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ABSTRACT

We propose several different techniques to improve contrastive divergence training
of energy-based models (EBMs). We first show that a gradient term neglected in
the popular contrastive divergence formulation is both tractable to estimate and is
important to avoid training instabilities in previous models. We further highlight
how data augmentation, multi-scale processing, and reservoir sampling can be
used to improve model robustness and generation quality. Thirdly, we empirically
evaluate stability of model architectures and show improved performance on a
host of benchmarks and use cases, such as image generation, OOD detection, and
compositional generation.

1 INTRODUCTION

Figure 1: (Left) EBM generated 128x128 unconditional CelebA-HQ images. (Right) 128x128 unconditional
LSUN Bedroom Images.

Energy-Based models (EBMs) have received an influx of interest recently and have been applied
to realistic image generation (Han et al., 2019; Du & Mordatch, 2019), 3D shapes synthesis (Xie
et al., 2018b) , out of distribution and adversarial robustness (Lee et al., 2018; Du & Mordatch,
2019; Grathwohl et al., 2019), compositional generation (Hinton, 1999; Du et al., 2020a), memory
modeling (Bartunov et al., 2019), text generation (Deng et al., 2020), video generation (Xie et al.,
2017), reinforcement learning (Haarnoja et al., 2017; Du et al., 2019), protein design and folding
(Ingraham et al.; Du et al., 2020b) and biologically-plausible training (Scellier & Bengio, 2017).
Contrastive divergence is a popular and elegant procedure for training EBMs proposed by (Hinton,
2002) which lowers the energy of the training data and raises the energy of the sampled confabulations
generated by the model. The model confabulations are generated via an MCMC process (commonly
Gibbs sampling or Langevin dynamics), leveraging the extensive body of research on sampling and
stochastic optimization. The appeal of contrastive divergence is its simplicity and extensibility. It
does not require training additional auxiliary networks (Kim & Bengio, 2016; Dai et al., 2019) (which
introduce additional tuning and balancing demands), and can be used to compose models zero-shot.

Despite these advantages, training EBMs with contrastive divergence has been challenging due to
training instabilities. Ensuring training stability required either combinations of spectral normalization
and Langevin dynamics gradient clipping (Du & Mordatch, 2019), parameter tuning (Grathwohl
et al., 2019), early stopping of MCMC chains (Nijkamp et al., 2019b), or avoiding the use of modern
deep learning components, such as self-attention or layer normalization (Du & Mordatch, 2019).
These requirements limit modeling power, prevent the compatibility with modern deep learning
architectures, and prevent long-running training procedures required for scaling to larger datasets.
With this work, we aim to maintain the simplicity and advantages of contrastive divergence training,
while resolving stability issues and incorporating complementary deep learning advances.
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Figure 2: Illustration of our overall proposed framework for training EBMs. EBMs are trained with contrastive
divergence, where the energy function decreases energy of real data samples (green dot) and increases the energy
of hallucinations (red dot). EBMs are further trained with a KL loss which encourages generated hallucinations
(shown as a solid red ball) to have low underlying energy and high diversity (shown as blue balls). Red/green
arrows indicate forward computation for while dashed arrows indicate gradient backpropogation.

An often overlooked detail of contrastive divergence formulation is that changes to the energy
function change the MCMC samples, which introduces an additional gradient term in the objective
function (see Section 2.1 for details). This term was claimed to be empirically negligible in the
original formulation and is typically ignored (Hinton, 2002; Liu & Wang, 2017) or estimated via high-
variance likelihood ratio approaches (Ruiz & Titsias, 2019). We show that this term can be efficiently
estimated for continuous data via a combination of auto-differentiation and nearest-neighbor entropy
estimators. We also empirically show that this term contributes significantly to the overall training
gradient and has the effect of stabilizing training. It enables inclusion of self-attention blocks into
network architectures, removes the need for capacity-limiting spectral normalization, and allows us
to train the networks for longer periods. We do not introduce any new objectives or complexity - our
procedure is simply a more complete form of the original formulation.

We further present techniques to improve mixing and mode exploration of MCMC transitions in
contrastive divergence. We propose data augmentation as a useful tool to encourage mixing in
MCMC by directly perturbing input images to related images. By incorporating data augmentation
as semantically meaningful perturbations, we are able to greatly improve mixing and diversity of
MCMC chains. We further propose to maintain a reservoir sample of past samples, improving the
diversity of MCMC chain initialization in contrastive divergence. We also leverage compositionality
of EBMs to evaluate an image sample at multiple image resolutions when computing energies. Such
evaluation and coarse and fine scales leads to samples with greater spatial coherence, but leaves
MCMC generation process unchanged. We note that such hierarchy does not require specialized
mechanisms such as progressive refinement (Karras et al., 2017)

Our contributions are as follows: firstly, we show that a gradient term neglected in the popular
contrastive divergence formulation is both tractable to estimate and is important in avoiding training
instabilities that previously limited applicability and scalability of energy-based models. Secondly, we
highlight how data augmentation and multi-scale processing can be used to improve model robustness
and generation quality. Thirdly, we empirically evaluate stability of model architectures and show
improved performance on a host of benchmarks and use cases, such as image generation, OOD
detection, and compositional generation.

2 AN IMPROVED CONTRASTIVE DIVERGENCE FRAMEWORK FOR ENERGY
BASED MODELS

Energy based models (EBMs) represent the likelihood of a probability distribution for x ∈ RD as
pθ(x) = exp(−Eθ(x))

Z(θ) where the function Eθ(x) : RD → R, is known as the energy function, and
Z(θ) =

∫
x

exp−Eθ(x) is known as the partition function. Thus an EBM can be represented by an
neural network that takes x as input and outputs a scalar.
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Training an EBM through maximum likelihood (ML) is not straightforward, as Z(θ) cannot be
reliably computed, since this involves integration over the entire input domain of x. However, the
gradient of log-likelihood with respect to a data sample x can be represented as

∂ log pθ(x)

∂θ
= −

(
∂Eθ(x)

∂θ
− Epθ(x′)

[
∂Eθ(x

′)

∂θ

])
. (1)

Note that Equation 1 is still not tractable, as it requires using Markov Chain Monte Carlo (MCMC) to
draw samples from the model distribution pθ(x), which often takes exponentially long to mix. As a
practical approximation to the above objective, (Hinton, 2002) proposes the contrastive divergence
objective

KL(p(x) || pθ(x))− KL(Πt
θ(p(x)) || pθ(x)), (2)

where Πθ represents a MCMC transition kernel for pθ, and Πt
θ(p(x)) represents t sequential MCMC

transitions starting from p(x). The above objective can be seen as an improvement operator, where
KL(p(x) || pθ(x)) ≥ KL(Πt

θ(p(x)) || pθ(x)), because Πθ is converging to equilibrium distribution
pθ(x) (Lyu, 2011). Furthermore, the above objective is only zero (at its fixed point), when Πθ does
not change the distribution of p(x), which corresponds to pθ(x) = p(x).

2.1 A MISSING TERM IN CONTRASTIVE DIVERGENCE

When taking the negative gradient of the contrastive divergence objective (Equation 2), we obtain the
expression

−
(
Ep(x)

[
∂Eθ(x)

∂θ

]
− Eqθ(x′)[

∂Eθ(x
′)

∂θ
] +

∂q(x′)

∂θ

∂KL(qθ(x) || pθ(x))

∂qθ(x)

)
, (3)

where for brevity, we summarize Πt
θ(p(x)) = qθ(x). The first two terms are identical to those of

Equation 1 and the third gradient term (which we refer to as the KL divergence term) corresponds
to minimizing the divergence between qθ(x) and pθ(x). In practice, past contrastive divergence
approaches have ignored the third gradient term, which was difficult to estimate and claimed to be
empirically negligible (Hinton, 1999). These gradients correspond to a joint loss expression LFull,
consisting of traditional contrastive loss LCD and a new loss expression LKL. Specifically, we have
LFull = LCD + LKL where LCD is

LCD = Ep(x)[Eθ(x)]− Estop gradient(qθ(x′))[Eθ(x
′)], (4)

and the ignored KL divergence term corresponding to the loss
LKL = Eqθ(x)[Estop gradient(θ)(x)] + Eqθ(x)[log(qθ(x))]. (5)

Despite being difficult to estimate, we show that LKL is a useful tool for both speeding up and
stabilizing training of EBMs. Figure 2 illustrates the overall effects of both losses. Equation 4
encourage the energy function to assign low energy to real samples and high energy for generated
samples. However, only optimizing Equation 4 often leads to an adversarial mode where the
energy function learns to simply generate an energy landscape that makes sampling difficult. The
KL divergence term counteracts this effect, and encourages sampling to closely approximate the
underlying distribution pθ(x), by encouraging samples to be both low energy under the energy
function as well as diverse. Next, we discuss our approach towards estimating this KL divergence,
and show that it significantly improves the stability when training EBMs.

2.2 ESTIMATING THE MISSING GRADIENT TERM

Estimating LKL can further be decomposed into two separate objectives, minimizing the energy of
samples from qθ(x), which we refer to as Lopt (Equation 6) and maximizing the entropy of samples
from qθ(x) which we refer to as Lent (Equation 7).

Minimizing Sampler Energy. To minimize the energy of samples from qθ(x) we can directly
differentiate through both the energy function and MCMC sampling. We follow recent work in EBMs
and utilize Langevin dynamics (Du & Mordatch, 2019; Nijkamp et al., 2019b; Grathwohl et al., 2019)
for our MCMC transition kernel, and note that each step of Langevin sampling is fully differentiable
with respect to underlying energy function parameters. Precisely, gradient of Lopt becomes

∂Lopt

∂θ
= Eqθ(x′0,x′1,...,x′t)

[
∂Estop gradient(θ)(x

′
t−1 −∇x′t−1

Eθ(x
′
t−1) + ω)

∂θ

]
, ω ∼ N (0, λ) (6)
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where x′i represents the ith step of Langevin sampling. To reduce to memory overhead of this
differentiation procedure, we only differentiate through the last step of Langevin sampling (though
we show it the appendix that leads to the same effect as differentiation through Langevin sampling).

Entropy Estimation. To maximize the entropy of samples from qθ(x), we use a non-parametric
nearest neighbor entropy estimator (Beirlant et al., 1997), which is shown to be mean square consistent
(Kozachenko & Leonenko, 1987) with root-n convergence rate (Tsybakov & Van der Meulen, 1996).
The entropy H of a distribution p(x) can be estimated through a set X = x1, x2, . . . , xn of n
different points sampled from p(x) as H(pθ(x)) = 1

n

∑n
i=1 ln(n · NN(xi, X)) + O(1) where the

function NN(xi, X) denotes the nearest neighbor distance of xi to any other data point in X . Based
off the above entropy estimator, we write Lent as

Lent = Eq(x)[log(NN(x, B))] (7)

where we measure the nearest neighbor with respect to a set B of 1000 past samples from MCMC
chains (see Section 2.5 for more details). We utilize L2 distance as the metric for computing nearest
neighbors. Alternatively, Stein’s identity may also be used to estimate entropy, but this requires
considering all samples, as opposed to the nearest, becoming computationally intractable. Our
entropy estimator serves a simple, quick to compute estimator of entropy, that prevents sampling
from collapsing. Empirically, we find that the combination of the above terms in LKL significantly
improves both the stability and generation quality of EBMs, improving robustness across different
model architectures.

2.3 DATA AUGMENTATION TRANSITIONS

Langevin sampling, our MCMC transition kernel, is prone to falling into local probability modes
(Neal, 2011). In the image domain, this manifests with sampling chains always converging to a fixed
image (Du & Mordatch, 2019). A core difficulty is that distances between two qualitatively similar
images can be significantly far away from each in input domain, on which sampling is applied. While
LKL encourages different sampling chains to cover the model distribution, Langevin dynamics alone
is not enough to encourage large jumps in finite number of steps. It is further beneficial to have an
individual sampling chain have to ability mix between probability modes.
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Figure 3: Illustration of our multi-scale
EBM architecture. Our energy function over
an image is defined compositionally as the
sum of energy functions on different resolu-
tions of an image.

To encourage greater exploration between similar inputs
in our model, we propose to augment chains of MCMC
sampling with periodic data augmentation transitions that
encourages movement between “similar” inputs. In par-
ticular, we utilize a combination of color, horizontal flip,
rescaling, and Gaussian blur augmentations. Such combi-
nations of augmentation has recently seen success applied
in unsupervised learning (Chen et al., 2020). Specifically,
during training time, we initialize MCMC sampling from
a data augmentation applied to an input sampled from the
buffer of past samples. At test time, during generation, we
apply a random augmentation to the input after every 20
steps of Langevin sampling. We illustrate this process in
the bottom of Figure 2. Data augmentation transitions are
always taken.

2.4 COMPOSITIONAL MULTI-SCALE GENERATION

To encourage energy functions to focus on features in both low and high resolutions, we define our
energy function as the composition (sum) of a set of energy functions operating on different scales of
an image, illustrated in Figure 3. Since the downsampling operation is fully differentiable, Langevin
based sampling can be directly applied to the energy function. In our experiments, we utilize full,
half, and quarter resolution image as input and show in the appendix that this improves the generation
performance.

2.5 RESERVOIR SAMPLING

To encourage qθ(x) to match pθ(x), MCMC steps in qθ(x) are often initialized from past samples
from qθ(x) to enable more diverse mode exploration, a training objective known as persistent
contrastive divergence (Tieleman, 2008). Du & Mordatch (2019) propose to implement sampling
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Table 1: Table of Inception and FID scores for generations
of CIFAR-10, CelebA-HQ and LSUN bedroom scenes. *
denotes our reimplementation of a SNGAN 128x128 model
using the torch mimicry GAN library. All others numbers are
taken directly from corresponding papers.

Model Inception* FID

CIFAR-10 Unconditional
PixelCNN (Van Oord et al., 2016) 4.60 65.93
IGEBM (Du & Mordatch, 2019) 6.02 40.58
DCGAN (Radford et al., 2016) 6.40 37.11
WGAN + GP (Gulrajani et al., 2017) 6.50 36.4
Ours 7.58 35.4
SNGAN (Miyato et al., 2018) 8.22 21.7

CelebA-HQ 128x128 Unconditional
SNGAN* - 55.25
Ours - 35.06
SSGAN (Chen et al., 2019) - 24.36

LSUN Bedroom 128x128 Unconditional
SNGAN* - 125.53
Ours - 49.30

Figure 4: Randomly selected unconditional
CelebA-HQ samples from our trained EBM

Figure 5: Visualization of Langevin dynamics sampling chains on an EBM trained on CelebA-HQ 128x128.
Samples travel between different modes of images. Each consecutive images represents 30 steps of sampling,
with data augmentation transitions every 60 steps .

from past samples by utilizing a replay buffer of samples from qθ(x) interspersed with samples
initialized from random noise. By storing a large batch of past samples, the replay buffer is able to
enforce diversity across chains. However, as samples are initialized from the replay buffer and added
to the buffer again, the replay buffer becomes filled with a set of correlated samples from qθ(x) over
time. To encourage a buffer distribution representative of all past samples, we instead use reservoir
sampling technique over all past samples from qθ(x). This technique has previously been found
helpful in balancing replay in reinforcement learning (Young et al., 2018; Isele & Cosgun, 2018;
Rolnick et al., 2019). Under a reservoir sampling implementation, any sample from qθ(x) has an
equal probability of being the reservoir buffer.

3 EXPERIMENTS

We perform empirical experiments to validate the following set of questions: (1) What are the effects
of each proposed component towards training EBMs? (2) Are our trained EBMs able to perform well
on downstream applications of EBMs (generation, compositionality, out-of-distribution detection)?
We provide ablations of each of our proposed components in the appendix.

3.1 EXPERIMENTAL SETUP

We investigate the efficacy of our proposed approach. Models are trained using the Adam Optimizer
(Kingma & Ba, 2015), on a single 32GB Volta GPU for CIFAR-10 for 1 day, and for 3 days on 8
32GB Volta GPUs for CelebaHQ, and LSUN datasets. We provide detailed training configuration
details in the appendix.
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Data Augmentation Transitions No Data Augmentation Transitions
Figure 6: Output samples of running Langevin Dynamics from a fixed initial sample (center of square), with or
without intermittent data-augmentation transitions. Without data-augmentation transitions, all samples converge
to same image, while data augmentations enables chains to seperate

Our improvements are largely built on top of the EBMs training framework proposed in (Du &
Mordatch, 2019). We use a buffer size of 10000, with a resampling rate of 5% with L2 regularization
on output energies. Our approach is significantly more stable than IGEBM, allowing us to remove
aspects of regularization in (Du & Mordatch, 2019). We remove the clipping of gradients in Langevin
sampling as well as spectral normalization on the weights of the network. In addition, we add
self-attention blocks and layer normalization blocks in residual networks of our trained models. In
multi-scale architectures, we utilize 3 different resolutions of an image, the original image resolution,
half the image resolution and a quarter the image resolution. We report detailed architectures in the
appendix. When evaluating models, we utilize the EMA model with EMA weight of 0.999.

3.2 IMAGE GENERATION

We evaluate our approach on CIFAR-10, LSUN bedroom (Yu et al., 2015), and CelebA-HQ (Karras
et al., 2017) datasets and analyze our characteristics of our proposed framework. Additional analysis
and ablations can be found in the appendix of the paper.

Image Quality. We evaluate our approach on unconditional generation in Table 1. On CIFAR-10 we
find that approach, while not being state-of-the-art, significantly outperforms past EBM approaches
that based off implicit sampling from an energy landscape (with approximately the same number of
parameters), and has performance in the range of recent GAN models on high resolution images. We
further present example qualitative images from CelebA-HQ in Figure 11b and present qualitative
images on other datasets in the appendix of the paper. We note that our reported SNGAN performance
on CelebA-HQ and LSUN Bedroom use default hyperparameters from ImageNet models. Gaps
in performance with our model are likely smaller with better dataset specific hyper-parameters.
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Figure 7: Illustration of Inception
Score over long run chains with or with-
out data augmentation/KL loss.

Effect of Data Augmentation. We evaluate the effect of data
augmentation on sampling in EBMs. In Figure 5 we show
that by combining Langevin sampling with data augmentation
transitions, we are able to enable chains to mix across different
images, whereas prior works have shown Langevin converging
to fixed images. In Figure 6 we further show that given a
fix random noise initialization, data augmentation transitions
enable to reach a diverse number of different samples, while
sampling without data augmentation transitions leads all chains
to converge to the same face.

Mode Convergence. We further investigate high likelihood
modes of our model. In Figure 8, we compare very low energy
samples (obtained after running gradient descent 1000 steps on an energy function) for both our
model with data augmentation and KL loss and a model without either term. Due to improved mode
exploration, we find that low temperature samples under our model with data augmentation/KL loss
reflect typical high likelihood ”modes” in the training dataset, while our baseline models converges
to odd shapes, also noted in (Nijkamp et al., 2019a). In Figure 7, we quantitatively measure Inception
scores as we run steps of gradient descent with or without data augmentation and KL loss. Our
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Low Temperature Samples (No Data Aug / No KL)

Low Temperature Samples (Data Aug + KL)

CIFAR-10 CelebA-HQ 

CIFAR-10 CelebA-HQ 

Figure 8: Illustration of very low temperature samples
from our model with KL loss and data augmentation
(top) on CIFAR-10 and CelebA-HQ compared to with-
out (bottom). After a large number of sampling steps,
models trained without KL/data augmentation converge
to stranges hues in CIFAR-10 and random textures on
CelebA-HQ. In contrast, due to better mode exploration,
adding both losses maintain naturalistic image modes on
both CIFAR-10 and CelebA-HQ.

Figure 9: The KL loss significantly improves
the stability of EBM training. Stable EBM train-
ing occurs when the energy difference is roughly
zero (indicated by dashed black line). We find that
without using the KL loss term EBM training di-
verges quickly with different additions to network
architecture, while with the KL loss training is sta-
ble. Spectral normalization improves stability of
training, but addition of components such as layer
normalization also destabilizes training.

Inception score decreases much more slowly, with some degree of degradation expected since low
temperature samples have less diversity.

Stability/KL Loss EBMs are known to difficult to train, and to be sensitive to both the exact
architecture and to various hyper-parameters. We found that the addition of a KL term into our
training objective significantly improved the stability of EBM training, by encouraging the sampling
distribution to match the model distribution. In Figure 9, we measure the energy difference between
real and generated images over the course training when adding normalization and self-attention
layers to models. We find that with Lkl, the energy difference between both is kept at 0, which
indicates stable training. in contrast, without Lkl all models, with the exception of a model with
spectral normalization, diverge to a negative energy different of −1, indicating training collapse.
Furthermore, the use of spectral normalization by itself, albeit stable, precludes the addition of other
modern network components such as layer normalization. The addition of the KL term itself is not
too expensive, simply requiring an additional nearest neighbor computation during training, which
can be relatively insignificant cost compared to the number of negative sampling steps used during
training. With a intermediate number of negative sampling steps (60 steps) during training, adding the
KL term roughly twice as slow as normal training. This difference is decreased with larger number of
sampling steps. Please see the appendix for additional analysis of gradient magnitudes of Lkl and
Lcd.

Ablations. We ablate each portion of our proposed approach in Table 2. We find that the KL loss is
crucial to the stability of training an EBM, and find that additions such as a multi-scale architecture
are not stable without the presence of a KL loss.

Table 2: Effect of each ablation on overall image generation on CIFAR-10. We further report overall stability of
training. KL Loss has a significant effect on stability of EBM training.

KL Loss KL Loss Data Reservoir Multiscale Inception FID Stability
(Lopt) (Lent) Aug Sampling Score

No No No No No 1.46 253.1 No
No No Yes No No 6.19 61.3 No
Yes No Yes No No 6.28 59.8 Yes
Yes Yes Yes No No 6.53 54.3 Yes
Yes Yes Yes No Yes 6.78 50.8 Yes
Yes Yes Yes Yes Yes 7.48 35.4 Yes
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Figure 10: Examples of compositionality in face attributes (left) and different renderings of a shape (right). Our
model is able to construct high resolution globally coherent compositional renderings, including fine detail such
as lighting and reflections (right).

Table 3: Table of out-of-distribution detection scores on unconditional models trained on CIFAR-10 using
log(pθ(x)).. Our approach performs the best out of both likelihood and EBM models. *JEM is not directly
comparable as it uses supervised labels.

Model PixelCNN++ Glow IGEBM JEM* Ours

SVHN 0.32 0.24 0.63 0.67 0.91
Textures 0.33 0.27 0.48 0.60 0.88
CIFAR10 Interpolation 0.71 0.51 0.70 0.65 0.65
CIFAR100 0.63 0.55 0.50 0.67 0.83
Average 0.50 0.39 0.57 0.65 0.82

3.3 COMPOSITIONALITY

Energy Based Models (EBMs) have the ability to compose with other models at generation time
(Hinton, 1999; Haarnoja et al., 2017; Du et al., 2020a). We investigate to what extent EBMs trained
under our new proposed framework can also exhibit compositionality. See (Du et al., 2020a) for
a discussion of various compositional operators and applications in EBMs. In particular, we train
independent EBMs E(x|c1), E(x|c2), E(x|c3), that learn conditional generative distribution of
concept factors c such as facial expression or object position. We test to see if we can compose
independent energy functions together to generate images with each concept factor simultaneously.
We consider compositions the CelebA-HQ dataset, where we train independent energy functions
of face attributes of age, gender, smiling, and wavy hair and a high resolution rendered of different
objects rendered at different locations, where we train an energy function on size, position, rotation,
and identity of the object.

Qualitative Results. We present qualitative results of compositions of energy functions in Figure 10.
In both composition settings, our approach is able to successfully generate images with each of
conditioned factors, while also being globally coherent. The left image shows that as we condition
on factors of young, female, smiling, and wavy hair, images generation begins exhibiting each
required feature. The right image similarly shows that as we condition on factors of size, type,
position, and rotation, image generations begin to exhibit each conditioned attribute. We note that
figures are visually consistent in terms of lighting, shadows and reflections. We note that generations
of thee combination of different factors are only specified at generation time, with models being
trained independently. Our results indicate that our framework for training EBMs is a promising
direction for high resolution compositional visual generation. We further provide visualization of
best comparative compositional model from (Vedantam et al., 2018) in the appendix and find that our
approach significantly outperforms it.

3.4 OUT OF DISTRIBUTION ROBUSTNESS

Energy Based Models (EBMs) have also been shown to exhibit robustness to both out-of-distribution
and adversarial samples (Du & Mordatch, 2019; Grathwohl et al., 2019). We evaluate out-of-
distribution detection of our trained energy through log-likelihood using the evaluation metrics
proposed in Hendrycks & Gimpel (2016). We similarly evaluate out-of-distribution detection of an
unconditional CIFAR-10 model.
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Results. We present out-of-distribution results in Table 3, comparing with both other likelihood
models and EBMs and using log-likelihood to detect outliers. We find that on the datasets we
evaluate, our approach significantly outperforms other baselines, with the exception of CIFAR-10
interpolations. We note the JEM (Grathwohl et al., 2019) further requires supervised labels to train
the energy function, which has to shown to improve out-of-distribution performance. We posit that
by more efficiently exploring modes of the energy distribution at training time, we are able to reduce
the spurious modes of the energy function and thus improve out-of-distribution performance.

4 RELATED WORK

Our work is related to a large, growing body of work on different approaches for training EBMs.
Our approach is based on contrastive divergence (Hinton, 2002), where an energy function is trained
to contrast negative samples drawn from a model distribution and from real data. In recent years,
such approaches have been applied to the image domain (Xie et al., 2016; Gao et al., 2018; Du &
Mordatch, 2019; Nijkamp et al., 2019b; Grathwohl et al., 2019). (Gao et al., 2018) also proposes
a multi-scale approach towards generating images from EBMs, but different from our work, uses
each sub-scale EBM to initialize the generation of the next EBM. Our work builds on existing works
towards contrastive divergence based training of EBMs, and presents improvements in generation
and stability.

A difficulty with contrastive divergence training is the difficulty of negative sample generation. To
sidestep this issue, a separate line of work utilizes an auxiliary network to amortize the negative
portions of the sampling procedure (Kim & Bengio, 2016; Kumar et al., 2019; Han et al., 2019; Xie
et al., 2018a; Song & Ou, 2018). One line of work (Kim & Bengio, 2016; Kumar et al., 2019; Song &
Ou, 2018), utilizes a separate generator network for negative image sample generations. In contrast,
(Xie et al., 2018a), utilizes a generator to warm start generations for negative samples and (Han et al.,
2019) minimizes a divergence triangle between three models. While such approaches enable better
qualitative generation, they also lose some of the flexibility of the EBM formulation. For example,
separate energy models can no longer be composed together for generation.

In addition, other approaches towards training EBMs seek instead to investigate separate objectives to
train the EBM. One such approach is score matching, where the gradients of an energy function are
trained to match the gradients of real data (Hyvärinen, 2005; Song & Ermon, 2019), with a related
denoising (Sohl-Dickstein et al., 2015; Saremi et al., 2018; Ho et al., 2020) approach. Additional
objectives include noise contrastive estimation (Gao et al., 2020) and learned Steins discrepancy
(Grathwohl et al., 2020).

Most prior work in contrastive divergence has ignored the KL term (Hinton, 1999; Salakhutdinov &
Hinton, 2009). A notable exception is (Ruiz & Titsias, 2019), which obtains a similar KL divergence
term to ours. Ruiz & Titsias (2019) use a high variance REINFORCE estimator to estimate the
gradient of the KL term, while our approach relies on auto-differentiation and nearest neighbor entropy
estimators. Differentiation through model generation procedures has previously been explored in
other models (Finn & Levine, 2017; Metz et al., 2016). Other related entropy estimators include
those based on Stein’s identity (Liu et al., 2017) and MINE (Belghazi et al., 2018). In contrast to
these approaches, our entropy estimator relies only on nearest neighbor calculation, and does not
require the training of an independent neural network.

5 CONCLUSION

We propose a simple and general framework for improving generation and ease of training with
energy based models. We show that the framework enables high resolution compositional image
generation and out-of-distribution robustness. In the future, we are interested in further computational
scaling of our framework, and applications to domains such as text and reasoning.
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A APPENDIX

A.1 MODEL ARCHITECTURES

We list model architectures used in our experiments in Figure 11. When training multi-scale energy
functions, our final output energy function is the sum of energy functions applied to the full resolution
image, half resolution image, and quarter resolution image. We use the architecture reported in
Figure 11 for the full resolution image. The half-resolution models shares the architecture listed in
Figure 11, but with all layers before and including the first down-sampled residual block removed.
Similarily, the quarter resolution models share the architectures listed, but with all layers before two
down-sampled residual blocks removed.

3x3 conv2d, 64

ResBlock 64

ResBlock Down 64

ResBlock 64

ResBlock Down 64

Self Attention 64

ResBlock 128

ResBlock Down 128

ResBlock 256

ResBlock Down 256

Global Mean Pooling

Dense→ 1

(a) The model architecture used for CIFAR-10 ex-
periments.

3x3 conv2d, 64

ResBlock Down 64

ResBlock Down 128

ResBlock Down 128

ResBlock 256

ResBlock Down 256

Self Attention 512

ResBlock 512

ResBlock Down 512

Global mean Pooling

Dense→ 1

(b) The model architecture
used for CelebA/LSUN room
experiments.

Figure 11: Architecture of models on different datasets.

A.2 EXPERIMENT CONFIGURATIONS FOR DIFFERENT DATASETS

CIFAR-10 For CIFAR-10, we use 40 steps of Langevin sampling to generate a negative sample.
The Langevin sampling step size is set to be 100, with Gaussian noise of magnitude 0.001 at each
iteration. The data augmentation transform consists of color augmentation of strength 1.0 from (Chen
et al., 2020), as a random horizontal crop, and a image resize between 0.3 and 1.0 and a Gaussian
blur of 5 pixels.

CelebA/LSUN Bed For CelebA and LSUN bed datasets, we use 40 steps of Langevin sampling to
generate negative samples. The Langevin sampling step size is set to be 1000, with Gaussian noise
of magnitude 0.001 applied at each iteration. The data augmentation transform consists of color
augmentation of strength 0.5 from (Chen et al., 2020), as a random horizontal crop, and a image
resize between 0.3 and 1.0 and a Gaussian blur of 11 pixels.

A.3 COMPARISON OF CD/KL GRADIENT MAGNITUDES

We plot the overall gradient magnitudes of the contrastive divergence and KL loss terms during
training of an EBM in Figure 12. We find that relative magnitude of both training remains constant
across training, and that the gradient of the KL objective is non-negligible.

A.4 ANALYSIS OF TRUNCATED LANGEVIN BACKPROPAGATION

To test the effect of truncating backpropogation through the KL loss to only one sampling step of
Langevin sampling, we train two seperate models on MNIST, one with backpropogation through
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Figure 12: Plots of the gradient magnitude of LKL and LCD across training iterations. Influences and relative
magnitude of both loss terms stays constant through training.

Figure 13: Generations on MNIST with backpro-
pogation through 1 step of Langevin sampling.

Figure 14: Generations on MNIST with backpro-
pogation through all steps of Langevin sampling.

all Langevin steps, and one with backpropogation through only the last Langevin step. We obtain
FIDs of 90.54 with backpropogation through only 1 step of Langevin sampling and FIDs of 94.85
with backpropogation through all steps of Langevin sampling. We present illustrations of samples
generated with one step in Figure 13 and with all steps in Figure 14.

A.5 ANALYSIS OF EFFECT OF KL LOSS ON MODE EXPLORATION

The KL loss adds an additional term to EBM training that encourages EBM training updates to
maintain good mode coverage while optimizing the usual contrastive divergence objective. Thus the
KL loss serves as a regularizer to prevent EBM sampling from collapsing. In the absence of the KL
loss, EBM sampling always eventually collapses and generates samples in Figure 15
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Figure 16: Illustrations of compositional generations from (Vedantam et al., 2018). Generations are significantly
more blurry than our generations.

Figure 15: Illustration of collapsed sampling from an EBM.

A.6 COMPARISON TO OTHER COMPOSITIONAL GENERATIVE MODELS

To our knowledge, there are relatively few other models that can compositionally combine, with the
approach of JVAE (Vedantam et al., 2018) being the closest to our work. We provide comparisons in
Figure 16. Our approach is significantly less blurry than JVAE.

A.7 ADDITIONAL QUALITATIVE IMAGES

We present randomly generated qualitative images on the LSUN dataset in Figure 17 and the CIFAR-
10 dataset in Figure 18. In both setting, we find that unconditional images appear mostly globally
coherent.
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Figure 17: Randomly selected unconditional LSUN bed 128x128 samples from our trained EBM.
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Figure 18: Randomly selected unconditional CIFAR-10 samples from our trained EBM.
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