TRITONBENCH: Benchmarking Large Language Model Capabilities for
Generating Triton Operators

Anonymous ACL submission

Abstract

Triton, a high-level Python-like language de-
signed for building efficient GPU kernels, is
widely adopted in deep learning frameworks
due to its portability, flexibility, and accessi-
bility. However, programming and parallel op-
timization still require considerable trial and
error from Triton developers. Despite advances
in large language models (LLMs) for conven-
tional code generation, these models struggle
to generate accurate, performance-optimized
Triton code, as they lack awareness of its speci-
fications and the complexities of GPU program-
ming. More critically, there is an urgent need
for systematic evaluations tailored to Triton. In
this work, we introduce TRITONBENCH, the
first comprehensive benchmark for Triton oper-
ator generation. TRITONBENCH features two
evaluation channels: a curated set of 184 real-
world operators from GitHub and a collection
of operators aligned with PyTorch interfaces.
Unlike conventional code benchmarks priori-
tizing functional correctness, TRITONBENCH
also profiles efficiency performance on widely
deployed GPUs aligned with industry applica-
tions. Our study reveals that current state-of-
the-art code LLMs struggle to generate efficient
Triton operators, highlighting a significant gap
in high-performance code generation.

1 Introduction

Triton (Tillet et al., 2019) language, a high-level
Python-like programming language designed for
implementing efficient GPU kernels, is playing an
increasingly pivotal role in the ever-scaling deep
learning ecosystems (Abadi et al., 2016; Paszke
et al., 2019). Due to the superior portability, flex-
ibility, lightweight design, and accessibility to
less proficient programmers, Triton is prevalently
adopted in modern Large Language Model (LLM)
frameworks such as vLLM (Kwon et al., 2023),
LightLLM (ModelTC, 2025), Liger-kernel (Hsu
et al., 2024) and unsloth (Daniel Han and team,

2023). However, crafting high-performance oper-
ators remains challenging, especially for the intri-
cate balance between memory hierarchy manage-
ment, parallel thread coordination, and hardware-
specific optimizations. Even though Triton ab-
stracts away many complexities of low-level pro-
gramming architectures like CUDA, it still requires
developers to manually handle critical aspects such
as pointer arithmetic and memory access patterns,
making performance tuning a labor-intensive pro-
cess that often involves extensive trial and error.

Current research in Al-assisted coding has
reached a human-competitive level (Hui et al.,
2024; Zhu et al., 2024), yet it is primarily restricted
to general-purpose languages like Python. How-
ever, LLMs still face challenges in generating Do-
main Specific Language (DSL) code. Specifically
for Triton, current models might be unfamiliar with
Triton specification and the intricacies of GPU pro-
gramming (Nichols et al., 2024). Most importantly,
the ability of these models to produce high-quality
Triton code remains unassessed. Therefore, a high-
quality benchmark paired with performance-aware
metrics is urgently required.

In this study, we present TRITONBENCH, a
performance-aware benchmark framework for Tri-
ton generation, which contains two channels,
namely TRITONBENCH-G and TRITONBENCH-
T. Specifically, TRITONBENCH-G contains 184
carefully curated operators from existing GitHub
repositories, reflecting the realistic demand for
Triton operator development. As a complement,
TRITONBENCH-T is composed of operator de-
velopment tasks aligned with PyTorch interfaces,
covering operators under-represented by public
sources. Moreover, unlike the majority of code
benchmarks merely prioritizing functional correct-
ness (Chen et al., 2021; Austin et al., 2021a), TRI-
TONBENCH emphasizes efficiency performance
profiling against reference programs on NVIDIA
GPUs, better aligning industrial demands.
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Figure 1: Ilustration of the construction and evaluation of TRITONBENCH.

As shown in Figure 1, for TRITONBENCH-
G, we follow three steps: 1) scrape and collect
high-quality operators, 2) generate instructions via
prompts, and 3) annotate test code with LLMs.
Moreover, HPC experts evaluate GPU performance
for all triton codes. For TRITONBENCH-T, we
provide operator generation tasks aligned with Py-
Torch. To construct these tasks, we first perform a
frequency analysis to select torch operators, com-
bine them into diverse sets, and provide paired
instructions and test code. Our evaluation met-
rics include similarity, call and execution accuracy,
speed up, and GPU efficiency.

We conduct extensive experiments across a
broad range of LLMs. Overall, the difficulty
of TRITONBENCH-G is greater than that of
TRITONBENCH-T. The highest execution accuracy
on TRITONBENCH-G can reach 23.91%, while
on TRITONBENCH-T, it can reach 53.01%. For
all correctly executed operators generated by the
models, the best speed up on TRITONBENCH-G
is 1.56x, whereas, on TRITONBENCH-T, it is
1.91x. Additionally, we perform in-depth analyses
of LLMs’ behavior on TRITONBENCH and summa-
rize the challenges in Triton generation. The results
reveal that current LLLMs are not yet fully capable
of handling TRITONBENCH, underscoring the chal-
lenge of enabling LLLMs to generate Triton code
effectively. We hope this work initiates evaluation
in this under-explored area and fosters advance-
ments in LLM-driven operator development.

2 Related Work

2.1 Triton Development

Triton (Mitkov et al., 2021) is an open-source,
Python-like language and a compiler designed to

simplify GPU programming in Al and HPC. It
abstracts the complexities of CUDA by introduc-
ing a block-based programming model, automat-
ing low-level optimizations such as memory coa-
lescing and tensor core utilization, and making it
more accessible to researchers without HPC back-
ground. Nonetheless, Triton provides explicit con-
trol over memory access patterns and parallelism.
This balance of productivity and flexibility makes
it prevalently adopted in both academia and indus-
try (Kwon et al., 2023; ModelTC, 2025; Hsu et al.,
2024; Daniel Han and team, 2023). However, Tri-
ton developers must still laboriously tune critical
parameters to exploit hardware capabilities. LLM
code generation poses prospects for automating
Triton development, which calls for a systematic
evaluation of generated operators.

2.2 Code Benchmarks

The demand for proper measurement of coding ca-
pability arises as the program synthesis research
advances. The primary practice of coding bench-
marks is functional correctness testing, usually re-
alized by test case construction and sandbox exe-
cution. For example, HUMANEVAL (Belz et al.,
2021) curate hand-written programs and test cases,
and MBPP (Austin et al., 2021b) create program-
ming problems by crowd-sourcing. The function-
ality test has recently extended to automated test
generation for better coverage (Liu et al., 2023)
and broader applications, including software en-
gineering (Jimenez et al., 2024). Another vital
aspect of coding benchmarking is performance
profiling (Shypula et al.; Liu et al., 2023; Huang
et al., 2024; Qiu et al., 2024). However, most
existing frameworks focus on competition-style,
single-process execution. While there are some



frameworks for evaluating parallel programming
on CPUs (Nichols et al., 2024; Chaturvedi et al.,
2024), benchmarks targeting GPU code remain
scarce. As the deployment of deep learning models
scales up, a comprehensive evaluation framework
that considers both correctness and performance on
GPU code becomes increasingly necessary.

2.3 LLMs for Code Generation

LLMs have recently demonstrated impressive ca-
pabilities in generating code from natural lan-
guage instructions, as evidenced by models such
as DeepSeek-Coder (Guo et al., 2024; Zhu et al.,
2024) and Qwen-Coder (Hui et al., 2024), which
have achieved strong performance on broad coding
benchmarks. Despite their versatility, they often
struggle with Domain-Specific Languages (DSLs)
designed for higher levels of abstraction and im-
proved efficiency in targeted contexts (Wasowski
and Berger, 2023). The main reason for this sta-
tus is the limited availability of DSL datasets and
benchmarks (Cassano et al., 2024; Pujar et al.,
2023), coupled with their unique syntax and se-
mantics (Pujar et al., 2023), posing significant chal-
lenges for LLMs (Buscemi, 2023). In this work,
we focus on DSLs within the high-performance
computing domain where the challenges we men-
tioned are more pronounced for involving the par-
allel programming model. We introduce the first
comprehensive benchmark for Triton generation,
providing a systematic evaluation framework that
aims to guide future improvements in DSL-centric
LLM code generation.

3 TRITONBENCH-G

Triton (Tillet et al., 2019) is a DSL that abstracts
away low-level complexities to simplify GPU pro-
gramming for computation-intensive tasks, with
flexibility for specialized applications like machine
learning. Typically, a Triton operator includes at
least a kernel and a wrapper. The kernel comprises
code executed on the GPU, focusing on tensor ele-
ment addressing and thread parallel coordination.
Meanwhile, the wrapper offers a Python function
that encapsulates the kernel call. Figure 2 shows
an example of Triton operator.

We create TRITONBENCH-G by curating high-
quality human-authored Triton operators from
Github, which reflects Triton’s currently actual re-
quirements. The following sections will explain
data collection (§ 3.1), data statistics (§ 3.2), opera-

)
def add_kernel(x_ptr, y_ptr, output_ptr, n_elements
BLOCK_SIZE

pid = tl.program_id(axis=0

block_start = pid * BLOCK_SIZE

offsets = block_start + tl.arange(®, BLOCK_SIZE

mask = offsets < n_elements

x = tl.load(x_ptr + offsets, mask=mask

y = tl.load(y_ptr + offsets, mask=mask

output = x + y

tl.store(output_ptr + offsets, output, mask=mask

def add(x: torch.Tensor, y: torch.Tensor

output = torch.empty_like(x

n_elements = output.numel

grid = lambda meta: (triton.cdiv(n_elements, metal[’
BLOCK_SIZE'

add_kernel[grid|(x, y, output
ZE=1024

return output

n_elements, BLOCK_SI

Figure 2: Implementation of the Triton “add” operator.
Lines 3-6 perform for tensor element addressing, fol-
lowed by the calculation and storage in lines 7-10. The
kernel is called in wrapper line 15.

tor quality rating (§ 3.3), test code design (§ 3.4),
and evaluation metrics (§ 3.5).

3.1 Data Collection

Our process starts by gathering Triton-related
GitHub repositories with more than 100 stars,
which collectively encompass 95 repositories with
845 Python files. As Triton repositories with higher
star counts are rare, 100 stars serve as an optimal
threshold, striking a balance between quality and
quantity. We then use prompt-based filtering (see
prompt D in the Appendix) to process the candidate
Python files and select 250 that specifically contain
Triton code snippets.

Afterward, we perform a rigorous manual in-
spection of the Triton code to ensure its accuracy
and clarity. This process involves filling in miss-
ing components, removing redundant sections, and
debugging the operators. When a file contains mul-
tiple independent Triton operators, we split them
into separate files. For operators that are solely ker-
nels, we add the necessary wrappers to ensure they
work as intended. Additionally, to ensure unique-
ness, we leverage CODEBERTSCORE (Zhou et al.,
2023) to eliminate duplicates.

Finally, we generate the LLM instruction for
each operator based on prompt D. The instructions
provide essential details, including the operator’s
functionality, corresponding function names, and
a comprehensive input/output demonstration. All
instructions are carefully reviewed and manually
verified to ensure they correctly reflect the intended
behavior of each operator.



Instruction Triton Operator

Difficulty

tok# func# params# line# tok#
d1 (1.6%) 296.67 2.00 1.33 26.00  369.0
d2 (14.7%) 363.26 2.41 2.70 45.56  678.1
d3 (35.3%) 353.80 3.80 3.34 102.42 1510.4
d4 (45.7%) 394.48 3.89 6.04 153.77  2689.1
d5 (2.7%) 469.60 6.60 6.00 249.80 4581.4

Table 1: Statistics of TRITONBENCH-G.

3.2 Data Statistics

Table 1 summarizes statistics of TRITONBENCH-
G. In this benchmark, each operator is assigned
a difficulty level, from d1 (easiest) to d5 (most
challenging), by an LLM guided by prompt D,
with subsequent manual verification by two do-
main experts. For each difficulty level, we report
statistics including the average number of func-
tions (func#), parameters (params#), lines (lines#),
and tokens (tok#). Notably, the upward trend ob-
served in these statistics as the difficulty level in-
creases suggests the expert-driven grading scheme
is largely reasonable.

Compared to existing code generation tasks
(Chen et al., 2021; Austin et al., 2021a), the av-
erage instruction length in TRITONBENCH-G is
substantially longer, which is a deliberate design
decision. The extended instructions provide richer
context, which can help the model understand nu-
anced requirements and generate high-quality op-
erators. Additionally, this approach better reflects
real-world operator development practices where
detailed requirements are indispensable.

3.3 Operators Quality Rating

To systematically evaluate the quality of the Triton
operators in TRITONBENCH-G, we compute the
GPU efficiency for each operator. Detailed method-
ology for calculating GPU efficiency can be found
in Appendix B. Our statistics indicate an average
GPU efficiency of 43.0%, which reflects the over-
all reliability of the operators in TRITONBENCH-G.
The distribution of efficiency scores is shown in
Figure 3. As shown in the figure, 19.6% of opera-
tors developed by professional Triton programmers
have GPU performance below 10%, which under-
scores the challenges in developing and optimizing
Triton operators.

3.4 Test Code Design

In contrast to traditional CPU-language bench-
marks (Shypula et al.; Liu et al., 2023; Huang et al.,

19.6%
19.0%

s >70

= 50-70
30-50
10-30
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Figure 3: Distribution of GPU efficiency of the Triton
operators in TRITONBENCH-G.

2024; Qiu et al., 2024) that predominantly rely on
scalar test inputs, TRITONBENCH-G is built around
tensor-based test inputs. We employ PyTorch to
generate random tensors as replacements for con-
ventional test cases. Specifically, we leverage a
prompt D to generate the corresponding test code
for each operator. In the case of the multi-branch
operators, the generated test code is designed to
invoke every branch within the operator. More-
over, we rigorously debug all branches to guarantee
test reliability. On average, we generate 3.6 test
branches per operator.

3.5 Evaluation Metrics

In contrast to traditional code evaluations, which
mainly emphasize accuracy (Chen et al., 2021;
Austin et al., 2021a), our TRITONBENCH-G intro-
duces dedicated performance evaluations. Specifi-
cally, the systematic evaluation of Triton operators
covers five key metrics:

Similarity assesses text-level resemblance us-
ing CODEBLEU (Ren et al., 2020). In our experi-
ments, we assign equal weights of 0.25 to N-gram,
weighted N-gram, syntax, and dataflow compo-
nents to ensure a balanced evaluation.

Call & Execution Accuracy assess whether
the code can run without error and whether its input-
output behavior is correct, respectively.

Speed Up measures the relative execution time
improvement for correctly executed operators.
Specifically, if ¢4y, and ¢, represent the running
times of the generated and reference operators, re-
spectively, then SpeedUp(gen) = Z—Zi

GPU Efficiency evaluates how effectively the
generated operator utilizes GPU resources, follow-
ing the operator quality rating in § 3.3. For further
details, please refer to Appendix B.



4 TRITONBENCH-T

The real-world Triton operators introduced in § 3
primarily focus on highly frequent operations. As
a complement, we propose TRITONBENCH-T,
which aligns the Triton wrapper with interfaces of
the PyTorch library (Paszke et al., 2019). Together,
TRITONBENCH-G and TRITONBENCH-T form a
complementary evaluation framework. The fol-
lowing sections elaborate on the data construction
(§ 4.1), data statistics (§ 4.2), test code and metrics
(§ 4.3), and benchmark comparisons (§ 4.4).

4.1 Data Construction

We construct TRITONBENCH-T by selecting Py-
Torch operators based on their usage frequency in
real-world coding and then fusing them ( hereafter
referred to simply as “operators™ ). First, we select
operators that require GPU interactions, ensuring
alignment with Triton’s scope. Next, we sample
40 high-frequency operators and 40 low-frequency
operators from the remaining pool. The frequency
of each operator is determined by its usage prob-
ability in PyTorch-related code from The Stack
V2 (Lozhkov et al., 2024) with those exceeding a
predefined threshold 45% as common operators.

Subsequently, we fuse these operators in vari-
ous configurations: combinations of common op-
erators, combinations of common and uncommon
operators, and combinations of uncommon oper-
ators. All combinations are valid, as the outputs
of preceding operators serve as appropriate inputs
for subsequent ones. The final set includes 166
operators, based on the latest (v2.6.0) version of
the PyTorch library. Each operator is paired with
its corresponding standard PyTorch call and docu-
ment, while fused operators combine descriptions
from all involved operators.

4.2 Data Statistic

The statistics of TRITONBENCH-T are presented
in Table 2. Similar to TRITONBENCH-G, the oper-
ators are categorized into five difficulty levels (d1
to d5) using an LLM guided by prompt D. These
initial categorizations are then validated through
manual review by two domain experts.

We report the following statistics: (1)torch-
op# the average number of PyTorch operators,
(2)params# the average number of parameters,
(3)math#, the average token number of mathe-
matical expressions, and (4)description#, the av-
erage token count of the descriptions. These statis-

Torch-Align Operator

Difficulty

torch-op# params# math# description#
dl (13.3%) 1.36 2.82 23.50 50.41
d2 (22.3%) 1.97 3.78 40.73 61.19
d3 (32.5%) 2.70 4.91 74.64 67.89
d4 (29.5%) 2.16 5.24 47.31 71.02
d5 (2.4%) 2.75 2.75 30.50 88.50

Table 2: Statistics of TRITONBENCH-T.

tics generally increase with the operator difficulty,
similar trend that aligns with the observations in
TRITONBENCH-G.

4.3 Test Code and Metrics

The design of the test code in TRITONBENCH-T
adheres to those of TRITONBENCH-G, employing
randomly generated tensors for operator evalua-
tion. For correctness and performance assessment,
we utilize Call Accuracy, Execution Accuracy,
and Speed Up, whose computation methods are
consistent with those used in TRITONBENCH-G.

4.4 Benchmark Comparison

This section provides comparisons between
TRITONBENCH-G and TRITONBENCH-T, which
differ in key aspects and together provide a well-
rounded evaluation.

Source & Distribution: TRITONBENCH-G is
collected from GitHub and reflects real-world pro-
gramming demands with a concentration of fre-
quently used operators, e.g., Attention at 20.0%,
MatMul at 10.9%, LayerNorm at 6.5%, SoftMax
at 3.8%. In contrast, TRITONBENCH-T, sourced
from PyTorch, presents a more diverse operator set
including both common and uncommon operators.

Instruction Generation: TRITONBENCH-G
combines LLM generation with expert verifi-
cation while TRITONBENCH-T directly extracts
instructions from PyTorch documentation. This
difference underlines their complementary roles in
probing different facets of the Triton generation.

Evaluation Metrics: Both benchmark channels
assess correctness and performance. Addition-
ally, TRITONBENCH-G incorporates a similarity-
based assessment that offers direct comparisons
with established implementations. In summary,
the different designs of TRITONBENCH-G and
TRITONBENCH-T enable a comprehensive and nu-
anced evaluation of Triton operator generation.



. P Call Execution GPU
Model Size Similarity Accuracy Accuracy Speed Up Efficiency
Domain-Specific Models
Qwen2.5-Coder 7B 9.19/14.54 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
DeepSeek-Coder 6.7B 9.38/14.52 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Qwen2.5-Coder-sft 7B 29.98/25.96 4.89/10.87 4.89/10.87 1.56/1.22 51.71/46.70
DeepSeek-Coder-sft  6.7B  25.52/30.34 9.78/11.96 9.87/11.96 1.03/1.11 47.68/42.26
General-Purpose Models
GPT-40 - 9.87/20.67 10.87/17.93 10.33/16.84 0.97/1.19 48.80/53.33
Claude-3.5-Sonnet - 12.46 / 22.48 10.33/20.11 9.79/19.57 0.90/1.54 59.31/49.32
Qwen2.5-72B 72B 14.86 / 26.25 11.41/16.85 10.87/16.31 0.96/1.19 23.28749.40
DeepSeek-R1 685B  19.96/22.64  13.59/22.83 13.05/22.83 1.11/1.22  44.83/46.70
GPT-ol - 16.58/29.70 15.22/23.91 14.23/23.91 0.92/1.14 54.25/46.37

Table 3: Main results of TRITONBENCH-G across baseline models, where the left side of “/”” represents the zero-shot

results and the right side represents the one-shot results.

5 Experiments

We conduct an extensive set of experiments on TRI-
TONBENCH to rigorously evaluate the performance
and capabilities of current LLMs.

5.1 Baselines and Setup

TRITONBENCH generally requires strong capa-
bilities in code generation. Therefore, we se-
lect state-of-the-art LLMs that excel in program-
ming tasks as baselines, including both specialized
open-source models and general-purpose models.
For specialized open-source models, we choose
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024)
and deepseek-coder-6.7b-instruct (Guoetal.,
2024). For general-purpose models, we in-
clude Claude-3.5-Sonnet-0620', GPT-40-0806
2 qwen2.5-72B-Instruct (Yang et al., 2024), as
well as the thought-driven models DeepSeek-R1
(Guo et al., 2025) and GPT-01-2024-12-17 3.

In our experiments, all general-purpose mod-
els are deployed for direct inference. In contrast,
domain-specific models undergo an additional su-
pervised fine-tuning phase. Details of the train-
ing corpus can be found in § A. For evaluation,
we consider both zero-shot and one-shot scenar-
ios. In the one-shot setting, a BM25-based retrieval
method (Robertson et al., 2009) is utilized to select
the most relevant prompt from the training corpus.

5.2 Main results of TRITONBENCH-G

Table 3 illustrates the performances of baselines
on TRITONBENCH-G. It is evident that domain-
specific models generally underperform compared

"https://www.anthropic.com/news/claude-3-5-sonnet
Zhttps://openai.com/index/hello-gpt-4o
3https://openai.com/o1

to general-purpose models. However, fine-tuning
7B domain-specific models with domain data
significantly boosts accuracy. Qwen’s accuracy
rises from 0 to 4.89%, and DeepSeek’s from 0
to 9.78% in zero-shot settings, with even more
pronounced enhancements in one-shot settings
due to the retrieval data from the same source
as TRITONBENCH-G. The observed increase in
Speed Up can be attributed to the relative simplicity
of the correctly generated operators, which makes
it easier for LLMs to produce efficient code. The
high GPU efficiency shares the similar reasons.

General-purpose models, particularly DeepSeek-
R1 and GPT-ol, excel across all metrics. Un-
der one-shot conditions, DeepSeek-R1 achieves
22.83% in Call and Execution Accuracy, while
GPT-o1 reaches 23.91%. The roughly 10% im-
provement from zero-shot to one-shot highlights
the critical role of high-quality examples for Triton
generation. Furthermore, the close alignment be-
tween Call Accuracy and Execution Accuracy
indicates that only a few operators fail to produce
correct results despite successfully invoked.

DeepSeek-R1 also leads in GPU execution times,
with an improvement of 1.11x in zero-shot and
1.22x in one-shot settings. While GPU efficiency
is strong across most models, Qwen2.5-72B ex-
hibits lower efficiency in zero-shot settings, likely
due to a higher proportion of less efficient opera-
tors. Finally, Similarity provides corroborative
insights, as its variations mirror trends observed in
other metrics.

5.3 Main Results of TRITONBENCH-T

From Table 4, we can observe that domain-specific
models generally underperform general-purpose
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Model Size  Call Accuracy Execution Accuracy  Speed Up
Domain-Specific Models
Qwen2.5-Coder 7B 0.00/0.00 0.00/0.00 0.00/0.00
DeepSeek-Coder 6.7B 0.00/1.81 0.00/1.81 0.00/0.94
Qwen2.5-Coder-sft 7B 17.47/16.27 17.47/15.67 0.98/0.92
DeepSeek-Coder-sft 6.7B  19.28 /18.67 19.28/16.26 0.91/0.85
General-Purpose Models
GPT-40 - 36.75/32.53 36.75/32.53 0.98/0.94
Claude-3.5-Sonnet - 29.52/37.95 29.52/33.70 0.93/70.89
Qwen2.5-72B 72B 30.12/22.89 30.12/16.30 1.07/0.92
DeepSeek-R1 685B 53.01/45.78 53.01/45.78 1.03/1.91
GPT-ol - 32.53/43.37 32.53/43.37 1.21/1.10

Table 4: Main results of TRITONBENCH-T across baseline models, where the left side of “/” represents the zero-shot

results and the right side represents the one-shot results.

models. Nonetheless, fine-tuning with an 8k cor-
pus considerably improves their performance. For
instance, Qwen’s zero-shot Execution Accuracy
rises from O to 17.47%. In contrast, its one-shot
improvement (15.67%) is slightly lower, likely
due to the fact that the retrieved prompts and
TRITONBENCH-T operators come from different
sources (Github vs. Pytorch).

Among general-purpose models, DeepSeek-
R1 demonstrates the strongest overall perfor-
mance, achieving 53.01% Call and Execution
Accuracy in the zero-shot setting. Although its
accuracy drops by 7.23% in the one-shot setting,
it still slightly surpasses GPT-ol. As for Speed
Up, DeepSeek-R1 achieves the best performance of
1.91 x improvements. Most performance improve-
ments in successfully executed operators stem from
operator fusion. Triton’s fused operators reduce
redundant memory reads and writes compared to
PyTorch, enhancing memory bandwidth utilization
and boosting performance.

Overall, most models achieve better performance
on TRITONBENCH-T than to TRITONBENCH-G,
likely because TRITONBENCH-T features a more
balanced distribution of operator difficulty, whereas
TRITONBENCH-G is predominantly composed of
higher-difficulty operators, namely, d3 and d4.

6 Analysis

In this section, we examine the distribution of
correct and incorrect operators across difficulty
levels (d1-d5) for the top-performing models,
DeepSeek-R1 and GPT-o01, as shown in Figure 4
and Figure 5. Additionally, we analyze the error
patterns of incorrect operators and summarize the
main challenges for each benchmark as detailed in
Table 3 and Table 4. The zero-shot and one-shot

settings are annotated as ¥ and ! respectively.

6.1 Challenges for TRITONBENCH-G

Figure 4 clearly shows that most operators are gen-
erated incorrectly. Both DeepSeek-R1 and GPT-
ol exhibit similar trends, with DeepSeek-R1 out-
performing GPT-o1. Notably, when moving from
the zero-shot to the one-shot setting, both models
achieve significant improvements on d4. These
improvements may stem from the prevalence of
Attention and Softmax operators in d4, enabling
models to leverage similar examples. In contrast,
the simpler operators in d2 and d3 show only lim-
ited gains in the one-shot setting, likely due to the
smaller, more idiosyncratic nature of these datasets
that leads to lower retrieval similarity.

For the incorrectly written operators, we classify
the 16 error types into 4 major categories, detailed
in Appendix C which is presented in Table 5. Note
that only compiler-reported errors were considered.
The results show that, compared to the zero-shot
setting, both DeepSeek-R1 and GPT-o1 in the one-
shot setting demonstrate a significant increase in
Syntax and Name&Ref errors but a reduction in
Attr&Type and Run&Logc errors. This trend sug-
gests that the training corpus may provide help-
ful guidance on logical structure and Triton spec-
ifications, thus enhancing overall accuracy. Fur-
thermore, error sensitivity differs between models:
DeepSeek-R1 is less susceptible to syntax errors,
whereas GPT-o1 handles logical errors better.

6.2 Challenges for TRITONBENCH-T

The execution results of TRITONBENCH-T (Fig-
ure 5) show the percentages of correctly gener-
ated operators. we can observe that DeepSeek-R1
generated more correct than incorrect operators,
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Figure 4: Execution results distribution across difficulty
levels in TRITONBENCH-G.

Model Syntax Attr&Type Name&Ref Run&Loge
DeepSeek-R1°  1.64 42.62 16.39 39.34
DeepSeek-R1'  9.27 33.11 35.76 21.85
GPT-01" 10.3 38.18 28.48 23.03
GPT-ol! 20.83 24.31 43.06 11.81

Table 5: Error statistics of execution failures in
TRITONBENCH-G.

which proves the point that the difficulty distri-
butions in TRITONBENCH-T are smoother than
TRITONBENCH-G.

However, while DeepSeek-R1’s performance de-
clines for difficulty d2-d4 in the one-shot setting,
GPT-01 shows improved accuracy on these sub-
sets. This finding indicates that GPT-o1 might be
more adept at logical reasoning for Triton genera-
tion tasks, allowing it to efficiently use the provided
sample. The differing trends also imply that sample
operators affect models in diverse ways.

For execution error statistics in TRITONBENCH-
T (Table 6), DeepSeek-R1 notably avoids Syntax
errors entirely, while GPT-ol maintains a high
rate of such errors. Under the one-shot setting,
DeepSeek-R1 shows a rise in Attr&Type and
Name&Ref errors alongside a decline in Run&Logc
Errors. Conversely, GPT-o1 experiences a sig-
nificant increase in Name&Ref errors with a no-
table drop in Run&Logc errors.  Comparing
TRITONBENCH-G and TRITONBENCH-T, the one-
shot setting consistently reduces Run&Logc errors.
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Figure 5: Execution results distribution across difficulty
levels in TRITONBENCH-T.

Model Syntax Attr&Type Name&Ref Run&Loge
DeepSeek-R1°  0.00 31.96 14.43 53.61
DeepSeek-R11  0.00 36.79 20.75 42.45
GPT-01° 24.06 26.32 7.52 42.11
GPT-ol! 25.25 25.25 22.22 27.27

Table 6: Error statistics of execution failures in
TRITONBENCH-T.

These variations in error patterns likely stem from
the mixed influence of useful and irrelevant infor-
mation in the provided samples.

7 Conclusion

In this work, we present TRITONBENCH, a dual-
channel benchmark specifically designed for eval-
uating LLMs’ generation for Triton operators.
TRITONBENCH-G integrates real-world Triton
operator samples from open repositories, while
TRITONBENCH-T introduces complementary tasks
that align with PyTorch interfaces. Our evaluation
framework addresses both functional accuracy and
the performance on NVIDIA GPUs. We also con-
duct extensive experiments and detailed analysis on
our benchmark, and find that current LLMs strug-
gle to generate high-quality Triton operators, un-
derscoring the necessity for further advancement in
generating accurate as well as performance-aware
Triton code. We anticipate TRITONBENCH will
serve as an essential framework for advancing au-
tomated operator generation for Triton.



Limitations

The primary limitation of this study is that the eval-
uations of TRITONBENCH were conducted exclu-
sively on the NVIDIA A100 GPU, as it is widely
adopted in industry and research applications. In
future work, we plan to expand the evaluation to
include a broader range of hardware architectures
for more comprehensive performance insights.

Ethics Statement

This work adheres to ethical research practices and
poses no potential risks. All code data used in TRI-
TONBENCH are sourced exclusively from publicly
available resources, including GitHub repositories
and PyTorch documentations, ensuring no privacy
concerns.
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Figure 6: The workflow of operator performance evalu-
ation

serves as the foundational training dataset for ex-
perimental models in one-shot learning settings.
For all experiments, the fine-tuning process is car-
ried out over 3 epochs with a learning rate of 5e — 5.

B Operator Performance Evaluation

For operator performance evaluation, we refer pri-
marily to the official examples provided by Triton®.
We provide evaluation scripts for each operator in
TRITONBENCH-G. Figure 6 illustrates the work-
flow of our operator performance evaluation.
First, we define a set of tensors with increasing
dimensions based on the characteristics of the op-
erator. Next, each tensor is sequentially fed into
the operator for execution. During each execu-
tion, we use the expert annotations for each op-
erator to determine the total memory bandwidth
(Bytes) and the total number of floating-point oper-
ations (Flops) based on the input tensors. More im-
portantly, we use the triton.testing.do_bench
method from the official Triton library® to measure
the operator’s execution time on the GPU. Specifi-
cally, we gradually increase the warm-up time and
repetition time until the measured execution time
stabilized, which means that most operators are
run hundreds of thousands of times to ensure that
the running time is measured accurately. After
obtaining the execution time, we calculate the op-
erator’s performance metrics by dividing the total
memory bandwidth and the total floating-point op-
erations by the execution time to obtain throughput
in GB/s and Tflops, respectively. We then calculate
the GPU efficiency by calculating the ratio of the
measured performance metrics (GB/s and Tflops)
to the theoretical maximum performance of the

Shttps:/triton-lang.org/main/getting-started/tutorials/

NVIDIA A100 Tensor Core GPU. Repetition of
the above process for tensors of increasing sizes
obtains the performance metrics for each execution,
which collectively form the operator performance
report. We adopt the peak GPU efficiency from
the performance report as the final measure of the
operator’s quality.

By following the evaluation workflow described
above, we generate a detailed performance report
for each operator in TRITONBENCH-G. Figure 7
illustrates the performance curves of several com-
mon operators. As the input dimensions increase,
as can be seen from the figure, the GB/s or Tflops
of the operators show an upward trend, eventually
stabilizing. This suggests that the performance of
the operator reaches a bottleneck beyond a certain
scale, and further increases in input size result in
diminishing returns in performance, aligning with
the expected trend of operator performance.

C Error Categories

We provide the error type statistics of failure op-
erators in TRITONBENCH. A total of 16 error
types are identified in the integrated Call and Ex-
ecution error results. For convenience in presen-
tation, we categorize them into four main groups:
Syntax Errors: including SyntaxError and Inden-
tationError; Attrb&Type Errors: including At-
tributeError, TypeError, and NotlmplementedError;
Named&Ref Errors: including NameError, KeyEr-
ror, IndexError, ModuleNotFoundError, and Im-
portError; Run&Logc Errors: including ValueEr-
ror, ZeroDivisionError, RuntimeError, Recursion-
Error, AssertionError, CompilationError, and Re-
sultsError. ResultsError refers to the inconsistency
between the execution results of the reference op-
erator and the generated operator.

D Prompts

Here are the four prompts we use in our work:
Filtering Prompt, Instruction Prompt, Difficulty
Prompt, and Test Code Prompt. Specifically, the
first is used to extract Triton-related code from
crawled code files; the second instructs the large
model to generate corresponding instructions based
on Triton code; the third prompts the large model
to score the difficulty of Triton operators according
to the standards we proposed; and the last asks the
large model to generate test code.

®https://triton-lang.org/main/pythonapi/generated/triton.testing.do_bench.html
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Filtering Prompt

{code}

Please help me select all triton kernel functions decorated with @triton. jit and all code that calls these kernels, while
only keeping the necessary imports (e.g., triton, torch) and the calling functions.

Note 1: Retain necessary comments related to the Triton code. Code can be optimized, but do not remove all kernel
code and its corresponding calls just for brevity.

Note 4: If there are multiple triton kernel functions decorated with @triton. jit and their calling wrapper functions,
retain all of them, not just a subset.

1) Extract all triton operators (kernel functions decorated with @triton. jit and their calling functions) and output
them in python code format. If no triton kernel function is found, discard it.

2) Provide a concise English description of each extracted operator (including both kernel and calling code) in the

form of a python dictionary: "description”: "Use triton language to..."
Instruction Prompt
{code}

Based on the above Triton operator code, generate a detailed description so that the large model can accurately reproduce
the corresponding kernel and wrapper function.

Be clear about the logic and main functionality of the operator, specify the function name, inputs, and outputs, and
describe any public variables clearly.

Try to describe the function’s code implementation. Ensure that the large model can reproduce the corresponding
function and parameter code based on these instructions.

Note that the output should maintain correct python syntax.

.

Test Code Prompt

{code}
Write a test code in Python for the above code. Ensure that all branch tests are in a single function starting with
“test_”, with no parameters.

Note 3: In branch tests, avoid modifying parameters that are later in the argument list with default values (especially if
they have out parameters, do not assign them).

Note 4: Store the results of all branch calculations in a dictionary, where the dictionary key is "test_case_n", with n
representing the test case number.

Note 6: The code should run directly, without if __name__ == "__main__".
Difficulty Prompt
{code}

Please evaluate the complexity of the code in the following two aspects based on the requirements of the Triton operator
and score it from simple to complex on a scale from 1 to 5:

1) Memory layout complexity: Analyze the memory access pattern, including memory tiling, array transposition, address
alignment, cache utilization, and the number of global memory accesses.

2) Computation scheduling complexity: Examine instruction-level parallelism, computation-memory pipeline, thread
block design, inter-thread communication, thread branch divergence, and hardware resource utilization.

The final score is the ceiling of the average score from both aspects, and only one complexity score is output in [ ].
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