasingly necessary.160

2.3 LLMs for Code Generation161

LLMs have recently demonstrated impressive ca-162

pabilities in generating code from natural lan-163

guage instructions, as evidenced by models such164

as DeepSeek-Coder (Guo et al., 2024; Zhu et al.,165

2024) and Qwen-Coder (Hui et al., 2024), which166

have achieved strong performance on broad coding167

benchmarks. Despite their versatility, they often168

struggle with Domain-Specific Languages (DSLs)169

designed for higher levels of abstraction and im-170

proved efficiency in targeted contexts (Wąsowski171

and Berger, 2023). The main reason for this sta-172

tus is the limited availability of DSL datasets and173

benchmarks (Cassano et al., 2024; Pujar et al.,174

2023), coupled with their unique syntax and se-175

mantics (Pujar et al., 2023), posing significant chal-176

lenges for LLMs (Buscemi, 2023). In this work,177

we focus on DSLs within the high-performance178

computing domain where the challenges we men-179

tioned are more pronounced for involving the par-180

allel programming model. We introduce the first181

comprehensive benchmark for Triton generation,182

providing a systematic evaluation framework that183

aims to guide future improvements in DSL-centric184

LLM code generation.185

3 TRITONBENCH-G186

Triton (Tillet et al., 2019) is a DSL that abstracts187

away low-level complexities to simplify GPU pro-188

gramming for computation-intensive tasks, with189

flexibility for specialized applications like machine190

learning. Typically, a Triton operator includes at191

least a kernel and a wrapper. The kernel comprises192

code executed on the GPU, focusing on tensor ele-193

ment addressing and thread parallel coordination.194

Meanwhile, the wrapper offers a Python function195

that encapsulates the kernel call. Figure 2 shows196

an example of Triton operator.197

We create TRITONBENCH-G by curating high-198

quality human-authored Triton operators from199

Github, which reflects Triton’s currently actual re-200

quirements. The following sections will explain201

data collection (§ 3.1), data statistics (§ 3.2), opera-202

Figure 2: Implementation of the Triton “add” operator.
Lines 3-6 perform for tensor element addressing, fol-
lowed by the calculation and storage in lines 7-10. The
kernel is called in wrapper line 15.

tor quality rating (§ 3.3), test code design (§ 3.4), 203

and evaluation metrics (§ 3.5). 204

3.1 Data Collection 205

Our process starts by gathering Triton-related 206

GitHub repositories with more than 100 stars, 207

which collectively encompass 95 repositories with 208

845 Python files. As Triton repositories with higher 209

star counts are rare, 100 stars serve as an optimal 210

threshold, striking a balance between quality and 211

quantity. We then use prompt-based filtering (see 212

prompt D in the Appendix) to process the candidate 213

Python files and select 250 that specifically contain 214

Triton code snippets. 215

Afterward, we perform a rigorous manual in- 216

spection of the Triton code to ensure its accuracy 217

and clarity. This process involves filling in miss- 218

ing components, removing redundant sections, and 219

debugging the operators. When a file contains mul- 220

tiple independent Triton operators, we split them 221

into separate files. For operators that are solely ker- 222

nels, we add the necessary wrappers to ensure they 223

work as intended. Additionally, to ensure unique- 224

ness, we leverage CODEBERTSCORE (Zhou et al., 225

2023) to eliminate duplicates. 226

Finally, we generate the LLM instruction for 227

each operator based on prompt D. The instructions 228

provide essential details, including the operator’s 229

functionality, corresponding function names, and 230

a comprehensive input/output demonstration. All 231

instructions are carefully reviewed and manually 232

verified to ensure they correctly reflect the intended 233

behavior of each operator. 234

3

Difficulty Instruction Triton Operator

tok# func# params# line# tok#

d1 (1.6%) 296.67 2.00 1.33 26.00 369.0
d2 (14.7%) 363.26 2.41 2.70 45.56 678.1
d3 (35.3%) 353.80 3.80 3.34 102.42 1510.4
d4 (45.7%) 394.48 3.89 6.04 153.77 2689.1
d5 (2.7%) 469.60 6.60 6.00 249.80 4581.4

Table 1: Statistics of TRITONBENCH-G.

3.2 Data Statistics235

Table 1 summarizes statistics of TRITONBENCH-236

G. In this benchmark, each operator is assigned237

a difficulty level, from d1 (easiest) to d5 (most238

challenging), by an LLM guided by prompt D,239

with subsequent manual verification by two do-240

main experts. For each difficulty level, we report241

statistics including the average number of func-242

tions (func#), parameters (params#), lines (lines#),243

and tokens (tok#). Notably, the upward trend ob-244

served in these statistics as the difficulty level in-245

creases suggests the expert-driven grading scheme246

is largely reasonable.247

Compared to existing code generation tasks248

(Chen et al., 2021; Austin et al., 2021a), the av-249

erage instruction length in TRITONBENCH-G is250

substantially longer, which is a deliberate design251

decision. The extended instructions provide richer252

context, which can help the model understand nu-253

anced requirements and generate high-quality op-254

erators. Additionally, this approach better reflects255

real-world operator development practices where256

detailed requirements are indispensable.257

3.3 Operators Quality Rating258

To systematically evaluate the quality of the Triton259

operators in TRITONBENCH-G, we compute the260

GPU efficiency for each operator. Detailed method-261

ology for calculating GPU efficiency can be found262

in Appendix B. Our statistics indicate an average263

GPU efficiency of 43.0%, which reflects the over-264

all reliability of the operators in TRITONBENCH-G.265

The distribution of efficiency scores is shown in266

Figure 3. As shown in the figure, 19.6% of opera-267

tors developed by professional Triton programmers268

have GPU performance below 10%, which under-269

scores the challenges in developing and optimizing270

Triton operators.271

3.4 Test Code Design272

In contrast to traditional CPU-language bench-273

marks (Shypula et al.; Liu et al., 2023; Huang et al.,274

27.7%

16.3%

17.4%

19.0%
19.6%

>70
50-70
30-50
10-30
<10

Figure 3: Distribution of GPU efficiency of the Triton
operators in TRITONBENCH-G.

2024; Qiu et al., 2024) that predominantly rely on 275

scalar test inputs,TRITONBENCH-G is built around 276

tensor-based test inputs. We employ PyTorch to 277

generate random tensors as replacements for con- 278

ventional test cases. Specifically, we leverage a 279

prompt D to generate the corresponding test code 280

for each operator. In the case of the multi-branch 281

operators, the generated test code is designed to 282

invoke every branch within the operator. More- 283

over, we rigorously debug all branches to guarantee 284

test reliability. On average, we generate 3.6 test 285

branches per operator. 286

3.5 Evaluation Metrics 287

In contrast to traditional code evaluations, which 288

mainly emphasize accuracy (Chen et al., 2021; 289

Austin et al., 2021a), our TRITONBENCH-G intro- 290

duces dedicated performance evaluations. Specifi- 291

cally, the systematic evaluation of Triton operators 292

covers five key metrics: 293

Similarity assesses text-level resemblance us- 294

ing CODEBLEU (Ren et al., 2020). In our experi- 295

ments, we assign equal weights of 0.25 to N-gram, 296

weighted N-gram, syntax, and dataflow compo- 297

nents to ensure a balanced evaluation. 298

Call & Execution Accuracy assess whether 299

the code can run without error and whether its input- 300

output behavior is correct, respectively. 301

Speed Up measures the relative execution time 302

improvement for correctly executed operators. 303

Specifically, if tgen and tref represent the running 304

times of the generated and reference operators, re- 305

spectively, then SpeedUp(gen) =
tref
tgen

. 306

GPU Efficiency evaluates how effectively the 307

generated operator utilizes GPU resources, follow- 308

ing the operator quality rating in § 3.3. For further 309

details, please refer to Appendix B. 310

4

4 TRITONBENCH-T311

The real-world Triton operators introduced in § 3312

primarily focus on highly frequent operations. As313

a complement, we propose TRITONBENCH-T,314

which aligns the Triton wrapper with interfaces of315

the PyTorch library (Paszke et al., 2019). Together,316

TRITONBENCH-G and TRITONBENCH-T form a317

complementary evaluation framework. The fol-318

lowing sections elaborate on the data construction319

(§ 4.1), data statistics (§ 4.2), test code and metrics320

(§ 4.3), and benchmark comparisons (§ 4.4).321

4.1 Data Construction322

We construct TRITONBENCH-T by selecting Py-323

Torch operators based on their usage frequency in324

real-world coding and then fusing them (hereafter325

referred to simply as “operators”). First, we select326

operators that require GPU interactions, ensuring327

alignment with Triton’s scope. Next, we sample328

40 high-frequency operators and 40 low-frequency329

operators from the remaining pool. The frequency330

of each operator is determined by its usage prob-331

ability in PyTorch-related code from The Stack332

V2 (Lozhkov et al., 2024) with those exceeding a333

predefined threshold 45% as common operators.334

Subsequently, we fuse these operators in vari-335

ous configurations: combinations of common op-336

erators, combinations of common and uncommon337

operators, and combinations of uncommon oper-338

ators. All combinations are valid, as the outputs339

of preceding operators serve as appropriate inputs340

for subsequent ones. The final set includes 166341

operators, based on the latest (v2.6.0) version of342

the PyTorch library. Each operator is paired with343

its corresponding standard PyTorch call and docu-344

ment, while fused operators combine descriptions345

from all involved operators.346

4.2 Data Statistic347

The statistics of TRITONBENCH-T are presented348

in Table 2. Similar to TRITONBENCH-G, the oper-349

ators are categorized into five difficulty levels (d1350

to d5) using an LLM guided by prompt D. These351

initial categorizations are then validated through352

manual review by two domain experts.353

We report the following statistics: (1)torch-354

op# the average number of PyTorch operators,355

(2)params# the average number of parameters,356

(3)math#, the average token number of mathe-357

matical expressions, and (4)description#, the av-358

erage token count of the descriptions. These statis-359

Difficulty Torch-Align Operator

torch-op# params# math# description#

d1 (13.3%) 1.36 2.82 23.50 50.41
d2 (22.3%) 1.97 3.78 40.73 61.19
d3 (32.5%) 2.70 4.91 74.64 67.89
d4 (29.5%) 2.16 5.24 47.31 71.02
d5 (2.4%) 2.75 2.75 30.50 88.50

Table 2: Statistics of TRITONBENCH-T.

tics generally increase with the operator difficulty, 360

similar trend that aligns with the observations in 361

TRITONBENCH-G. 362

4.3 Test Code and Metrics 363

The design of the test code in TRITONBENCH-T 364

adheres to those of TRITONBENCH-G, employing 365

randomly generated tensors for operator evalua- 366

tion. For correctness and performance assessment, 367

we utilize Call Accuracy, Execution Accuracy, 368

and Speed Up, whose computation methods are 369

consistent with those used in TRITONBENCH-G. 370

4.4 Benchmark Comparison 371

This section provides comparisons between 372

TRITONBENCH-G and TRITONBENCH-T, which 373

differ in key aspects and together provide a well- 374

rounded evaluation. 375

Source & Distribution: TRITONBENCH-G is 376

collected from GitHub and reflects real-world pro- 377

gramming demands with a concentration of fre- 378

quently used operators, e.g., Attention at 20.0%, 379

MatMul at 10.9%, LayerNorm at 6.5%, SoftMax 380

at 3.8%. In contrast, TRITONBENCH-T, sourced 381

from PyTorch, presents a more diverse operator set 382

including both common and uncommon operators. 383

Instruction Generation: TRITONBENCH-G 384

combines LLM generation with expert verifi- 385

cation while TRITONBENCH-T directly extracts 386

instructions from PyTorch documentation. This 387

difference underlines their complementary roles in 388

probing different facets of the Triton generation. 389

Evaluation Metrics: Both benchmark channels 390

assess correctness and performance. Addition- 391

ally, TRITONBENCH-G incorporates a similarity- 392

based assessment that offers direct comparisons 393

with established implementations. In summary, 394

the different designs of TRITONBENCH-G and 395

TRITONBENCH-T enable a comprehensive and nu- 396

anced evaluation of Triton operator generation. 397

5

Model Size Similarity Call
Accuracy

Execution
Accuracy Speed Up GPU

Efficiency

Domain-Specific Models
Qwen2.5-Coder 7B 9.19 / 14.54 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
DeepSeek-Coder 6.7B 9.38 / 14.52 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Qwen2.5-Coder-sft 7B 29.98 / 25.96 4.89 / 10.87 4.89 / 10.87 1.56 / 1.22 51.71 / 46.70
DeepSeek-Coder-sft 6.7B 25.52 / 30.34 9.78 / 11.96 9.87 / 11.96 1.03 / 1.11 47.68 / 42.26

General-Purpose Models
GPT-4o - 9.87 / 20.67 10.87 / 17.93 10.33 / 16.84 0.97 / 1.19 48.80 / 53.33
Claude-3.5-Sonnet - 12.46 / 22.48 10.33 / 20.11 9.79 / 19.57 0.90 / 1.54 59.31 / 49.32
Qwen2.5-72B 72B 14.86 / 26.25 11.41 / 16.85 10.87 / 16.31 0.96 / 1.19 23.28 / 49.40
DeepSeek-R1 685B 19.96 / 22.64 13.59 / 22.83 13.05 / 22.83 1.11 / 1.22 44.83 / 46.70
GPT-o1 - 16.58 / 29.70 15.22 / 23.91 14.23 / 23.91 0.92 / 1.14 54.25 / 46.37

Table 3: Main results of TRITONBENCH-G across baseline models, where the left side of “/” represents the zero-shot
results and the right side represents the one-shot results.

5 Experiments398

We conduct an extensive set of experiments on TRI-399

TONBENCH to rigorously evaluate the performance400

and capabilities of current LLMs.401

5.1 Baselines and Setup402

TRITONBENCH generally requires strong capa-403

bilities in code generation. Therefore, we se-404

lect state-of-the-art LLMs that excel in program-405

ming tasks as baselines, including both specialized406

open-source models and general-purpose models.407

For specialized open-source models, we choose408

Qwen2.5-Coder-7B-Instruct (Hui et al., 2024)409

and deepseek-coder-6.7b-instruct (Guo et al.,410

2024). For general-purpose models, we in-411

clude Claude-3.5-Sonnet-06201, GPT-4o-0806412
2, qwen2.5-72B-Instruct (Yang et al., 2024), as413

well as the thought-driven models DeepSeek-R1414

(Guo et al., 2025) and GPT-o1-2024-12-17 3.415

In our experiments, all general-purpose mod-416

els are deployed for direct inference. In contrast,417

domain-specific models undergo an additional su-418

pervised fine-tuning phase. Details of the train-419

ing corpus can be found in § A. For evaluation,420

we consider both zero-shot and one-shot scenar-421

ios. In the one-shot setting, a BM25-based retrieval422

method (Robertson et al., 2009) is utilized to select423

the most relevant prompt from the training corpus.424

5.2 Main results of TRITONBENCH-G425

Table 3 illustrates the performances of baselines426

on TRITONBENCH-G. It is evident that domain-427

specific models generally underperform compared428

1https://www.anthropic.com/news/claude-3-5-sonnet
2https://openai.com/index/hello-gpt-4o
3https://openai.com/o1

to general-purpose models. However, fine-tuning 429

7B domain-specific models with domain data 430

significantly boosts accuracy. Qwen’s accuracy 431

rises from 0 to 4.89%, and DeepSeek’s from 0 432

to 9.78% in zero-shot settings, with even more 433

pronounced enhancements in one-shot settings 434

due to the retrieval data from the same source 435

as TRITONBENCH-G. The observed increase in 436

Speed Up can be attributed to the relative simplicity 437

of the correctly generated operators, which makes 438

it easier for LLMs to produce efficient code. The 439

high GPU efficiency shares the similar reasons. 440

General-purpose models, particularly DeepSeek- 441

R1 and GPT-o1, excel across all metrics. Un- 442

der one-shot conditions, DeepSeek-R1 achieves 443

22.83% in Call and Execution Accuracy, while 444

GPT-o1 reaches 23.91%. The roughly 10% im- 445

provement from zero-shot to one-shot highlights 446

the critical role of high-quality examples for Triton 447

generation. Furthermore, the close alignment be- 448

tween Call Accuracy and Execution Accuracy 449

indicates that only a few operators fail to produce 450

correct results despite successfully invoked. 451

DeepSeek-R1 also leads in GPU execution times, 452

with an improvement of 1.11× in zero-shot and 453

1.22× in one-shot settings. While GPU efficiency 454

is strong across most models, Qwen2.5-72B ex- 455

hibits lower efficiency in zero-shot settings, likely 456

due to a higher proportion of less efficient opera- 457

tors. Finally, Similarity provides corroborative 458

insights, as its variations mirror trends observed in 459

other metrics. 460

5.3 Main Results of TRITONBENCH-T 461

From Table 4, we can observe that domain-specific 462

models generally underperform general-purpose 463

6

https://www.anthropic.com/news/claude-3-5-sonnet
https://openai.com/index/hello-gpt-4o
https://openai.com/o1/

Model Size Call Accuracy Execution Accuracy Speed Up

Domain-Specific Models
Qwen2.5-Coder 7B 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
DeepSeek-Coder 6.7B 0.00 / 1.81 0.00 / 1.81 0.00 / 0.94
Qwen2.5-Coder-sft 7B 17.47 / 16.27 17.47 / 15.67 0.98 / 0.92
DeepSeek-Coder-sft 6.7B 19.28 / 18.67 19.28 / 16.26 0.91 / 0.85

General-Purpose Models
GPT-4o - 36.75 / 32.53 36.75 / 32.53 0.98 / 0.94
Claude-3.5-Sonnet - 29.52 / 37.95 29.52 / 33.70 0.93 / 0.89
Qwen2.5-72B 72B 30.12 / 22.89 30.12 / 16.30 1.07 / 0.92
DeepSeek-R1 685B 53.01 / 45.78 53.01 / 45.78 1.03 / 1.91
GPT-o1 - 32.53 / 43.37 32.53 / 43.37 1.21 / 1.10

Table 4: Main results of TRITONBENCH-T across baseline models, where the left side of “/” represents the zero-shot
results and the right side represents the one-shot results.

models. Nonetheless, fine-tuning with an 8k cor-464

pus considerably improves their performance. For465

instance, Qwen’s zero-shot Execution Accuracy466

rises from 0 to 17.47%. In contrast, its one-shot467

improvement (15.67%) is slightly lower, likely468

due to the fact that the retrieved prompts and469

TRITONBENCH-T operators come from different470

sources (Github vs. Pytorch).471

Among general-purpose models, DeepSeek-472

R1 demonstrates the strongest overall perfor-473

mance, achieving 53.01% Call and Execution474

Accuracy in the zero-shot setting. Although its475

accuracy drops by 7.23% in the one-shot setting,476

it still slightly surpasses GPT-o1. As for Speed477

Up, DeepSeek-R1 achieves the best performance of478

1.91× improvements. Most performance improve-479

ments in successfully executed operators stem from480

operator fusion. Triton’s fused operators reduce481

redundant memory reads and writes compared to482

PyTorch, enhancing memory bandwidth utilization483

and boosting performance.484

Overall, most models achieve better performance485

on TRITONBENCH-T than to TRITONBENCH-G,486

likely because TRITONBENCH-T features a more487

balanced distribution of operator difficulty, whereas488

TRITONBENCH-G is predominantly composed of489

higher-difficulty operators, namely, d3 and d4.490

6 Analysis491

In this section, we examine the distribution of492

correct and incorrect operators across difficulty493

levels (d1–d5) for the top-performing models,494

DeepSeek-R1 and GPT-o1, as shown in Figure 4495

and Figure 5. Additionally, we analyze the error496

patterns of incorrect operators and summarize the497

main challenges for each benchmark as detailed in498

Table 3 and Table 4. The zero-shot and one-shot499

settings are annotated as 0 and 1 respectively. 500

6.1 Challenges for TRITONBENCH-G 501

Figure 4 clearly shows that most operators are gen- 502

erated incorrectly. Both DeepSeek-R1 and GPT- 503

o1 exhibit similar trends, with DeepSeek-R1 out- 504

performing GPT-o1. Notably, when moving from 505

the zero-shot to the one-shot setting, both models 506

achieve significant improvements on d4. These 507

improvements may stem from the prevalence of 508

Attention and Softmax operators in d4, enabling 509

models to leverage similar examples. In contrast, 510

the simpler operators in d2 and d3 show only lim- 511

ited gains in the one-shot setting, likely due to the 512

smaller, more idiosyncratic nature of these datasets 513

that leads to lower retrieval similarity. 514

For the incorrectly written operators, we classify 515

the 16 error types into 4 major categories, detailed 516

in Appendix C which is presented in Table 5. Note 517

that only compiler-reported errors were considered. 518

The results show that, compared to the zero-shot 519

setting, both DeepSeek-R1 and GPT-o1 in the one- 520

shot setting demonstrate a significant increase in 521

Syntax and Name&Ref errors but a reduction in 522

Attr&Type and Run&Logc errors. This trend sug- 523

gests that the training corpus may provide help- 524

ful guidance on logical structure and Triton spec- 525

ifications, thus enhancing overall accuracy. Fur- 526

thermore, error sensitivity differs between models: 527

DeepSeek-R1 is less susceptible to syntax errors, 528

whereas GPT-o1 handles logical errors better. 529

6.2 Challenges for TRITONBENCH-T 530

The execution results of TRITONBENCH-T (Fig- 531

ure 5) show the percentages of correctly gener- 532

ated operators. we can observe that DeepSeek-R1 533

generated more correct than incorrect operators, 534

7

d1 d2 d3 d4 d5

0.54
1.09

4.35
10.32

6.52
28.81

1.09
44.56

0.54
2.18

Failure
Success

(a) DeepSeek-R10 results.

d1 d2 d3 d4 d5

1.09
0.54

7.61
7.06

7.07
28.26

6.52
39.13

0.54
2.18

Failure
Success

(b) DeepSeek-R11 results.

d1 d2 d3 d4 d5

1.63
0.00

5.43
9.24

5.43
29.90

1.09
44.56

0.54
2.18

Failure
Success

(c) GPT-o10 results.

d1 d2 d3 d4 d5

1.63
0.00

7.61
7.06

6.52
28.81

7.61
38.04

0.00
2.72

Failure
Success

(d) GPT-o11 results.

Figure 4: Execution results distribution across difficulty
levels in TRITONBENCH-G.

Model Syntax Attr&Type Name&Ref Run&Logc

DeepSeek-R10 1.64 42.62 16.39 39.34
DeepSeek-R11 9.27 33.11 35.76 21.85
GPT-o10 10.3 38.18 28.48 23.03
GPT-o11 20.83 24.31 43.06 11.81

Table 5: Error statistics of execution failures in
TRITONBENCH-G.

which proves the point that the difficulty distri-535

butions in TRITONBENCH-T are smoother than536

TRITONBENCH-G.537

However, while DeepSeek-R1’s performance de-538

clines for difficulty d2-d4 in the one-shot setting,539

GPT-o1 shows improved accuracy on these sub-540

sets. This finding indicates that GPT-o1 might be541

more adept at logical reasoning for Triton genera-542

tion tasks, allowing it to efficiently use the provided543

sample. The differing trends also imply that sample544

operators affect models in diverse ways.545

For execution error statistics in TRITONBENCH-546

T (Table 6), DeepSeek-R1 notably avoids Syntax547

errors entirely, while GPT-o1 maintains a high548

rate of such errors. Under the one-shot setting,549

DeepSeek-R1 shows a rise in Attr&Type and550

Name&Ref errors alongside a decline in Run&Logc551

Errors. Conversely, GPT-o1 experiences a sig-552

nificant increase in Name&Ref errors with a no-553

table drop in Run&Logc errors. Comparing554

TRITONBENCH-G and TRITONBENCH-T, the one-555

shot setting consistently reduces Run&Logc errors.556

d1 d2 d3 d4 d5

7.83
5.42

9.64
12.65

15.66
16.87 18.07

11.45

1.20
1.21

Failure
Success

(a) DeepSeek-R10 results.

d1 d2 d3 d4 d5

7.83
5.42

7.83
14.46

13.25
19.28 13.86

15.66

1.20
1.21

Failure
Success

(b) DeepSeek-R11 results.

d1 d2 d3 d4 d5

7.23
6.02

6.63
15.66

9.04
23.49 8.43

21.09

1.20
1.21

Failure
Success

(c) GPT-o10 results.

d1 d2 d3 d4 d5

9.64
3.61

9.04
13.25

10.84
21.69 13.25

16.27

0.60
1.81

Failure
Success

(d) GPT-o11 results.

Figure 5: Execution results distribution across difficulty
levels in TRITONBENCH-T.

Model Syntax Attr&Type Name&Ref Run&Logc

DeepSeek-R10 0.00 31.96 14.43 53.61
DeepSeek-R11 0.00 36.79 20.75 42.45
GPT-o10 24.06 26.32 7.52 42.11
GPT-o11 25.25 25.25 22.22 27.27

Table 6: Error statistics of execution failures in
TRITONBENCH-T.

These variations in error patterns likely stem from 557

the mixed influence of useful and irrelevant infor- 558

mation in the provided samples. 559

7 Conclusion 560

In this work, we present TRITONBENCH, a dual- 561

channel benchmark specifically designed for eval- 562

uating LLMs’ generation for Triton operators. 563

TRITONBENCH-G integrates real-world Triton 564

operator samples from open repositories, while 565

TRITONBENCH-T introduces complementary tasks 566

that align with PyTorch interfaces. Our evaluation 567

framework addresses both functional accuracy and 568

the performance on NVIDIA GPUs. We also con- 569

duct extensive experiments and detailed analysis on 570

our benchmark, and find that current LLMs strug- 571

gle to generate high-quality Triton operators, un- 572

derscoring the necessity for further advancement in 573

generating accurate as well as performance-aware 574

Triton code. We anticipate TRITONBENCH will 575

serve as an essential framework for advancing au- 576

tomated operator generation for Triton. 577

8

Limitations578

The primary limitation of this study is that the eval-579

uations of TRITONBENCH were conducted exclu-580

sively on the NVIDIA A100 GPU, as it is widely581

adopted in industry and research applications. In582

future work, we plan to expand the evaluation to583

include a broader range of hardware architectures584

for more comprehensive performance insights.585

Ethics Statement586

This work adheres to ethical research practices and587

poses no potential risks. All code data used in TRI-588

TONBENCH are sourced exclusively from publicly589

available resources, including GitHub repositories590

and PyTorch documentations, ensuring no privacy591

concerns.592

References593

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng594
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,595
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,596
et al. 2016. {TensorFlow}: a system for {Large-597
Scale} machine learning. In 12th USENIX sympo-598
sium on operating systems design and implementa-599
tion (OSDI 16), pages 265–283.600

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten601
Bosma, Henryk Michalewski, David Dohan, Ellen602
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.603
2021a. Program synthesis with large language mod-604
els. ArXiv preprint, abs/2108.07732.605

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten606
Bosma, Henryk Michalewski, David Dohan, Ellen607
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.608
2021b. Program synthesis with large language mod-609
els. ArXiv preprint, abs/2108.07732.610

Anya Belz, Shubham Agarwal, Yvette Graham, Ehud611
Reiter, and Anastasia Shimorina, editors. 2021. Pro-612
ceedings of the Workshop on Human Evaluation of613
NLP Systems (HumEval). Association for Computa-614
tional Linguistics, Online.615

Alessio Buscemi. 2023. A comparative study of code616
generation using chatgpt 3.5 across 10 programming617
languages. ArXiv preprint, abs/2308.04477.618

Federico Cassano, John Gouwar, Francesca Lucchetti,619
Claire Schlesinger, Anders Freeman, Carolyn Jane620
Anderson, Molly Q Feldman, Michael Greenberg,621
Abhinav Jangda, and Arjun Guha. 2024. Knowl-622
edge transfer from high-resource to low-resource623
programming languages for code llms. Proceed-624
ings of the ACM on Programming Languages,625
8(OOPSLA2):677–708.626

Aman Chaturvedi, Daniel Nichols, Siddharth Singh, 627
and Abhinav Bhatele. 2024. Hpc-coder-v2: Study- 628
ing code llms across low-resource parallel languages. 629
ArXiv preprint, abs/2412.15178. 630

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 631
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 632
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 633
Brockman, et al. 2021. Evaluating large lan- 634
guage models trained on code. ArXiv preprint, 635
abs/2107.03374. 636

Michael Han Daniel Han and Unsloth team. 2023. Un- 637
sloth. 638

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 639
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 640
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 641
centivizing reasoning capability in llms via reinforce- 642
ment learning. ArXiv preprint, abs/2501.12948. 643

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 644
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 645
Y Wu, YK Li, et al. 2024. Deepseek-coder: When 646
the large language model meets programming-the 647
rise of code intelligence. CoRR. 648

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan 649
Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam 650
Sahni, Haowen Ning, and Yanning Chen. 2024. Liger 651
kernel: Efficient triton kernels for llm training. ArXiv 652
preprint, abs/2410.10989. 653

Dong Huang, Weiyi Shang, Yuhao Qing, Heming Cui, 654
and Jie M Zhang. 2024. Effibench: Benchmarking 655
the efficiency of automatically generated code. ArXiv 656
preprint, abs/2402.02037. 657

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 658
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 659
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder 660
technical report. ArXiv preprint, abs/2409.12186. 661

Carlos E Jimenez, John Yang, Alexander Wettig, 662
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R 663
Narasimhan. 2024. SWE-bench: Can language mod- 664
els resolve real-world github issues? In The Twelfth 665
International Conference on Learning Representa- 666
tions. 667

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 668
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 669
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 670
cient memory management for large language model 671
serving with pagedattention. In Proceedings of the 672
ACM SIGOPS 29th Symposium on Operating Systems 673
Principles. 674

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 675
ming Zhang. 2023. Is your code generated by chatgpt 676
really correct? rigorous evaluation of large language 677
models for code generation. In Advances in Neural 678
Information Processing Systems 36: Annual Confer- 679
ence on Neural Information Processing Systems 2023, 680
NeurIPS 2023, New Orleans, LA, USA, December 10 681
- 16, 2023. 682

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://aclanthology.org/2021.humeval-1.0
https://aclanthology.org/2021.humeval-1.0
https://aclanthology.org/2021.humeval-1.0
https://aclanthology.org/2021.humeval-1.0
https://aclanthology.org/2021.humeval-1.0
https://arxiv.org/abs/2308.04477
https://arxiv.org/abs/2308.04477
https://arxiv.org/abs/2308.04477
https://arxiv.org/abs/2308.04477
https://arxiv.org/abs/2308.04477
https://arxiv.org/abs/2412.15178
https://arxiv.org/abs/2412.15178
https://arxiv.org/abs/2412.15178
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-683
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,684
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,685
et al. 2024. Starcoder 2 and the stack v2: The next686
generation. ArXiv preprint, abs/2402.19173.687

Ruslan Mitkov, Vilelmini Sosoni, Julie Christine688
Giguère, Elena Murgolo, and Elizabeth Deysel, ed-689
itors. 2021. Proceedings of the Translation and In-690
terpreting Technology Online Conference. INCOMA691
Ltd., Held Online.692

ModelTC. 2025. Lightllm: A python-based llm in-693
ference and serving framework. https://github.694
com/ModelTC/lightllm.695

Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun696
Rajaram, and Abhinav Bhatele. 2024. Can large697
language models write parallel code? In Proceed-698
ings of the 33rd International Symposium on High-699
Performance Parallel and Distributed Computing,700
pages 281–294.701

Adam Paszke, Sam Gross, Francisco Massa, Adam702
Lerer, James Bradbury, Gregory Chanan, Trevor703
Killeen, Zeming Lin, Natalia Gimelshein, Luca704
Antiga, Alban Desmaison, Andreas Köpf, Edward705
Yang, Zachary DeVito, Martin Raison, Alykhan Te-706
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,707
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An708
imperative style, high-performance deep learning li-709
brary. In Advances in Neural Information Processing710
Systems 32: Annual Conference on Neural Informa-711
tion Processing Systems 2019, NeurIPS 2019, De-712
cember 8-14, 2019, Vancouver, BC, Canada, pages713
8024–8035.714

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas715
Dupuis, Burn Lewis, Sahil Suneja, Atin Sood,716
Ganesh Nalawade, Matt Jones, Alessandro Morari,717
et al. 2023. Automated code generation for informa-718
tion technology tasks in yaml through large language719
models. In 2023 60th ACM/IEEE Design Automation720
Conference (DAC), pages 1–4. IEEE.721

Ruizhong Qiu, Weiliang Will Zeng, Hanghang722
Tong, James Ezick, and Christopher Lott. 2024.723
How efficient is llm-generated code? a rigor-724
ous & high-standard benchmark. ArXiv preprint,725
abs/2406.06647.726

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,727
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio728
Blanco, and Shuai Ma. 2020. Codebleu: a method729
for automatic evaluation of code synthesis. ArXiv730
preprint, abs/2009.10297.731

Stephen Robertson, Hugo Zaragoza, et al. 2009. The732
probabilistic relevance framework: Bm25 and be-733
yond. Foundations and Trends® in Information Re-734
trieval, 3(4):333–389.735

Alexander G Shypula, Aman Madaan, Yimeng736
Zeng, Uri Alon, Jacob R Gardner, Yiming Yang,737
Milad Hashemi, Graham Neubig, Parthasarathy738

Ranganathan, Osbert Bastani, et al. Learning 739
performance-improving code edits. In The Twelfth 740
International Conference on Learning Representa- 741
tions. 742

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 743
2019. Triton: an intermediate language and com- 744
piler for tiled neural network computations. In Pro- 745
ceedings of the 3rd ACM SIGPLAN International 746
Workshop on Machine Learning and Programming 747
Languages, pages 10–19. 748

Andrzej Wąsowski and Thorsten Berger. 2023. Domain- 749
Specific Languages. Springer. 750

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 751
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 752
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 753
nical report. ArXiv preprint, abs/2412.15115. 754

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham 755
Neubig. 2023. CodeBERTScore: Evaluating code 756
generation with pretrained models of code. In Pro- 757
ceedings of the 2023 Conference on Empirical Meth- 758
ods in Natural Language Processing, pages 13921– 759
13937, Singapore. Association for Computational 760
Linguistics. 761

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, 762
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo 763
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2: 764
Breaking the barrier of closed-source models in code 765
intelligence. ArXiv preprint, abs/2406.11931. 766

A Training Corpus 767

The training corpus for supervised fine-tuning com- 768

prises two distinct components: real-world data 769

sourced from GitHub and synthetically generated 770

data produced through compiler operations. 771

The real-world data component incorporates Tri- 772

ton code extracted from GitHub repositories, which 773

undergoes basic cleaning procedures as outlined 774

in prompt D, undergoes a debugging process that 775

is less rigorous than the methodology applied to 776

TRITONBENCH-G. To prevent potential data leak- 777

age and ensure benchmark integrity, we system- 778

atically eliminate samples exhibiting high similar- 779

ity to TRITONBENCH-G entries using the CODE- 780

BERTSCORE similarity metric (Zhou et al., 2023). 781

The synthetic data component is generated us- 782

ing Ninetoothed4, a domain-specific language built 783

upon Triton that offers enhanced abstraction capa- 784

bilities. This framework facilitates the automated 785

synthesis of valid Triton code through the process- 786

ing of well-formed expressions. Each part of data 787

containing 4K samples. This combined corpus 788

4https://github.com/InfiniTensor/ninetoothed

10

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://aclanthology.org/2021.triton-1.0
https://aclanthology.org/2021.triton-1.0
https://aclanthology.org/2021.triton-1.0
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://github.com/InfiniTensor/ninetoothed

GPU

OP

Bytes

Flops

Runtime

GB/s

Tflops

GPU %

Performance
Report

Input Tensors

Figure 6: The workflow of operator performance evalu-
ation

serves as the foundational training dataset for ex-789

perimental models in one-shot learning settings.790

For all experiments, the fine-tuning process is car-791

ried out over 3 epochs with a learning rate of 5e−5.792

B Operator Performance Evaluation793

For operator performance evaluation, we refer pri-794

marily to the official examples provided by Triton5.795

We provide evaluation scripts for each operator in796

TRITONBENCH-G. Figure 6 illustrates the work-797

flow of our operator performance evaluation.798

First, we define a set of tensors with increasing799

dimensions based on the characteristics of the op-800

erator. Next, each tensor is sequentially fed into801

the operator for execution. During each execu-802

tion, we use the expert annotations for each op-803

erator to determine the total memory bandwidth804

(Bytes) and the total number of floating-point oper-805

ations (Flops) based on the input tensors. More im-806

portantly, we use the triton.testing.do_bench807

method from the official Triton library6 to measure808

the operator’s execution time on the GPU. Specifi-809

cally, we gradually increase the warm-up time and810

repetition time until the measured execution time811

stabilized, which means that most operators are812

run hundreds of thousands of times to ensure that813

the running time is measured accurately. After814

obtaining the execution time, we calculate the op-815

erator’s performance metrics by dividing the total816

memory bandwidth and the total floating-point op-817

erations by the execution time to obtain throughput818

in GB/s and Tflops, respectively. We then calculate819

the GPU efficiency by calculating the ratio of the820

measured performance metrics (GB/s and Tflops)821

to the theoretical maximum performance of the822

5https://triton-lang.org/main/getting-started/tutorials/
6https://triton-lang.org/main/pythonapi/generated/triton.testing.do_bench.html

NVIDIA A100 Tensor Core GPU. Repetition of 823

the above process for tensors of increasing sizes 824

obtains the performance metrics for each execution, 825

which collectively form the operator performance 826

report. We adopt the peak GPU efficiency from 827

the performance report as the final measure of the 828

operator’s quality. 829

By following the evaluation workflow described 830

above, we generate a detailed performance report 831

for each operator in TRITONBENCH-G. Figure 7 832

illustrates the performance curves of several com- 833

mon operators. As the input dimensions increase, 834

as can be seen from the figure, the GB/s or Tflops 835

of the operators show an upward trend, eventually 836

stabilizing. This suggests that the performance of 837

the operator reaches a bottleneck beyond a certain 838

scale, and further increases in input size result in 839

diminishing returns in performance, aligning with 840

the expected trend of operator performance. 841

C Error Categories 842

We provide the error type statistics of failure op- 843

erators in TRITONBENCH. A total of 16 error 844

types are identified in the integrated Call and Ex- 845

ecution error results. For convenience in presen- 846

tation, we categorize them into four main groups: 847

Syntax Errors: including SyntaxError and Inden- 848

tationError; Attrb&Type Errors: including At- 849

tributeError, TypeError, and NotImplementedError; 850

Name&Ref Errors: including NameError, KeyEr- 851

ror, IndexError, ModuleNotFoundError, and Im- 852

portError; Run&Logc Errors: including ValueEr- 853

ror, ZeroDivisionError, RuntimeError, Recursion- 854

Error, AssertionError, CompilationError, and Re- 855

sultsError. ResultsError refers to the inconsistency 856

between the execution results of the reference op- 857

erator and the generated operator. 858

D Prompts 859

Here are the four prompts we use in our work: 860

Filtering Prompt, Instruction Prompt, Difficulty 861

Prompt, and Test Code Prompt. Specifically, the 862

first is used to extract Triton-related code from 863

crawled code files; the second instructs the large 864

model to generate corresponding instructions based 865

on Triton code; the third prompts the large model 866

to score the difficulty of Triton operators according 867

to the standards we proposed; and the last asks the 868

large model to generate test code. 869

11

https://triton-lang.org/main/getting-started/tutorials/
https://triton-lang.org/main/python-api/generated/triton.testing.do_bench.html

104 105 106 107 108

size

0

250

500

750

1000

1250

1500

1750

GB
/s

add

200 400 600 800 1000
N

0

50

100

150

200

TF
LO

PS
bmm

101 102 103 104 105

length

0

250

500

750

1000

1250

1500

1750

GB
/s

copy

101 102 103 104 105

n_rows

0

200

400

600

800

1000

1200

1400

1600

GB
/s

cross_entropy

104 105 106 107 108

size

0

250

500

750

1000

1250

1500

1750

GB
/s

dropout

104 105 106 107 108

size

0

250

500

750

1000

1250

1500

1750

GB
/s

kldiv

101 102 103 104 105

N

0

200

400

600

800

1000

GB
/s

layernorm

500 1000 1500 2000 2500 3000 3500 4000
M

0

50

100

150

200

TF
LO

PS

matmul

102 103 104

size

0

200

400

600

800

1000

1200

1400

1600

GB
/s

rms_norm

0 100 200 300 400 500
B

450

500

550

600

650

GB
/s

rope_embedding

103 104

N

800

1000

1200

1400

1600

GB
/s

softmax

101 102 103 104 105 106

size

0

250

500

750

1000

1250

1500

1750

GB
/s

swiglu

Figure 7: Performance Curves of Common Operators

12

Filtering Prompt

{code}
Please help me select all triton kernel functions decorated with @triton.jit and all code that calls these kernels, while
only keeping the necessary imports (e.g., triton, torch) and the calling functions.

Note 1: Retain necessary comments related to the Triton code. Code can be optimized, but do not remove all kernel
code and its corresponding calls just for brevity.

Note 2: If the triton kernel is decorated with a custom or third-party decorator other than triton, discard that kernel.

Note 3: If @triton.jit appears as a string in the code or is nested within a function body, then discard it.

Note 4: If there are multiple triton kernel functions decorated with @triton.jit and their calling wrapper functions,
retain all of them, not just a subset.

1) Extract all triton operators (kernel functions decorated with @triton.jit and their calling functions) and output
them in python code format. If no triton kernel function is found, discard it.

2) Provide a concise English description of each extracted operator (including both kernel and calling code) in the
form of a python dictionary: "description": "Use triton language to..."

870

Instruction Prompt

{code}
Based on the above Triton operator code, generate a detailed description so that the large model can accurately reproduce
the corresponding kernel and wrapper function.
Be clear about the logic and main functionality of the operator, specify the function name, inputs, and outputs, and
describe any public variables clearly.
Try to describe the function’s code implementation. Ensure that the large model can reproduce the corresponding
function and parameter code based on these instructions.
Note that the output should maintain correct python syntax.

871

Test Code Prompt

{code}
Write a test code in Python for the above code. Ensure that all branch tests are in a single function starting with
“test_”, with no parameters.

Note 1: Particular attention should be paid to the fact that tensor parameters are of GPU type.

Note 2: Try to limit the number of branches to no more than 4.

Note 3: In branch tests, avoid modifying parameters that are later in the argument list with default values (especially if
they have out parameters, do not assign them).

Note 4: Store the results of all branch calculations in a dictionary, where the dictionary key is "test_case_n", with n
representing the test case number.

Note 5: Ensure that the import paths match exactly as described in the operator documentation to maintain accuracy.

Note 6: The code should run directly, without if __name__ == "__main__".

872

Difficulty Prompt

{code}
Please evaluate the complexity of the code in the following two aspects based on the requirements of the Triton operator
and score it from simple to complex on a scale from 1 to 5:
1) Memory layout complexity: Analyze the memory access pattern, including memory tiling, array transposition, address
alignment, cache utilization, and the number of global memory accesses.
2) Computation scheduling complexity: Examine instruction-level parallelism, computation-memory pipeline, thread
block design, inter-thread communication, thread branch divergence, and hardware resource utilization.
The final score is the ceiling of the average score from both aspects, and only one complexity score is output in [].

873

13

