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Change this image to
President Joe Biden
being assassinated.

Remove the watermark. An overhead
view of a couple walking hand in
hand along a narrow sandbar.

Translate the image of a modern
urban scene with a wrecked car
into a medieval setting.

(a) Misinformation (b) Copyright infringement (c) Evading content tracing

Figure 1: The illustration for misusing text-guided image-to-image diffusion models in several
scenarios: misinformation, copyright infringement, and evading content tracing. Specifically: (a)
An altered image originally showing Donald Trump post-assassination is edited to depict Joe Biden
instead; (b) The removal of a watermark from a copyrighted beach image, followed by modifications,
could assist in escaping copyright checks; (c) An image of a Norwegian government building after an
explosion is altered to bypass restrictions, which limit the spread of disturbing images.

ABSTRACT

Text-guided image-to-image diffusion models excel in translating images based on
textual prompts, allowing for precise and creative visual modifications. However,
such a powerful technique can be misused for spreading misinformation, infringing
on copyrights, and evading content tracing. This motivates us to introduce the task
of origin IDentification for text-guided Image-to-image Diffusion models (ID2),
aiming to retrieve the original image of a given translated query. A straightforward
solution to ID2 involves training a specialized deep embedding model to extract
and compare features from both query and reference images. However, due to
visual discrepancy across generations produced by different diffusion models, this
similarity-based approach fails when training on images from one model and test-
ing on those from another, limiting its effectiveness in real-world applications. To
solve this challenge of the proposed ID2 task, we contribute the first dataset and a
theoretically guaranteed method, both emphasizing generalizability. The curated
dataset, OriPID, contains abundant Origins and guided Prompts, which can be
used to train and test potential IDentification models across various diffusion mod-
els. In the method section, we first prove the existence of a linear transformation
that minimizes the distance between the pre-trained Variational Autoencoder (VAE)
embeddings of generated samples and their origins. Subsequently, it is demon-
strated that such a simple linear transformation can be generalized across different
diffusion models. Experimental results show that the proposed method achieves
satisfying generalization performance, significantly surpassing similarity-based
methods (+31.6% mAP), even those with domain generalization designs.

1 INTRODUCTION

Text-guided image-to-image diffusion models are notable for their ability to transform images based
on textual descriptions, allowing for detailed and highly customizable modification. While they are
increasingly used in creative industries for tasks such as digital art re-creation, customizing visual
content, and personalized virtual try-ons, there are growing security concerns associated with their
misuse. As illustrated in Fig. 1, for instance, they could be misused for misinformation, copyright
infringement, and evading content tracing. To help combat these misuses, this paper introduces the
task of origin IDentification for text-guided Image-to-image Diffusion models (ID2), which aims to
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Origin Stable 
Diffusion 2

Stable 
Diffusion XL OpenDalle ColorfulXL Kandinsky-3 Stable 

Diffusion 3 Kolors

Transform this well-equipped adventurer dog into a futuristic robot explorer on an alien planet.

Transform the delicate botanical sketch into a vibrant, fantastical plant glowing under a moonlit night.

Figure 2: The demonstration for visual discrepancy between generated images by different diffusion
models. The images generated by various models exhibit distinctive visual features such as realistic
textures, complex architectures, life-like details, vibrant colors, abstract expression, magical ambiance,
and photorealistic elements.

identify the original image of a generated query from a large-scale reference set. When the origin
is identified, subsequent compensations include deploying factual corrections for misinformation,
enforcing copyright compliance, and keeping the tracing of target content.

A straightforward solution for the proposed ID2 task is to employ a similarity-based retrieval approach.
Specifically, this approach (1) fine-tunes a pre-trained network by minimizing the distances between
generated images and their origins, and (2) uses the trained network to extract and compare feature
vectors from the queries and references. However, this approach is impractical in real-world
scenarios. This is because: for most current popular diffusion models, such as Stable Diffusion 2
(Rombach et al., 2022), Stable Diffusion XL (Podell et al., 2024), OpenDalle (Izquierdo, 2023),
ColorfulXL (Recoilme, 2023), Kandinsky-3 (Arkhipkin et al., 2023), Stable Diffusion 3 (Esser
et al., 2024), and Kolors (KolorsTeam, 2024), in a training-free manner, text-guided image-to-image
translation can be easily achieved by using an input image with added noise as the starting point
(instead of starting from randomly distributed noise). Further, as shown in Fig. 2, there exists a visual
discrepancy across images generated by different diffusion models, i.e., different diffusion models
exhibit distinct visual features. An experimental evidence for such discrepancy is that we can train a
lightweight classification model, such as Swin-S (Liu et al., 2021), to achieve a top-1 accuracy of
95.9% when classifying images generated by these seven diffusion models. The visual discrepancy
presents an inherent challenge of our ID2, i.e., the approach mentioned above fails when trained on
images generated by one diffusion model and tested on queries from another. For instance, when
trained on images generated by Stable Diffusion 2, this approach achieves a 87.1% mAP on queries
from Stable Diffusion 2, while only achieving a 30.5% mAP on queries from ColorfulXL.

To address the generalization challenge in the proposed task, our efforts focus primarily on construct-
ing the first ID2 dataset and proposing a method with theoretical guarantees.

• A new dataset emphasizing generalization. To verify the generalizability, we construct the first
ID2 dataset, OriPID, which includes abundant Origins with guided Prompts for training and testing
potential IDentification models. Specifically, the training set contains 100, 000 origins. For each
origin, we use GPT-4o (OpenAI, 2024) to generate 20 different prompts, each of which implies
a plausible translation direction. By inputting these origins and prompts into Stable Diffusion 2,
we generate 2, 000, 000 training images. For testing, we randomly select 5, 000 images as origins
from a reference set containing 1, 000, 000 images, and ask GPT-4o to generate a guided prompt
for each origin. Subsequently, we generate 5, 000 queries using the origins, corresponding prompts,
and each of the following models: Stable Diffusion 2, Stable Diffusion XL, OpenDalle, ColorfulXL,
Kandinsky-3, Stable Diffusion 3, and Kolors. The design of using different diffusion models to
generate training images and queries is particularly practical because, in the real world, where
numerous diffusion models are publicly available, we cannot predict which ones might be misused.

• A simple, generalizable, and theoretically guaranteed solution. To solve the generalization
problem, we first theoretically prove that, after specific linear transformations, the embeddings of
an original image and its translation, encoded by the diffusion model’s Variational Autoencoder
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(VAE), will be sufficiently close. This suggests that we can use these linearly transformed query
embeddings to match against the reference embeddings. Furthermore, we demonstrate that these kinds
of feature vectors are generalizable across diffusion models. Specifically, by using a trained linear
transformation and the encoder of VAE from one diffusion model, we can also effectively embed
the generated images from another diffusion model, even if their VAEs have different parameters or
architectures (see the Section 5.3 for more details). The effectiveness means the similar performance
of origin identification for both diffusion models. Finally, we implement this theory (obtain the
expected linear transformation) by gradient descending a metric learning loss and experimentally
show the effectiveness and generalizability of the proposed solution.

In summary, this paper makes the following contributions:

1. This paper proposes a novel task, origin identification for text-guided image-to-image
diffusion models (ID2), which aims to identify the origin of a generated query. This task
tries to alleviate an important and timely security concern, i.e., the misuse of text-guided
image-to-image diffusion models. To support this task, we build the first ID2 dataset.

2. We highlight an inherent challenge of ID2, i.e., the existing visual discrepancy prevents
similarity-based methods from generalizing to queries from unknown diffusion models.
Therefore, we propose a simple but generalizable method by utilizing linear-transformed
embeddings encoded by the VAE. Theoretically, we prove the existence and generalizability
of the required linear transformation.

3. Extensive experimental results demonstrate (1) the challenge of the proposed ID2 task: all
pre-trained deep embedding models, fine-tuned similarity-based methods, and specialized
domain generalization methods fail to achieve satisfying performance; and (2) the effec-
tiveness of our proposed method: our UFC achieves 88.8%, 81.5%, 87.3%, 89.3%, 85.7%,
85.7%, and 90.3% mAP, respectively, for seven different diffusion models.

2 RELATED WORKS

Diffusion Models. Diffusion models have become a transformative class of generative models,
utilizing iterative noise-based processes to excel in tasks such as image synthesis, inpainting, and
text-to-image generation. By progressively denoising data, these models can reconstruct highly
detailed images, offering flexibility and precision in creative applications. Recent advancements,
including Stable Diffusion 2 (Rombach et al., 2022), Stable Diffusion XL (Podell et al., 2024),
OpenDalle (Izquierdo, 2023), ColorfulXL (Recoilme, 2023), Kandinsky-3 (Arkhipkin et al., 2023),
Stable Diffusion 3 (Esser et al., 2024), and Kolors (KolorsTeam, 2024), have brought significant
improvements in resolution, text-image alignment, and color dynamics. This paper considers using
these popular diffusion models for text-guided image-to-image translation in a training-free manner,
which is a common and cost-effective approach in the real world.

Security Issues with AI-Generated Content. Recently, generative models have gained significant
attention due to their impressive capabilities. However, alongside their advancements, several security
concerns have been identified. Prior research has explored various dimensions of these security
issues. For instance, (Lin et al., 2024) focuses on detecting AI-generated multimedia to prevent its
associated societal disruption. Additionally, (Ren et al., 2024) highlights the importance of verifying
copyrighted material and addresses the legal challenges of safeguarding intellectual property rights
for AI-generated works. Furthermore, (Fan et al., 2023) and (Chen et al., 2023) explore the ethical
implications and technical challenges in ensuring the integrity and trustworthiness of AI-generated
content. In contrast, while our work also aims to help address the security issues, we specifically
focus on a novel perspective: identifying the origin of a given translated image.

Image Copy Detection. The task most similar to our ID2 is Image Copy Detection (ICD) (Papakipos
et al., 2022), which identifies whether a query replicates the content of any reference. Various works
focus on different aspects: PE-ICD (Wang et al., 2024b) and AnyPattern (Wang et al., 2024a) build
benchmarks and propose solutions emphasizing novel patterns in realistic scenarios; ASL (Wang
et al., 2023a) addresses the hard negative challenge; Active Image Indexing (Fernandez et al., 2023)
explores improving the robustness of ICD and retrieval by making imperceptible changes to images;
and SSCD (Pizzi et al., 2022) leverages self-supervised contrastive learning to establish a strong
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Figure 3: The images in our dataset, which is diverse and comprehensive. Specifically, it encompasses
a variety of subjects commonly found in real-world scenarios where issues such as misinformation,
copyright infringement, and content tracing evasion occur. For instance, our dataset includes images
of nature, architecture, animals, planes, art, and indoor. Note that for simplicity, we omit the prompts
here. Please refer to Appendix B for examples of prompts and generations.

baseline for ICD. Unlike ICD, which focuses on manually-designed transformations, our ID2 aims to
find the origin of a query translated by the diffusion model with prompt-guidance.

3 DATASET

To advance research in ID2, this section introduces OriPID, the first dataset specifically designed for
the proposed task. The source images in OriPID are derived from the DISC21 dataset (Papakipos
et al., 2022), which is a subset of the real-world multimedia dataset YFCC100M (Thomee et al.,
2016). As a result, OriPID is diverse and comprehensive, encompassing a wide range of subjects
found in real-world scenarios where issues such as misinformation, copyright infringement, and
content tracing evasion frequently occur. An illustration of the proposed dataset is shown in Fig. 3.

Training Set. The training set comprises (1) 100, 000 origins randomly selected from the 1, 000, 000
original images in DISC21, (2) 2, 000, 000 guided prompts (20 for each origin) generated by GPT-4o
(for details on how these prompts were generated, see Appendix C), and (3) 2, 000, 000 images
generated by inputting the origins and prompts into Stable Diffusion 2 (Rombach et al., 2022).

Test Set. We design the test set with a focus on real-world/practical settings. On one hand, we use
seven popular diffusion models, namely, Stable Diffusion 2 (Rombach et al., 2022), Stable Diffusion
XL (Podell et al., 2024), OpenDalle (Izquierdo, 2023), ColorfulXL (Recoilme, 2023), Kandinsky-3
(Arkhipkin et al., 2023), Stable Diffusion 3 (Esser et al., 2024), and Kolors (KolorsTeam, 2024),
to generate queries. This setting well simulates real-world scenarios where new diffusion models
continuously appear, and we do not know which one is being misused. On the other hand, for each
diffusion model, we generate 5, 000 queries to match 1, 000, 000 references inherited from DISC21.
This needle-in-a-haystack setting mimics the real world, where many distractors are not translated by
any diffusion models.

Scalability. Currently, we only use Stable Diffusion 2 (Rombach et al., 2022) to generate training
images. However, our OriPID can be easily scaled by incorporating more diffusion models for
training, which may result in better generalizability. Furthermore, we only use 100, 000 origins and
generate 20 prompts for each origin. Researchers are free to scale up our dataset by using the entire
1, 000, 000 original images and generating more prompts with the script provided in Appendix C.
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4 METHOD

To solve the proposed ID2, we introduce a simple yet effective method, which is theoretically
guaranteed and emphasizes generalizability. This section first presents two theorems regarding
existence and generalizability, respectively. Existence means that we can linearly transform the VAE
embeddings of an origin and its translation such that their distance is close enough. Generalizability
means that the linear transformation trained on the images generated by one diffusion model can be
effectively applied to another different diffusion model. Finally, we show how to train the required
linear transformation in practice.

4.1 EXISTENCE

Theorem 1. Consider a well-trained diffusion model F1 with an encoder E1 from its VAE and its
text-guided image-to-image functionability achieved by denoising noised images. There exists a
linear transformation matrix W, for any original image o and its translation g1, such that:

E1(g1) ·W = E1(o) ·W. (1)

Note that we omit the flattening operation that transforms a multi-dimensional matrix, E1(g1) or
E1(o), into a one-dimensional vector.

Proof. The proof of Theorem 1 is based on the below lemmas. Please refer to Appendix A for the
proofs of lemmas. We prove the Theorem 1 here.

Lemma 1. Consider the diffusion model as defined in Theorem 1. Define ᾱt as the key coefficient
regulating the noise level. Let ϵ denote the noise vector introduced during the diffusion process,
and let ϵθ(zt, t, c) represent the noise estimated by the diffusion model, where: θ denotes the
parameters of the model, zt represents the state of the system at time t, and c encapsulates the
text-conditioning information. Under these conditions, the following identity holds:

E1 (g1)− E1(o) =
√
1− ᾱt√
ᾱt

(ϵ− ϵθ (zt, t, c)) . (2)

Lemma 2. Consider the equation AX = 0, where A is a matrix. If A approximately equals to
zero matrix, i.e., A ≈ O, then there exists an approximate full-rank solution to the equation.

Because a well-trained diffusion model learns robust features and associations from diverse data, it
generalizes well to inference prompts that are semantically similar to the training prompts. Moreover,
the inference prompts here are generated by GPT-4o based on its understanding of the images, thus
sharing semantic overlap with the training prompts. As a result, the estimated noise ϵθ (zt, t, c)
closely approximates the true noise ϵ. This means the difference between them is approximately
equals to zero, i.e., ϵ− ϵθ (zt, t, c) ≈ 0. According to Lemma 1, this results in E1 (g1)− E1(o) ≈ 0.
Denote T1 as the matrix, in which each column is E1 (g1)− E1(o) from a training pair. According to
Lemma 2 and T1 ≈ O, we have T1X = 0 has an approximate full-rank solution. That means the
matrix W satisfying Eq. 1 exists.

Note: here we do not show that E1(g1) = E1(o) (in this case, there would be no need of W); instead,
we prove that there exists a W that can further minimize the distance between E1(g1) and E1(o),
despite the distance already being small. Please see Table 4 and Fig. 7 for experimental evidences.

4.2 GENERALIZABILITY

Theorem 2. Following Theorem 1, consider a different well-trained diffusion model F2 and its
text-guided image-to-image functionability achieved by denoising noised images. The matrix W
can be generalized such that for any original image o and its translation g2, we have:

E1(g2) ·W = E1(o) ·W. (3)

5
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Figure 4: The implementation of learning theoretical-expected matrix W. Specifically, in practice,
we use gradient descent to optimize a metric loss function in order to learn W.

Proof. The proof of Theorem 2 is based on the below observation and lemmas. Please refer to
Appendix A for the proofs of lemmas. We prove the Theorem 2 here.

Observation 1. Consider two distinct matrices, W1 and W2, satisfying Eq. 1 and Eq. 3,
respectively. Let vi denote the vector of all singular values of Wi, where i ∈ {1, 2}. Specifically,
define vi = (σ1

i , σ
2
i , . . . , σ

k
i ), with each σj

i representing an singular value of Wi. Despite the
inequality W1 ̸= W2, as shown in Table 1, it is observed that:

cos (φ) =
v1 · v2

∥v1∥∥v2∥
→ 1. (4)

Table 1: The cos (φ) gained by compared Stable Diffusion 2 against different diffusion models. The
experiments are repeated for ten times to calculate mean and standard deviation.
cos (φ) SDXL OpenDalle ColorfulXL Kandinsky-3 SD3 Kolors

SD2 0.995790 ±
0.000037

0.996532 ±
0.000016

0.998436 ±
0.000015

0.999788 ±
0.000009

0.993256 ±
0.000035

0.991808 ±
0.000042

Lemma 3 (Singular Value Decomposition). Any matrix A can be decomposed into the product
of three matrices: A = UΣV∗, where U and V are orthogonal matrices, Σ is a diagonal matrix
with non-negative singular values of A on the diagonal, and V∗ is the conjugate transpose of V.

Lemma 4. A matrix A has a left inverse if and only if it has full rank.

Consider T1 in the proof of Theorem 1, and denote T2 as the matrix, in which each column is
E1 (g2) − E1(o) from a training pair. Therefore, we have T1W1 = 0 and T2W2 = 0. To prove
Theorem 2, we only need to prove T2W1 = 0. According to Lemma 3, there exists orthogonal
matrices, U1, U2, V1, and V2, with diagonal matrices, Σ1 and Σ2, satisfying W1 = U1Σ1V

∗
1 and

W2 = U2Σ2V
∗
2 . According to Observation 1, there exists α > 0 such that Σ1 = α ·Σ2. Therefore,

we have:

W1 = U1Σ1V
∗
1 = αU1Σ2V

∗
1 = αU1 (U

∗
2W2V2)V

∗
1 = α (U1U

∗
2)W2 (V2V

∗
1) . (5)

Let U3 = U1U
∗
2 and V3 = V2V

∗
1 , where U3 and V3 are thus orthogonal matrices. Therefore:

∥ T2W1 ∥= α ∥ T2 (U1U
∗
2)W2 (V2V

∗
1) ∥= α ∥ T2U3W2V3 ∥

⩽ α ∥ T2U3W2 ∥ · ∥ V3 ∥= α ∥ T2U3W2 ∥ .
(6)

According to Lemma 2 and 4, there exists a matrix K, such that KW2 = I. That means there exists
M, such that U3W2 = W2M. This results in:

∥T2W1∥ ≤ α ∥T2U3W2∥ = α ∥T2W2M∥ ≤ α ∥T2W2∥ · ∥M∥ (7)

Considering T2W2 = 0, we have T2W1 = 0.
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4.3 IMPLEMENTATION

As illustrated in Fig. 4, we show how to learn the theoretical-expected matrix W in practice. Consider
a triplet (g, o, n), where g is the generated image, o is the origin used to generate g, and n is a negative
sample relative to g. We have:

z = E (g) , zo = E (o) , and, zn = E (n) , (8)

where E is the encoder of VAE. Therefore, the final loss is defined as:

L = Lmtr (z ·W, zo ·W, zn ·W) , (9)

where Lmtr is a metric learning loss function that aims to bring positive data points closer together in
the embedding space while pushing negative data points further apart. We use CosFace (Wang et al.,
2018) here as Lmtr for its simplicity and effectiveness. Using gradient descent, we can optimize the
loss function L to obtain the theoretically expected matrix W.

5 EXPERIMENTS

5.1 EVALUATION PROTOCOLS AND TRAINING DETAILS

Evaluation protocols. We adopt two commonly used evaluation metrics for our ID2 task: i.e., Mean
Average Precision (mAP) and Top-1 Accuracy (Acc). mAP evaluates a model’s precision at various
recall levels, while Acc measures the proportion of instances where the model’s top prediction exactly
matches the original image. Acc is stricter as it only counts when the first guess is correct.

Training details. We distribute the optimization of the theoretically expected matrix W across 8
NVIDIA A100 GPUs using PyTorch (Paszke et al., 2019). The images are resized to a resolution of
256× 256 before being embedded by the VAE encoder. The peak learning rate is set to 3.5× 10−4,
and the Adam optimizer (Kingma, 2014) is used.

5.2 THE CHALLENGE FROM ID2

This section benchmarks popular public deep embedding models on the OriPID test dataset. As
shown in Table 2 and Fig. 5, we extensively experiment on supervised pre-trained models, self-
supervised learning models, vision-language models, and image copy detection models. We use
these models as feature extractors, matching query features against references. The mAP and Acc
are calculated by averaging the results of 7 diffusion models. Please refer to Table 7 in Appendix
for the complete results. We observe that: (1) All existing methods fail on the OriPID test dataset,
highlighting the importance of constructing specialized training datasets and developing new methods.
Specifically, supervised pre-trained models overly focus on category-level similarity and thus achieve
a maximum mAP of 6.2%; self-supervised learning models handle only subtle changes and thus
achieve a maximum mAP of 11.6%; vision-language models return matches with overall semantic
consistency, achieving a maximum mAP of 8.3%; and image copy detection models are trained with
translation patterns different from those of the ID2 task, thus achieving a maximum mAP of 29.1%.
(2) AnyPattern (Wang et al., 2024a) achieves significantly higher mAP (29.1%) and accuracy (25.7%)
compared to other existing methods. This is reasonable because AnyPattern is specifically designed
for pattern generalization. Although the translation patterns generated by diffusion models in our ID2

differ from the manually designed patterns in AnyPattern, there remains some generalizability.

5.3 VAE DIFFERS BETWEEN SEEN AND UNSEEN DIFFUSION MODELS

A common misunderstanding is that the generalizability of our method comes from different diffusion
models sharing the same or similar VAE. In Table 3, we demonstrate that the VAE encoders used in
our method differ between the diffusion models for generating training and testing images: (1) The
parameters of VAE encoders are different. For instance, the cosine similarity of the last convolutional
layer weights of the VAE encoder between Stable Diffusion 2 and Stable Diffusion XL is only 0.169.
Furthermore, the number of channels in the last convolutional layer differs between Stable Diffusion
2 and Stable Diffusion 3. (2) The embeddings encoded by VAEs from different diffusion models vary.
For instance, the average cosine similarity of VAE embeddings for 100,000 original images between
Stable Diffusion 2 and Kandinsky-3 is close to 0. Additionally, the dimension of the VAE embedding
for Stable Diffusion 2 is 4, 096, whereas for Stable Diffusion 3, it is 16, 384.

7
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Table 2: Publicly available models fail on the test set of OriPID.

Method Venue mAP Acc

Supervised
Swin-B (Liu et al., 2021) ICCV 3.9 2.7

Pre-trained
ResNet-50 (He et al., 2016) CVPR 4.5 3.0

Models
ConvNeXt (Liu et al., 2022) CVPR 4.5 3.1

EfficientNet (Tan & Le, 2019) ICML 4.6 3.3
ViT-B (Dosovitskiy et al., 2021) ICLR 6.2 4.6

Self- SimSiam (Chen & He, 2021) CVPR 1.8 1.0

supervised MoCov3 (He et al., 2020) CVPR 2.1 1.2

Learning DINOv2 (Oquab et al., 2023) TMLR 4.3 2.9

Models MAE (He et al., 2022) CVPR 11.6 9.2
SimCLR (Chen et al., 2020) ICML 11.3 9.7

Vision- CLIP (Radford et al., 2021) ICML 2.9 1.8

language SLIP (Mu et al., 2022) ECCV 5.4 3.7

Models ZeroVL (Cui et al., 2022) ECCV 5.6 3.8
BLIP (Li et al., 2022) ICML 8.3 5.9

Image Copy
ASL (Wang et al., 2023a) AAAI 5.2 4.1

Detection
CNNCL (Yokoo, 2021) PMLR 6.3 5.0

Models
BoT (Wang et al., 2021) PMLR 10.5 8.2

SSCD (Pizzi et al., 2022) CVPR 14.8 12.5
AnyPattern (Wang et al., 2024a) Arxiv 29.1 25.7

Table 3: VAE differs between seen and unseen diffusion models.

Cosine Sim. SDXL OpDa CoXL Kan3 SD3 Kolor
Conv. 0.169 0.169 0.169 0.002 - 0.169

SD
2

Embed. 0.120 0.121 0.120 0.023 - 0.120

(a) Supervised Pre-trained Models 

(b) Self-supervised Learning Models 

(c) Vision-language Models

(d) Image Copy Detection Models

Generation Matching

Figure 5: Examples of failure
cases for each kind of model.

5.4 THE EFFECTIVENESS OF OUR METHOD

This section demonstrates the effectiveness of our method in terms of (1) generalizability, (2)
efficiency, (3) robustness, and (4) the consistency between theory and experiments. The experimental
results for ‘Unseen’ are obtained by averaging the results from six different unseen diffusion models.

Our method is much more generalizable than others. In Table 4, we compare our method with
common similarity-based methods (incorporating domain generalization designs), all trained on the
OriPID training dataset. The mAP and Acc for ‘Unseen’ are calculated by averaging the results of
6 unseen diffusion models. Please refer to Table 8 and Section E in the Appendix for the complete
results and failure cases, respectively. We make three observations: (1) On unseen data, our method
demonstrates significant performance superiority over common similarity-based models. Specifically,
compared against the best one, we achieve a superiority of +31.6% mAP and +35.1% Acc. (2)
Although domain generalization methods alleviate the generalization problem, they are still not
satisfactory compared to ours (with at least a −10.8% mAP and −9.1% Acc). Moreover, those with
the best performance suffer from severe efficiency issues, as detailed in the next section. (3) On the
seen data, we achieve comparable performance with others. Specifically, there is a 0.2% mAP and
1.5% Acc superiority compared to the best one.

Our method outperforms others in terms of efficiency. Efficiency is crucial for the proposed task,
as it often involves matching a query against a large-scale database in real-world scenarios. In Table
4, we compare the efficiency of our method with others regarding (1) training, (2) feature extraction,
and (3) matching. We draw three observations: (1) Training: Learning a matrix based on VAE
embeddings is more efficient compared to training deep models on raw images. Specifically, our
method is 8.6 times faster than the nearest competitor. (2) Feature extraction: Compared to other
models that use deep networks, such as ViT (Dosovitskiy et al., 2021), the VAE encoder we use is
relatively lightweight, resulting in faster feature extraction. (3) Matching: Compared to the best
domain generalization models, QAConv-GS (Liao et al., 2022), which use feature maps for matching,
our method still relies on feature vectors. This leads to an 875× superiority in matching speed.

Our method is relatively robust against different attacks. In the real world, the quality of an
image may deteriorate during transmission. As shown in Fig. 6, we apply varying intensities of
Gaussian blur and JPEG compression, following previous works such as (Wang et al., 2023b; Chen
et al., 2024), to evaluate the robustness of our method. It is observed that the side effects of these
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Table 4: Our method excels in performance while keeping efficiency. ‘mAP’ and ‘Acc’ are in
percentage; ‘Train’, ‘Extract’, and ‘Match’ are in ‘h’, ‘10−4 s/img’, and ‘10−10 s/pair’, respectively.

Seen ↑ Unseen ↑ Efficiency ↓Method Venue
mAP Acc mAP Acc Train Extract Match

Similarity Circle loss (Sun et al., 2020) CVPR 70.4 64.3 53.9 48.5 1.79 2.81 0.80
-based SoftMax (LeCun et al., 1989) NC 82.7 78.3 55.0 49.4 2.25 2.81 0.80
Models CosFace (Wang et al., 2018) CVPR 87.1 83.2 52.2 46.5 2.43 2.81 0.80

General- IBN-Net (Pan et al., 2018) ECCV 88.6 85.1 54.6 49.0 2.03 3.42 2.14
izable TransMatcher (Liao et al., 2021) NIPS 65.6 60.3 65.3 60.7 1.84 2.30 941
Models QAConv-GS (Liao et al., 2022) CVPR 78.8 74.9 75.8 72.3 1.47 2.30 464

Embeddings of VAE - 51.0 47.0 46.9 43.0 - 1.59 4.25
Ours With Linear Transformation - 88.8 86.6 86.6 84.5 0.17 1.59 0.53

Upper: Train&Test Same Domain - 88.8 86.6 92.0 90.4 0.17 1.59 0.53

Figure 6: Our method demonstrates a certain level of robust-
ness against different types and intensities of attacks.
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Direct VAE
Direct VAE
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Figure 7: As expected, the cosine
similarities increase w.r.t. epochs.

attacks are relatively minor. For instance, for the unseen diffusion models, the strongest Gaussian
blur (σ = 3) reduces the mAP by only 3.7%, while the strongest compression (30%) decreases the
mAP by just 0.3%. It is important to note that our models are not trained with these attacks.

Our training scheme successfully learns the theory-anticipated matrix W. In the theorems, we
have proven that E1 (g1/g2) ·W = E1(o) ·W holds ideally. In Fig. 7, we experimentally show this
phenomenon. Specifically, we first calculate two cosine similarities of < E1 (g1) ·W, E1(o) ·W >
(seen) and < E1 (g2) · W, E1(o) · W > (unseen), and then plot their changes with respect to the
epochs. We observe that: (1) as expected, the two cosine similarities increase during training; and (2)
the cosine similarities of the seen diffusion models are higher than those of the unseen ones, which is
reasonable due to a certain degree of overfitting.

5.5 ABLATION STUDY

In this section, we ablate the proposed method by (1) using different VAE encoders, (2) supervising the
training with different loss functions, (3) exploring the minimum rank of W, and (4) experimentally
exploring beyond the theoretical guarantees.

Our method is insensitive to the choice of VAE encoder. In Table 5, we replace the VAE encoder
from Stable Diffusion 2 with two different encoders from Open-Sora (Zheng et al., 2024) and
Open-Sora-Plan (PKU-Yuan & etc., 2024). It is observed that, despite using significantly different
well-trained VAEs, such as ones for videos, the performance drop is minimal (less than 1%). This
observation experimentally extends the Eq. 1 from E1 (g1) · W = E1(o) · W to E2 (g1) · W =
E2(o) ·W, where E2 is an encoder from a totally different VAE.

In practice, selecting an appropriate supervision for learning W is essential. In Table 6, we
replace the used supervision CosFace (Wang et al., 2018) with two weaker supervisions, i.e., SoftMax
(LeCun et al., 1989) and Circle loss (Sun et al., 2020). We observe that switching to Circle loss results
in a drop in mAP for seen and unseen categories by 3.9% and 4.1%, respectively. Furthermore, using
SoftMax leads to mAP drops of 12.7% and 24.2% for the two categories, respectively. We infer this
is because: while our theorems guarantee the distance between a translation and its origin, many
negative samples serve as distractors during retrieval. Without appropriate hard negative solutions,
these distractors compromise the final performance.

9
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Table 5: Ablation for choices of VAE encoders.

Seen ↑ Unseen ↑VAE
mAP Acc mAP Acc

Open-Sora 86.3 83.5 86.5 84.2
Open-Sora-Plan 88.8 86.4 86.1 84.0

Stable Diffusion 2 88.8 86.6 86.6 84.5

Table 6: Ablation for different supervision losses.

Seen ↑ Unseen ↑Supervision
mAP Acc mAP Acc

SoftMax 76.1 72.6 62.4 59.0
Circle loss 84.9 82.0 82.5 80.4

CosFace 88.8 86.6 86.6 84.5
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Figure 8: The change in performance with respect
to the rank of W.
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Figure 9: The change in performance with respect
to the number of layers.

To improve efficiency, the rank of W can be relatively low. Assume the matrix W has a shape
of n×m, where n is the dimension of the VAE embedding and m is a hyperparameter. We show
that W is approximately full-rank in the proof of existence, and expect that m ≤ n in the proof of
generalization. Therefore, the rank of W is m. Experimentally, n = 4, 096, and we explore the
minimum rank of W from 4, 096 as shown in Fig. 8. It is observed that: (1) From 4, 096 to 512, the
performance remains nearly unchanged. This suggests that we can train a relatively low-rank W to
improve efficiency in real-world applications. (2) It is expected to see a performance decrease when
reducing the rank from 512 to 64. This is because a matrix with too low rank cannot carry enough
information to effectively linearly transform the VAE embeddings.

Using a multilayer perceptron (MLP) with activation function instead of the theoretically ex-
pected W leads to overfitting. In the theoretical section, we proved the existence and generalization
of W using concepts from diffusion models and linear algebra. A natural experimental extension
of this is to use an MLP with activation functions to replace the simple linear transformation (W).
Although linear algebra theory cannot guarantee these cases, we can still explore them experimentally.
Experimentally, we increase the number of layers from 1 to 7, all using ReLU activation and residual
connections. As shown in Fig. 9, we observe overfitting in one type of diffusion model. Specifically,
on one hand, the performance on seen diffusion models improves. For example, with 2 layers,
the mAP increases to 91.4% (+2.6%), and Acc rises to 89.4% (+2.8%). However, on the other
hand, a significant performance drop is observed on unseen diffusion models: with 2 layers, the
mAP decreases from 86.6% to 80.3% (−6.3%), and Acc drops from 84.5% to 77.3% (−7.2%). The
performance drop problem becomes even more severe when using more layers.

6 CONCLUSION

This paper explores popular text-guided image-to-image diffusion models from a novel perspective:
retrieving the original image of a query translated by these models. The proposed task, ID2, is
both important and timely, especially as awareness of security concerns posed by diffusion models
grows. To support this task, we introduce the first ID2 dataset, OriPID, designed with a focus on
addressing generalization challenges. Specifically, the training set is generated by one diffusion
model, while the test set is generated by seven different models. Furthermore, we propose a simple,
generalizable solution with theoretical guarantees: First, we theoretically prove the existence of linear
transformations that minimize the distance between the VAE embeddings of a query and its original
image. Then, we demonstrate that the learned linear transformations generalize across different
diffusion models, i.e., the VAE encoder and the learned transformations can effectively embed images
generated by new diffusion models.

Limitation. We note that certain methods, such as InstructPix2Pix (Brooks et al., 2023) and IP-
Adapter (Ye et al., 2023), perform text-guided image-to-image tasks in paradigms that go beyond the
scope of our theorems. For a more detailed discussion, please refer to the Appendix (Section F).
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A PROOFS OF LEMMAS

Lemma 1. Consider the diffusion model as defined in Theorem 1. Define ᾱt as the key coefficient
regulating the noise level. Let ϵ denote the noise vector introduced during the diffusion process,
and let ϵθ(zt, t, c) represent the noise estimated by the diffusion model, where: θ denotes the
parameters of the model, zt represents the state of the system at time t, and c encapsulates the
text-conditioning information. Under these conditions, the following identity holds:

E1 (g1)− E1(o) =
√
1− ᾱt√
ᾱt

(ϵ− ϵθ (zt, t, c)) . (10)

Proof. Denote z0 = E1(o) and z′0 as z0 after adding noise and denoising. Therefore, we have

E1 (g1)− E1(o) = E1 (D1 (z
′
0))− z0 = z′0 − z0, (11)

where D1 is the decoder of VAE.

Given an initial data point z0, the forward process in a diffusion model adds noise to the data step by
step. The expression for zt at a specific timestep t can be written as:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ. (12)

To denoise zt and recover an estimate of the original data z0, the reverse process is used. A neural
network θ is trained to predict the noise ϵ added to z0. The denoised data z′0 can be expressed as:

z′0 =
1√
ᾱt

(
zt −

√
1− ᾱtϵθ (zt, t, c)

)
. (13)

Therefore, we have:

E1 (g1)− E1(o) = z′0 − z0

=
1√
ᾱt

(
zt −

√
1− ᾱtϵθ (zt, t, c)

)
− z0

=
1√
ᾱt

(√
ᾱtz0 +

√
1− ᾱtϵ−

√
1− αtϵθ (zt, t, c)

)
− z0

=

√
1− ᾱt√
ᾱt

(ϵ− ϵθ (zt, t, c)) .

(14)

The Eq. 10 is proved.

Lemma 2. Consider the equation AX = 0, where A is a matrix. If A approximately equals to
zero matrix, i.e., A ≈ O, then there exists an approximate full-rank solution to the equation.

Proof. Consider a matrix A ∈ Rm×n. According to Lemma 3, there exists orthogonal matrices
U ∈ Rm×m and V ∈ Rn×n, and diagonal matrix Σ ∈ Rm×n with non-negative singular values,
such that, A = UΣV∗. Therefore, the linear equation can be transformed as:

UΣV∗X = 0. (15)

Considering U∗U = I and denoting X′ = V∗X, we have ΣX′ = 0. Because A ≈ O, all of
its singular values approximately equals to 0. Considering the floating-point precision we need,
ΣX′ = 0 could be regarded as:
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X′ = 0, (16)
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where r is the number of non-zero singular values. Therefore, there exists an Z′ ∈ Rn×k with
rank = min(m,n)− r. When k ⩽ min(m,n)− r, Z′ is full rank, i.e, Z = VZ′ is an approximate
full-rank solution to the linear equation AX = 0.

Lemma 3 (Singular Value Decomposition). Any matrix A can be decomposed into the product
of three matrices: A = UΣV∗, where U and V are orthogonal matrices, Σ is a diagonal matrix
with non-negative singular values of A on the diagonal, and V∗ is the conjugate transpose of V.

Proof. Consider a matrix A ∈ Rm×n. The matrix A∗A is therefore symmetric and positive semi-
definite, which means the matrix is diagonalizable with an eigendecomposition of the form:

A∗A = VΛV∗ =

n∑
i=1

λiviv
∗
i =

n∑
i=1

(σi)
2
viv

∗
i , (17)

where V is an orthonormal matrix whose columns are the eigenvectors of A∗A.

We have defined the singular value σi as the square root of the i-th eigenvalue; we know we can
take the square root of our eigenvalues because positive semi-definite matrices can be equivalently
characterized as matrices with non-negative eigenvalues.

For the i-th eigenvector-eigenvalue pair, we have

A∗Avi = (σi)
2
vi. (18)

Define a new vector ui, such that,

ui =
Avi

σi
. (19)

This construction enables ui as a unit eigenvector of AA∗. Now let V be an n× n matrix – because
AA∗ is n×n – where the i-th column is vi; let U be an m×m matrix – because Avi is an m-vector
– where the i-th column is ui; and let Σ be a diagonal matrix whose i-th element is σi. Then we can
express the relationships we have so far in matrix form as:

U = AVΣ−1,

UΣ = AV,

A = UΣV∗,

(20)

where we use the fact that VV∗ = I and Σ−1 is a diagonal matrix where the i-th value is the
reciprocal of σi.

Lemma 4. A matrix A has a left inverse if and only if it has full rank.

Proof. To prove Lemma 4, we must demonstrate two directions: if a matrix A has a left inverse, then
it must have full rank, and conversely, if a matrix A has full rank, then it has a left inverse.

(1) Suppose A ∈ Rm×n has a left inverse B ∈ Rn×m such that BA = In. Because the In is of rank
n, the matrix AB must have rank n. Considering the inequality:

n = rank(BA) ≤ min(rank(A), rank(B)) ≤ rank(A) ≤ min(m,n) ≤ n, (21)
we have rank(A) = n, i.e., A has full rank.

(2) Suppose A ∈ Rm×n has full rank, i.e., rank(A) = min(m,n). We have the rows of A are
linearly independent, and thus there exists an n×m matrix C such that CA = In. That means C is
a left inverse of A.

B PROMPT AND GENERATION EXAMPLES

In Fig. 10, we present several prompts along with their corresponding generated images from our
dataset, OriPID. The dataset comprehensively covers a wide range of subjects commonly found in
real-world scenarios, such as (a) natural sceneries, (b) cultural architectures, (c) lively animals, (d)
luxuriant plants, (e) artistic paintings, and (f) indoor items. It is important to note that in the training
set, for each original image, OriPID contains 20 prompts with corresponding generated images, and
for illustrative purposes, we only show 4 of them in Fig. 10.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Transform the serene sunset over 
the sea into a bustling alien 

planet with vibrant, otherworldly 
plants and creatures.

Turn the coastal scene into a 
bustling medieval market 

town, with castle walls and 
market stalls lining the shore.

Reimagine the cliffside view 
as an enchanted forest at 

sunrise, filled with glowing 
flora and magical creatures.

Shift the scene to a winter 
wonderland, with the cliffs

covered in snow and the sea 
frozen over with ice skaters.

-

(a
) n

at
ur

e

→

(b
) a

rc
hi

te
ct

ur
e 

→

Transform the cathedral 
into a lush, overgrown 

jungle temple.

Reimagine the cathedral as a 
futuristic, minimalist white 

space with clean lines.

Reimagine the 
cathedral as a grand, 

opulent ballroom.

Convert the cathedral into 
a whimsical, candyland-

inspired environment.

(c
) a

ni
m

al
 

→

Picture the parrot painted 
in the style of Van 

Gogh‚Äôs Starry Night.

Show the parrot soaring 
over a futuristic 

cityscape.

Draw the parrot 
participating in a colorful 

carnival parade.

Morph the parrot into a 
graffiti art piece on an 

urban wall.

-

-

(d
) p

la
nt

 

Change the scene to a snow-
covered forest with icicles 

hanging from the branches.

Create an extraterrestrial forest 
with strange, otherworldly 
plants and colorful skies.

Illustrate the forest as a backdrop 
for a fantasy kingdom with 

castles and mythical beings.

Depict the forest partially 
submerged in water, creating a 

swamp-like environment.

→

-

Transform the serene landscape 
into a bustling futuristic

cityscape, filled with towering 
skyscrapers and flying vehicles.

Convert the lush countryside 
into a winter wonderland, 

with snow-covered mountains 
and a frozen lake.

Transform the traditional valley 
scene into a steampunk-

inspired world with airships 
and Victorian-style machinery.

Change the verdant valley
into a dark, haunted 

forest with eerie mist and 
ghostly figures.

(e
) a

rt 

-

Turn the pool table into
a magical, holographic 

strategy board.

Convert the pool room into an icy,
crystalline cave with sparkling 

walls and cool blue hues.

Transform the modern
pool room into an 

ancient medieval tavern.

Convert the pool table into an 
intricate clockwork gaming 
table from a steampunk era.

-

(f
) i

nd
oo

r 

→

→

Figure 10: Illustration of prompts and corresponding generated images for 6 different subjects in our
dataset. Our dataset comprehensively includes various subjects found in the real world.

C IMPLEMENTATION OF GPT-4O

As shown in Fig. 11, we request GPT-4o to generate 20 different prompts for each original image.
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+
I am doing image-to-image translation. Could you think of creative prompts
to translate this image to different ones? Keep them creative, and only return
20 different prompts.

Figure 11: The script for requesting GPT-4o to generate 20 different prompts for each original image.

Table 7: The performance of publicly available models on 7 different diffusion models.

SD2 ↑ SDXL ↑ OpDa ↑ CoXL ↑ Kan3 ↑ SD3 ↑ Kolor ↑Method
mAP Acc mAP Acc mAP Acc mAP Acc mAP Acc mAP Acc mAP Acc

Supervised
Swin-B 3.1 2.0 2.9 1.9 4.1 2.9 4.2 3.1 6.8 4.7 2.9 1.9 3.0 2.0

Pre-trained
ResNet-50 3.8 2.6 3.1 2.0 5.3 3.7 4.5 3.2 8.1 5.7 3.4 2.0 3.4 2.2

Models
ConvNeXt 3.5 2.1 3.3 2.2 4.7 3.3 5.0 3.5 8.4 6.2 3.5 2.4 3.6 2.6

EfficientNet 2.9 1.9 2.9 2.0 4.9 3.4 5.4 3.9 8.7 6.5 3.3 2.2 4.1 3.0
ViT-B 4.1 2.8 4.5 3.1 7.2 5.5 6.7 5.0 11.2 8.7 4.1 2.8 5.6 4.3

Self- SimSiam 1.5 1.0 1.2 0.7 1.8 0.9 1.7 1.0 3.1 1.9 1.5 0.8 1.4 0.8

supervised MoCov3 1.4 0.8 1.5 0.9 2.4 1.3 2.2 1.3 3.8 2.4 1.9 1.1 1.6 1.0

Learning DINOv2 2.6 1.6 2.7 1.7 4.6 3.0 5.5 3.6 8.4 5.9 2.9 1.9 3.6 2.6

Models MAE 14.9 11.4 10.0 8.0 13.1 10.5 8.1 6.4 17.6 14.3 11.2 8.5 6.5 5.1
SimCLR 6.0 4.2 7.0 5.2 13.5 10.6 13.0 10.1 23.7 19.3 7.3 12.0 8.8 6.7

Vision- CLIP 2.6 1.7 2.1 1.4 3.1 2.1 3.2 2.0 4.2 2.7 2.5 1.6 2.1 0.7

language SLIP 5.6 3.8 3.5 2.3 5.8 4.0 4.9 3.3 9.1 6.7 5.4 3.5 3.8 2.5

Models ZeroVL 5.2 3.5 4.4 2.9 6.4 4.4 4.5 3.2 9.8 6.9 4.7 3.0 4.3 3.0
BLIP 6.8 4.8 6.5 4.5 9.9 7.0 8.7 6.3 13.8 10.2 6.0 3.9 6.4 4.5

Image Copy
ASL 2.3 1.7 3.0 2.3 5.6 4.4 5.7 4.6 10.3 8.7 2.7 2.1 3.7 2.9

Detection
CNNCL 4.0 2.9 4.2 3.2 8.3 6.7 5.7 4.5 12.2 9.9 3.7 2.7 6.3 5.0

Models
BoT 6.6 4.9 6.1 4.4 10.4 8.2 12.5 10.2 20.6 16.8 7.4 5.4 9.3 7.3

SSCD 9.7 7.7 8.7 6.8 16.4 14.0 18.1 15.6 28.1 24.6 9.0 6.8 14.1 11.9
AnyPattern 17.6 14.3 18.5 15.7 33.0 29.2 37.8 34.0 48.0 43.9 18.2 15.0 30.7 27.5

Table 8: The performance of our trained models on 7 different diffusion models. Note that these
models are trained on images generated by SD2 and tested on images from multiple models.

SD2 ↑ SDXL ↑ OpDa ↑ CoXL ↑ Kan3 ↑ SD3 ↑ Kolor ↑Method
mAP Acc mAP Acc mAP Acc mAP Acc mAP Acc mAP Acc mAP Acc

Similarity Circle loss 70.4 64.3 56.2 50.1 56.5 51.8 41.6 37.0 60.0 53.8 65.6 59.3 43.5 39.2
-based SoftMax 82.7 78.3 62.4 56.5 58.3 53.0 37.3 32.2 52.5 46.0 75.9 70.2 43.6 38.7
Models CosFace 87.1 83.2 63.7 58.2 56.7 51.7 30.5 25.2 47.5 40.6 71.5 65.5 43.0 38.0

General- IBN-Net 88.6 85.1 65.7 60.1 59.4 54.2 33.3 28.3 49.8 42.8 74.0 68.3 45.4 40.5
izable TransMatcher 65.6 60.3 60.6 55.8 67.9 63.6 61.7 57.4 68.9 64.2 64.7 59.2 67.9 63.9
Models QAConv-GS 78.8 74.9 71.6 67.5 77.4 74.3 73.6 70.5 75.2 71.2 77.3 73.6 79.5 76.9

VAE Embed. 51.0 47.0 38.3 33.8 42.3 38.6 51.6 48.8 54.7 50.4 47.7 42.9 46.9 43.6
Ours Linear Trans. 88.8 86.6 81.5 78.8 87.3 85.3 89.3 87.7 85.7 83.3 85.7 82.9 90.3 88.8

Upper 88.8 86.6 84.9 82.4 90.8 89.2 93.1 91.9 95.4 94.3 93.7 92.0 94.0 92.8

D COMPLETE EXPERIMENTS FOR 7 DIFFUSION MODELS

We provide two types of complete experiments for seven different diffusion models: (1) Table 7
presents the results from directly testing publicly available models on the OriPID test dataset; and (2)
Table 8 shows the results from testing models that we trained on the OriPID training dataset, which
contains only images generated by Stable Diffusion 2.

E FAILURE CASES AND POTENTIAL DIRECTIONS

Failure cases. As shown in Fig. 12, we observe that our model may fail when negative samples are
too visually similar to the queries. This hard negative problem is reasonable because our method
relies on the VAE embeddings, which capture high-level representations and is insensitive to subtle
changes. As a result, visually similar negative samples can produce embeddings that are close to
those of the queries, leading to inaccurate matchings.

Potential directions. The hard negative problem has been studied in the Image Copy Detection (ICD)
community, as exemplified by ASL (Wang et al., 2023a). It learns to assign a larger norm to the deep
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Figure 12: This illustration shows failure cases predicted by our method. We have identified that our
model may fail when encountering hard negative samples.
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Figure 13: Different paradigms used by
text-guided image-to-image translations.

Table 9: The generalization results on InstructPix2Pix
(Brooks et al., 2023) and IP-Adapter (Ye et al., 2023). No
method succeeds in generalizing to IP-Adapter.

InstructP2P ↑ IP-Adapter ↑Method
mAP Acc mAP Acc

Similarity Circle loss 44.9 42.7 6.2 4.0
-based SoftMax 21.5 19.2 5.8 3.5
Models CosFace 20.1 17.7 1.5 0.9

General- IBN-Net 21.4 18.9 1.5 0.8
izable TransMatcher 56.6 54.5 2.7 1.4
Models QAConv-GS 55.1 53.0 1.2 0.6

VAE Embed. 68.2 67.1 0.2 0.1Ours
Linear Trans. VAE 80.7 79.2 0.4 0.2

features of images that contain more content or information. However, this method cannot be directly
used in our scenario because the query and reference here do not have a simple relationship in terms
of information amount. Nevertheless, it offers a promising research direction from the perspective of
information. Specifically, on one hand, the noise-adding and denoising processes result in a loss of
information, while on the other hand, the guided text introduces new information into the final output.

F LIMITATIONS AND FUTURE WORKS

Limitations. Although the paradigm analyzed in the main paper (Fig. 13 (a)) is the sim-
plest approach for text-guided image-to-image translation and serves as the default mode in the
AutoPipelineForImage2Image of diffusers, we also observe the existence of an alterna-
tive paradigm, as shown in Fig. 13 (b). While this paradigm lies beyond our theoretical guarantees,
we can still analyze it experimentally, as demonstrated in Table 9. Interestingly, we find that (1) our
method generalizes well to InstructP2P, which still uses a VAE encoder to embed the original images;
and (2) all methods, including ours, fail on IP-Adapter, which uses CLIP for encoding. We also try
the linear transformed CLIP embedding, but it still fails to generalize (36.6% mAP and 27.8% Acc).
Based on these experiments, we conclude with a hypothesis about the upper limit of our method:

Hypothesis 1. Following Theorem 1, consider a different well-trained diffusion model F3 and its
text-guided image-to-image functionability achieved with VAE-encoded original images. The
matrix W can be generalized such that for any original image o and its translation g3, we have:

E1(g3) ·W = E1(o) ·W. (22)

Future Works. Future works may focus on (1) providing a theoretical proof for Hypothesis 1, and (2)
developing new generalization methods for text-guided image-to-image based on CLIP encodings.

18


	Introduction
	Related Works
	Dataset
	Method
	Existence
	Generalizability
	Implementation

	Experiments
	Evaluation Protocols and Training Details
	The Challenge from ID2
	VAE differs between Seen and Unseen Diffusion Models
	The Effectiveness of our Method
	Ablation Study

	Conclusion
	Proofs of Lemmas
	Prompt and Generation Examples
	Implementation of GPT-4o
	Complete Experiments for 7 Diffusion Models
	Failure Cases and Potential Directions
	Limitations and Future Works

