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Abstract

Integrating inertial measurement units (IMUs)001
with large language models (LLMs) advances002
multimodal AI by enhancing human activity003
understanding. We introduce SensorCaps, a004
dataset of 26,288 IMU-derived activity narra-005
tions, and OpenSQA1, an instruction-following006
dataset with 257,562 question-answer pairs.007
Combining LIMU-BERT and Llama, we de-008
velop LLaSA, a Large Multimodal Agent ca-009
pable of interpreting and responding to activity010
and motion analysis queries. Our evaluation011
demonstrates LLaSA’s effectiveness in activ-012
ity classification and question answering, high-013
lighting its potential in healthcare, sports sci-014
ence, and human-computer interaction. These015
contributions advance sensor-aware language016
models and open new research avenues.017

1 Introduction018

Developing large language models (LLMs) re-019

quires comprehensive question-answering datasets020

for effective task-specific training and fine-tuning.021

According to Xie et al., creating such datasets022

involves curating diverse, high-quality question-023

answer pairs to guide models in learning context-024

specific responses and reasoning abilities (Xie et al.,025

2024). In modalities like audio and video, nar-026

rations are used to prepare question-answering027

datasets. Gong et al. (Gong et al., 2023) integrates028

the audio modality with LLaMA (Touvron et al.,029

2023) and uses GPT generated audio narrations030

(WavCaps) to enhance their dataset.031

Building on these ideas, this paper explores inte-032

grating inertial measurement units (IMUs) with033

LLMs to expand their real-world applicability.034

IMUs, which combine accelerometers, gyroscopes,035

and magnetometers, provide precise, continuous036

data on human motion, valuable for applications037

like healthcare monitoring, sports science, and038

1Our anonymous code repository and datasets can be found
on https://anonymous.4open.science/r/LLaSA/

human-computer interaction. Incorporating IMU 039

data into large multimodal agents (LMAs) can en- 040

hance their understanding of the environment, im- 041

proving decision-making and task execution. 042

For instance, IMU-equipped LMAs can monitor 043

physical activity and detect anomalies in healthcare, 044

providing timely interventions and personalized 045

recommendations. LIMU-BERT (Xu et al., 2021) 046

demonstrates the effectiveness of integrating IMU 047

data with language models using self-supervised 048

learning on unlabeled IMU data, improving human 049

activity recognition accuracy by over 10%. 050

To enhance multimodal agent’s capabilities, 051

developing comprehensive question-answering 052

datasets is crucial. While previous works devel- 053

oped multimodal datasets to integrate LLM with 054

other modalities (e.g., audio and video) (Gong et al., 055

2023; Mei et al., 2023), no such dataset exists for 056

IMU data. We present a unique dataset of human 057

activity narrations, capturing IMU events and trans- 058

lating them into detailed descriptions. This dataset 059

is used to generate question-answering datasets, fa- 060

cilitating training LLMs to understand and respond 061

to queries about human activities and motion anal- 062

ysis. We combine Llama and LIMU-BERT to de- 063

velop a sensor-aware question-answering model, 064

marking a significant advance in multimodal AI. 065

The contributions of this paper are threefold: (1) 066

introducing and publishing SensorCaps, a novel 067

dataset narrating IMU data into 26,288 human 068

activity, and OpenSQA, an instruction-following 069

dataset with 257,562 question-answer pairs; (2) de- 070

veloping a multimodal model integrating Llama 071

and LIMU-BERT, improving performance in un- 072

derstanding and responding to queries about human 073

activities and motion analysis; and (3) providing 074

a comprehensive performance evaluation in close- 075

ended human activity classification and open-ended 076

question-answering in a new benchmark dataset. 077

These contributions advance multimodal AI and 078

open new research and applications. 079
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2 Related Work080

Researchers have introduced LMAs for various081

modalities, including computer vision (Liu et al.,082

2023; Wang et al., 2023), audio (Huang et al.,083

2024; Gong et al., 2023), motion animation (Zhang084

et al., 2024), and health sensors (Kim et al., 2024),085

demonstrating their versatility and potential in en-086

hancing AI applications. While early LMAs used087

closed-source LLMs like GPT-3.5 for inference088

(Xie et al., 2024), recent efforts focus on prepar-089

ing question-answering datasets and fine-tuning090

open-source models like Llama (Touvron et al.,091

2023) with multimodal encoders, such as LLaVA092

(Liu et al., 2024). These models perform tasks093

like image and video understanding, video genera-094

tion or editing, autonomous driving, and game de-095

velopment. However, the application of wearable096

sensors remains limited, particularly in creating097

instruction-following datasets.HealthLLM (Kim098

et al., 2024) integrates LLM with sensor data but099

focuses solely on close-ended tasks without sup-100

porting open-ended question-answering.101

Wearable IMU sensors are crucial for under-102

standing human activities. LIMU-BERT (Xu et al.,103

2021) improves recognition accuracy through self-104

supervised learning. Penetrative AI (Xu et al.,105

2024) uses GPT-3.5 and GPT-4 for motion and106

heartbeat detection but fails to answer questions.107

Our work extends research by analyzing fine-108

tuned LMAs’ ability to understand, discuss, and109

answer questions about human activities using ac-110

celerometer and gyroscope data. Narration of sig-111

nals, as shown by Gong et al. (Gong et al., 2023),112

is key for creating instruction-following datasets.113

While narrating wearable sensor data is novel, simi-114

lar methods in WavCaps (Mei et al., 2023) use GPT115

for audio event captions. Gong et al. leveraged this116

to create the OpenAQA dataset. By applying GPT117

to IMU data, we aim to develop comprehensive118

human activity based question-answering datasets,119

laying the foundation for sensor-aware LMAs.120

3 Large Language and Sensor Assistant121

This section describes the design methodology of122

the Large Language and Sensor Assistant (LLaSA).123

3.1 Foundational Model for Motion Data124

As the foundational model for encoding motion125

data, we use LIMU-BERT, which leverages unla-126

beled IMU data through self-supervised learning,127

similar to BERT in Natural Language Processing.128

LLaMA (fLLM)

LIMUBert (fIMU) Text Tokenizer (fT)

IMU Embedding (Es)

Text Embedding
(Eq)Projector (WP)

Frozen weights LoRA adapter

Sensor Reading (XS) Query (Xq)

Answer from LLM (Xa)

Figure 1: Architecture of the Large Language and Sen-
sor Assistant (LLaSA) model

We first fuse and normalize accelerometer and gy- 129

roscope data from the IMU sensors, then apply a 130

trainable positional encoding to fully utilize the or- 131

der information. The encoder of LIMU-BERT con- 132

sists of multiple blocks combining multi-headed 133

attention, projection, and feed-forward layers, con- 134

nected by add & normalization layers. The decoder 135

comprises a projection layer, an activation & nor- 136

malization layer, and a prediction head. Both the 137

encoder and decoder use the Gaussian Error Linear 138

Unit (GELU) as the activation function. 139

After training LIMU-BERT with unlabeled 140

data from four activity recognition datasets 141

(HHAR (Stisen et al., 2015), UCI-HAR (Reyes- 142

Ortiz et al., 2016), MotionSense (Malekzadeh et al., 143

2019), and Shoaib (Shoaib et al., 2014)), we save 144

the encoder and combine it with a language model 145

for further tasks. These datasets provide three-axis 146

accelerometer and gyroscope data for eight activ- 147

ities: "walking," "sitting," "standing," "jogging," 148

"biking," "ascending stairs," "lying," and "descend- 149

ing stairs." These are downsampled to 20 Hz. 150

LIMU-BERT Training Details. We train LIMU- 151

BERT using the mean square error (MSE) loss and 152

Adam optimizer on a Nvidia RTX 3090Ti GPU for 153

8 hours. 154

3.2 Integrating with LLM 155

Following LLaVA, we merge the projected outputs 156

of the LIMU-BERT encoder with an LLM that 157

encodes the textual inputs and provides textual out- 158

puts. We use the 7 billion parameter Vicuna 1.5 159

model (Chiang et al., 2023), built on the Llama 160

foundational LLM. Figure 1 illustrates the LLaSA 161

model architecture. Here, Xs (sensor readings) 162

goes through LIMU-BERT, fIMU , and Multilayer 163
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Perceptron (MLP) projector,WP , to become the164

encoding Es. Xq (natural language query) is pro-165

cessed by the Llama tokenizer (fT ), producing en-166

coding Eq. These encodings are then input to the167

LLM agent (fLLM ), resulting in the answer Xa.168

This process is summarized by:169

Xa = fLLM ([fIMU (Xs) ∗WP ] ∩ [fT (Xq)])170

Projector Training Details. We pre-train the MLP171

projector (WP ) with a GELU activation layer us-172

ing the OpenSQA dataset for one epoch in 16-bit173

precision on two 24GB GPUs with a batch size of174

32 per device and a learning rate of 0.001.175

LLaSA Training Details. For parameter-efficient176

fine-tuning, we use LoRA (Hu et al., 2021) to fine-177

tune Vicuna-7b-1.5 and the pretrained projector for178

one epoch with 16 samples per batch, 128 rank,179

and a 0.0002 learning rate. This follows LLaVA’s180

instruction-following multimodal agent training181

procedure, enabling the model to interpret sensor182

data when answering questions.183

4 Sensor-Context Aware Instruction184

Following Dataset Generation185

This section outlines the creation of captioning and186

question-answering datasets.187

4.1 SensorCaps: Captioning Dataset188

Before preparing the question-answering dataset,189

we create a sensor captioning or human activity190

narration dataset with IMU data. It ensures that the191

instruction-following dataset preparation pipeline192

can access knowledge about data samples. We use193

the same datasets mentioned in Section 3.1, sub-194

sampling the data to 10 Hz and rounding them195

to 6 digits to reduce generation costs and prevent196

the chatbot from focusing on minor details. We197

then send the sensor data, ground truth labels, and198

detailed instructions to GPT-3.5-Turbo to narrate199

the IMU event or human activity. The narration200

generation pipeline first asks to extract and summa-201

rize characteristic features of the sensor data before202

generating temporally aware captions.203

4.2 OpenSQA: Question-Answering Dataset204

With SensorCaps, we have four types of informa-205

tion for each sensor data reading: (1) IMU signal206

values (gyroscope and accelerometer), (2) activ-207

ity label or summary (e.g., “descending stairs”),208

(3) summary of characteristic features of the IMU209

signals, and (4) narration of the IMU event.210

We provide these to GPT-3.5-Turbo with de-211

tailed prompts to generate ten question-answering212

pairs that require knowledge to step-by-step ana- 213

lyze the data and context. With the information 214

in SensorCaps, GPT-3.5-Turbo generates a list for 215

building instruction-following training data. Occa- 216

sionally, GPT-3.5-Turbo fails to generate questions 217

with answers, resulting in the loss of 5,318 pairs, 218

but we still retain 257,562 instruction-following 219

training samples for our LMA, considering human 220

activity analysis from the IMU data context. 221

5 Evaluation Tasks and Datasets 222

This section outlines the tasks, datasets, and metrics 223

for close- and open-ended evaluation of LLaSA. 224

5.1 Close-Ended 225

Due to the popularity of human activity recognition 226

from IMU data (Chen et al., 2021), we use it as 227

the close-ended zero-shot evaluation task to deter- 228

mine if LLaSA correctly understands IMU data. 229

We evaluate LLaSA on four seen datasets (HHAR, 230

UCI-HAR, MotionSense, and Shoaib) used in its 231

training (Section 3.1) and one unseen dataset (SHL 232

(Gjoreski et al., 2018)) not used to generate Open- 233

SQA. For testing, we use stratified subsets with 100 234

samples per class from each dataset for balanced 235

representation. For each dataset, we prompt the 236

LLMs with possible activity labels. If the LLM 237

fails to answer with a relevant label, it is classified 238

as “Unclear.” Relevant labels match the activity 239

classes from the dataset. We compare the predic- 240

tions of our proposed model with GPT-3.5 Turbo 241

and a fine-tuned version of GPT-3.5 Turbo, GPT- 242

3.5-T-F (fine-tuned with 5% of the LIMU-BERT 243

training data and corresponding human activity la- 244

bels). We use precision, recall, and F1-score as 245

metrics to evaluate the model’s performance com- 246

prehensively. 247

5.2 Open-Ended 248

To evaluate LLaSA’s ability to answer IMU-related 249

open-ended questions, we develop an open-ended 250

benchmark dataset with 19,440 question-answer 251

pairs covering diverse human activities. We use the 252

PAMAP2 dataset (Roggen et al., 2010), which was 253

not used to train LLaSA. This benchmark includes 254

three categories of questions: 1) scientific depth 255

of knowledge, 2) reasoning behind possible activi- 256

ties, and 3) reliability of sensor readings (e.g., noise 257

effects). For each of the 18 classes, we randomly se- 258

lect two samples from three sensor locations (ankle, 259

chest, hand) for each of the nine subjects, covering 260
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Dataset LMA F-1 Precision Recall

HHAR
LLaSA 0.84 0.88 0.86

GPT-3.5-T 0.07 0.16 0.10
GPT-3.5-T-F 0.52 0.54 0.70

MotionSense
LLaSA 0.83 0.85 0.83

GPT-3.5-T 0.08 0.07 0.13
GPT-3.5-T-F 0.21 0.27 0.21

Shoaib
LLaSA 0.81 0.84 0.81

GPT-3.5-T 0.09 0.10 0.12
GPT-3.5-T-F 0.27 0.45 0.31

UCI
LLaSA 0.72 0.82 0.75

GPT-3.5-T 0.07 0.35 0.12
GPT-3.5-T-F 0.28 0.24 0.31

SHL
LLaSA 0.65 0.76 0.71

GPT-3.5-T 0.15 0.22 0.15
GPT-3.5-T-F 0.23 0.25 0.32

Table 1: Performance comparison of LLaSA with GPT-
3.5-Turbo on human activity recognition tasks

all three categories. These data undergo the same261

question-answer generation process as SensorCaps,262

including subsampling and rounding. Using GPT-263

4o (GPT, 2024), we generate five question-answer264

pairs per category with appropriate instructions.265

6 Experimental Results266

6.1 Close-ended267

Table 1 shows that in close-ended zero-shot eval-268

uation, GPT-3.5-Turbo cannot associate the sig-269

nals with the correct classes when the information270

regarding the ground truth is withheld. On the271

contrary, LLaSA takes embedding instead of the272

IMU signal strings like GPT-3.5-Turbo and has 12,273

10.4, 9, and 10.3 times higher F1-Score on HHAR,274

MotionSense, Shoaib, and UCI data, respectively.275

Although fine-tuned GPT-3.5 performed better than276

non-finetuned GPT-3.5-Turbo, LLaSA outperforms277

it with an average of 2.8 times higher F1-score. For278

the unseen dataset during training (SHL), we ob-279

serve that LLaSA achieves a 65% F1-score whereas280

GPT-3.5-Turbo and fine-tuned GPT-3.5-Turbo have281

an F1-score of 15% and 23%, respectively.282

6.2 Open-ended283

For evaluation, we ask GPT-4o to assess our pre-284

dicted answers against the ground truth activity285

label, sensor location, and the benchmark dataset’s286

standard answer generated by GPT-4o. This evalua-287

tion involves both human observation and GPT-4o’s288

summary of LLaSA’s strengths and weaknesses.289

Table 2 shows example question-answering with290

LLaSA, which can correlate IMU data with vari-291

ous activities, such as the stance and swing phases292

of stair climbing, providing relevant interpreta-293

tions. Vicuna-13b, on the contrary, provides gen-294

User What is this person doing? [ascending stairs]
LLaSA The accelerometer data shows a consistent increase in

the z-axis values, which aligns with the upward move-
ment typically associated with climbing stairs.

Vicuna-13b [omitted]... It is difficult to determine the specific ac-
tivity or context of the movements without additional
information. However, the data could be used to analyze
the person’s gait, balance, or other movements, or to
track the device’s movement over time.

User What does the combination of gyroscope and accelerom-
eter data reveal about the terrain on which the running
is likely occurring? [running]

LLaSA The gyroscope data showing rapid changes in orientation
and the accelerometer data displaying high acceleration
values suggest that the individual is likely running on
uneven terrain with obstacles or inclines. The combi-
nation of these sensor readings indicates a challenging
environment that requires quick adjustments in move-
ment and speed.

Vicuna-13b [omitted]... Overall, the combination of gyroscope and
accelerometer data can provide valuable information
about the terrain on which the running is occurring, ...
[omitted]

User How can the gyroscope data be used to identify potential
fatigue or inconsistencies in the hand movement while
ironing? [ironing]

LLaSA [omitted] ... by analyzing the smoothness and consis-
tency of the rotational movements. Sudden spikes or
irregular patterns in the gyroscope data may indicate
fatigue or inconsistencies in the hand movements, sug-
gesting potential challenges in maintaining a steady and
controlled ironing motion.

Vicuna-13b [omitted] ... One approach is to calculate the standard
deviation of the angular velocity over time to identify if
the iron is being moved with consistent force or if there
are periods of increased or decreased force that could
indicate fatigue. Another approach is to analyze the
orientation of the iron over time to identify if there are
any patterns or deviations from a straight line that could
indicate inconsistent movement or fatigue. ... [omitted]

Table 2: Sample question-answering with LLaSA

eral answers instead of analyzing the data. Though 295

LLaSA may misclassify, discuss unrelated sensors, 296

and provide general answers without specific de- 297

tails, it can still offer insights from scientific, narra- 298

tive, and data reliability perspectives. 299

7 Discussion and Conclusion 300

This paper introduces a novel LMA for IMU data 301

that links human activity narratives with sensor 302

readings. We develop SensorCaps, OpenSQA, and 303

IMU-aware question-answering benchmarks, ad- 304

vancing multimodal NLP research. Our experi- 305

ments show that the LLaSA model effectively as- 306

sociates IMU data with activity phases and pro- 307

vides insightful responses. While it occasionally 308

misclassifies activities and struggles with mathe- 309

matical problems, these issues highlight areas for 310

future improvement. The potential applications in 311

healthcare, sports science, and human-computer 312

interactions underscore the value of our work. 313
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8 Limitations314

This section outlines the limitations of our pro-315

posed LMA, LLaSA.316

8.1 Generating Detailed and Specific Answers317

Our open-ended question-answering model some-318

times produces overly generalized answers. This319

could be mitigated by creating datasets with more320

detailed and specific answers. In the future, we plan321

to focus on generating diverse question-answer322

categories to ensure the LMA can respond with323

specialized details instead of relying on a limited324

knowledge.325

8.2 Mathematical problem solving with326

sensor-aware LMAs327

We generate a fourth category of questions for the328

benchmark dataset in Section 5.2 to solve small329

mathematical problems. Our experiments revealed330

that sensor embeddings alone are insufficient for331

solving mathematical problems involving sensor332

data. GPT-4o assessment summaries also include333

this as a weakness of LLaSA. In our future work,334

we will consider appending numerical sensor read-335

ings to queries. We plan to investigate whether336

enhancing mathematical problem-solving capabil-337

ities can improve overall understanding in other338

instruction-following or question-answering tasks.339

8.3 Open-ended question-answering340

evaluation341

While using LLMs like GPT-4o to summarize342

strengths and weaknesses provides useful insights,343

developing metrics or scoring systems based on344

these summaries could help compare generative345

models. In the future, we will explore metrics that346

assess the accuracy of references to physical ac-347

tivities and sensors, incorporating human expert348

assessments to validate these metrics. The align-349

ment between a human scorer and an LLM scorer350

can verify the quality of such metrics.351

8.4 Hyper-parameter search352

This work does not explore optimal hyper-353

parameter search for training LMAs. It will be354

worth investigating hyper-parameter optimization355

to enhance training procedures and performance.356

8.5 Full fine-tuning and bigger models357

We used a relatively lightweight LLM (7 billion358

parameters) with parameter-efficient fine-tuning359

(PEFT). Our future work will explore larger mod- 360

els (e.g., over 30 billion parameters) without 361

PEFT. Such models, combined with tuned hyper- 362

parameters, might better handle complex data. 363

8.6 Ethical considerations for future research 364

Until further research ensures the safety of us- 365

ing LMAs in real-life activities, we advise against 366

working with human subjects. Although our study 367

does not directly address the potential risks, incor- 368

rect answers and hallucinations from LMAs could 369

misguide and endanger users, especially those rely- 370

ing on wearable technologies for health. Therefore, 371

our future research will focus on improving our 372

understanding of the safety of LMAs in wearable 373

and environmental sensor applications. 374

Ethics Statement 375

The IMU data used in this paper are publicly avail- 376

able online and were collected and distributed by 377

third parties with consent and IRB or ethics com- 378

mittee approvals where applicable. We did not 379

use any private IMU data to train the model. The 380

proposed model has the potential to benefit individ- 381

uals by providing detailed information about activ- 382

ities. However, while this model aims to classify 383

and detail activities accurately, it may occasionally 384

provide incorrect answers, which could result in 385

dangerous outcomes if misused. Therefore, it is 386

crucial for researchers, developers, and users to 387

employ this technology responsibly, ensuring its 388

application aligns with ethical considerations and 389

avoids potential misuse. At its current stage, the 390

models and methods presented in this paper are 391

intended solely for research purposes and should 392

not be used outside research circles or provided to 393

human subjects or consumers. 394
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