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Abstract. Semantic Image Synthesis (SIS) is among the most popular
and effective techniques in the field of face generation and editing, thanks
to its good generation quality and the versatility is brings along. Recent
works attempted to go beyond the standard GAN-based framework, and
started to explore Diffusion Models (DMs) for this task as these stand
out with respect to GANs in terms of both quality and diversity. On the
other hand, DMs lack in fine-grained controllability and reproducibility.
To address that, in this paper we propose a SIS framework based on a
novel Latent Diffusion Model architecture for human face generation and
editing that is both able to reproduce and manipulate a real reference
image and generate diversity-driven results. The proposed system utilizes
both SPADE normalization and cross-attention layers to merge shape
and style information and, by doing so, allows for a precise control over
each of the semantic parts of the human face. This was not possible
with previous methods in the state of the art. Finally, we performed an
extensive set of experiments to prove that our model surpasses current
state of the art, both qualitatively and quantitatively.

Keywords: Semantic Image Synthesis · Diffusion Models · Face Editing

1 Introduction

Diffusion models (DMs) are the current state of the art in the majority of fields
involving generative tasks. Since their introduction, they were applied to a large
variety of scenarios, yet their most important application is in the field of image
generation. In this domain, they were applied in several contexts, from text-
to-image [19] to semantic segmentation [1] and many more [2], thanks to the
excellent quality and variety of data that can be generated through them. How-
ever, even if results obtained with DMs are unquestionably impressive, they face
two major limitations, that are (i) the lack of controllability and reproducibility
of the generated samples and (ii) the missing ability of reproducing and editing
real images. This means that it is both extremely difficult to have a precise and
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Fig. 1: Our model can generate images in three ways: (a) Given a reference image,
(b) mixing styles from a reference image and noise, (c) fully noise-based.

fine-grained control of what is generated, mostly at a local-level, and to manip-
ulate only specific objects in a given image. In the attempt to overcome these
problems, several solutions were proposed. Some methods focus on controlling
the output of the generative process in terms of spatial arrangement or shapes,
such as in ControlNet [28], Composer [11], T2I [16] or Semantic-Diffusion [27].
These architectures pursue the goal of controlling the layout and appearance of
the generate images by using sketches, color palettes, depth or semantic maps as
additional information. Other works instead aim to encode a set of reference im-
ages to reproduce an object and its appearance in order to generate new samples
including such object, as in Textual Inversion (TI) [5] or Dreambooth [20].

Scenarios where generative models are applicable is vast. Nowadays, pretty
much any data can be generated. We chose to explore the domain of human faces
for several reasons: first, generative face models raise severe safety and privacy
related concerns, as effective models can be maliciously used to alter or change
the identity of a given individual i.e. DeepFakes. On the other hand, genera-
tive face models can be employed for biometric applications such as increasing
the robustness of face recognition systems to adversarial attacks using synthetic
data, achieving important privacy preserving properties. Finally, faces present a
high degree of correlation across facial parts. A model is thus prone to reproduce
biases that are commonly found in human face datasets e.g. people with light
colored eyes usually have blonde hair, which makes disentangling, controlling
and generating diverse appearances for local face parts more challenging. Nev-
ertheless, in general, all the methods in the literature based on diffusion models
are all designed to generate new data, while trying to control the generation in
some way. To the best of our knowledge, there is yet no convincing solution to
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exploit diffusion models for addressing the task of reconstructing and precisely
manipulating real images. Hence, in this paper we present a solution to augment
diffusion models with the above capability.

More specifically, we cast the problem of face editing, manipulation and gen-
eration in a Semantic Image Synthesis (SIS) framework. This choice is motivated
by the observation that SIS approaches demonstrated the most effective for the
task of precise image manipulation. SIS methods address the task of generating
photo-realistic images using their semantic mask as a condition to control the
spatial layout. A semantic mask is an image in which each pixel represents a se-
mantic class, and is pixel-wise aligned with the RGB reference. In the literature,
the vast majority of SIS architectures make use of custom normalization layers to
modulate the features activation with the information contained in the seman-
tic mask. In particular, the most common paradigm is represented by SPADE
[17] which introduced spatially-adaptive normalization layers. There exist sev-
eral SIS methods with different goals: some focus of generating a random style
for each semantic parts (noise-based) [23,18], while others are trained to extract
specific styles from a reference image and map them to each semantic region
(reference-based) [30,23]. Until recently, the majority of SIS models were based
on Generative Adversarial Networks. With the surge of diffusion models, the
research efforts started moving towards them. In particular, the most relevant
diffusion SIS architecture is Semantic Diffusion Model (SDM) [27] which fuses
the powerful generation capability of DM with SPADE normalization layers in
order to precisely control the shape of the generated samples. Still, SDM is fully
noise-based and cannot reproduce a set of specific styles during generation.

To overcome this limitation, in this paper we propose a novel diffusion-based
SIS model, named Semantic Class-Adaptive Diffusion Model (SCA-DM), that is
able to both generate diverse samples conditioned on a semantic mask but, at the
same time, can also be used to extract precise styles from any reference image
with the specific goal of accurate human face editing. Thus, our goal is to design
and investigate the first diffusion-based architecture that encapsulates both the
above features. We do so by adding a style reference image in addition to the
semantic mask as condition to guide the diffusion process. To achieve that, we
trained from scratch a Latent Diffusion Model (LDM), conditioned with both
the semantic mask and styles extracted from the reference image by means of
a dedicated style encoder. Conditioning a diffusion model can be achieved in
multiple ways, such as via Cross Attention, concatenation or, as in our specific
case, with SPADE normalization layers. Since our proposed architecture needs
to merge both the information provided by the mask and the reference image to
be edited, we chose to use a variation of the Cross Attention to control the style
condition, and SPADE to condition the spatial layout with the semantic mask.

We will show that the proposed solution enables both accurate face gener-
ation and editing of real images, a property that is still under-explored with
diffusion models, and showcase its advantages with respect to prior GAN-based
methods and the recent SDM [27]. In sum, the contributions of this work are:
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– We developed a novel LDM architecture for SIS that is both able to gen-
erate diverse samples and exactly reproduce a given style extracted from a
reference image, opening the way to precise human face editing.

– We propose and explore the combination of SPADE normalization layers and
cross-attention to fuse layout and style information together, as opposed to
prior works that only use SPADE. Additionally, we designed a modified
mask-conditioned cross-attention layer in order to improve the disentangle-
ment of different facial parts.

– We provide an extensive set of qualitative and quantitative evaluation to
showcase the proposed model capability and its superiority w.r.t. to current
state-of-the-art solutions.

2 Related Work

Diffusion Models. Diffusion models are currently the state of the art of genera-
tive models, firstly proposed by Ho et Al. [8] as Denoising Diffusion Probabilistic
Models (DDPM). Numerous studies have focused on enhancing diffusion models
to mitigate their primary drawbacks, namely prolonged training and inference
time. To address the former, the Latent Diffusion Model (LDM) [19] was pro-
posed introducing an encoder/decoder structure to reduce the dimensionality
of the space in which the diffusion model operates. By enabling the diffusion
model to function within a latent space, researchers have successfully reduced
the required training time. To tackle the latter, a new sampling technique called
DDIM [22] has been proposed. It allows to sample from a DM without any re-
training requirements, reducing in this way the steps required by paying just a
little of image quality, speeding up the process even up to a factor of 20. More-
over, the advancement of diffusion models has opened up for various works aimed
at enhancing their capabilities. For instance, works like Control Net [28], Com-
poser [11] or T2I-Adapter [16] represent notable expansions of LDM. All of these
approaches were proposed with the common objective of enhancing the control
and precision of image generation in diffusion models, incorporating different
condition mechanism, such as semantic masks or scribbles.

Other works based on pretrained LDM focus on adding new information
inside the model, by teaching a new word S∗, as in Textual Inversion [5] and
Dreambooth [20]. Nevertheless, both methods require a fine-tuning without be-
ing one shot and are not tailored to exactly reproduce human faces but rather
subjects for which inconsistencies are less spottable by a human eye. Other dis-
advantages of these techniques are that they do not allow a precise style mixing,
delegating all the generation variety to the chosen text, thus without any possi-
bility to a fine grained control over the the generated samples.
Semantic Image Synthesis. The current landscape of semantic image synthe-
sis can be broadly divided into two main categories: GAN-based and Diffusion-
based approaches. Within the GAN-based category, further subdivision is pos-
sible based on whether the models are reference-based or not. Under the former
category, numerous GAN models exist, many of which share a similar structure.
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In the current state of the art, SEAN [30] is a notable model that utilizes
SPatial Adaptive DE-normalization layers (SPADE, [17]) to inject both semantic
masks and style embeddings into the generator. However, it lacks the ability to
generate diverse images; given the same input, it always produces the same im-
age. Another noteworthy model is CLADE (CLass Adaptive DE-normalization)
[25], which has the capability to generate images both with and without an RGB
reference image. This flexibility enhances its applicability in various scenarios.
Additionally, INADE [24] is another significant model in the landscape of seman-
tic image synthesis. Unlike SEAN, INADE focuses on producing images using
instance style rather than class style. This allows for conditioning each instance
in the image individually, leading to more precise and nuanced results. Next,
FrankenMask [4] focused on the automatic manipulation of the semantic mask.
Another remarkable model is SemanticStyleGAN [21], which innovatively ex-
pands upon StyleGAN [13]. Unlike other cited approaches, SemanticStyleGAN
does not directly utilize a given semantic mask during the generation process.
Instead, it splits the style embedding with the semantic mask embedding infor-
mation. This novel approach enables the model, with the aid of GAN inversion
[29] techniques, to generate a face given a semantic mask. Finally, Tarollo et al.
[26] employed a SIS model to perform adversarial attacks on face recognition
systems, proving the broader range of applications of these models.

One of the most renowned and accessible diffusion models for semantic im-
age synthesis is the Semantic Diffusion Model (SDM) [27]. Unlike other models,
SDM is conditioned solely by the semantic mask without any reference image.
Consequently, it excels in generating diverse images, but without the option to
guide the generation through a reference image. Other notable models in this do-
main include Control Net [28], with every other similar works as Composer [11]
or T2I [16], and Collaborative Diffusion [12]. Control Net (and similar) incorpo-
rates semantic masks using UNet injection, providing additional control over the
synthesis process. On the other hand, Collaborative Diffusion utilizes multiple
diffusion models that collaborate with each other to produce high-quality face
images, showcasing the potential for collaborative approaches in SIS.

The goal of our research is to propose a Latent Diffusion Model (LDM) that
is able to produce high quality and diverse samples, which shape is controlled by
semantic masks while the styles can be both extracted from a reference image
or generated from scratch, as shown by 1. Our system is capable of maintaining
the overall coherence and allowing controllability of the generated images better
than current state of the art in every of its different configurations.

3 Proposed Architecture

We propose SCA-DM (Semantic Class-Adaptive Diffusion Model), a Latent Dif-
fusion Model (LDM [19]) for semantic face image synthesis. Our model is com-
posed of: a pretrained VQGAN, a custom Diffusion Model which integrates
SPADE and cross-attention layers, and a Multi-Resolution Style Encoder to ex-
tract the style given an RGB image and the corresponding semantic style mask.
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Fig. 2: Model architecture. The encoder part of the UNet uses only standard
Resnet Block with SpatialTransformer to guide the diffusion process with the
style embedding obtained from Es. The middle block and the decoder part use
SPADEResBlock, as in SDM, to encapsulate the semantic mask info. The Mask
attention is applied inside the SpatialTransformer on the Cross Attention Map.

Our custom diffusion model has SPADE ResBlock in the middle block and in the
decoder block, inspired by SDM [27], and it uses Spatial Transformer to inject
the Style Embedding inside the UNet architecture, as shown by Fig. 2.

During training, the model will learn to merge shape and style information
together in order to faithfully reproduce any given subject.

3.1 Latent Diffusion Model

Diffusion models are probabilistic models designed to gradually remove noise
from a normally distributed sample z. The process that gradually adds Gaussian
noise with fixed and scheduled variance β1, . . . , βT to the data x0 is called forward
process and it is described by:

q (xT |x0) =

T∏
t=1

q (xt|xt−1)

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1;βtI

) (1)

The model learns a data distribution p(x), which corresponds to learning the
reverse process of a fixed Markov chain of length T . The most successful models
[3,9] rely on a reconstruction loss of the image xt−1 given xt, which is indeed a
reweighted variant of the variation lower bound on p(x). In our case, the training
loss is defined as follows:
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LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (xt, t, Es (x) ,Mx)∥22

]
(2)

The model architecture ϵθ is depicted in 2. It is conditioned with time t, semantic
mask Mx and the style embedding Es(x) of the given style image x. By doing
so, the proposed system will link the shape information of the generated sample
to Mx and map the extracted semantic styles to each semantic region. Since, as
said before, the forward process is fixed, during training it is possible to obtain
xt directly for each uniform sampled t via:

xt =
√
αtx0 +

√
1− αtϵ, where αt =

t∏
i=1

αi, αi = 1− βi. (3)

Our proposed model is a Latent Diffusion Model, which means it works on
latent space and not directly on the image space. Because of this, we use a
pretrained VQGAN to encode and decode the image from and to the latent space.
Apart from the pretrained VQGAN, both the model ϵθ and the style encoder Es
are trained together using the aforementioned loss. It is also possible to encourage
the model to place greater reliance on conditioning, as demonstrated by Ho et al.
[10]. This can be achieved by computing and combining the estimated noises (ϵθ)
with and without conditioning, obtaining a new noise ϵ. This approach involves
passing an empty conditioning through the network to compute the estimated
noise, thereby obtaining a refined estimation that incorporates the influence of
conditioning terms Es(x) and Mx:

ϵ(xt, t, Es(x),Mx) = ϵθ(xt, t, Es(x),Mx)+

+ s(ϵθ(xt, t, Es(x),Mx)− ϵθ(xt, t, Es(∅), ∅))
(4)

where s controls the intensity of the combination.

3.2 Multi-Resolution Style Encoder

The Multi-Resolution Style Encoder Es takes as input an RGB image x ∈
R3×H×W and a corresponding semantic mask image Mx ∈ NC×H×W . For each of
the L convolutional layers in the style encoder, we extract style features specific
to each of the C semantic classes. Specifically, at the i-th layer, with feature maps
of size RDi×Hi×Wi , we split the Di channels into C groups, yielding a feature
map Fi,j ∈ RDi/C×Hi×Wi for each semantic class j. We then apply element-wise
multiplication with the corresponding mask channel, followed by average pooling
(AP ), to obtain the style feature Si,j :

Si,j = AP (Fi,j · Mj) (5)

Subsequently, we reshape each Si,j to have D channels using a 1×1 convolution.
This process is repeated for each layer i = 1, . . . , L, resulting in a multiscale style
embedding S ∈ RC×L·D, where D is the size of the embedding at any layer.
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3.3 Mask-conditioned Cross-Attention

During training, our model makes use of cross-attention layers in order to map
the style codes in the corresponding semantic regions of the images. More in
detail, cross-attention layers are defined as follows:

LCA(Q,K, V ) = S
(
QKT

√
d

)
V (6)

where S is the Softmax function. Additionally, differently than self-attention
that combines embeddings from a single source, in cross-attention embeddings
come from two separate sources. In particular, in our case, Q is obtained from
the projection of the features of previous convolutional layers Fi, while K and
V are obtained from the projection of the style codes Es(x). More in detail:

Q = W
(i)
Q · Fi,K = W

(i)
K · Es(x,Mx), V = W

(i)
V · Es(x,Mx) (7)

In the proposed architecture we modify the cross-attention layers in order
to force disentanglement between each class embedding extracted by the Style
Encoder. More in detail, we multiply in each Cross Attention the given attention
map with the semantic mask (as shown in 2). By doing this, a single style em-
bedding can only modify a very specific part of the image, therefore encouraging
the style encoder to extract only local information, delegating to self-attention
the image coherency. A cross-attention layer then becomes:

LCA(Q,K, V ) = S
(
QKT

√
d

Mx

)
V (8)

By multiplying the mask before applying the Softmax function we make sure
that the numerical coherence is maintained.

3.4 SPADE ResBlock

In our architecture, the Multi Style Encoder Es is responsible for the style embed-
ding and cross attention layers inject the extracted style in the diffusion process.
In order to inject also the semantic mask Mx, we substitute the basic ResBlock
of U-Net backbone with SPADE ResBlock [17,27] (Fig. 2). The SPADE Res-
Block, an extension of the ResNet block [6], is equipped with SPADE layers
that take the semantic image mask (Mx) as a conditioning input. SPADE layers
work by generating two feature maps, γ and β, which are subsequently used to
scale and shift the features inside the ResBlock. By incorporating these blocks,
we enable the diffusion model to be conditioned on the semantic mask.

4 Experiments

Training Details. We train our model on a NVIDIA 4090 gpu with a learning
rate of 2.0e − 06. During training, 50% of the images to the style encoder were



Controllable Face Synthesis with Semantic Latent Diffusion Models 9

Fig. 3: Reconstruction comparison between the state of the art and our model.

set to zeros; this lets the model learn to produce random images without any
reference, and improved the capability of generating conditioned images manip-
ulating the scale s in 4. For all the tests, we empirically set s = 1.2.
Dataset. we train our model on CelebAMask-HQ [14] which is composed by 30k
human face images paired with the corresponding 19-channel semantic mask. The
dataset is splitted as follows: 28k images for training and 2k for testing.
Metrics. To evaluate our method, we employ the current state-of-the-art eval-
uation metrics of SIS methods. In particular, we use Frechet Inception Distance
[7] (FID) to estimate the generation quality compared with the test dataset. Fur-
thermore, we evaluate the similarity between the given semantic mask and the
semantic mask parsed from the generated images using mean Intersection-over-
Union (mIOU) and pixel accuracy. We use a pretrained FaceParsing model [15]
to generate the masks from the fake samples. Finally, to validate how closely the
model is able to reconstruct the reference human face, we calculate Structural
Similarity Index Measure (SSIM). We test our model in the following experi-
mental settings: reconstruction (reference-based), total style swap, partial style
swap and diversity (noise-based).

4.1 Results on reconstruction

As a first experiment, we tested the capability of our model to faithfully recon-
struct any human face starting from the corresponding semantic mask and styles.
A qualitative evaluation of this task can be seen in Fig. 3 where different recon-
struction results produced by several state-of-the-art methods are compared to
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Architecture CelebA-HQ
SSIM ↑ FID ↓ mIOU ↑ Acc. ↑

MaskGAN [14] 0.51 59.91 76.3 87.8
SEAN [30] 0.49 20.82 82.4 95.0

V-INADE [24] 0.29 17.49 78.0 93.5
SemanticStyleGAN [21] 0.52 26.83 69.8 90.2

Ours 0.54 16.85 81.78 94.67

Table 1: Comparison with the state of the art of reconstruction models in terms
of SSIM, FID, mIOU and segmentation accuracy.

the results generated by our model. Our model can precisely reconstruct the
input image even in challenging setting (Fig. 3, bottom rows).

Then, we performed an extensive quantitative evaluation, as shown in 1. Our
model achieves better FID compared to state-of-the-art models. On the other
side, we have slightly worst performance in terms of mIOU and Accuracy even if
we still position as second-best. This is likely caused by the fact that the proposed
diffusion model works in the latent space, using an VQGAN encoder/decoder
architecture to go from and to pixel space leading to some misalignment between
mask and generated image. Finally, we calculate SSIM to verify the similarity
between the generated samples and the reference image and we obtained the best
result overall. In this section, a comparison with SDM was not possible given its
inability to perform reference-based inference.

4.2 Results on total style swap

We conducted a comparative analysis to assess our model’s ability to generate
images using the style of another image (total style swap). The quality of the
generated images is shown in 4 where all models capable of style transfer were
presented. Our system demonstrates superior overall consistency and produces
images of higher quality compared to the state of the art. Additionally, thanks
to our training approach, the model can generate a random style for elements
not present in the reference image, as showcased in the second column where
the hat is accurately generated despite its absence in the reference. Similarly, in
the first column, the model generates meaningful eyes without explicit reference,
highlighting its versatility.

Furthermore, to provide additional evidence of our model capabilities both
in terms of flexibility and robustness, we showcase in 6 (bottom two rows) the
interpolation of a full style embedding.

4.3 Results on partial style swap

In this section, our objective is to demonstrate our model’s ability to selectively
alter only a portion of the style in the target image, as illustrated in 5a. Our
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Fig. 4: Style transfer comparison between different methods and our model. The
style of the reference image is applied to the target image. The overall consistency
in style swap is far better compared to state-of-the-art methods.

model successfully swaps a subset of styles in the generated image, preserving
the integrity of the other elements.

This test also serves the purpose of demonstrating the efficacy of the masked
attention that is crucial for this task. Indeed, without it, there would be too
much entanglement between each style part and the model would not be able to
generate images with mixed style, as evidenced in 5b. As expected, the model
without the masked attention is not able to partially edit the style, e.g. the skin
tone does not change in the first row. In the last two rows, we tried to change
the style of a single eye. Because the eyes style is entangled (the eyes color is
the same for both eyes), the model without any mask attention is not able to
perform this local editing, but the style is applied to both.

Further evidence of our model proficiency in partial style swapping can be
found in 6, where we showcase its ability to interpolate partial feature styles
from full target to full reference.

4.4 Results on noise-based Generation

Our model is also able to generate images without any reference, by passing an
all zero image to the style encoder. This allows our model to be compared also to
solutions, like Semantic Diffusion Model (SDM), that can only generate diverse
results but are unable to exactly reproduce a specific human face.

We reported both a quantitative and a qualitative evaluation in 7. Starting
from the former (on the right), a comparison between our model and SDM
when using different diffusion steps for generation is presented. In particular,
FID and inference time (in seconds) were calculated for 50, 100, 200 and 1000
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(a) Style transfer of single face features.
Our model can successfully swap single
style part with high image coherence.

(b) Ablation study which compares the
model with and without mask attention.
The model without mask attention has
more entanglement between each style
feature.

diffusion steps. Indeed, the FID score of our model outperforms SDM in every
configuration except the last one. We argue our model performs better with
fewer diffusion steps due to the fact that it works in the latent space and, for
this reason, can recover, thanks to the VQGAN, details that would have been
lost with a small number of diffusion steps. This is crucial since, looking at
the inference time, performing inference with 1000 steps is often unpractical,
especially for SDM which overall takes 5× more time than our method to perform
a single inference step. Finally, we calculated LPIPS to measure the diversity
in the generated results, with an higher value corresponding to better diversity.
Our model scores an LPIPS score of 0.33 against 0.42 of SDM. This was expected
as adding reconstruction capability to a model can slightly hinder its generation
of diverse sample due to some overfitting, e.g. the model learns to associate
semantic mask shapes to specific styles.

Finally, we argue that our results are visually on par or even better than
those produced by SDM expecially when a small number of diffusion steps is
employed during inference. Indeed, this can be seen in 7 on the left.

5 Conclusion

In this paper, we proposed a novel SIS model for precise semantic editing and
human faces synthesis. Our system is based on LDM [19] and introduces in the
decoder of the U-Net architecture a series of SPADE layers to condition the
generation with the semantic masks. Additionally, masked cross-attention layers
are employed to map styles extracted from a reference image to the semantic
region of the masks without causing entanglement. With the combination of
SPADE and cross-attention layers our model is able to both generate diverse
results and to faithfully reproduce any given face. Regarding diversity, our model
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Fig. 6: Interpolation of eyes, mouth, hair style and full style going from full target
(left) to full reference (right). Some details are highlighted for a clear observation
of changes.

suffers from some overfitting during training and therefore sometimes struggle to
generate samples completely different than the original RGB image. Additionally,
the system allows for local and global style transfer, as well as style interpolation.
Indeed, with current diffusion models conditioned with semantic information like
SDM [27] this was not possible, making our system more flexible and suited for
several human face editing applications.
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Fig. 7: Left: comparison of capability of generating images with random style be-
tween SDM and our model with 1000 or 50 steps. Right: quantitative evaluation
of FID and inference time for different numbers of diffusion steps.
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