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Abstract

The inclusion of symmetries as an inductive bias, known as “equivariance”, often
improves generalization on geometric data (e.g. grids, sets, and graphs). However,
equivariant architectures are usually highly constrained, designed for symmetries
chosen a priori, and not applicable to datasets with other symmetries. This pre-
cludes the development of flexible, multi-modal foundation models capable of
processing diverse data equivariantly. In this work, we build a single model —
the Any-Subgroup Equivariant Network (ASEN) — that can be simultaneously
equivariant to several groups, simply by modulating a certain auxiliary input fea-
ture. In particular, we start with a fully permutation-equivariant base model, and
then obtain subgroup equivariance by using a symmetry-breaking input whose
automorphism group is that subgroup. However, finding an input with the desired
automorphism group is computationally hard. We overcome this by relaxing from
exact to approximate symmetry breaking, leveraging the notion of 2-closure to
derive fast algorithms. Theoretically, we show that our subgroup-equivariant net-
works can simulate equivariant MLPs, and their universality can be guaranteed if
the base model is universal. Empirically, we validate our method on symmetry
selection for graph tasks, as well as multitask and transfer learning for sequence
tasks, showing that a single network equivariant to multiple permutation subgroups
outperforms both separate equivariant models and a single non-equivariant model.

1 Introduction

Equivariant machine learning exploits symmetries in data to constrain the model with known priors,
often leading to improved generalization [} 2]], interpretability [3], and efficiency [4]]. Most existing
equivariant models are tailored to specific symmetry groups chosen a priori: for example, graph neural
networks (GNNs) and DeepSets with permutation equivariance, convolution neural networks (CNNs)
with translation equivariance, and Neural Equivariant Interatomic Potentials satisfying Euclidean
group symmetries. While these equivariant models have demonstrated promising performance in
datasets satisfying the prescribed symmetries, they are inflexible in several important ways: (I)
equivariant architectures typically require deriving and implementing group-specific equivariant
layers, so substantial research and engineering must be done for architectural design whenever a
new type of symmetry arises, and (II) equivariant architectures are typically only equivariant to
one symmetry group, and significantly differ between domains. Thus, an equivariant model cannot
easily learn from or make predictions across domains with distinct symmetries, so equivariant models
cannot benefit from the empirical successes of the foundation model paradigm [5]].

In this work, we introduce a framework for building flexible equivariant networks, named Any-
Subgroup Equivariant Networks (ASEN). Given a base group G, we consider subgroups G < G
(typically known a priori) that capture the symmetries intrinsic to the domain (e.g. graph automor-
phisms) or induced by the task (e.g., sequence reversal). To this end, we start with a base network hy,
which is equivariant to the large group G and thus overly constrained for our purpose — it cannot
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represent functions that are equivariant only to G but not G \ G. To reduce the amount of constraints,
we augment the input = with features v that break the symmetries in G \ G, but that maintain the
symmetries in G. To ensure this, we construct v so that its self-symmetry group (i.e. automorphism
group) is equal to G, i.e. Aut(v) = G. Finally, we pass in the symmetry-breaking input v to our
overly-constrained hg, and obtain the model fy(z) = hy(z, v). We prove that the model fy is indeed
G-equivariant, and under certain conditions it is not equivariant to G \ G; in other words, it has the
correct equivariance. A trivial, but widespread, example of this technique is the use of positional
encodings [6] to fully break the permutational symmetry of transformers (since every entry of the
positional encoding vector is unique, G = Aut(v) is the trivial group). When v has non-trivial
automorphism, some equivariance is retained.

ASEN overcomes inflexibility (I), since it only requires providing a single new input v (with correct
automorphism group) to a base network hy. Also, ASEN overcomes inflexibility (II), since a single
instance of our model can process data from varying domains with different symmetry groups.

While our framework works for any G, we focus on the particular case when G = 5, is the symmetry
group acting as permutation matrices, so that our networks are equivariant to permutation subgroups.
This covers the symmetries of many common domains such as sets and graphs, which allows us
to leverage existing permutation equivariant models as the base model hy. In particular, we may

leverage existing set networks (inputs in R™), graph neural networks (inputs in an) and hypergraph

neural networks (inputs in R"K) for the base model. While large K may be required for complex
groups, to balance efficiency and expressivity, we focus on the &' = 2 case of graph neural networks,
and develop a practical algorithm for computing the symmetry breaking object v as edge features,
with (nearly) the desired self-symmetry Aut(v) = G. To do this, we use the notion of the 2-closure
G®@ of a group G [7], which provides a formal notion of a group that is close to the target group
(G® ~~ @), and we compute v with Aut(v) = G(2).

Theoretically, we show that under mild conditions, ASEN parameterized with graph neural networks
has the exact permutation subgroup equivariance. Further, we prove that ASEN is expressive in two
senses: it can approximate certain equivariant MLPs [8} 9] to arbitrary accuracy, and it is universal in
the space of G-equivariant functions if the base model is universal over G-equivariant functions.

To validate our approach, we apply ASEN to diverse settings: (1) exploiting symmetries within a
single task in graph learning (human pose estimation and traffic flow prediction); (2) leveraging sym-
metries across different tasks on sequences in multitask and transfer learning. Across these settings,
our results highlight the flexibility of ASEN and practical utility of symmetry-aware architectures.
Our framework supports both fine-grained control over group actions and strong transfer of learned
representations, making it a powerful tool for structured generalization in neural networks. Our main
contributions are summarized as follows:

* We propose Any-Subgroup Equivariant Networks (ASEN), a framework for building a
flexible equivariant model capable of modeling distinct symmetries across diverse tasks.

* We theoretically show that ASEN enforces any desired subgroup symmetry via proper choice
of the symmetry-breaking input and architecture. We also prove that ASEN is as expressive
as equivariant MLPs, with universality given a sufficiently expressive base model.

* We validate our framework in applications including symmetry selection, multitask learning
and transfer learning, highlighting its flexibility and effectiveness in exploiting shared
symmetry structures.

2 Related Work

Subgroup Equivariance and Symmetry Breaking In equivariant network design, recent works [[10;
115 [12]] have proposed subgroup-equivariant models via augmenting an auxiliary input. Specifically,
Blum-Smith et al. [10] proposed a permutation-invariant model for symmetric matrices by using
a DeepSet base model—invariant to a bigger group, together with a suitable symmetry-breaking
parameter to reduce the base model symmetries; Ashman et al. [11]] used fixed symmetry breaking
inputs to construct non-equivariant models or approximately equivariant ones. Symmetry breaking
via node identification is a popurlar technique to enhance the expressivity of graph neural networks
[L3; 14 [15]. Symmetry breaking of the input has also been used to improve the flexibility of



equivariant models for applications in graph generation and physical modeling [16§[17; [18]]. Unlike
[L6:[17; 18] that perform input-dependent symmetry breaking, we break the symmetry of the model
uniformly for all input. Moreover, existing works typically focus on (approximate) equivariance
to one particular group. In contrast, we build a single model capable of modeling diverse data
equivariantly, via different choices of v adapted to the target application.

Approximate and Adaptive Equivariance Another direction towards flexible equivariant networks
relies on approximate equivariance [19; 20], soft equivariance by converting architectural constraints
into a prior [21} 22], regularization [23]], or adaptive equivariance per task and environment [24].
Approximate equivariance can also improve generalization [[19;20]. This motivates our approach
that approximates the automorphism group of the symmetry breaking input with the 2-closure group.

3 Method

3.1 General method (ASEN)

Here, we describe our general framework for ASEN. Let G be a matrix group, and let G < G be
a subgroup. Both groups have actions on the sets X and )). We desire our model to parameterize
G-equivariant functions, that is, functions f : X — Y such that f(gx) = gf(y) for g € G. To this
end, we consider a “lift” of f: a function hy : X x V — ) on an expanded space, where we introduce
an additional space V on which G and G act. The function hg is G-equivariant (i.e. equivariant to
the larger group):

he(gx,gv) = ghe(z,v), g€ G. )]
To obtain fy from hg, we find a symmetry-breaking input v € V that is exactly self-symmetric to the
subgroup G, i.e. its automorphism group is G,

Aut(v) ={ge G:gv=v}=G. )
Finally, we define our G-equivariant model fy : X — ) as
fo(x) = ho(z, V). 3)
The model fy is G-equivariant because for any g € G,
fo(gz) = ho(gz,v) = ho(gx,gv) = gho(z,v) = gfo(), ©)

where the second equality follows from g € Aut(v), and the third equality is due to G-equivariance
of hg. For g € G\ G, this equality can break: if gv # v, then hg(gz, V) # hg(gz, gv). In fact, if
hg is injective for the input v, then fy is only equivariant to G, and not to any other elements in the
larger group G. These results are captured in Prop. [} As an example: consider G = O(3) acting on
3D point cloud & € R™*3, and the O(3)-equivariant base model h. Now we fix a particular axis v
with the stabilizer O(2). Then f = h(z,v) is only equivariant to O(2) but not O(3) \ O(2).

3.2 Permutation Subgroup Equivariance via Hypergraph Symmetry Breaking

To use our ASEN framework for parameterizing a G-equivariant function, we need two main
components: (i) a method of parameterizing the base model hy that is equivariant to the larger group
G, and (ii) a way to construct or compute a symmetry breaking object v with automorphism group
Aut(v) = G. In this subsection, we show that when G = S, is the symmetric group acting as
permutation matrices on n objects, we can leverage existing equivariant architectures for (i); and we
can develop a practical algorithm for (ii). For the rest of this paper, we primarily focus on this setting.

To construct efficient and expressive symmetry breaking objects, we turn to hypergraphs. Con-
cretely, for a (matrix) group G acting on R™, a hypergraph on n nodes is defined as H =

(A(l), A® ,A(K)), where A®) ¢ R™" is an order k-tensor, and K is the max tensor order.

We can interpret A()) as a (node) positional encoding, and A%) as (hyper-)edge features for k > 2.
The automorphism group of the hypergraph is defined as

Aut(H) ={P € S, : P A® = AW =1, . K}. 5)

For instance, if K = 2, then this is the standard graph automorphism group

Aut(H) ={P € S, : PAMD = AW pAQpPT = 4@}, (6)



For K large enough, we can construct a hypergraph # such that Aut(#) uniquely determines
G [23]. Then, we consider any existing permutation-equivariant hypergraph neural network hy :

R™ x [[X, R"" — R™ such that any P € S,,,

ho(PX,PAW .. PP AU = Phy(X, AV, ... AF). 7
We abbreviate (7) by ho(P(X,H)) = Phe(X,H). Our G-equivariant model f then takes the form

fo(X) = he(X, AN . AT = py(X,H). (8)

Hypergraph Construction and Approximation with 2-Closure Achieving exact symmetry break-
ing of 5, to the desired subgroup G may require a hypergraph A of prohibitively high order (up to
K < n). For efficiency, we fix K = 2 and construct positional and edge features H = (A(l), A(z)),
whose automorphism group Aut(#) reflects on how G acts on nodes and pairs of nodes. Concretely,
nodes i, j (or node pairs (i1,42), (j1,j2)) are assigned the same feature if and only if they are in the
same G-orbit. In this way, the positional and edge features encode the orbit partition under G. By
construction, Aut(A(2)) is the 2-closure group of G, denoted as G®@ [7]. In general G < G®?, and
in many cases G = G(?; see Sec.[5| Algorithm 1| provides the procedure to compute A®) with
high-level SymPy commands, assuming access to the generating elements of G E|; see Fig. (1| for
examples and App. [A]for details. We remark that while Alg. [T|computes all pairwise edge features, it
can be applied to a sparse graph or a subset of edge features by restricting the support of H.

Algorithm 1 Compute Edge Orbits A® guch that Aut(A(z)) =G® (SymPy commands)
Require: Generators 0q,...,0,.0f G < S,
Ensure: Edge orbits A(®) € [n] x [n] where Ag-) = AR = (i,7) ~a (m,n).

1: Lift generators: For each o; € S, define p; € S,z : (x4, 2p) = (04(x4a), 04 (2p)).

Encode (x4, %) as a - n + b and construct p; as Permutation of size n?.
2: Form diagonal subgroup: Let A(G) := (p1, ..., p,) be the subgroup of .S,,2.
Delta = PermutationGroup([pi,..., prl).

3: Compute edge orbits: For an edge (x,, 23), apply p; repeatedly until no new pairs can be found.
Delta.orbits()

Example: G = S, (mirror symmetry) Example: G = S,, XS, X S,

_ -y -
)

A® [T A@l.E AC [ 1@ l.

Figure 1: Example symmetry breaking objects as positional features A(!) and edge features A() for
encoding subgroup symmetries in 4-node paths. These symmetries are explored further in Sec. El

Alignment Note that it is important that the inputs have their node indices aligned to each other, i.e.
they share a common labeling. This is implicitly captured via the choice of the concrete matrix group
G. For example, the inputs in Fig. [I] are treated as sequences (instead of sets). The alignment is
typically satisfied in applications such as sequence modelling, graph signal processing, and graph time
series (see examples in Sec. [3)), but needs to be computed for other applications such as graph-level
tasks.

'If instead we are given all elements of G, we can pass them to PermutationGroup in SymPy and run the
Schreier—Sims algorithm. This produces a base and strong generating set (BSGS): a compact, non-redundant
set of generators adapted to a stabilizer chain. The BSGS allows efficient orbit and membership computations
without ever enumerating the full group.



4 Theoretical Results

We first establish that under mild conditions, ASEN with exact symmetry breaking can achieve the
desired subgroup symmetry G < G for any general matrix group G (Prop.[I), and for the permutation
group S,, in the context of graph learning (Lem. [I). We then show that ASEN with approximate
symmetry breaking can simulate equivariant MLPs (Thm. [I), and enjoys universality guarantees if
the base model is universal (Thm. 2. Proofs are deferred to App. [B]

The following Prop.[I]shows that ASEN has the desired equivariance to G.

Proposition 1. Let hyg : X X V — Y be G-equivariant, and let Aut(v) = G. Then fo(x) :=
hg(x, V) is equivariant to G. If additionally hg is injective in the input v, then fy is not equivariant
to any transformation in G \ G.

Hypergraph Symmetry Breaking. As noted in Section[3.2] we generally take hg to be a graph
neural network (or a hypergraph neural network) when parameterizing permutation subgroup equiv-
ariant functions. In what follows, we characterize the condition for correct equivariance (where hyg is
equivariant to G but not G \ G) when hy is a one-layer message-passing neural network (MPNN)
operating on nodes and edges. Here, Prop. [T]does not apply off-the-shelf because of the requirement
of the base model hy being injective in v (where MPNNs are not injective to edge features A(?)). By
the definition of message-passing, the output hy at node ¢ is

X, AN = 6 (0 (60,7 (000,35, A2) 1 € Na()D) ) ©

where 1), is the edge update function, v,,, ¢ are the node update functions, and 7 is the edge multiset
aggregation. In the following lemma, we show that if the constituent functions are injective, and the
input node features are distinct, then hy is correctly equivariant to only G.

Lemma 1. If hg uses injective functions for (hyper-)edge feature update )., node update ¢, and
(hyper-)edge multiset aggregation T, and if the node features are distinct, then hg is not equivariant
to permutations in S, \ G where G = Aut(A®),

Note that these injectivity conditions are similar to sufficient conditions under which message passing
graph neural networks have the same expressive power as the 1-Weisfeiler-Leman graph isomorphism
test [26]. We can similarly conclude that these conditions are sufficient for deeper MPNNSs to have the
correct equivariance. One could also show an analogous result for hypergraph networks by viewing
them as higher-order MPNNSs operating on hyperedges, where o € S, \ G implies that there exists a
hyperedge (i, j, ..., k) such that A; ; . & # As(i),0(),....0(k)-

Connections to Equivariant MLPs. Here, we show that ASEN can simulate certain configurations
of a common type of equivariant neural network, sometimes called an equivariant MLP, which
consists of equivariant linear maps and elementwise nonlinearities [275 (8 9]. When applied to a
group G that acts as permutation matrices on R”, an equivariant MLP is defined as a composition:
T ocgo---00 0T, where o is an elementwise nonlinearity, and each 7; : R R”M“ is a
G-equivariant linear map (for simplicity, we ignore channel dimension here). We call £* = max; k;
the order of the G-MLP, so if T; : R™ — R™ for each ¢ then the G-MLP has order 1. We prove the
following result:

Theorem 1. Any order 1 G-MLP can be approximated to arbitrary accurac%z on a compact domain
via ASEN with K = 2 and the two-closure approximation Aut(A®)) = G

We remark that much like an equivariant MLP can increase expressivity by increasing the order
k*, we can increase expressivity in ASEN by increasing K > 2 and using the K-closure group
approximation [7]. While we show this relationship in expressivity at £* = 1 and K = 2, we believe
that there may be relationships between the two methods at higher orders, and leave it to future work.

Universality Results. We next show that the universality of ASEN follows from the universality of
its base model.

Theorem 2. Let G be a compact group, X,V be compact metric G-spaces, and Y be a compact
G-space. Let fg : X X V — Y be a universal family of continuous G-equivariant networks, i.e.
folgz, gv) = g fo(x,v). Consider H € V with stabilizer equal to a subgroup G < G. Then, the
Samily fo(-,H) is universal over continuous G-equivariant functions from X to ).



5 Experiments

Towards developing a general-purpose equivariant foundation model, we evaluate ASEN in diverse
experimental settings by answering the following questions:

Q1 For a single task, can ASEN —with one architecture—explore different symmetries and
reveal the impact of the group choice (Sec.[5.1)?

Q2 Can ASEN leverage shared symmetry structure across tasks to outperform task-specific
equivariant models or non-equivariant baselines in multitask learning (Sec. [5.2.T) and
transfer learning (Sec.[5.2.2))?

Architecture Our backbone is a permutation-invariant graph neural network (GNN), composed
of input layers (e.g. embedding, MLP), followed by four layers of GATv2 message-passing [28]],
and concluded with output layers (e.g., projection, aggregation). Standard dropout and layer nor-
malization are applied throughout. There are two task-specific modules: EdgeEmbedder that calls
Alg.[I]to categorize edge orbits and learn their embeddings; TokenEmbedder that maps (discrete)
node features to learnable token embeddings for classification tasks (omitted for regression tasks).
While ASEN models equivariant functions in general, it can learn invariant functions by adding an
invariant aggregation layer at the end of the architecture (for more efficient training, we disable the
TokenEmbedder for the invariant setting). See Fig. 2]for an overview.

As EdgeEmbedder is a learnable module, ASEN can discover more symmetries from data if the
chosen group G(?) (specifying the edge orbits) is smaller than the target group; see evidence in
Sec. On the other hand, ASEN can fail when G(®) is much larger than G, as we show in App.

{ grzug J—) EdgeEmbedder GAT
_[—> Projection *>{ Output
GAT |
Input } ————— <> MLP ——>| I |
—|:> T GAT —> Aggregation —
TokenEmbedder

Figure 2: ASEN Architecture to model any permutation subgroup-equivariant functions.

5.1 Symmetry Model Selection Applications in Graph Learning

In this section, we consider exploring different symmetry choices for a given task. Specifically,
for each subgroup G in a candidate set chosen a priori, we train a new instance of ASEN with
edge features satisfying Aut(A(2)) = (. We focus on learning on a fixed graph setting, using the
experimental set-up from [20]] where the subgroup candidate set naturally arises from the approximate
self-symmetries of the graph domain. We note that G = G2 for all subgroups considered in the
candidate set. Unlike [20] that requires distinct G-equivariant layers for each group, ASEN offers
a unified architecture to flexibly model different G-equivariance by symmetry breaking (i.e., edge
features). Our results highlight the utility of choosing subgroup symmetries informed by the structure
of the domain, such as the reflection symmetry in skeleton graphs, and the continuous road structure
in traffic graphs.

Human Pose Estimation We begin with an application in human pose estimation,
using the Human3.6M dataset [29], which consists of 3.6 million human poses from
various images. Our input features consist of 2D coordinates X € R16*2 representing
joint positions on a skeleton graph A € {0,1}*6*16 (see Figure inset). The model
predicts the corresponding 3D joint positions in R'6*3. Performance is evaluated using
the standard P-MPJPE (Procrustes-aligned Mean Per Joint Position Error) metric. We

consider three edge frameworks H = A®) (Alg. : (1) fully-connected Agcg), (2) sparse

AgQ) where edges are constrained to the support of the skeleton graph A, and (3) weakly
sparse combining A(f2) + Ag). We consider selecting different automorphism groups of the human



skeleton edges Aut(A(?) (that yields the best performance): Sy (full left-right reflection), S3 (left
arm/right arm and left leg/right leg), SS (each left-side joint independently mapped to corresponding
joint on right side), and I (no equivariance). Our results in Tab. [I]obtained from a single model ASEN
match with those reported in [20] that require multiple distinct equivariant architectures. Notably,
the weakly sparse graph yields some of the strongest results, highlighting ASEN’s flexibility in
capturing multiple symmetries. This approach can also be used to represent a graph with two sets of
symmetries.

Table 1: P-MPJPE error () for human pose estimation using Table 2: Mean Absolute Error (MAE

different symmetry groups and edge frameworks. J) for traffic flow prediction.
Group Fully Connected Sparse Weakly Sparse Model, Group (>, n; = n) MAE
I 34.71 33.39 34.75 Fully Connected, Sy, - Sn, 2.72
Sa 39.48 40.52 38.80 Sparse, Sp; - Sn, 2.69
S3 43.24 42.37 40.67 Fully Connected, Sy, - -+ Sng 279
S9 47.54 49.45 46.52 Sparse, Sy, -+ Shg 2.77
DCRNN [30], S» 2.77

Traffic Prediction Next, we evaluate on the traffic forecasting task, also taken from [20]]. This uses
the METR-LA dataset, containing time-series traffic data from 207 sensors deployed on Los Angeles
highways. The sensor (node) records speeds and traffic volume every 5 minutes, resulting in a graph
time series with node feature X; € R?°7*2, The objective is to predict traffic conditions at future
time X, based on the past traffic { X, X;_1, X;_2}. The underlying graph is defined via a sensor
adjacency matrix A € R207%207 constructed from roadway connectivity.

To incorporate symmetry structure, we leverage the spatial layout of sensors along major highways.
We consider two group structures, taken from [20]: one with two symmetric clusters representing
major highway branches G = S,,, X S,,,, and another with nine clusters corresponding to finer-
grained regional groupings G = S, X ... x Sy,. These symmetry groups serve as approximate
equivariances, which encourage learning invariant representations for similarly situated sensors.
We choose H = A such that Aut(A®) = G via Alg. |1} and benchmark our model in both
fully-connected and sparse graph regimes. As shown in Tab. 2} choosing suitably smaller symmetry
can outperform full permutation symmetry.

5.2 Synthetic Sequence Modeling Tasks

To assess the ability of ASEN to transfer structural knowledge across tasks, we consider synthetic
sequence modelling tasks capturing various permutation subgroup symmetries, summarized with
examples in Tab. [3| (with more details deferred to Tab. ). To demonstrate these sequence tasks can
benefit from exploiting subgroup symmetries, we compare two ASEN variants: one equivariant
model with the correct group (c.f. rightmost column in Tab. [3), and one non-equivariant one without
any symmetry. Notably, for these tasks, the target symmetry groups are equal to their 2-closure groups
(G = G?)). Thus ASEN can accurately model the desired symmetry via the task-specific edge orbits
whose automorphism group is the 2-closure group. See a negative example where G < G in
App.[C4|

As shown in Fig. 3] equivariant models incorporating the correct symmetry significantly outperform

their non-equivariant counterparts across all tasks. More details including similar results for the
invariant setting (see Tab. [3)) can be found in App.[C.1]

Additionally, we explore if ASEN can learn more symmetries from data given a misspecified symmetry
group (smaller than the target group). We consider the Intersect task with G = (.S, /2)2 x S, but

only encode a smaller symmetry group G’ = (.9, /2)2 in the edge features. We check the edge feature
weights before and after training to see if the S5 symmetry was learned. Fig. |4] shows pairwise
distances between the learned Intersect edge weights: The top-left and bottom-right quadrants show
the correct structure (checkerboard), whereas the top-right and bottom-left quadrants lack this initially
but converge to the checkerboard pattern after training. This demonstrates that ASEN can discover
the additional So symmetries from data.



Table 3: Examples of synthetic tasks: input, equivariant and invariant output, and the target group.

Task Input Equivariant Output  Invariant Output Group G < S,
Intersect la,b,c,| b, c,d] [0,1,1,] 1,1,0] 2 Spy2 X Spj2 X S2
Palindrome (k = 3) la,b, ¢, b,d] [0,1,1,1,0] True Sequence Reversal
Cyclic Sum (¢ = 3) [7,1,2,9,8] [1,0,0,1,1] 24 C’, (cyclic shifts)
Detect Capital [A,b,b,b] - True Sr—1 (permute all except first)
Longest Palindrome  [a, b, ¢, ¢, ¢, ¢, d, d] - 7 Shn

—— Equivariant Non-equivariant

Cyclic Sum Intersect Palindrome

Validation Loss
e e
FEES

)

/

40 0 10 20 30 40 0 10 20 30 40
Epoch Epoch

10 20 30
Epoch

Figure 3: ASEN with the correct group (“Equivariant™)
converges faster and to a lower loss than its trivial sym-
metry counterpart (“Non-equivariant’).

Figure 4: Initial edge weights (left) and
trained weights (right): ASEN learns
more symmetries from data.

5.2.1 Multitask Learning Applications

In this section, we investigate whether learning related tasks with compatible or similar symmetry
groups can benefit ASEN from shared representation learning. We make use of the synthetic tasks
introduced in Tab. 3] While each task can be learned independently using a different equivariant
model, we assess whether multitask training can facilitate improved generalization in low-data
regimes. To this end, we use the same ASEN backbone (including weights) shared across tasks, while
the TokenEmbedder and EdgeEmbedder modules are task-specific. During training, we randomly
sample batches from all tasks, ensuring concurrent and balanced updates across tasks.

To focus on performance under constrained data availability, we limit the maximal training set size
to 2,500 datapoints (referred to as “1 unit””). We then compare two regimes: one training only on
r units of a single-task, and the other training on r units on all tasks, specifically Intersect, Cyclic
Sum, and Palindrome. We vary r € {0.2,0.4,0.6,0.8,1.0} and report kythe average performance
across three random seeds. Fig. [5] shows that multitask training leads to significantly improved
convergence and test accuracy in the low-data setting for learning Intersect, demonstrating the benefit
of symmetry-aligned task transfer on certain tasks; on other tasks, the multitask setting did not
provide much benefit (see more details in App.[C.2).

Figure 5: Multitask versus Single-task performance on Task Intersect with varying training set sizes

5.2.2 Transfer Learning Applications

Beyond multitask training, we explore transfer learning by pretraining on tasks with diverse sym-
metries and then finetuning on a new task with a distinct symmetry. We focus on the same set of
synthetic tasks in Sec.[5.2.T]and simulate a low-resource regime by limiting access to only 0.15 units
(375 datapoints) of training data. We compare two ASEN model variants: A finetune-only baseline
trained from scratch using only the chosen task data, and a pretrained model initialized via joint
training on 1.5 units each of the other tasks, followed by fine-tuning on the chosen task data. To
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Figure 6: Equivariant transfer learning on Task ~ Figure 7: Invariant transfer learning: improved
Intersect: faster convergence and lower loss. pretraining when using symmetry in ASEN.

encourage knowledge retention, we reduce the learning rate of the GNN backbone during fine-tuning,
while allowing the embedding layers to update more freely. For the equivariant setting, Figure [¢]
shows that pretraining ASEN achieves significantly better generalization compared to training from
scratch on the Intersect task, showcasing ASEN as an effective initialization for related downstream
tasks. For the invariant setting, Fig. [7| shows that pretraining ASEN with the correctly specified
symmetry outperforms its trivial symmetry baseline, and pretraining has a larger transfer effect when
symmetry is provided on the Detect Capital and Palindrome tasks.

6 Conclusion and Future Directions

In this work, we introduce ASEN, a framework for building a flexible equivariant model capable
of exploiting diverse symmetries. Given a subgroup G < G, ASEN parameterizes G-equivariant
functions via a base G-equivariant model, and a symmetry breaking object whose automorphism
group is G. For general G, we prove that ASEN can achieve the desired subgroup symmetry and
inherit universality properties from the base model. Focusing on the permutation group G = S,,, we
use hypergraph symmetry breaking and establish its expressivity in terms of equivariant MLPs. For
scalability, we approximate the hypergraph via the notion of 2-closure represented as edge features,
which can be easily integrated to standard GNN backbones. We empirically demonstrate the flexibility
of ASEN in implementing diverse symmetry groups in graph learning and sequence modeling, and
its effectiveness in exploiting shared symmetry structures in multitask learning and transfer learning.

As a first step, we consider modeling symmetry (sub)groups acting globally on the input; a natural
next step is to incorporate local symmetries, which play a key role for molecular graph applications
[31; 32]). Another interesting direction is allowing the symmetry breaking object to be input-
dependent. We also empirically show positive results in human pose estimation while combining
multiple symmetry structures in ASEN, which suggests incorporating “soft” equivariance priors in
ASEN as another fruitful direction. Studying the scaling behavior of ASEN and the effect of symmetry
model misspecification are key avenues for future work. Finally, generalizing the symmetry breaking
object in our framework (e.g., using positional encoding [33]]) and modelling beyond permutation
subgroups offer a promising path towards equivariant foundation models.
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A Additional Details of Algorithm 1]

1. Lift the generators. Given the generators o1, . ..,0, of G < §,,, we define new permuta-
tions p; acting on X x X with X = {1,...,n}. Each p; acts diagonally:

pit (Ta, ) > (0i(Ta), 0ilTp)).

In practice (e.g. in sympy), if n is the degree of the action, we encode (x,, ) as a single
index a - n + b, and construct p; as a Permutation of size n2.

2. Form the diagonal subgroup. Define

A(G) = <p13 e apT>7
the subgroup of S,,2 generated by the lifted permutations.

Conceptually, we take the subgroup generated by the p;. In sympy, this is done by calling
Delta = PermutationGroup([pi,...,pr1).

Internally, PermutationGroup builds a base and strong generating set (BSGS) for A(G)
via Schreier—Sims. The BSGS consists of a chosen base B = (by,...,bx) and strong
generators adapted to the chain of stabilizers

AG) =GO >GW >...>G" = (e},
where G(*) is subgroup fixing the first i base points. The associated basic orbits and Schreier

vectors allow efficient navigation in the group.

3. Compute the orbits. The G-orbits on X x X are exactly the orbits of A(G). Concretely,
starting from a pair (z,, xp), we apply the generators p; repeatedly until no new pairs are
found; the set obtained is its orbit. With a BSGS, orbit computation is polynomial-time
as SymPy performs a breadth-first search on the strong generators and stores transversal
information for reconstruction. In code, this is as simple as

Delta.orbits()

which returns all A(G)-orbits of the action.
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B Proofs

Proposition 1. Let hg : X x V — Y be G-equivariant, and let Aut(v) = G. Then fy(x) =
hg(x,v) is equivariant to G. If additionally hg is injective in the input v, then fy is not equivariant
to any transformation in G \ G.

Proof. We have already shown in Section that fy is G-equivariant. Now, suppose that hg is
injective in v, and let ¢ € G \ G. We want to show that fy(gx) # gfo(x) for some choice of .
We choose any « € X. This holds because v # gv (since otherwise g ¢ G = Aut(v)). Thus, by
injectivity, ho (g, v) # hg(gz, gv). This allows us to conclude that

fo(gz) = ho(gz, v) (10)

# ho(gz,9v) (1D)

= ghg(z, V) (12)

= gfo(). (13)

This concludes the proof. O

We remark that the injectivity of hy in the input v is sufficient to prove Prop. |1} but not necessary. As
shown in the proof, this injectivity assumption allows us to show fy(gx) # gfe(x) forany x € X,
while establishing this for a particular choice of x suffices.

Lemma 1. If hg uses injective functions for (hyper-)edge feature update )., node update ¢, and
(hyper-)edge multiset aggregation T, and if the node features are distinct, then hg is not equivariant
to permutations in S, \ G where G = Aut(A®),

Proof. We will show that for any o € S,, \ G, fo(0X) # o fo(X). By (9), it suffices to show that
ho(oX,A®) £ hy(o X, 0 AP). (14)

Let N4 (i) :== {j € [n] : Ai; # 0} be the neighborhood of node 7. Since o € S,, \ G, there exists
a node 7 such that its original neighborhood differs from the permuted one, N4 (i) # Ny (7). By
definition of MPNN (9),

ho(o X, A?) i) = ¢ (%(Xa(i))ﬁ (fe (X0 (1), X4 (7). A7) | j € NA@')}})) (1s)

ho(o X, 0 A®Y[i] = 6 <wn<xa<z‘>>w (e (Xo (@), Xo (1), AT 5)) |5 € Nnmw)) . (16)
Since NVa (i) # Ny a(i) and the assumption that { X, (j)}7_; has distinct elements, the multisets

{(Xo(0), Xo(5), AZ)) | 5 € Na()} # {(Xo (), Xo (5), A o) 15 € Noai)}

By injectivity of 9.,
{ve(Xo (i), X0 (3), AP)) | 5 € Na(i)} # {0e(Xo (i), X0 (5), AL 5)) | 5 € Noa(i)}

By injectivity of 7 and ¢, we have hg(0X, A®))[i] # ho(c X, AP)][i], and thus he(c X, A?)) #
ho(oX,0AR)). O

Theorem 1. Any order 1 G-MLP can be approximated to arbitrary accuracy on a compact domain
via ASEN with K = 2 and the two-closure approximation Aut(A?) = G2),

Proof. We show that one layer of ASEN using a message-passing GNN backbone can simulate
o o T;, so suppose L = 1 (i.e. the G-MLP has one layer). Recall that any equivariant linear map
T : R™ — R"™ can be viewed as a linear combination 1" = Z;izl a; B!, where a; € R are scalars, the
B! : R™ — R™ are G-equivariant linear maps that span the vector space of G-equivariant linear maps,
and d is the dimension of this vector space of G-equivariant linear maps. Moreover, by an argument
similar to Maron et al. 2019 “On the Universality of Invariant Networks" [8], we can define the Bl as
follows:
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Let 71, ..., 7, be the unique orbits of the action of G on node-pair indices [n] x [n] (we refer to these
as node-pair orbits). Then Ravanbakhsh et al. [27]; Maron et al. [§] show that ¢ = d, and the B ! can

be chosen as:
1 (i,j)en
Bl = ’ 17
K {0 else. an

This is a form of weight sharing, where B! is constant on each node-pair orbit (and hence any 7" that
is a linear combination of them is constant on each node-pair orbit). The index [ denotes the [-th
node-pair orbit. Note that the linear map can be shown to take a message-passing form as follows.
For an input x € R", let z; be viewed as a node representation for node :. Then the new node
representation for node 7 after this layer is

T(z); = Y a(B'z); (18)

=Y ay Bl (19)

=1 j=1
n q

= @) abj 20)
j=1  i=1

This can be interpreted as message passing, where the node j passes message z; 2?11 alBéj to

the node 7. We will show that ASEN with order K = 2 and two-closure automorphism group
approximation can simulate this map 7'(x). Note that any H € R"’ that has Aut(H) = G® must
satisfy that H,, ;, = H;, j, if and only if (i1, j1) ~¢ (%2, j2). In other words, H;, ;, = H;, ;, if and
only if (i1, j1) and (i2, j2) are in the orbit 7; for some [. Let the distinct entries of H be denoted by
h; € R, so that by = H;, j, if and only if (i1,71) € 7.

Finally, we define the GNN hy to take the following message-passing-based form. Let x; be the
representation of node ¢. The GNN updates the node representations to &; via two multilayer
perceptrons MLP®(h) : R — R? and MLP" : R9"! — R as follows:

#; =Y MLP"(x;, MLP*(H, ;)) @D
j=1
R 1 ifh=~nh
MLP®(h); = {0 else : @2
q
MLP’U(:L,’ y) = Z ayr. (23)
=1

Note that MLP®(H, ;) = Bll»j so that MLP" (z;, MLP(H, ;)) = x; Y|, alBZl»j, which shows that
Z; = T'(x);. In practice, an MLP cannot exactly express these functions, but an MLP can approximate
each function to arbitrary precision ¢ > 0 on a compact domain. Note that the function MLP® seems
discontinuous, but it is only defined on finitely many inputs, so it has a continuous extension that is
exact on the finite inputs. O

Theorem 2. Let G be a compact group, X,V be compact metric G-spaces, and Y be a compact
G-space. Let fg : X X V — Y be a universal family of continuous G-equivariant networks, i.e.
folgz, gv) = g - fo(x,v). Consider H € V with stabilizer equal to a subgroup G < G. Then, the
family fo(-,H) is universal over continuous G-equivariant functions from X to Y.

Proof. Let f* : X — ) be a continuous, G-equivariant function. To prove universality of fy(-, H),
we must show that for any e, there exists a 6 such that fy(-, ) is e-close to f*. To achieve this,
let’s first define a new function (which we will prove is G-equivariant), n : X x O — ) where
O ={gH : g € G} as follows: forany g € G,

n(z,gH) = gf* (g 'z). (24)
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Note in particular that n(z, H) = f*(z). To first show that is a valid definition of n, we will argue
that if gH = g'H, then gf* (g 1x) = ¢/ f*(¢' ') forall z € X. By the assumption gH = g'H, we
have ¢’ = gs for some s € G, the stabilizer of . Then

9 (g7 ) = (95) f*((95) 7 x) = g(sf* (s g7 w)) = gf (9™ ), (25)

where the last equality follows from f* being G-equivariant.

Next, the continuity of 7 on X x O follows from the continuity of f*, the inversion map ¢~—* and
group action g.
Finally, to show n is G-equivariant, we note that for any h € G,

n(hx, hgt) = hgf* ((hg)’lhx) = hgf* (g~ x) = hn(z, gH). (26)

Thus, n is a continuous G-equivariant function on X x O.

By universality of { fs} on X x V +— ) (under the supremum norm) and the orbit O being closed
in V, {fs} is also universal on the subdomain X' x Q. In particular, for any e, there exists some 6
such that fy approximates n e-well over all of X x O. Thus, it must also approximate n e-well over
X x {H}. Butsincen = f* on X x {H}, this completes the proof.

O

We remark that Thm. [2]can be generalized to locally compact groups, via Jaworowski’s equivariant
extension theorem [34; 35]].
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Table 4: Description of synthetic tasks, equivariant and invariant learning set-up, and their corre-
sponding symmetry group.

Synthetic Tasks
Task Equivariant Invariant Symmetry
Intersect Given two sequences of length  Determine the size of the inter- S, /2 X Sy,/2 X S2: sequences
%, determine which elements of  section of the two sequences can be reordered, and the two
each sequence are present in the sequences can be swapped
other
Palindrome Given a sequence of length n, Determine if the sequence hasa  Sequence reversal
determine where the sequence contiguous subsequence that is
has a contiguous subsequence a palindrome of length k&
that is a palindrome of length
k, if one exists
Cyclic Sum Given a sequence of length n, Find the largest sum of a (), (cyclic shifts)

determine which cyclic contigu-
ous subsequence of length k has
the largest sum

cyclic contiguous subsequence
of length &k

Detect Capital N/A Given a string of length n, re- S,_1, as all elements except
turn True if properly capitalized, ~first can be permuted
meaning the string is all Upper-
case, lowercase, or only has first
letter capitalized
Longest Palindrome  N/A Given a string of length n, deter- .S,

mine the length of the longest
palindrome that can be con-
structed using the characters of
the string

C Additional Experiment Details

C.1 Details for Synthetic Sequence Modeling Tasks in Sec.

We describe in details our chosen synthetic tasks in Tab. [4]

Equivariant Experiment Set-up The dataset per task contains 2500 examples of sequence length
10, chosen to highlight the benefits of symmetry in data-scarce regimes. We train ASEN in the binary
node classification setting to learn an equivariant mapping from the input node features to output
node labels, both input and output represented as sequences. Our model is optimized using standard
cross-entropy loss, with hidden dimension of 128, batch size of 64, learning rate of 0.01, and run on
40 epochs.

Invariant Experiment Set-up and Results We apply ASEN in the invariant setting on the following
synthetic tasks: Palindrome, Intersect, Detect Capital and Longest Palindrome (c.f. Tab. [3|and Tab. [).
As each task can have a different type of label, we now the switch to the regression setting using an
L loss and train for 80 epochs. The experiment again uses a data-scarce regime for each task of
8000 datapoints, denoted as 1 unit. We provide additional ablation results on the dataset sizes with
1.5 and 2 units. As shown in Tab.[5] ASEN with the correct symmetry group outperforms its trivial
symmetry counterpart across tasks and dataset sizes.

Table 5: Performance of two ASEN variants across tasks for varying data amounts. Within each model
variant, columns indicate data used (in units): 1, 1.5, and 2.

ASEN (Loss |) Invariant Non-invariant

Task 1 1.5 2 1 1.5 2
Intersect 0.076 £ 0.002 0.061 £ 0.009 0.060 + 0.005 0.081 +0.002 0.078 £ 0.0004 0.077 £ 0.001
Palindrome 0.250 £0.04 0.170 £0.01 0.125+£0.05 0.270+0.04 0.250£0.04 0.132 £ 0.04

Detect Capital 0.053 £ 0.005 0.056 £ 0.007 0.068 £0.016 0.075 +=0.011 0.066 £ 0.004 0.063 £ 0.007
Longest Palindrome 0.138 +0.014 0.110 +0.009 0.110 £ 0.009 0.152 £ 0.007 0.130 £0.012 0.130 &+ 0.010
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C.2 Details for Multitask Applications Sec.|5.2.1

In Fig. E], we conduct multitask training of ASEN across Intersect, Cyclicsum, and Palindrome, and
observe that the performance on Intersect notably improved upon single task training. Meanwhile,
Tab. [ shows that the multitask performance on the other two tasks (Cyclicsum, Palindrome) remains
similar to the single task setting.

Table 6: Multi-task Test Losses (0.08 units)
Method Cyclicsum Palindrome

Single-task 0.3869 0.510
Multi-task 0.3839 0.537

C.3 Details for Transfer Learning Sec.

For the invariant setting, we adopt a weighted L, regression loss for training (restricting all losses to
between 0 and 1) and disabling the TokenEmbedder, due to the diverse (invariant) target range across
tasks. The tasks Palindrome, Intersect, Detect Capital and Longest Palindrome are each learned on
an instance of ASEN pretrained on the other three. Each task dataset is of size 5600 datapoints,
with the chosen (finetuned) dataset restricted to 15 percent, or 840 datapoints. To probe the effect of
transferring symmetry, we also provide the ASEN baseline with the trivial symmetry (denoted as
“NoSym”), which underperforms ASEN with the desired nontrivial symmetry group in the data-scarce
regime.

C.4 Opverconstrained Symmetry

In Sec.[5.2]and Sec.[5.2.2] we show that ASEN incorporating the desired symmetries outperforms its
trivial symmetry baseline across a wide range of tasks and settings. As noted before, the symmetry
groups considered in these tasks are equal to their 2-closure, and thus ASEN can accurately model
the desired symmetry via the edge orbits whose automorphism are the 2-closure group. We also
discuss in Sec.[5]that ASEN can learn more symmetries from data (i.e., learn to tie weights in the
EdgeEmbedder module), making it robust when choosing G(2) to be smaller than the target symmetry.
We now present a negative example where G(2) > G in such a case, ASEN can fail.

Consider the task of determining the sign of a permutation, namely deciding whether an even or
odd number of inversions is used to create a permutation. For example, for n = 4, the identity
permutation [1, 2, 3, 4] is even, whereas [2, 1, 3, 4] with one inversion is odd, and [2, 3, 1, 4] with two
inversions is even. This task is invariant under the alternating group A,,, while the 2-closure of A,, is
Sy, meaning using ASEN taking the 2-closure symmetry breaking input would include significantly
more symmetries.

Choosing permutations of length n = 7, we train ASEN with G(?) = §,, and its trivial symmetry
baseline using binary cross-entropy loss for this invariant classification problem. We find that ASEN
performs no better than chance (i.e., stuck at test loss of 0.69, the same as a random guess baseline).
On the other hand, the trivial symmetry baseline eventually reaches a test loss of 0.28, outperforming
ASEN with overconstrained symmetries.
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